1 /* Alias analysis for GNU C
2    Copyright (C) 1997-2020 Free Software Foundation, Inc.
3    Contributed by John Carr (jfc@mit.edu).
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "gimple-ssa.h"
33 #include "emit-rtl.h"
34 #include "alias.h"
35 #include "fold-const.h"
36 #include "varasm.h"
37 #include "cselib.h"
38 #include "langhooks.h"
39 #include "cfganal.h"
40 #include "rtl-iter.h"
41 #include "cgraph.h"
42 #include "ipa-utils.h"
43 
44 /* The aliasing API provided here solves related but different problems:
45 
46    Say there exists (in c)
47 
48    struct X {
49      struct Y y1;
50      struct Z z2;
51    } x1, *px1,  *px2;
52 
53    struct Y y2, *py;
54    struct Z z2, *pz;
55 
56 
57    py = &x1.y1;
58    px2 = &x1;
59 
60    Consider the four questions:
61 
62    Can a store to x1 interfere with px2->y1?
63    Can a store to x1 interfere with px2->z2?
64    Can a store to x1 change the value pointed to by with py?
65    Can a store to x1 change the value pointed to by with pz?
66 
67    The answer to these questions can be yes, yes, yes, and maybe.
68 
69    The first two questions can be answered with a simple examination
70    of the type system.  If structure X contains a field of type Y then
71    a store through a pointer to an X can overwrite any field that is
72    contained (recursively) in an X (unless we know that px1 != px2).
73 
74    The last two questions can be solved in the same way as the first
75    two questions but this is too conservative.  The observation is
76    that in some cases we can know which (if any) fields are addressed
77    and if those addresses are used in bad ways.  This analysis may be
78    language specific.  In C, arbitrary operations may be applied to
79    pointers.  However, there is some indication that this may be too
80    conservative for some C++ types.
81 
82    The pass ipa-type-escape does this analysis for the types whose
83    instances do not escape across the compilation boundary.
84 
85    Historically in GCC, these two problems were combined and a single
86    data structure that was used to represent the solution to these
87    problems.  We now have two similar but different data structures,
88    The data structure to solve the last two questions is similar to
89    the first, but does not contain the fields whose address are never
90    taken.  For types that do escape the compilation unit, the data
91    structures will have identical information.
92 */
93 
94 /* The alias sets assigned to MEMs assist the back-end in determining
95    which MEMs can alias which other MEMs.  In general, two MEMs in
96    different alias sets cannot alias each other, with one important
97    exception.  Consider something like:
98 
99      struct S { int i; double d; };
100 
101    a store to an `S' can alias something of either type `int' or type
102    `double'.  (However, a store to an `int' cannot alias a `double'
103    and vice versa.)  We indicate this via a tree structure that looks
104    like:
105 	   struct S
106 	    /   \
107 	   /     \
108 	 |/_     _\|
109 	 int    double
110 
111    (The arrows are directed and point downwards.)
112     In this situation we say the alias set for `struct S' is the
113    `superset' and that those for `int' and `double' are `subsets'.
114 
115    To see whether two alias sets can point to the same memory, we must
116    see if either alias set is a subset of the other. We need not trace
117    past immediate descendants, however, since we propagate all
118    grandchildren up one level.
119 
120    Alias set zero is implicitly a superset of all other alias sets.
121    However, this is no actual entry for alias set zero.  It is an
122    error to attempt to explicitly construct a subset of zero.  */
123 
124 struct alias_set_hash : int_hash <int, INT_MIN, INT_MIN + 1> {};
125 
126 struct GTY(()) alias_set_entry {
127   /* The alias set number, as stored in MEM_ALIAS_SET.  */
128   alias_set_type alias_set;
129 
130   /* Nonzero if would have a child of zero: this effectively makes this
131      alias set the same as alias set zero.  */
132   bool has_zero_child;
133   /* Nonzero if alias set corresponds to pointer type itself (i.e. not to
134      aggregate contaiing pointer.
135      This is used for a special case where we need an universal pointer type
136      compatible with all other pointer types.  */
137   bool is_pointer;
138   /* Nonzero if is_pointer or if one of childs have has_pointer set.  */
139   bool has_pointer;
140 
141   /* The children of the alias set.  These are not just the immediate
142      children, but, in fact, all descendants.  So, if we have:
143 
144        struct T { struct S s; float f; }
145 
146      continuing our example above, the children here will be all of
147      `int', `double', `float', and `struct S'.  */
148   hash_map<alias_set_hash, int> *children;
149 };
150 
151 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
152 static void record_set (rtx, const_rtx, void *);
153 static int base_alias_check (rtx, rtx, rtx, rtx, machine_mode,
154 			     machine_mode);
155 static rtx find_base_value (rtx);
156 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
157 static alias_set_entry *get_alias_set_entry (alias_set_type);
158 static tree decl_for_component_ref (tree);
159 static int write_dependence_p (const_rtx,
160 			       const_rtx, machine_mode, rtx,
161 			       bool, bool, bool);
162 static int compare_base_symbol_refs (const_rtx, const_rtx);
163 
164 static void memory_modified_1 (rtx, const_rtx, void *);
165 
166 /* Query statistics for the different low-level disambiguators.
167    A high-level query may trigger multiple of them.  */
168 
169 static struct {
170   unsigned long long num_alias_zero;
171   unsigned long long num_same_alias_set;
172   unsigned long long num_same_objects;
173   unsigned long long num_volatile;
174   unsigned long long num_dag;
175   unsigned long long num_universal;
176   unsigned long long num_disambiguated;
177 } alias_stats;
178 
179 
180 /* Set up all info needed to perform alias analysis on memory references.  */
181 
182 /* Returns the size in bytes of the mode of X.  */
183 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
184 
185 /* Cap the number of passes we make over the insns propagating alias
186    information through set chains.
187    ??? 10 is a completely arbitrary choice.  This should be based on the
188    maximum loop depth in the CFG, but we do not have this information
189    available (even if current_loops _is_ available).  */
190 #define MAX_ALIAS_LOOP_PASSES 10
191 
192 /* reg_base_value[N] gives an address to which register N is related.
193    If all sets after the first add or subtract to the current value
194    or otherwise modify it so it does not point to a different top level
195    object, reg_base_value[N] is equal to the address part of the source
196    of the first set.
197 
198    A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF.  ADDRESS
199    expressions represent three types of base:
200 
201      1. incoming arguments.  There is just one ADDRESS to represent all
202 	arguments, since we do not know at this level whether accesses
203 	based on different arguments can alias.  The ADDRESS has id 0.
204 
205      2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
206 	(if distinct from frame_pointer_rtx) and arg_pointer_rtx.
207 	Each of these rtxes has a separate ADDRESS associated with it,
208 	each with a negative id.
209 
210 	GCC is (and is required to be) precise in which register it
211 	chooses to access a particular region of stack.  We can therefore
212 	assume that accesses based on one of these rtxes do not alias
213 	accesses based on another of these rtxes.
214 
215      3. bases that are derived from malloc()ed memory (REG_NOALIAS).
216 	Each such piece of memory has a separate ADDRESS associated
217 	with it, each with an id greater than 0.
218 
219    Accesses based on one ADDRESS do not alias accesses based on other
220    ADDRESSes.  Accesses based on ADDRESSes in groups (2) and (3) do not
221    alias globals either; the ADDRESSes have Pmode to indicate this.
222    The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
223    indicate this.  */
224 
225 static GTY(()) vec<rtx, va_gc> *reg_base_value;
226 static rtx *new_reg_base_value;
227 
228 /* The single VOIDmode ADDRESS that represents all argument bases.
229    It has id 0.  */
230 static GTY(()) rtx arg_base_value;
231 
232 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS.  */
233 static int unique_id;
234 
235 /* We preserve the copy of old array around to avoid amount of garbage
236    produced.  About 8% of garbage produced were attributed to this
237    array.  */
238 static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
239 
240 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
241    registers.  */
242 #define UNIQUE_BASE_VALUE_SP	-1
243 #define UNIQUE_BASE_VALUE_ARGP	-2
244 #define UNIQUE_BASE_VALUE_FP	-3
245 #define UNIQUE_BASE_VALUE_HFP	-4
246 
247 #define static_reg_base_value \
248   (this_target_rtl->x_static_reg_base_value)
249 
250 #define REG_BASE_VALUE(X)					\
251   (REGNO (X) < vec_safe_length (reg_base_value)			\
252    ? (*reg_base_value)[REGNO (X)] : 0)
253 
254 /* Vector indexed by N giving the initial (unchanging) value known for
255    pseudo-register N.  This vector is initialized in init_alias_analysis,
256    and does not change until end_alias_analysis is called.  */
257 static GTY(()) vec<rtx, va_gc> *reg_known_value;
258 
259 /* Vector recording for each reg_known_value whether it is due to a
260    REG_EQUIV note.  Future passes (viz., reload) may replace the
261    pseudo with the equivalent expression and so we account for the
262    dependences that would be introduced if that happens.
263 
264    The REG_EQUIV notes created in assign_parms may mention the arg
265    pointer, and there are explicit insns in the RTL that modify the
266    arg pointer.  Thus we must ensure that such insns don't get
267    scheduled across each other because that would invalidate the
268    REG_EQUIV notes.  One could argue that the REG_EQUIV notes are
269    wrong, but solving the problem in the scheduler will likely give
270    better code, so we do it here.  */
271 static sbitmap reg_known_equiv_p;
272 
273 /* True when scanning insns from the start of the rtl to the
274    NOTE_INSN_FUNCTION_BEG note.  */
275 static bool copying_arguments;
276 
277 
278 /* The splay-tree used to store the various alias set entries.  */
279 static GTY (()) vec<alias_set_entry *, va_gc> *alias_sets;
280 
281 /* Build a decomposed reference object for querying the alias-oracle
282    from the MEM rtx and store it in *REF.
