1 /* ef_jn.c -- float version of e_jn.c.
2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3  */
4 
5 /*
6  * ====================================================
7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8  *
9  * Developed at SunPro, a Sun Microsystems, Inc. business.
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice
12  * is preserved.
13  * ====================================================
14  */
15 
16 #include "fdlibm.h"
17 
18 #ifdef __STDC__
19 static const float
20 #else
21 static float
22 #endif
23 invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
24 two   =  2.0000000000e+00, /* 0x40000000 */
25 one   =  1.0000000000e+00; /* 0x3F800000 */
26 
27 #ifdef __STDC__
28 static const float zero  =  0.0000000000e+00;
29 #else
30 static float zero  =  0.0000000000e+00;
31 #endif
32 
33 #ifdef __STDC__
__ieee754_jnf(int n,float x)34 	float __ieee754_jnf(int n, float x)
35 #else
36 	float __ieee754_jnf(n,x)
37 	int n; float x;
38 #endif
39 {
40 	__int32_t i,hx,ix, sgn;
41 	float a, b, temp, di;
42 	float z, w;
43 
44     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
45      * Thus, J(-n,x) = J(n,-x)
46      */
47 	GET_FLOAT_WORD(hx,x);
48 	ix = 0x7fffffff&hx;
49     /* if J(n,NaN) is NaN */
50 	if(FLT_UWORD_IS_NAN(ix)) return x+x;
51 	if(n<0){
52 		n = -n;
53 		x = -x;
54 		hx ^= 0x80000000;
55 	}
56 	if(n==0) return(__ieee754_j0f(x));
57 	if(n==1) return(__ieee754_j1f(x));
58 	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */
59 	x = fabsf(x);
60 	if(FLT_UWORD_IS_ZERO(ix)||FLT_UWORD_IS_INFINITE(ix))
61 	    b = zero;
62 	else if((float)n<=x) {
63 		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
64 	    a = __ieee754_j0f(x);
65 	    b = __ieee754_j1f(x);
66 	    for(i=1;i<n;i++){
67 		temp = b;
68 		b = b*((float)(i+i)/x) - a; /* avoid underflow */
69 		a = temp;
70 	    }
71 	} else {
72 	    if(ix<0x30800000) {	/* x < 2**-29 */
73     /* x is tiny, return the first Taylor expansion of J(n,x)
74      * J(n,x) = 1/n!*(x/2)^n  - ...
75      */
76 		if(n>33)	/* underflow */
77 		    b = zero;
78 		else {
79 		    temp = x*(float)0.5; b = temp;
80 		    for (a=one,i=2;i<=n;i++) {
81 			a *= (float)i;		/* a = n! */
82 			b *= temp;		/* b = (x/2)^n */
83 		    }
84 		    b = b/a;
85 		}
86 	    } else {
87 		/* use backward recurrence */
88 		/* 			x      x^2      x^2
89 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
90 		 *			2n  - 2(n+1) - 2(n+2)
91 		 *
92 		 * 			1      1        1
93 		 *  (for large x)   =  ----  ------   ------   .....
94 		 *			2n   2(n+1)   2(n+2)
95 		 *			-- - ------ - ------ -
96 		 *			 x     x         x
97 		 *
98 		 * Let w = 2n/x and h=2/x, then the above quotient
99 		 * is equal to the continued fraction:
100 		 *		    1
101 		 *	= -----------------------
102 		 *		       1
103 		 *	   w - -----------------
104 		 *			  1
105 		 * 	        w+h - ---------
106 		 *		       w+2h - ...
107 		 *
108 		 * To determine how many terms needed, let
109 		 * Q(0) = w, Q(1) = w(w+h) - 1,
110 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
111 		 * When Q(k) > 1e4	good for single
112 		 * When Q(k) > 1e9	good for double
113 		 * When Q(k) > 1e17	good for quadruple
114 		 */
115 	    /* determine k */
116 		float t,v;
117 		float q0,q1,h,tmp; __int32_t k,m;
118 		w  = (n+n)/(float)x; h = (float)2.0/(float)x;
119 		q0 = w;  z = w+h; q1 = w*z - (float)1.0; k=1;
120 		while(q1<(float)1.0e9) {
121 			k += 1; z += h;
122 			tmp = z*q1 - q0;
123 			q0 = q1;
124 			q1 = tmp;
125 		}
126 		m = n+n;
127 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
128 		a = t;
129 		b = one;
130 		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
131 		 *  Hence, if n*(log(2n/x)) > ...
132 		 *  single 8.8722839355e+01
133 		 *  double 7.09782712893383973096e+02
134 		 *  long double 1.1356523406294143949491931077970765006170e+04
135 		 *  then recurrent value may overflow and the result is
136 		 *  likely underflow to zero
137 		 */
138 		tmp = n;
139 		v = two/x;
140 		tmp = tmp*__ieee754_logf(fabsf(v*tmp));
141 		if(tmp<(float)8.8721679688e+01) {
142 	    	    for(i=n-1,di=(float)(i+i);i>0;i--){
143 		        temp = b;
144 			b *= di;
145 			b  = b/x - a;
146 		        a = temp;
147 			di -= two;
148 	     	    }
149 		} else {
150 	    	    for(i=n-1,di=(float)(i+i);i>0;i--){
151 		        temp = b;
152 			b *= di;
153 			b  = b/x - a;
154 		        a = temp;
155 			di -= two;
156 		    /* scale b to avoid spurious overflow */
157 			if(b>(float)1e10) {
158 			    a /= b;
159 			    t /= b;
160 			    b  = one;
161 			}
162 	     	    }
163 		}
164 	    	b = (t*__ieee754_j0f(x)/b);
165 	    }
166 	}
167 	if(sgn==1) return -b; else return b;
168 }
169 
170 #ifdef __STDC__
__ieee754_ynf(int n,float x)171 	float __ieee754_ynf(int n, float x)
172 #else
173 	float __ieee754_ynf(n,x)
174 	int n; float x;
175 #endif
176 {
177 	__int32_t i,hx,ix,ib;
178 	__int32_t sign;
179 	float a, b, temp;
180 
181 	GET_FLOAT_WORD(hx,x);
182 	ix = 0x7fffffff&hx;
183     /* if Y(n,NaN) is NaN */
184 	if(FLT_UWORD_IS_NAN(ix)) return x+x;
185 	if(FLT_UWORD_IS_ZERO(ix)) return -one/zero;
186 	if(hx<0) return zero/zero;
187 	sign = 1;
188 	if(n<0){
189 		n = -n;
190 		sign = 1 - ((n&1)<<1);
191 	}
192 	if(n==0) return(__ieee754_y0f(x));
193 	if(n==1) return(sign*__ieee754_y1f(x));
194 	if(FLT_UWORD_IS_INFINITE(ix)) return zero;
195 
196 	a = __ieee754_y0f(x);
197 	b = __ieee754_y1f(x);
198 	/* quit if b is -inf */
199 	GET_FLOAT_WORD(ib,b);
200 	for(i=1;i<n&&ib!=0xff800000;i++){
201 	    temp = b;
202 	    b = ((float)(i+i)/x)*b - a;
203 	    GET_FLOAT_WORD(ib,b);
204 	    a = temp;
205 	}
206 	if(sign>0) return b; else return -b;
207 }
208