283    Returns false if MEM is not suitable for the alias-oracle.  */
284 
285 static bool
ao_ref_from_mem(ao_ref * ref,const_rtx mem)286 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
287 {
288   tree expr = MEM_EXPR (mem);
289   tree base;
290 
291   if (!expr)
292     return false;
293 
294   ao_ref_init (ref, expr);
295 
296   /* Get the base of the reference and see if we have to reject or
297      adjust it.  */
298   base = ao_ref_base (ref);
299   if (base == NULL_TREE)
300     return false;
301 
302   /* The tree oracle doesn't like bases that are neither decls
303      nor indirect references of SSA names.  */
304   if (!(DECL_P (base)
305 	|| (TREE_CODE (base) == MEM_REF
306 	    && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
307 	|| (TREE_CODE (base) == TARGET_MEM_REF
308 	    && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
309     return false;
310 
311   ref->ref_alias_set = MEM_ALIAS_SET (mem);
312 
313   /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
314      is conservative, so trust it.  */
315   if (!MEM_OFFSET_KNOWN_P (mem)
316       || !MEM_SIZE_KNOWN_P (mem))
317     return true;
318 
319   /* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
320      drop ref->ref.  */
321   if (maybe_lt (MEM_OFFSET (mem), 0)
322       || (ref->max_size_known_p ()
323 	  && maybe_gt ((MEM_OFFSET (mem) + MEM_SIZE (mem)) * BITS_PER_UNIT,
324 		       ref->max_size)))
325     ref->ref = NULL_TREE;
326 
327   /* Refine size and offset we got from analyzing MEM_EXPR by using
328      MEM_SIZE and MEM_OFFSET.  */
329 
330   ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
331   ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
332 
333   /* The MEM may extend into adjacent fields, so adjust max_size if
334      necessary.  */
335   if (ref->max_size_known_p ())
336     ref->max_size = upper_bound (ref->max_size, ref->size);
337 
338   /* If MEM_OFFSET and MEM_SIZE might get us outside of the base object of
339      the MEM_EXPR punt.  This happens for STRICT_ALIGNMENT targets a lot.  */
340   if (MEM_EXPR (mem) != get_spill_slot_decl (false)
341       && (maybe_lt (ref->offset, 0)
342 	  || (DECL_P (ref->base)
343 	      && (DECL_SIZE (ref->base) == NULL_TREE
344 		  || !poly_int_tree_p (DECL_SIZE (ref->base))
345 		  || maybe_lt (wi::to_poly_offset (DECL_SIZE (ref->base)),
346 			       ref->offset + ref->size)))))
347     return false;
348 
349   return true;
350 }
351 
352 /* Query the alias-oracle on whether the two memory rtx X and MEM may
353    alias.  If TBAA_P is set also apply TBAA.  Returns true if the
354    two rtxen may alias, false otherwise.  */
355 
356 static bool
rtx_refs_may_alias_p(const_rtx x,const_rtx mem,bool tbaa_p)357 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
358 {
359   ao_ref ref1, ref2;
360 
361   if (!ao_ref_from_mem (&ref1, x)
362       || !ao_ref_from_mem (&ref2, mem))
363     return true;
364 
365   return refs_may_alias_p_1 (&ref1, &ref2,
366 			     tbaa_p
367 			     && MEM_ALIAS_SET (x) != 0
368 			     && MEM_ALIAS_SET (mem) != 0);
369 }
370 
371 /* Return true if the ref EARLIER behaves the same as LATER with respect
372    to TBAA for every memory reference that might follow LATER.  */
373 
374 bool
refs_same_for_tbaa_p(tree earlier,tree later)375 refs_same_for_tbaa_p (tree earlier, tree later)
376 {
377   ao_ref earlier_ref, later_ref;
378   ao_ref_init (&earlier_ref, earlier);
379   ao_ref_init (&later_ref, later);
380   alias_set_type earlier_set = ao_ref_alias_set (&earlier_ref);
381   alias_set_type later_set = ao_ref_alias_set (&later_ref);
382   if (!(earlier_set == later_set
383 	|| alias_set_subset_of (later_set, earlier_set)))
384     return false;
385   alias_set_type later_base_set = ao_ref_base_alias_set (&later_ref);
386   alias_set_type earlier_base_set = ao_ref_base_alias_set (&earlier_ref);
387   return (earlier_base_set == later_base_set
388 	  || alias_set_subset_of (later_base_set, earlier_base_set));
389 }
390 
391 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
392    such an entry, or NULL otherwise.  */
393 
394 static inline alias_set_entry *
get_alias_set_entry(alias_set_type alias_set)395 get_alias_set_entry (alias_set_type alias_set)
396 {
397   return (*alias_sets)[alias_set];
398 }
399 
400 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
401    the two MEMs cannot alias each other.  */
402 
403 static inline int
mems_in_disjoint_alias_sets_p(const_rtx mem1,const_rtx mem2)404 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
405 {
406   return (flag_strict_aliasing
407 	  && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
408 				      MEM_ALIAS_SET (mem2)));
409 }
410 
411 /* Return true if the first alias set is a subset of the second.  */
412 
413 bool
alias_set_subset_of(alias_set_type set1,alias_set_type set2)414 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
415 {
416   alias_set_entry *ase2;
417 
418   /* Disable TBAA oracle with !flag_strict_aliasing.  */
419   if (!flag_strict_aliasing)
420     return true;
421 
422   /* Everything is a subset of the "aliases everything" set.  */
423   if (set2 == 0)
424     return true;
425 
426   /* Check if set1 is a subset of set2.  */
427   ase2 = get_alias_set_entry (set2);
428   if (ase2 != 0
429       && (ase2->has_zero_child
430 	  || (ase2->children && ase2->children->get (set1))))
431     return true;
432 
433   /* As a special case we consider alias set of "void *" to be both subset
434      and superset of every alias set of a pointer.  This extra symmetry does
435      not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
436      to return true on the following testcase:
437 
438      void *ptr;
439      char **ptr2=(char **)&ptr;
440      *ptr2 = ...
441 
442      Additionally if a set contains universal pointer, we consider every pointer
443      to be a subset of it, but we do not represent this explicitely - doing so
444      would require us to update transitive closure each time we introduce new
445      pointer type.  This makes aliasing_component_refs_p to return true
446      on the following testcase:
447 
448      struct a {void *ptr;}
449      char **ptr = (char **)&a.ptr;
450      ptr = ...
451 
452      This makes void * truly universal pointer type.  See pointer handling in
453      get_alias_set for more details.  */
454   if (ase2 && ase2->has_pointer)
455     {
456       alias_set_entry *ase1 = get_alias_set_entry (set1);
457 
458       if (ase1 && ase1->is_pointer)
459 	{
460           alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
461 	  /* If one is ptr_type_node and other is pointer, then we consider
462  	     them subset of each other.  */
463 	  if (set1 == voidptr_set || set2 == voidptr_set)
464 	    return true;
465 	  /* If SET2 contains universal pointer's alias set, then we consdier
466  	     every (non-universal) pointer.  */
467 	  if (ase2->children && set1 != voidptr_set
468 	      && ase2->children->get (voidptr_set))
469 	    return true;
470 	}
471     }
472   return false;
473 }
474 
475 /* Return 1 if the two specified alias sets may conflict.  */
476 
477 int
alias_sets_conflict_p(alias_set_type set1,alias_set_type set2)478 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
479 {
480   alias_set_entry *ase1;
481   alias_set_entry *ase2;
482 
483   /* The easy case.  */
484   if (alias_sets_must_conflict_p (set1, set2))
485     return 1;
486 
487   /* See if the first alias set is a subset of the second.  */
488   ase1 = get_alias_set_entry (set1);
489   if (ase1 != 0
490       && ase1->children && ase1->children->get (set2))
491     {
492       ++alias_stats.num_dag;
493       return 1;
494     }
495 
496   /* Now do the same, but with the alias sets reversed.  */
497   ase2 = get_alias_set_entry (set2);
498   if (ase2 != 0
499       && ase2->children && ase2->children->get (set1))
500     {
501       ++alias_stats.num_dag;
502       return 1;
503     }
504 
505   /* We want void * to be compatible with any other pointer without
506      really dropping it to alias set 0. Doing so would make it
507      compatible with all non-pointer types too.
508 
509      This is not strictly necessary by the C/C++ language
510      standards, but avoids common type punning mistakes.  In
511      addition to that, we need the existence of such universal
512      pointer to implement Fortran's C_PTR type (which is defined as
513      type compatible with all C pointers).  */
514   if (ase1 && ase2 && ase1->has_pointer && ase2->has_pointer)
515     {
516       alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
517 
518       /* If one of the sets corresponds to universal pointer,
519  	 we consider it to conflict with anything that is
520 	 or contains pointer.  */
521       if (set1 == voidptr_set || set2 == voidptr_set)
522 	{
523 	  ++alias_stats.num_universal;
524 	  return true;
525 	}
526      /* If one of sets is (non-universal) pointer and the other
527  	contains universal pointer, we also get conflict.  */
528      if (ase1->is_pointer && set2 != voidptr_set
529 	 && ase2->children && ase2->children->get (voidptr_set))
530 	{
531 	  ++alias_stats.num_universal;
532 	  return true;
533 	}
534      if (ase2->is_pointer && set1 != voidptr_set
535 	 && ase1->children && ase1->children->get (voidptr_set))
536 	{
537 	  ++alias_stats.num_universal;
538 	  return true;
539 	}
540     }
541 
542   ++alias_stats.num_disambiguated;
543 
544   /* The two alias sets are distinct and neither one is the
545      child of the other.  Therefore, they cannot conflict.  */
546   return 0;
547 }
548 
549 /* Return 1 if the two specified alias sets will always conflict.  */
550 
551 int
alias_sets_must_conflict_p(alias_set_type set1,alias_set_type set2)552 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
553 {
554   /* Disable TBAA oracle with !flag_strict_aliasing.  */
555   if (!flag_strict_aliasing)
556     return 1;
557   if (set1 == 0 || set2 == 0)
558     {
559       ++alias_stats.num_alias_zero;
560       return 1;
561     }
562   if (set1 == set2)
563     {
564       ++alias_stats.num_same_alias_set;
565       return 1;
566     }
567 
568   return 0;
569 }
570 
571 /* Return 1 if any MEM object of type T1 will always conflict (using the
572    dependency routines in this file) with any MEM object of type T2.
573    This is used when allocating temporary storage.  If T1 and/or T2 are
574    NULL_TREE, it means we know nothing about the storage.  */
575 
576 int
objects_must_conflict_p(tree t1,tree t2)577 objects_must_conflict_p (tree t1, tree t2)
578 {
579   alias_set_type set1, set2;
580 
581   /* If neither has a type specified, we don't know if they'll conflict
582      because we may be using them to store objects of various types, for
583      example the argument and local variables areas of inlined functions.  */
584   if (t1 == 0 && t2 == 0)
585     return 0;
586 
587   /* If they are the same type, they must conflict.  */
588   if (t1 == t2)
589     {
590       ++alias_stats.num_same_objects;
591       return 1;
592     }
593   /* Likewise if both are volatile.  */
594   if (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))
595     {
596       ++alias_stats.num_volatile;
597       return 1;
598     }
599 
600   set1 = t1 ? get_alias_set (t1) : 0;
601   set2 = t2 ? get_alias_set (t2) : 0;
602 
603   /* We can't use alias_sets_conflict_p because we must make sure
604      that every subtype of t1 will conflict with every subtype of
605      t2 for which a pair of subobjects of these respective subtypes
606      overlaps on the stack.  */
607   return alias_sets_must_conflict_p (set1, set2);
608 }
609 
610 /* Return true if T is an end of the access path which can be used
611    by type based alias oracle.  */
612 
613 bool
ends_tbaa_access_path_p(const_tree t)614 ends_tbaa_access_path_p (const_tree t)
615 {
616   switch (TREE_CODE (t))
617     {
618     case COMPONENT_REF:
619       if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
620 	return true;
621       /* Permit type-punning when accessing a union, provided the access
622 	 is directly through the union.  For example, this code does not
623 	 permit taking the address of a union member and then storing
624 	 through it.  Even the type-punning allowed here is a GCC
625 	 extension, albeit a common and useful one; the C standard says
626 	 that such accesses have implementation-defined behavior.  */
627       else if (TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == UNION_TYPE)
628 	return true;
629       break;
630 
631     case ARRAY_REF:
632     case ARRAY_RANGE_REF:
633       if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
634 	return true;
635       break;
636 
637     case REALPART_EXPR:
638     case IMAGPART_EXPR:
639       break;
640 
641     case BIT_FIELD_REF:
642     case VIEW_CONVERT_EXPR:
643       /* Bitfields and casts are never addressable.  */
644       return true;
645       break;
646 
647     default:
648       gcc_unreachable ();
649     }
650   return false;
651 }
652 
653 /* Return the outermost parent of component present in the chain of
654    component references handled by get_inner_reference in T with the
655    following property:
656      - the component is non-addressable
657    or NULL_TREE if no such parent exists.  In the former cases, the alias
658    set of this parent is the alias set that must be used for T itself.  */
659 
660 tree
component_uses_parent_alias_set_from(const_tree t)661 component_uses_parent_alias_set_from (const_tree t)
662 {
663   const_tree found = NULL_TREE;
664 
665   while (handled_component_p (t))
666     {
667       if (ends_tbaa_access_path_p (t))
668 	found = t;
669 
670       t = TREE_OPERAND (t, 0);
671     }
672 
673   if (found)
674     return TREE_OPERAND (found, 0);
675 
676   return NULL_TREE;
677 }
678 
679 
680 /* Return whether the pointer-type T effective for aliasing may
681    access everything and thus the reference has to be assigned
682    alias-set zero.  */
683 
684 static bool
ref_all_alias_ptr_type_p(const_tree t)685 ref_all_alias_ptr_type_p (const_tree t)
686 {
687   return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
688 	  || TYPE_REF_CAN_ALIAS_ALL (t));
689 }
690 
691 /* Return the alias set for the memory pointed to by T, which may be
692    either a type or an expression.  Return -1 if there is nothing
693    special about dereferencing T.  */
694 
695 static alias_set_type
get_deref_alias_set_1(tree t)696 get_deref_alias_set_1 (tree t)
697 {
698   /* All we care about is the type.  */
699   if (! TYPE_P (t))
700     t = TREE_TYPE (t);
701 
702   /* If we have an INDIRECT_REF via a void pointer, we don't
703      know anything about what that might alias.  Likewise if the
704      pointer is marked that way.  */
705   if (ref_all_alias_ptr_type_p (t))
706     return 0;
707 
708   return -1;
709 }
710 
711 /* Return the alias set for the memory pointed to by T, which may be
712    either a type or an expression.  */
713 
714 alias_set_type
get_deref_alias_set(tree t)715 get_deref_alias_set (tree t)
716 {
717   /* If we're not doing any alias analysis, just assume everything
718      aliases everything else.  */
719   if (!flag_strict_aliasing)
720     return 0;
721 
722   alias_set_type set = get_deref_alias_set_1 (t);
723 
724   /* Fall back to the alias-set of the pointed-to type.  */
725   if (set == -1)
726     {
727       if (! TYPE_P (t))
728 	t = TREE_TYPE (t);
729       set = get_alias_set (TREE_TYPE (t));
730     }
731 
732   return set;
733 }
734 
735 /* Return the pointer-type relevant for TBAA purposes from the
736    memory reference tree *T or NULL_TREE in which case *T is
737    adjusted to point to the outermost component reference that
738    can be used for assigning an alias set.  */
739 
740 static tree
reference_alias_ptr_type_1(tree * t)741 reference_alias_ptr_type_1 (tree *t)
742 {
743   tree inner;
744 
745   /* Get the base object of the reference.  */
746   inner = *t;
747   while (handled_component_p (inner))
748     {
749       /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
750 	 the type of any component references that wrap it to
751 	 determine the alias-set.  */
752       if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
753 	*t = TREE_OPERAND (inner, 0);
754       inner = TREE_OPERAND (inner, 0);
755     }
756 
757   /* Handle pointer dereferences here, they can override the
758      alias-set.  */
759   if (INDIRECT_REF_P (inner)
760       && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
761     return TREE_TYPE (TREE_OPERAND (inner, 0));
762   else if (TREE_CODE (inner) == TARGET_MEM_REF)
763     return TREE_TYPE (TMR_OFFSET (inner));
764   else if (TREE_CODE (inner) == MEM_REF
765 	   && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
766     return TREE_TYPE (TREE_OPERAND (inner, 1));
767 
768   /* If the innermost reference is a MEM_REF that has a
769      conversion embedded treat it like a VIEW_CONVERT_EXPR above,
770      using the memory access type for determining the alias-set.  */
771   if (TREE_CODE (inner) == MEM_REF
772       && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
773 	  != TYPE_MAIN_VARIANT
774 	       (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
775     return TREE_TYPE (TREE_OPERAND (inner, 1));
776 
777   /* Otherwise, pick up the outermost object that we could have
778      a pointer to.  */
779   tree tem = component_uses_parent_alias_set_from (*t);
780   if (tem)
781     *t = tem;
782 
783   return NULL_TREE;
784 }
785 
786 /* Return the pointer-type relevant for TBAA purposes from the
787    gimple memory reference tree T.  This is the type to be used for
788    the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
789    and guarantees that get_alias_set will return the same alias
790    set for T and the replacement.  */
791 
792 tree
reference_alias_ptr_type(tree t)793 reference_alias_ptr_type (tree t)
794 {
795   /* If the frontend assigns this alias-set zero, preserve that.  */
796   if (lang_hooks.get_alias_set (t) == 0)
797     return ptr_type_node;
798 
799   tree ptype = reference_alias_ptr_type_1 (&t);
800   /* If there is a given pointer type for aliasing purposes, return it.  */
801   if (ptype != NULL_TREE)
802     return ptype;
803 
804   /* Otherwise build one from the outermost component reference we
805      may use.  */
806   if (TREE_CODE (t) == MEM_REF
807       || TREE_CODE (t) == TARGET_MEM_REF)
808     return TREE_TYPE (TREE_OPERAND (t, 1));
809   else
810     return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
811 }
812 
813 /* Return whether the pointer-types T1 and T2 used to determine
814    two alias sets of two references will yield the same answer
815    from get_deref_alias_set.  */
816 
817 bool
alias_ptr_types_compatible_p(tree t1,tree t2)818 alias_ptr_types_compatible_p (tree t1, tree t2)
819 {
820   if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
821     return true;
822 
823   if (ref_all_alias_ptr_type_p (t1)
824       || ref_all_alias_ptr_type_p (t2))
825     return false;
826 
827     /* This function originally abstracts from simply comparing
828        get_deref_alias_set so that we are sure this still computes
829        the same result after LTO type merging is applied.
830        When in LTO type merging is done we can actually do this compare.
831     */
832   if (in_lto_p)
833     return get_deref_alias_set (t1) == get_deref_alias_set (t2);
834   else
835     return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
836 	    == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
837 }
838 
839 /* Create emptry alias set entry.  */
840 
841 alias_set_entry *
init_alias_set_entry(alias_set_type set)842 init_alias_set_entry (alias_set_type set)
843 {
844   alias_set_entry *ase = ggc_alloc<alias_set_entry> ();
845   ase->alias_set = set;
846   ase->children = NULL;
847   ase->has_zero_child = false;
848   ase->is_pointer = false;
849   ase->has_pointer = false;
850   gcc_checking_assert (!get_alias_set_entry (set));
851   (*alias_sets)[set] = ase;
852   return ase;
853 }
854 
855 /* Return the alias set for T, which may be either a type or an
856    expression.  Call language-specific routine for help, if needed.  */
857 
858 alias_set_type
get_alias_set(tree t)859 get_alias_set (tree t)
860 {
861   alias_set_type set;
862 
863   /* We cannot give up with -fno-strict-aliasing because we need to build
864      proper type representations for possible functions which are built with
865      -fstrict-aliasing.  */
866 
867   /* return 0 if this or its type is an error.  */
868   if (t == error_mark_node
869       || (! TYPE_P (t)
870 	  && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
871     return 0;
872 
873   /* We can be passed either an expression or a type.  This and the
874      language-specific routine may make mutually-recursive calls to each other
875      to figure out what to do.  At each juncture, we see if this is a tree
876      that the language may need to handle specially.  First handle things that
877      aren't types.  */
878   if (! TYPE_P (t))
879     {
880       /* Give the language a chance to do something with this tree
881 	 before we look at it.  */
882       STRIP_NOPS (t);
883       set = lang_hooks.get_alias_set (t);
884       if (set != -1)
885 	return set;
886 
887       /* Get the alias pointer-type to use or the outermost object
888          that we could have a pointer to.  */
889       tree ptype = reference_alias_ptr_type_1 (&t);
890       if (ptype != NULL)
891 	return get_deref_alias_set (ptype);
892 
893       /* If we've already determined the alias set for a decl, just return
894 	 it.  This is necessary for C++ anonymous unions, whose component
895 	 variables don't look like union members (boo!).  */
896       if (VAR_P (t)
897 	  && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
898 	return MEM_ALIAS_SET (DECL_RTL (t));
899 
900       /* Now all we care about is the type.  */
901       t = TREE_TYPE (t);
902     }
903 
904   /* Variant qualifiers don't affect the alias set, so get the main
905      variant.  */
906   t = TYPE_MAIN_VARIANT (t);
907 
908   if (AGGREGATE_TYPE_P (t)
909       && TYPE_TYPELESS_STORAGE (t))
910     return 0;
911 
912   /* Always use the canonical type as well.  If this is a type that
913      requires structural comparisons to identify compatible types
914      use alias set zero.  */
915   if (TYPE_STRUCTURAL_EQUALITY_P (t))
916     {
917       /* Allow the language to specify another alias set for this
918 	 type.  */
919       set = lang_hooks.get_alias_set (t);
920       if (set != -1)
921 	return set;
922       /* Handle structure type equality for pointer types, arrays and vectors.
923 	 This is easy to do, because the code below ignores canonical types on
924 	 these anyway.  This is important for LTO, where TYPE_CANONICAL for
925 	 pointers cannot be meaningfully computed by the frontend.  */
926       if (canonical_type_used_p (t))
927 	{
928 	  /* In LTO we set canonical types for all types where it makes
929 	     sense to do so.  Double check we did not miss some type.  */
930 	  gcc_checking_assert (!in_lto_p || !type_with_alias_set_p (t));
931           return 0;
932 	}
933     }
934   else
935     {
936       t = TYPE_CANONICAL (t);
937       gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
938     }
939 
940   /* If this is a type with a known alias set, return it.  */
941   gcc_checking_assert (t == TYPE_MAIN_VARIANT (t));
942   if (TYPE_ALIAS_SET_KNOWN_P (t))
943     return TYPE_ALIAS_SET (t);
944 
945   /* We don't want to set TYPE_ALIAS_SET for incomplete types.  */
946   if (!COMPLETE_TYPE_P (t))
947     {
948       /* For arrays with unknown size the conservative answer is the
949 	 alias set of the element type.  */
950       if (TREE_CODE (t) == ARRAY_TYPE)
951 	return get_alias_set (TREE_TYPE (t));
952 
953       /* But return zero as a conservative answer for incomplete types.  */
954       return 0;
955     }
956 
957   /* See if the language has special handling for this type.  */
958   set = lang_hooks.get_alias_set (t);
959   if (set != -1)
960     return set;
961 
962   /* There are no objects of FUNCTION_TYPE, so there's no point in
963      using up an alias set for them.  (There are, of course, pointers
964      and references to functions, but that's different.)  */
965   else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
966     set = 0;
967 
968   /* Unless the language specifies otherwise, let vector types alias
969      their components.  This avoids some nasty type punning issues in
970      normal usage.  And indeed lets vectors be treated more like an
971      array slice.  */
972   else if (TREE_CODE (t) == VECTOR_TYPE)
973     set = get_alias_set (TREE_TYPE (t));
974 
975   /* Unless the language specifies otherwise, treat array types the
976      same as their components.  This avoids the asymmetry we get
977      through recording the components.  Consider accessing a
978      character(kind=1) through a reference to a character(kind=1)[1:1].
979      Or consider if we want to assign integer(kind=4)[0:D.1387] and
980      integer(kind=4)[4] the same alias set or not.
981      Just be pragmatic here and make sure the array and its element
982      type get the same alias set assigned.  */
983   else if (TREE_CODE (t) == ARRAY_TYPE
984 	   && (!TYPE_NONALIASED_COMPONENT (t)
985 	       || TYPE_STRUCTURAL_EQUALITY_P (t)))
986     set = get_alias_set (TREE_TYPE (t));
987 
988   /* From the former common C and C++ langhook implementation:
989 
990      Unfortunately, there is no canonical form of a pointer type.
991      In particular, if we have `typedef int I', then `int *', and
992      `I *' are different types.  So, we have to pick a canonical
993      representative.  We do this below.
994 
995      Technically, this approach is actually more conservative that
996      it needs to be.  In particular, `const int *' and `int *'
997      should be in different alias sets, according to the C and C++
998      standard, since their types are not the same, and so,
999      technically, an `int **' and `const int **' cannot point at
1000      the same thing.
1001 
1002      But, the standard is wrong.  In particular, this code is
1003      legal C++:
1004 
1005      int *ip;
1006      int **ipp = &ip;
1007      const int* const* cipp = ipp;
1008      And, it doesn't make sense for that to be legal unless you
1009      can dereference IPP and CIPP.  So, we ignore cv-qualifiers on
1010      the pointed-to types.  This issue has been reported to the
1011      C++ committee.
1012 
1013      For this reason go to canonical type of the unqalified pointer type.
1014      Until GCC 6 this code set all pointers sets to have alias set of
1015      ptr_type_node but that is a bad idea, because it prevents disabiguations
1016      in between pointers.  For Firefox this accounts about 20% of all
1017      disambiguations in the program.  */
1018   else if (POINTER_TYPE_P (t) && t != ptr_type_node)
1019     {
1020       tree p;
1021       auto_vec <bool, 8> reference;
1022 
1023       /* Unnest all pointers and references.
1024 	 We also want to make pointer to array/vector equivalent to pointer to
1025 	 its element (see the reasoning above). Skip all those types, too.  */
1026       for (p = t; POINTER_TYPE_P (p)
1027 	   || (TREE_CODE (p) == ARRAY_TYPE
1028 	       && (!TYPE_NONALIASED_COMPONENT (p)
1029 		   || !COMPLETE_TYPE_P (p)
1030 		   || TYPE_STRUCTURAL_EQUALITY_P (p)))
1031 	   || TREE_CODE (p) == VECTOR_TYPE;
1032 	   p = TREE_TYPE (p))
1033 	{
1034 	  /* Ada supports recursive pointers.  Instead of doing recursion
1035 	     check, just give up once the preallocated space of 8 elements
1036 	     is up.  In this case just punt to void * alias set.  */
1037 	  if (reference.length () == 8)
1038 	    {
1039 	      p = ptr_type_node;
1040 	      break;
1041 	    }
1042 	  if (TREE_CODE (p) == REFERENCE_TYPE)
1043 	    /* In LTO we want languages that use references to be compatible
1044  	       with languages that use pointers.  */
1045 	    reference.safe_push (true && !in_lto_p);
1046 	  if (TREE_CODE (p) == POINTER_TYPE)
1047 	    reference.safe_push (false);
1048 	}
1049       p = TYPE_MAIN_VARIANT (p);
1050 
1051       /* In LTO for C++ programs we can turn incomplete types to complete
1052 	 using ODR name lookup.  */
1053       if (in_lto_p && TYPE_STRUCTURAL_EQUALITY_P (p) && odr_type_p (p))
1054 	{
1055 	  p = prevailing_odr_type (p);
1056 	  gcc_checking_assert (TYPE_MAIN_VARIANT (p) == p);
1057 	}
1058 
1059       /* Make void * compatible with char * and also void **.
1060 	 Programs are commonly violating TBAA by this.
1061 
1062 	 We also make void * to conflict with every pointer
1063 	 (see record_component_aliases) and thus it is safe it to use it for
1064 	 pointers to types with TYPE_STRUCTURAL_EQUALITY_P.  */
1065       if (TREE_CODE (p) == VOID_TYPE || TYPE_STRUCTURAL_EQUALITY_P (p))
1066 	set = get_alias_set (ptr_type_node);
1067       else
1068 	{
1069 	  /* Rebuild pointer type starting from canonical types using
1070 	     unqualified pointers and references only.  This way all such
1071 	     pointers will have the same alias set and will conflict with
1072 	     each other.
1073 
1074 	     Most of time we already have pointers or references of a given type.
1075 	     If not we build new one just to be sure that if someone later
1076 	     (probably only middle-end can, as we should assign all alias
1077 	     classes only after finishing translation unit) builds the pointer
1078 	     type, the canonical type will match.  */
1079 	  p = TYPE_CANONICAL (p);
1080 	  while (!reference.is_empty ())
1081 	    {
1082 	      if (reference.pop ())
1083 		p = build_reference_type (p);
1084 	      else
1085 		p = build_pointer_type (p);
1086 	      gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1087 	      /* build_pointer_type should always return the canonical type.
1088 		 For LTO TYPE_CANOINCAL may be NULL, because we do not compute
1089 		 them.  Be sure that frontends do not glob canonical types of
1090 		 pointers in unexpected way and that p == TYPE_CANONICAL (p)
1091 		 in all other cases.  */
1092 	      gcc_checking_assert (!TYPE_CANONICAL (p)
1093 				   || p == TYPE_CANONICAL (p));
1094 	    }
1095 
1096 	  /* Assign the alias set to both p and t.
1097 	     We cannot call get_alias_set (p) here as that would trigger
1098 	     infinite recursion when p == t.  In other cases it would just
1099 	     trigger unnecesary legwork of rebuilding the pointer again.  */
1100 	  gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1101 	  if (TYPE_ALIAS_SET_KNOWN_P (p))
1102 	    set = TYPE_ALIAS_SET (p);
1103 	  else
1104 	    {
1105 	      set = new_alias_set ();
1106 	      TYPE_ALIAS_SET (p) = set;
1107 	    }
1108 	}
1109     }
1110   /* Alias set of ptr_type_node is special and serve as universal pointer which
1111      is TBAA compatible with every other pointer type.  Be sure we have the
1112      alias set built even for LTO which otherwise keeps all TYPE_CANONICAL
1113      of pointer types NULL.  */
1114   else if (t == ptr_type_node)
1115     set = new_alias_set ();
1116 
1117   /* Otherwise make a new alias set for this type.  */
1118   else
1119     {
1120       /* Each canonical type gets its own alias set, so canonical types
1121 	 shouldn't form a tree.  It doesn't really matter for types
1122 	 we handle specially above, so only check it where it possibly
1123 	 would result in a bogus alias set.  */
1124       gcc_checking_assert (TYPE_CANONICAL (t) == t);
1125 
1126       set = new_alias_set ();
1127     }
1128 
1129   TYPE_ALIAS_SET (t) = set;
1130 
1131   /* If this is an aggregate type or a complex type, we must record any
1132      component aliasing information.  */
1133   if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
1134     record_component_aliases (t);
1135 
1136   /* We treat pointer types specially in alias_set_subset_of.  */
1137   if (POINTER_TYPE_P (t) && set)
1138     {
1139       alias_set_entry *ase = get_alias_set_entry (set);
1140       if (!ase)
1141 	ase = init_alias_set_entry (set);
1142       ase->is_pointer = true;
1143       ase->has_pointer = true;
1144     }
1145 
1146   return set;
1147 }
1148 
1149 /* Return a brand-new alias set.  */
1150 
1151 alias_set_type
new_alias_set(void)1152 new_alias_set (void)
1153 {
1154   if (alias_sets == 0)
1155     vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1156   vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1157   return alias_sets->length () - 1;
1158 }
1159 
1160 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
1161    not everything that aliases SUPERSET also aliases SUBSET.  For example,
1162    in C, a store to an `int' can alias a load of a structure containing an
1163    `int', and vice versa.  But it can't alias a load of a 'double' member
1164    of the same structure.  Here, the structure would be the SUPERSET and
1165    `int' the SUBSET.  This relationship is also described in the comment at
1166    the beginning of this file.
1167 
1168    This function should be called only once per SUPERSET/SUBSET pair.
1169 
1170    It is illegal for SUPERSET to be zero; everything is implicitly a
1171    subset of alias set zero.  */
1172 
1173 void
record_alias_subset(alias_set_type superset,alias_set_type subset)1174 record_alias_subset (alias_set_type superset, alias_set_type subset)
1175 {
1176   alias_set_entry *superset_entry;
1177   alias_set_entry *subset_entry;
1178 
1179   /* It is possible in complex type situations for both sets to be the same,
1180      in which case we can ignore this operation.  */
1181   if (superset == subset)
1182     return;
1183 
1184   gcc_assert (superset);
1185 
1186   superset_entry = get_alias_set_entry (superset);
1187   if (superset_entry == 0)
1188     {
1189       /* Create an entry for the SUPERSET, so that we have a place to
1190 	 attach the SUBSET.  */
1191       superset_entry = init_alias_set_entry (superset);
1192     }
1193 
1194   if (subset == 0)
1195     superset_entry->has_zero_child = 1;
1196   else
1197     {
1198       if (!superset_entry->children)
1199 	superset_entry->children
1200 	  = hash_map<alias_set_hash, int>::create_ggc (64);
1201 
1202       /* Enter the SUBSET itself as a child of the SUPERSET.  If it was
1203 	 already there we're done.  */
1204       if (superset_entry->children->put (subset, 0))
1205 	return;
1206 
1207       subset_entry = get_alias_set_entry (subset);
1208       /* If there is an entry for the subset, enter all of its children
1209 	 (if they are not already present) as children of the SUPERSET.  */
1210       if (subset_entry)
1211 	{
1212 	  if (subset_entry->has_zero_child)
1213 	    superset_entry->has_zero_child = true;
1214           if (subset_entry->has_pointer)
1215 	    superset_entry->has_pointer = true;
1216 
1217 	  if (subset_entry->children)
1218 	    {
1219 	      hash_map<alias_set_hash, int>::iterator iter
1220 		= subset_entry->children->begin ();
1221 	      for (; iter != subset_entry->children->end (); ++iter)
1222 		superset_entry->children->put ((*iter).first, (*iter).second);
1223 	    }
1224 	}
1225     }
1226 }
1227 
1228 /* Record that component types of TYPE, if any, are part of SUPERSET for
1229    aliasing purposes.  For record types, we only record component types
1230    for fields that are not marked non-addressable.  For array types, we
1231    only record the component type if it is not marked non-aliased.  */
1232 
1233 void
record_component_aliases(tree type,alias_set_type superset)1234 record_component_aliases (tree type, alias_set_type superset)
1235 {
1236   tree field;
1237 
1238   if (superset == 0)
1239     return;
1240 
1241   switch (TREE_CODE (type))
1242     {
1243     case RECORD_TYPE:
1244     case UNION_TYPE:
1245     case QUAL_UNION_TYPE:
1246       {
1247 	/* LTO non-ODR type merging does not make any difference between
1248 	   component pointer types.  We may have
1249 
1250 	   struct foo {int *a;};
1251 
1252 	   as TYPE_CANONICAL of
1253 
1254 	   struct bar {float *a;};
1255 
1256 	   Because accesses to int * and float * do not alias, we would get
1257 	   false negative when accessing the same memory location by
1258 	   float ** and bar *. We thus record the canonical type as:
1259 
1260 	   struct {void *a;};
1261 
1262 	   void * is special cased and works as a universal pointer type.
1263 	   Accesses to it conflicts with accesses to any other pointer
1264 	   type.  */
1265 	bool void_pointers = in_lto_p
1266 			     && (!odr_type_p (type)
1267 				 || !odr_based_tbaa_p (type));
1268 	for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
1269 	  if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
1270 	    {
1271 	      tree t = TREE_TYPE (field);
1272 	      if (void_pointers)
1273 		{
1274 		  /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1275 		     element type and that type has to be normalized to void *,
1276 		     too, in the case it is a pointer. */
1277 		  while (!canonical_type_used_p (t) && !POINTER_TYPE_P (t))
1278 		    {
1279 		      gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t));
1280 		      t = TREE_TYPE (t);
1281 		    }
1282 		  if (POINTER_TYPE_P (t))
1283 		    t = ptr_type_node;
1284 		  else if (flag_checking)
1285 		    gcc_checking_assert (get_alias_set (t)
1286 					 == get_alias_set (TREE_TYPE (field)));
1287 		}
1288 
1289 	      alias_set_type set = get_alias_set (t);
1290 	      record_alias_subset (superset, set);
1291 	      /* If the field has alias-set zero make sure to still record
1292 		 any componets of it.  This makes sure that for
1293 		   struct A {
1294 		     struct B {
1295 		       int i;
1296 		       char c[4];
1297 		     } b;
1298 		   };
1299 		 in C++ even though 'B' has alias-set zero because
1300 		 TYPE_TYPELESS_STORAGE is set, 'A' has the alias-set of
1301 		 'int' as subset.  */
1302 	      if (set == 0)
1303 		record_component_aliases (t, superset);
1304 	    }
1305       }
1306       break;
1307 
1308     case COMPLEX_TYPE:
1309       record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1310       break;
1311 
1312     /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1313        element type.  */
1314 
1315     default:
1316       break;
1317     }
1318 }
1319 
1320 /* Record that component types of TYPE, if any, are part of that type for
1321    aliasing purposes.  For record types, we only record component types
1322    for fields that are not marked non-addressable.  For array types, we
1323    only record the component type if it is not marked non-aliased.  */
1324 
1325 void
record_component_aliases(tree type)1326 record_component_aliases (tree type)
1327 {
1328   alias_set_type superset = get_alias_set (type);
1329   record_component_aliases (type, superset);
1330 }
1331 
1332 
1333 /* Allocate an alias set for use in storing and reading from the varargs
1334    spill area.  */
1335 
1336 static GTY(()) alias_set_type varargs_set = -1;
1337 
1338 alias_set_type
get_varargs_alias_set(void)1339 get_varargs_alias_set (void)
1340 {
1341 #if 1
1342   /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1343      varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1344      consistently use the varargs alias set for loads from the varargs
1345      area.  So don't use it anywhere.  */
1346   return 0;
1347 #else
1348   if (varargs_set == -1)
1349     varargs_set = new_alias_set ();
1350 
1351   return varargs_set;
1352 #endif
1353 }
1354 
1355 /* Likewise, but used for the fixed portions of the frame, e.g., register
1356    save areas.  */
1357 
1358 static GTY(()) alias_set_type frame_set = -1;
1359 
1360 alias_set_type
get_frame_alias_set(void)1361 get_frame_alias_set (void)
1362 {
1363   if (frame_set == -1)
1364     frame_set = new_alias_set ();
1365 
1366   return frame_set;
1367 }
1368 
1369 /* Create a new, unique base with id ID.  */
1370 
1371 static rtx
unique_base_value(HOST_WIDE_INT id)1372 unique_base_value (HOST_WIDE_INT id)
1373 {
1374   return gen_rtx_ADDRESS (Pmode, id);
1375 }
1376 
1377 /* Return true if accesses based on any other base value cannot alias
1378    those based on X.  */
1379 
1380 static bool
unique_base_value_p(rtx x)1381 unique_base_value_p (rtx x)
1382 {
1383   return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1384 }
1385 
1386 /* Return true if X is known to be a base value.  */
1387 
1388 static bool
known_base_value_p(rtx x)1389 known_base_value_p (rtx x)
1390 {
1391   switch (GET_CODE (x))
1392     {
1393     case LABEL_REF:
1394     case SYMBOL_REF:
1395       return true;
1396 
1397     case ADDRESS:
1398       /* Arguments may or may not be bases; we don't know for sure.  */
1399       return GET_MODE (x) != VOIDmode;
1400 
1401     default:
1402       return false;
1403     }
1404 }
1405 
1406 /* Inside SRC, the source of a SET, find a base address.  */
1407 
1408 static rtx
find_base_value(rtx src)1409 find_base_value (rtx src)
1410 {
1411   unsigned int regno;
1412   scalar_int_mode int_mode;
1413 
1414 #if defined (FIND_BASE_TERM)
1415   /* Try machine-dependent ways to find the base term.  */
1416   src = FIND_BASE_TERM (src);
1417 #endif
1418 
1419   switch (GET_CODE (src))
1420     {
1421     case SYMBOL_REF:
1422     case LABEL_REF:
1423       return src;
1424 
1425     case REG:
1426       regno = REGNO (src);
1427       /* At the start of a function, argument registers have known base
1428 	 values which may be lost later.  Returning an ADDRESS
1429 	 expression here allows optimization based on argument values
1430 	 even when the argument registers are used for other purposes.  */
1431       if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1432 	return new_reg_base_value[regno];
1433 
1434       /* If a pseudo has a known base value, return it.  Do not do this
1435 	 for non-fixed hard regs since it can result in a circular
1436 	 dependency chain for registers which have values at function entry.
1437 
1438 	 The test above is not sufficient because the scheduler may move
1439 	 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN.  */
1440       if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1441 	  && regno < vec_safe_length (reg_base_value))
1442 	{
1443 	  /* If we're inside init_alias_analysis, use new_reg_base_value
1444 	     to reduce the number of relaxation iterations.  */
1445 	  if (new_reg_base_value && new_reg_base_value[regno]
1446 	      && DF_REG_DEF_COUNT (regno) == 1)
1447 	    return new_reg_base_value[regno];
1448 
1449 	  if ((*reg_base_value)[regno])
1450 	    return (*reg_base_value)[regno];
1451 	}
1452 
1453       return 0;
1454 
1455     case MEM:
1456       /* Check for an argument passed in memory.  Only record in the
1457 	 copying-arguments block; it is too hard to track changes
1458 	 otherwise.  */
1459       if (copying_arguments
1460 	  && (XEXP (src, 0) == arg_pointer_rtx
1461 	      || (GET_CODE (XEXP (src, 0)) == PLUS
1462 		  && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1463 	return arg_base_value;
1464       return 0;
1465 
1466     case CONST:
1467       src = XEXP (src, 0);
1468       if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1469 	break;
1470 
1471       /* fall through */
1472 
1473     case PLUS:
1474     case MINUS:
1475       {
1476 	rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1477 
1478 	/* If either operand is a REG that is a known pointer, then it
1479 	   is the base.  */
1480 	if (REG_P (src_0) && REG_POINTER (src_0))
1481 	  return find_base_value (src_0);
1482 	if (REG_P (src_1) && REG_POINTER (src_1))
1483 	  return find_base_value (src_1);
1484 
1485 	/* If either operand is a REG, then see if we already have
1486 	   a known value for it.  */
1487 	if (REG_P (src_0))
1488 	  {
1489 	    temp = find_base_value (src_0);
1490 	    if (temp != 0)
1491 	      src_0 = temp;
1492 	  }
1493 
1494 	if (REG_P (src_1))
1495 	  {
1496 	    temp = find_base_value (src_1);
1497 	    if (temp!= 0)
1498 	      src_1 = temp;
1499 	  }
1500 
1501 	/* If either base is named object or a special address
1502 	   (like an argument or stack reference), then use it for the
1503 	   base term.  */
1504 	if (src_0 != 0 && known_base_value_p (src_0))
1505 	  return src_0;
1506 
1507 	if (src_1 != 0 && known_base_value_p (src_1))
1508 	  return src_1;
1509 
1510 	/* Guess which operand is the base address:
1511 	   If either operand is a symbol, then it is the base.  If
1512 	   either operand is a CONST_INT, then the other is the base.  */
1513 	if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1514 	  return find_base_value (src_0);
1515 	else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1516 	  return find_base_value (src_1);
1517 
1518 	return 0;
1519       }
1520 
1521     case LO_SUM:
1522       /* The standard form is (lo_sum reg sym) so look only at the
1523 	 second operand.  */
1524       return find_base_value (XEXP (src, 1));
1525 
1526     case AND:
1527       /* Look through aligning ANDs.  And AND with zero or one with
1528          the LSB set isn't one (see for example PR92462).  */
1529       if (CONST_INT_P (XEXP (src, 1))
1530 	  && INTVAL (XEXP (src, 1)) != 0
1531 	  && (INTVAL (XEXP (src, 1)) & 1) == 0)
1532 	return find_base_value (XEXP (src, 0));
1533       return 0;
1534 
1535     case TRUNCATE:
1536       /* As we do not know which address space the pointer is referring to, we can
1537 	 handle this only if the target does not support different pointer or
1538 	 address modes depending on the address space.  */
1539       if (!target_default_pointer_address_modes_p ())
1540 	break;
1541       if (!is_a <scalar_int_mode> (GET_MODE (src), &int_mode)
1542 	  || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1543 	break;
1544       /* Fall through.  */
1545     case HIGH:
1546     case PRE_INC:
1547     case PRE_DEC:
1548     case POST_INC:
1549     case POST_DEC:
1550     case PRE_MODIFY:
1551     case POST_MODIFY:
1552       return find_base_value (XEXP (src, 0));
1553 
1554     case ZERO_EXTEND:
1555     case SIGN_EXTEND:	/* used for NT/Alpha pointers */
1556       /* As we do not know which address space the pointer is referring to, we can
1557 	 handle this only if the target does not support different pointer or
1558 	 address modes depending on the address space.  */
1559       if (!target_default_pointer_address_modes_p ())
1560 	break;
1561 
1562       {
1563 	rtx temp = find_base_value (XEXP (src, 0));
1564 
1565 	if (temp != 0 && CONSTANT_P (temp))
1566 	  temp = convert_memory_address (Pmode, temp);
1567 
1568 	return temp;
1569       }
1570 
1571     default:
1572       break;
1573     }
1574 
1575   return 0;
1576 }
1577 
1578 /* Called from init_alias_analysis indirectly through note_stores,
1579    or directly if DEST is a register with a REG_NOALIAS note attached.
1580    SET is null in the latter case.  */
1581 
1582 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1583    register N has been set in this function.  */
1584 static sbitmap reg_seen;
1585 
1586 static void
record_set(rtx dest,const_rtx set,void * data ATTRIBUTE_UNUSED)1587 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1588 {
1589   unsigned regno;
1590   rtx src;
1591   int n;
1592 
1593   if (!REG_P (dest))
1594     return;
1595 
1596   regno = REGNO (dest);
1597 
1598   gcc_checking_assert (regno < reg_base_value->length ());
1599 
1600   n = REG_NREGS (dest);
1601   if (n != 1)
1602     {
1603       while (--n >= 0)
1604 	{
1605 	  bitmap_set_bit (reg_seen, regno + n);
1606 	  new_reg_base_value[regno + n] = 0;
1607 	}
1608       return;
1609     }
1610 
1611   if (set)
1612     {
1613       /* A CLOBBER wipes out any old value but does not prevent a previously
1614 	 unset register from acquiring a base address (i.e. reg_seen is not
1615 	 set).  */
1616       if (GET_CODE (set) == CLOBBER)
1617 	{
1618 	  new_reg_base_value[regno] = 0;
1619 	  return;
1620 	}
1621 
1622       src = SET_SRC (set);
1623     }
1624   else
1625     {
1626       /* There's a REG_NOALIAS note against DEST.  */
1627       if (bitmap_bit_p (reg_seen, regno))
1628 	{
1629 	  new_reg_base_value[regno] = 0;
1630 	  return;
1631 	}
1632       bitmap_set_bit (reg_seen, regno);
1633       new_reg_base_value[regno] = unique_base_value (unique_id++);
1634       return;
1635     }
1636 
1637   /* If this is not the first set of REGNO, see whether the new value
1638      is related to the old one.  There are two cases of interest:
1639 
1640 	(1) The register might be assigned an entirely new value
1641 	    that has the same base term as the original set.
1642 
1643 	(2) The set might be a simple self-modification that
1644 	    cannot change REGNO's base value.
1645 
1646      If neither case holds, reject the original base value as invalid.
1647      Note that the following situation is not detected:
1648 
1649 	 extern int x, y;  int *p = &x; p += (&y-&x);
1650 
1651      ANSI C does not allow computing the difference of addresses
1652      of distinct top level objects.  */
1653   if (new_reg_base_value[regno] != 0
1654       && find_base_value (src) != new_reg_base_value[regno])
1655     switch (GET_CODE (src))
1656       {
1657       case LO_SUM:
1658       case MINUS:
1659 	if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1660 	  new_reg_base_value[regno] = 0;
1661 	break;
1662       case PLUS:
1663 	/* If the value we add in the PLUS is also a valid base value,
1664 	   this might be the actual base value, and the original value
1665 	   an index.  */
1666 	{
1667 	  rtx other = NULL_RTX;
1668 
1669 	  if (XEXP (src, 0) == dest)
1670 	    other = XEXP (src, 1);
1671 	  else if (XEXP (src, 1) == dest)
1672 	    other = XEXP (src, 0);
1673 
1674 	  if (! other || find_base_value (other))
1675 	    new_reg_base_value[regno] = 0;
1676 	  break;
1677 	}
1678       case AND:
1679 	if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1680 	  new_reg_base_value[regno] = 0;
1681 	break;
1682       default:
1683 	new_reg_base_value[regno] = 0;
1684 	break;
1685       }
1686   /* If this is the first set of a register, record the value.  */
1687   else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1688 	   && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1689     new_reg_base_value[regno] = find_base_value (src);
1690 
1691   bitmap_set_bit (reg_seen, regno);
1692 }
1693 
1694 /* Return REG_BASE_VALUE for REGNO.  Selective scheduler uses this to avoid
1695    using hard registers with non-null REG_BASE_VALUE for renaming.  */
1696 rtx
get_reg_base_value(unsigned int regno)1697 get_reg_base_value (unsigned int regno)
1698 {
1699   return (*reg_base_value)[regno];
1700 }
1701 
1702 /* If a value is known for REGNO, return it.  */
1703 
1704 rtx
get_reg_known_value(unsigned int regno)1705 get_reg_known_value (unsigned int regno)
1706 {
1707   if (regno >= FIRST_PSEUDO_REGISTER)
1708     {
1709       regno -= FIRST_PSEUDO_REGISTER;
1710       if (regno < vec_safe_length (reg_known_value))
1711 	return (*reg_known_value)[regno];
1712     }
1713   return NULL;
1714 }
1715 
1716 /* Set it.  */
1717 
1718 static void
set_reg_known_value(unsigned int regno,rtx val)1719 set_reg_known_value (unsigned int regno, rtx val)
1720 {
1721   if (regno >= FIRST_PSEUDO_REGISTER)
1722     {
1723       regno -= FIRST_PSEUDO_REGISTER;
1724       if (regno < vec_safe_length (reg_known_value))
1725 	(*reg_known_value)[regno] = val;
1726     }
1727 }
1728 
1729 /* Similarly for reg_known_equiv_p.  */
1730 
1731 bool
get_reg_known_equiv_p(unsigned int regno)1732 get_reg_known_equiv_p (unsigned int regno)
1733 {
1734   if (regno >= FIRST_PSEUDO_REGISTER)
1735     {
1736       regno -= FIRST_PSEUDO_REGISTER;
1737       if (regno < vec_safe_length (reg_known_value))
1738 	return bitmap_bit_p (reg_known_equiv_p, regno);
1739     }
1740   return false;
1741 }
1742 
1743 static void
set_reg_known_equiv_p(unsigned int regno,bool val)1744 set_reg_known_equiv_p (unsigned int regno, bool val)
1745 {
1746   if (regno >= FIRST_PSEUDO_REGISTER)
1747     {
1748       regno -= FIRST_PSEUDO_REGISTER;
1749       if (regno < vec_safe_length (reg_known_value))
1750 	{
1751 	  if (val)
1752 	    bitmap_set_bit (reg_known_equiv_p, regno);
1753 	  else
1754 	    bitmap_clear_bit (reg_known_equiv_p, regno);
1755 	}
1756     }
1757 }
1758 
1759 
1760 /* Returns a canonical version of X, from the point of view alias
1761    analysis.  (For example, if X is a MEM whose address is a register,
1762    and the register has a known value (say a SYMBOL_REF), then a MEM
1763    whose address is the SYMBOL_REF is returned.)  */
1764 
1765 rtx
canon_rtx(rtx x)1766 canon_rtx (rtx x)
1767 {
1768   /* Recursively look for equivalences.  */
1769   if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1770     {
1771       rtx t = get_reg_known_value (REGNO (x));
1772       if (t == x)
1773 	return x;
1774       if (t)
1775 	return canon_rtx (t);
1776     }
1777 
1778   if (GET_CODE (x) == PLUS)
1779     {
1780       rtx x0 = canon_rtx (XEXP (x, 0));
1781       rtx x1 = canon_rtx (XEXP (x, 1));
1782 
1783       if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1784 	return simplify_gen_binary (PLUS, GET_MODE (x), x0, x1);
1785     }
1786 
1787   /* This gives us much better alias analysis when called from
1788      the loop optimizer.   Note we want to leave the original
1789      MEM alone, but need to return the canonicalized MEM with
1790      all the flags with their original values.  */
1791   else if (MEM_P (x))
1792     x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1793 
1794   return x;
1795 }
1796 
1797 /* Return 1 if X and Y are identical-looking rtx's.
1798    Expect that X and Y has been already canonicalized.
1799 
1800    We use the data in reg_known_value above to see if two registers with
1801    different numbers are, in fact, equivalent.  */
1802 
1803 static int
rtx_equal_for_memref_p(const_rtx x,const_rtx y)1804 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1805 {
1806   int i;
1807   int j;
1808   enum rtx_code code;
1809   const char *fmt;
1810 
1811   if (x == 0 && y == 0)
1812     return 1;
1813   if (x == 0 || y == 0)
1814     return 0;
1815 
1816   if (x == y)
1817     return 1;
1818 
1819   code = GET_CODE (x);
1820   /* Rtx's of different codes cannot be equal.  */
1821   if (code != GET_CODE (y))
1822     return 0;
1823 
1824   /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1825      (REG:SI x) and (REG:HI x) are NOT equivalent.  */
1826 
1827   if (GET_MODE (x) != GET_MODE (y))
1828     return 0;
1829 
1830   /* Some RTL can be compared without a recursive examination.  */
1831   switch (code)
1832     {
1833     case REG:
1834       return REGNO (x) == REGNO (y);
1835 
1836     case LABEL_REF:
1837       return label_ref_label (x) == label_ref_label (y);
1838 
1839     case SYMBOL_REF:
1840       return compare_base_symbol_refs (x, y) == 1;
1841 
1842     case ENTRY_VALUE:
1843       /* This is magic, don't go through canonicalization et al.  */
1844       return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1845 
1846     case VALUE:
1847     CASE_CONST_UNIQUE:
1848       /* Pointer equality guarantees equality for these nodes.  */
1849       return 0;
1850 
1851     default:
1852       break;
1853     }
1854 
1855   /* canon_rtx knows how to handle plus.  No need to canonicalize.  */
1856   if (code == PLUS)
1857     return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1858 	     && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1859 	    || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1860 		&& rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1861   /* For commutative operations, the RTX match if the operand match in any
1862      order.  Also handle the simple binary and unary cases without a loop.  */
1863   if (COMMUTATIVE_P (x))
1864     {
1865       rtx xop0 = canon_rtx (XEXP (x, 0));
1866       rtx yop0 = canon_rtx (XEXP (y, 0));
1867       rtx yop1 = canon_rtx (XEXP (y, 1));
1868 
1869       return ((rtx_equal_for_memref_p (xop0, yop0)
1870 	       && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1871 	      || (rtx_equal_for_memref_p (xop0, yop1)
1872 		  && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1873     }
1874   else if (NON_COMMUTATIVE_P (x))
1875     {
1876       return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1877 				      canon_rtx (XEXP (y, 0)))
1878 	      && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1879 					 canon_rtx (XEXP (y, 1))));
1880     }
1881   else if (UNARY_P (x))
1882     return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1883 				   canon_rtx (XEXP (y, 0)));
1884 
1885   /* Compare the elements.  If any pair of corresponding elements
1886      fail to match, return 0 for the whole things.
1887 
1888      Limit cases to types which actually appear in addresses.  */
1889 
1890   fmt = GET_RTX_FORMAT (code);
1891   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1892     {
1893       switch (fmt[i])
1894 	{
1895 	case 'i':
1896 	  if (XINT (x, i) != XINT (y, i))
1897 	    return 0;
1898 	  break;
1899 
1900 	case 'p':
1901 	  if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
1902 	    return 0;
1903 	  break;
1904 
1905 	case 'E':
1906 	  /* Two vectors must have the same length.  */
1907 	  if (XVECLEN (x, i) != XVECLEN (y, i))
1908 	    return 0;
1909 
1910 	  /* And the corresponding elements must match.  */
1911 	  for (j = 0; j < XVECLEN (x, i); j++)
1912 	    if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1913 					canon_rtx (XVECEXP (y, i, j))) == 0)
1914 	      return 0;
1915 	  break;
1916 
1917 	case 'e':
1918 	  if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1919 				      canon_rtx (XEXP (y, i))) == 0)
1920 	    return 0;
1921 	  break;
1922 
1923 	  /* This can happen for asm operands.  */
1924 	case 's':
1925 	  if (strcmp (XSTR (x, i), XSTR (y, i)))
1926 	    return 0;
1927 	  break;
1928 
1929 	/* This can happen for an asm which clobbers memory.  */
1930 	case '0':
1931 	  break;
1932 
1933 	  /* It is believed that rtx's at this level will never
1934 	     contain anything but integers and other rtx's,
1935 	     except for within LABEL_REFs and SYMBOL_REFs.  */
1936 	default:
1937 	  gcc_unreachable ();
1938 	}
1939     }
1940   return 1;
1941 }
1942 
1943 static rtx
find_base_term(rtx x,vec<std::pair<cselib_val *,struct elt_loc_list * >> & visited_vals)1944 find_base_term (rtx x, vec<std::pair<cselib_val *,
1945 				     struct elt_loc_list *> > &visited_vals)
1946 {
1947   cselib_val *val;
1948   struct elt_loc_list *l, *f;
1949   rtx ret;
1950   scalar_int_mode int_mode;
1951 
1952 #if defined (FIND_BASE_TERM)
1953   /* Try machine-dependent ways to find the base term.  */
1954   x = FIND_BASE_TERM (x);
1955 #endif
1956 
1957   switch (GET_CODE (x))
1958     {
1959     case REG:
1960       return REG_BASE_VALUE (x);
1961 
1962     case TRUNCATE:
1963       /* As we do not know which address space the pointer is referring to, we can
1964 	 handle this only if the target does not support different pointer or
1965 	 address modes depending on the address space.  */
1966       if (!target_default_pointer_address_modes_p ())
1967 	return 0;
1968       if (!is_a <scalar_int_mode> (GET_MODE (x), &int_mode)
1969 	  || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1970 	return 0;
1971       /* Fall through.  */
1972     case HIGH:
1973     case PRE_INC:
1974     case PRE_DEC:
1975     case POST_INC:
1976     case POST_DEC:
1977     case PRE_MODIFY:
1978     case POST_MODIFY:
1979       return find_base_term (XEXP (x, 0), visited_vals);
1980 
1981     case ZERO_EXTEND:
1982     case SIGN_EXTEND:	/* Used for Alpha/NT pointers */
1983       /* As we do not know which address space the pointer is referring to, we can
1984 	 handle this only if the target does not support different pointer or
1985 	 address modes depending on the address space.  */
1986       if (!target_default_pointer_address_modes_p ())
1987 	return 0;
1988 
1989       {
1990 	rtx temp = find_base_term (XEXP (x, 0), visited_vals);
1991 
1992 	if (temp != 0 && CONSTANT_P (temp))
1993 	  temp = convert_memory_address (Pmode, temp);
1994 
1995 	return temp;
1996       }
1997 
1998     case VALUE:
1999       val = CSELIB_VAL_PTR (x);
2000       ret = NULL_RTX;
2001 
2002       if (!val)
2003 	return ret;
2004 
2005       if (cselib_sp_based_value_p (val))
2006 	return static_reg_base_value[STACK_POINTER_REGNUM];
2007 
2008       if (visited_vals.length () > (unsigned) param_max_find_base_term_values)
2009 	return ret;
2010 
2011       f = val->locs;
2012       /* Reset val->locs to avoid infinite recursion.  */
2013       if (f)
2014 	visited_vals.safe_push (std::make_pair (val, f));
2015       val->locs = NULL;
2016 
2017       for (l = f; l; l = l->next)
2018 	if (GET_CODE (l->loc) == VALUE
2019 	    && CSELIB_VAL_PTR (l->loc)->locs
2020 	    && !CSELIB_VAL_PTR (l->loc)->locs->next
2021 	    && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
2022 	  continue;
2023 	else if ((ret = find_base_term (l->loc, visited_vals)) != 0)
2024 	  break;
2025 
2026       return ret;
2027 
2028     case LO_SUM:
2029       /* The standard form is (lo_sum reg sym) so look only at the
2030          second operand.  */
2031       return find_base_term (XEXP (x, 1), visited_vals);
2032 
2033     case CONST:
2034       x = XEXP (x, 0);
2035       if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
2036 	return 0;
2037       /* Fall through.  */
2038     case PLUS:
2039     case MINUS:
2040       {
2041 	rtx tmp1 = XEXP (x, 0);
2042 	rtx tmp2 = XEXP (x, 1);
2043 
2044 	/* This is a little bit tricky since we have to determine which of
2045 	   the two operands represents the real base address.  Otherwise this
2046 	   routine may return the index register instead of the base register.
2047 
2048 	   That may cause us to believe no aliasing was possible, when in
2049 	   fact aliasing is possible.
2050 
2051 	   We use a few simple tests to guess the base register.  Additional
2052 	   tests can certainly be added.  For example, if one of the operands
2053 	   is a shift or multiply, then it must be the index register and the
2054 	   other operand is the base register.  */
2055 
2056 	if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
2057 	  return find_base_term (tmp2, visited_vals);
2058 
2059 	/* If either operand is known to be a pointer, then prefer it
2060 	   to determine the base term.  */
2061 	if (REG_P (tmp1) && REG_POINTER (tmp1))
2062 	  ;
2063 	else if (REG_P (tmp2) && REG_POINTER (tmp2))
2064 	  std::swap (tmp1, tmp2);
2065 	/* If second argument is constant which has base term, prefer it
2066 	   over variable tmp1.  See PR64025.  */
2067 	else if (CONSTANT_P (tmp2) && !CONST_INT_P (tmp2))
2068 	  std::swap (tmp1, tmp2);
2069 
2070 	/* Go ahead and find the base term for both operands.  If either base
2071 	   term is from a pointer or is a named object or a special address
2072 	   (like an argument or stack reference), then use it for the
2073 	   base term.  */
2074 	rtx base = find_base_term (tmp1, visited_vals);
2075 	if (base != NULL_RTX
2076 	    && ((REG_P (tmp1) && REG_POINTER (tmp1))
2077 		 || known_base_value_p (base)))
2078 	  return base;
2079 	base = find_base_term (tmp2, visited_vals);
2080 	if (base != NULL_RTX
2081 	    && ((REG_P (tmp2) && REG_POINTER (tmp2))
2082 		 || known_base_value_p (base)))
2083 	  return base;
2084 
2085 	/* We could not determine which of the two operands was the
2086 	   base register and which was the index.  So we can determine
2087 	   nothing from the base alias check.  */
2088 	return 0;
2089       }
2090 
2091     case AND:
2092       /* Look through aligning ANDs.  And AND with zero or one with
2093          the LSB set isn't one (see for example PR92462).  */
2094       if (CONST_INT_P (XEXP (x, 1))
2095 	  && INTVAL (XEXP (x, 1)) != 0
2096 	  && (INTVAL (XEXP (x, 1)) & 1) == 0)
2097 	return find_base_term (XEXP (x, 0), visited_vals);
2098       return 0;
2099 
2100     case SYMBOL_REF:
2101     case LABEL_REF:
2102       return x;
2103 
2104     default:
2105       return 0;
2106     }
2107 }
2108 
2109 /* Wrapper around the worker above which removes locs from visited VALUEs
2110    to avoid visiting them multiple times.  We unwind that changes here.  */
2111 
2112 static rtx
find_base_term(rtx x)2113 find_base_term (rtx x)
2114 {
2115   auto_vec<std::pair<cselib_val *, struct elt_loc_list *>, 32> visited_vals;
2116   rtx res = find_base_term (x, visited_vals);
2117   for (unsigned i = 0; i < visited_vals.length (); ++i)
2118     visited_vals[i].first->locs = visited_vals[i].second;
2119   return res;
2120 }
2121 
2122 /* Return true if accesses to address X may alias accesses based
2123    on the stack pointer.  */
2124 
2125 bool
may_be_sp_based_p(rtx x)2126 may_be_sp_based_p (rtx x)
2127 {
2128   rtx base = find_base_term (x);
2129   return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
2130 }
2131 
2132 /* BASE1 and BASE2 are decls.  Return 1 if they refer to same object, 0
2133    if they refer to different objects and -1 if we cannot decide.  */
2134 
2135 int
compare_base_decls(tree base1,tree base2)2136 compare_base_decls (tree base1, tree base2)
2137 {
2138   int ret;
2139   gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
2140   if (base1 == base2)
2141     return 1;
2142 
2143   /* If we have two register decls with register specification we
2144      cannot decide unless their assembler names are the same.  */
2145   if (DECL_REGISTER (base1)
2146       && DECL_REGISTER (base2)
2147       && HAS_DECL_ASSEMBLER_NAME_P (base1)
2148       && HAS_DECL_ASSEMBLER_NAME_P (base2)
2149       && DECL_ASSEMBLER_NAME_SET_P (base1)
2150       && DECL_ASSEMBLER_NAME_SET_P (base2))
2151     {
2152       if (DECL_ASSEMBLER_NAME_RAW (base1) == DECL_ASSEMBLER_NAME_RAW (base2))
2153 	return 1;
2154       return -1;
2155     }
2156 
2157   /* Declarations of non-automatic variables may have aliases.  All other
2158      decls are unique.  */
2159   if (!decl_in_symtab_p (base1)
2160       || !decl_in_symtab_p (base2))
2161     return 0;
2162 
2163   /* Don't cause symbols to be inserted by the act of checking.  */
2164   symtab_node *node1 = symtab_node::get (base1);
2165   if (!node1)
2166     return 0;
2167   symtab_node *node2 = symtab_node::get (base2);
2168   if (!node2)
2169     return 0;
2170 
2171   ret = node1->equal_address_to (node2, true);
2172   return ret;
2173 }
2174 
2175 /* Same as compare_base_decls but for SYMBOL_REF.  */
2176 
2177 static int
compare_base_symbol_refs(const_rtx x_base,const_rtx y_base)2178 compare_base_symbol_refs (const_rtx x_base, const_rtx y_base)
2179 {
2180   tree x_decl = SYMBOL_REF_DECL (x_base);
2181   tree y_decl = SYMBOL_REF_DECL (y_base);
2182   bool binds_def = true;
2183 
2184   if (XSTR (x_base, 0) == XSTR (y_base, 0))
2185     return 1;
2186   if (x_decl && y_decl)
2187     return compare_base_decls (x_decl, y_decl);
2188   if (x_decl || y_decl)
2189     {
2190       if (!x_decl)
2191 	{
2192 	  std::swap (x_decl, y_decl);
2193 	  std::swap (x_base, y_base);
2194 	}
2195       /* We handle specially only section anchors and assume that other
2196  	 labels may overlap with user variables in an arbitrary way.  */
2197       if (!SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2198         return -1;
2199       /* Anchors contains static VAR_DECLs and CONST_DECLs.  We are safe
2200 	 to ignore CONST_DECLs because they are readonly.  */
2201       if (!VAR_P (x_decl)
2202 	  || (!TREE_STATIC (x_decl) && !TREE_PUBLIC (x_decl)))
2203 	return 0;
2204 
2205       symtab_node *x_node = symtab_node::get_create (x_decl)
2206 			    ->ultimate_alias_target ();
2207       /* External variable cannot be in section anchor.  */
2208       if (!x_node->definition)
2209 	return 0;
2210       x_base = XEXP (DECL_RTL (x_node->decl), 0);
2211       /* If not in anchor, we can disambiguate.  */
2212       if (!SYMBOL_REF_HAS_BLOCK_INFO_P (x_base))
2213 	return 0;
2214 
2215       /* We have an alias of anchored variable.  If it can be interposed;
2216  	 we must assume it may or may not alias its anchor.  */
2217       binds_def = decl_binds_to_current_def_p (x_decl);
2218     }
2219   /* If we have variable in section anchor, we can compare by offset.  */
2220   if (SYMBOL_REF_HAS_BLOCK_INFO_P (x_base)
2221       && SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2222     {
2223       if (SYMBOL_REF_BLOCK (x_base) != SYMBOL_REF_BLOCK (y_base))
2224 	return 0;
2225       if (SYMBOL_REF_BLOCK_OFFSET (x_base) == SYMBOL_REF_BLOCK_OFFSET (y_base))
2226 	return binds_def ? 1 : -1;
2227       if (SYMBOL_REF_ANCHOR_P (x_base) != SYMBOL_REF_ANCHOR_P (y_base))
2228 	return -1;
2229       return 0;
2230     }
2231   /* In general we assume that memory locations pointed to by different labels
2232      may overlap in undefined ways.  */
2233   return -1;
2234 }
2235 
2236 /* Return 0 if the addresses X and Y are known to point to different
2237    objects, 1 if they might be pointers to the same object.  */
2238 
2239 static int
base_alias_check(rtx x,rtx x_base,rtx y,rtx y_base,machine_mode x_mode,machine_mode y_mode)2240 base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
2241 		  machine_mode x_mode, machine_mode y_mode)
2242 {
2243   /* If the address itself has no known base see if a known equivalent
2244      value has one.  If either address still has no known base, nothing
2245      is known about aliasing.  */
2246   if (x_base == 0)
2247     {
2248       rtx x_c;
2249 
2250       if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
2251 	return 1;
2252 
2253       x_base = find_base_term (x_c);
2254       if (x_base == 0)
2255 	return 1;
2256     }
2257 
2258   if (y_base == 0)
2259     {
2260       rtx y_c;
2261       if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
2262 	return 1;
2263 
2264       y_base = find_base_term (y_c);
2265       if (y_base == 0)
2266 	return 1;
2267     }
2268 
2269   /* If the base addresses are equal nothing is known about aliasing.  */
2270   if (rtx_equal_p (x_base, y_base))
2271     return 1;
2272 
2273   /* The base addresses are different expressions.  If they are not accessed
2274      via AND, there is no conflict.  We can bring knowledge of object
2275      alignment into play here.  For example, on alpha, "char a, b;" can
2276      alias one another, though "char a; long b;" cannot.  AND addresses may
2277      implicitly alias surrounding objects; i.e. unaligned access in DImode
2278      via AND address can alias all surrounding object types except those
2279      with aligment 8 or higher.  */
2280   if (GET_CODE (x) == AND && GET_CODE (y) == AND)
2281     return 1;
2282   if (GET_CODE (x) == AND
2283       && (!CONST_INT_P (XEXP (x, 1))
2284 	  || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
2285     return 1;
2286   if (GET_CODE (y) == AND
2287       && (!CONST_INT_P (XEXP (y, 1))
2288 	  || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
2289     return 1;
2290 
2291   /* Differing symbols not accessed via AND never alias.  */
2292   if (GET_CODE (x_base) == SYMBOL_REF && GET_CODE (y_base) == SYMBOL_REF)
2293     return compare_base_symbol_refs (x_base, y_base) != 0;
2294 
2295   if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
2296     return 0;
2297 
2298   if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
2299     return 0;
2300 
2301   return 1;
2302 }
2303 
2304 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
2305    (or equal to) that of V.  */
2306 
2307 static bool
refs_newer_value_p(const_rtx expr,rtx v)2308 refs_newer_value_p (const_rtx expr, rtx v)
2309 {
2310   int minuid = CSELIB_VAL_PTR (v)->uid;
2311   subrtx_iterator::array_type array;
2312   FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
2313     if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid >= minuid)
2314       return true;
2315   return false;
2316 }
2317 
2318 /* Convert the address X into something we can use.  This is done by returning
2319    it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE
2320    we call cselib to get a more useful rtx.  */
2321 
2322 rtx
get_addr(rtx x)2323 get_addr (rtx x)
2324 {
2325   cselib_val *v;
2326   struct elt_loc_list *l;
2327 
2328   if (GET_CODE (x) != VALUE)
2329     {
2330       if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2331 	  && GET_CODE (XEXP (x, 0)) == VALUE
2332 	  && CONST_SCALAR_INT_P (XEXP (x, 1)))
2333 	{
2334 	  rtx op0 = get_addr (XEXP (x, 0));
2335 	  if (op0 != XEXP (x, 0))
2336 	    {
2337 	      poly_int64 c;
2338 	      if (GET_CODE (x) == PLUS
2339 		  && poly_int_rtx_p (XEXP (x, 1), &c))
2340 		return plus_constant (GET_MODE (x), op0, c);
2341 	      return simplify_gen_binary (GET_CODE (x), GET_MODE (x),
2342 					  op0, XEXP (x, 1));
2343 	    }
2344 	}
2345       return x;
2346     }
2347   v = CSELIB_VAL_PTR (x);
2348   if (v)
2349     {
2350       bool have_equivs = cselib_have_permanent_equivalences ();
2351       if (have_equivs)
2352 	v = canonical_cselib_val (v);
2353       for (l = v->locs; l; l = l->next)
2354 	if (CONSTANT_P (l->loc))
2355 	  return l->loc;
2356       for (l = v->locs; l; l = l->next)
2357 	if (!REG_P (l->loc) && !MEM_P (l->loc)
2358 	    /* Avoid infinite recursion when potentially dealing with
2359 	       var-tracking artificial equivalences, by skipping the
2360 	       equivalences themselves, and not choosing expressions
2361 	       that refer to newer VALUEs.  */
2362 	    && (!have_equivs
2363 		|| (GET_CODE (l->loc) != VALUE
2364 		    && !refs_newer_value_p (l->loc, x))))
2365 	  return l->loc;
2366       if (have_equivs)
2367 	{
2368 	  for (l = v->locs; l; l = l->next)
2369 	    if (REG_P (l->loc)
2370 		|| (GET_CODE (l->loc) != VALUE
2371 		    && !refs_newer_value_p (l->loc, x)))
2372 	      return l->loc;
2373 	  /* Return the canonical value.  */
2374 	  return v->val_rtx;
2375 	}
2376       if (v->locs)
2377 	return v->locs->loc;
2378     }
2379   return x;
2380 }
2381 
2382 /*  Return the address of the (N_REFS + 1)th memory reference to ADDR
2383     where SIZE is the size in bytes of the memory reference.  If ADDR
2384     is not modified by the memory reference then ADDR is returned.  */
2385 
2386 static rtx
addr_side_effect_eval(rtx addr,poly_int64 size,int n_refs)2387 addr_side_effect_eval (rtx addr, poly_int64 size, int n_refs)
2388 {
2389   poly_int64 offset = 0;
2390 
2391   switch (GET_CODE (addr))
2392     {
2393     case PRE_INC:
2394       offset = (n_refs + 1) * size;
2395       break;
2396     case PRE_DEC:
2397       offset = -(n_refs + 1) * size;
2398       break;
2399     case POST_INC:
2400       offset = n_refs * size;
2401       break;
2402     case POST_DEC:
2403       offset = -n_refs * size;
2404       break;
2405 
2406     default:
2407       return addr;
2408     }
2409 
2410   addr = plus_constant (GET_MODE (addr), XEXP (addr, 0), offset);
2411   addr = canon_rtx (addr);
2412 
2413   return addr;
2414 }
2415 
2416 /* Return TRUE if an object X sized at XSIZE bytes and another object
2417    Y sized at YSIZE bytes, starting C bytes after X, may overlap.  If
2418    any of the sizes is zero, assume an overlap, otherwise use the
2419    absolute value of the sizes as the actual sizes.  */
2420 
2421 static inline bool
offset_overlap_p(poly_int64 c,poly_int64 xsize,poly_int64 ysize)2422 offset_overlap_p (poly_int64 c, poly_int64 xsize, poly_int64 ysize)
2423 {
2424   if (known_eq (xsize, 0) || known_eq (ysize, 0))
2425     return true;
2426 
2427   if (maybe_ge (c, 0))
2428     return maybe_gt (maybe_lt (xsize, 0) ? -xsize : xsize, c);
2429   else
2430     return maybe_gt (maybe_lt (ysize, 0) ? -ysize : ysize, -c);
2431 }
2432 
2433 /* Return one if X and Y (memory addresses) reference the
2434    same location in memory or if the references overlap.
2435    Return zero if they do not overlap, else return
2436    minus one in which case they still might reference the same location.
2437 
2438    C is an offset accumulator.  When
2439    C is nonzero, we are testing aliases between X and Y + C.
2440    XSIZE is the size in bytes of the X reference,
2441    similarly YSIZE is the size in bytes for Y.
2442    Expect that canon_rtx has been already called for X and Y.
2443 
2444    If XSIZE or YSIZE is zero, we do not know the amount of memory being
2445    referenced (the reference was BLKmode), so make the most pessimistic
2446    assumptions.
2447 
2448    If XSIZE or YSIZE is negative, we may access memory outside the object
2449    being referenced as a side effect.  This can happen when using AND to
2450    align memory references, as is done on the Alpha.
2451 
2452    Nice to notice that varying addresses cannot conflict with fp if no
2453    local variables had their addresses taken, but that's too hard now.
2454 
2455    ???  Contrary to the tree alias oracle this does not return
2456    one for X + non-constant and Y + non-constant when X and Y are equal.
2457    If that is fixed the TBAA hack for union type-punning can be removed.  */
2458 
2459 static int
memrefs_conflict_p(poly_int64 xsize,rtx x,poly_int64 ysize,rtx y,poly_int64 c)2460 memrefs_conflict_p (poly_int64 xsize, rtx x, poly_int64 ysize, rtx y,
2461 		    poly_int64 c)
2462 {
2463   if (GET_CODE (x) == VALUE)
2464     {
2465       if (REG_P (y))
2466 	{
2467 	  struct elt_loc_list *l = NULL;
2468 	  if (CSELIB_VAL_PTR (x))
2469 	    for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2470 		 l; l = l->next)
2471 	      if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2472 		break;
2473 	  if (l)
2474 	    x = y;
2475 	  else
2476 	    x = get_addr (x);
2477 	}
2478       /* Don't call get_addr if y is the same VALUE.  */
2479       else if (x != y)
2480 	x = get_addr (x);
2481     }
2482   if (GET_CODE (y) == VALUE)
2483     {
2484       if (REG_P (x))
2485 	{
2486 	  struct elt_loc_list *l = NULL;
2487 	  if (CSELIB_VAL_PTR (y))
2488 	    for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2489 		 l; l = l->next)
2490 	      if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2491 		break;
2492 	  if (l)
2493 	    y = x;
2494 	  else
2495 	    y = get_addr (y);
2496 	}
2497       /* Don't call get_addr if x is the same VALUE.  */
2498       else if (y != x)
2499 	y = get_addr (y);
2500     }
2501   if (GET_CODE (x) == HIGH)
2502     x = XEXP (x, 0);
2503   else if (GET_CODE (x) == LO_SUM)
2504     x = XEXP (x, 1);
2505   else
2506     x = addr_side_effect_eval (x, maybe_lt (xsize, 0) ? -xsize : xsize, 0);
2507   if (GET_CODE (y) == HIGH)
2508     y = XEXP (y, 0);
2509   else if (GET_CODE (y) == LO_SUM)
2510     y = XEXP (y, 1);
2511   else
2512     y = addr_side_effect_eval (y, maybe_lt (ysize, 0) ? -ysize : ysize, 0);
2513 
2514   if (GET_CODE (x) == SYMBOL_REF && GET_CODE (y) == SYMBOL_REF)
2515     {
2516       int cmp = compare_base_symbol_refs (x,y);
2517 
2518       /* If both decls are the same, decide by offsets.  */
2519       if (cmp == 1)
2520         return offset_overlap_p (c, xsize, ysize);
2521       /* Assume a potential overlap for symbolic addresses that went
2522 	 through alignment adjustments (i.e., that have negative
2523 	 sizes), because we can't know how far they are from each
2524 	 other.  */
2525       if (maybe_lt (xsize, 0) || maybe_lt (ysize, 0))
2526 	return -1;
2527       /* If decls are different or we know by offsets that there is no overlap,
2528 	 we win.  */
2529       if (!cmp || !offset_overlap_p (c, xsize, ysize))
2530 	return 0;
2531       /* Decls may or may not be different and offsets overlap....*/
2532       return -1;
2533     }
2534   else if (rtx_equal_for_memref_p (x, y))
2535     {
2536       return offset_overlap_p (c, xsize, ysize);
2537     }
2538 
2539   /* This code used to check for conflicts involving stack references and
2540      globals but the base address alias code now handles these cases.  */
2541 
2542   if (GET_CODE (x) == PLUS)
2543     {
2544       /* The fact that X is canonicalized means that this
2545 	 PLUS rtx is canonicalized.  */
2546       rtx x0 = XEXP (x, 0);
2547       rtx x1 = XEXP (x, 1);
2548 
2549       /* However, VALUEs might end up in different positions even in
2550 	 canonical PLUSes.  Comparing their addresses is enough.  */
2551       if (x0 == y)
2552 	return memrefs_conflict_p (xsize, x1, ysize, const0_rtx, c);
2553       else if (x1 == y)
2554 	return memrefs_conflict_p (xsize, x0, ysize, const0_rtx, c);
2555 
2556       poly_int64 cx1, cy1;
2557       if (GET_CODE (y) == PLUS)
2558 	{
2559 	  /* The fact that Y is canonicalized means that this
2560 	     PLUS rtx is canonicalized.  */
2561 	  rtx y0 = XEXP (y, 0);
2562 	  rtx y1 = XEXP (y, 1);
2563 
2564 	  if (x0 == y1)
2565 	    return memrefs_conflict_p (xsize, x1, ysize, y0, c);
2566 	  if (x1 == y0)
2567 	    return memrefs_conflict_p (xsize, x0, ysize, y1, c);
2568 
2569 	  if (rtx_equal_for_memref_p (x1, y1))
2570 	    return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2571 	  if (rtx_equal_for_memref_p (x0, y0))
2572 	    return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2573 	  if (poly_int_rtx_p (x1, &cx1))
2574 	    {
2575 	      if (poly_int_rtx_p (y1, &cy1))
2576 		return memrefs_conflict_p (xsize, x0, ysize, y0,
2577 					   c - cx1 + cy1);
2578 	      else
2579 		return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2580 	    }
2581 	  else if (poly_int_rtx_p (y1, &cy1))
2582 	    return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2583 
2584 	  return -1;
2585 	}
2586       else if (poly_int_rtx_p (x1, &cx1))
2587 	return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2588     }
2589   else if (GET_CODE (y) == PLUS)
2590     {
2591       /* The fact that Y is canonicalized means that this
2592 	 PLUS rtx is canonicalized.  */
2593       rtx y0 = XEXP (y, 0);
2594       rtx y1 = XEXP (y, 1);
2595 
2596       if (x == y0)
2597 	return memrefs_conflict_p (xsize, const0_rtx, ysize, y1, c);
2598       if (x == y1)
2599 	return memrefs_conflict_p (xsize, const0_rtx, ysize, y0, c);
2600 
2601       poly_int64 cy1;
2602       if (poly_int_rtx_p (y1, &cy1))
2603 	return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2604       else
2605 	return -1;
2606     }
2607 
2608   if (GET_CODE (x) == GET_CODE (y))
2609     switch (GET_CODE (x))
2610       {
2611       case MULT:
2612 	{
2613 	  /* Handle cases where we expect the second operands to be the
2614 	     same, and check only whether the first operand would conflict
2615 	     or not.  */
2616 	  rtx x0, y0;
2617 	  rtx x1 = canon_rtx (XEXP (x, 1));
2618 	  rtx y1 = canon_rtx (XEXP (y, 1));
2619 	  if (! rtx_equal_for_memref_p (x1, y1))
2620 	    return -1;
2621 	  x0 = canon_rtx (XEXP (x, 0));
2622 	  y0 = canon_rtx (XEXP (y, 0));
2623 	  if (rtx_equal_for_memref_p (x0, y0))
2624 	    return offset_overlap_p (c, xsize, ysize);
2625 
2626 	  /* Can't properly adjust our sizes.  */
2627 	  poly_int64 c1;
2628 	  if (!poly_int_rtx_p (x1, &c1)
2629 	      || !can_div_trunc_p (xsize, c1, &xsize)
2630 	      || !can_div_trunc_p (ysize, c1, &ysize)
2631 	      || !can_div_trunc_p (c, c1, &c))
2632 	    return -1;
2633 	  return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2634 	}
2635 
2636       default:
2637 	break;
2638       }
2639 
2640   /* Deal with alignment ANDs by adjusting offset and size so as to
2641      cover the maximum range, without taking any previously known
2642      alignment into account.  Make a size negative after such an
2643      adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2644      assume a potential overlap, because they may end up in contiguous
2645      memory locations and the stricter-alignment access may span over
2646      part of both.  */
2647   if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2648     {
2649       HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2650       unsigned HOST_WIDE_INT uc = sc;
2651       if (sc < 0 && pow2_or_zerop (-uc))
2652 	{
2653 	  if (maybe_gt (xsize, 0))
2654 	    xsize = -xsize;
2655 	  if (maybe_ne (xsize, 0))
2656 	    xsize += sc + 1;
2657 	  c -= sc + 1;
2658 	  return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2659 				     ysize, y, c);
2660 	}
2661     }
2662   if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2663     {
2664       HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2665       unsigned HOST_WIDE_INT uc = sc;
2666       if (sc < 0 && pow2_or_zerop (-uc))
2667 	{
2668 	  if (maybe_gt (ysize, 0))
2669 	    ysize = -ysize;
2670 	  if (maybe_ne (ysize, 0))
2671 	    ysize += sc + 1;
2672 	  c += sc + 1;
2673 	  return memrefs_conflict_p (xsize, x,
2674 				     ysize, canon_rtx (XEXP (y, 0)), c);
2675 	}
2676     }
2677 
2678   if (CONSTANT_P (x))
2679     {
2680       poly_int64 cx, cy;
2681       if (poly_int_rtx_p (x, &cx) && poly_int_rtx_p (y, &cy))
2682 	{
2683 	  c += cy - cx;
2684 	  return offset_overlap_p (c, xsize, ysize);
2685 	}
2686 
2687       if (GET_CODE (x) == CONST)
2688 	{
2689 	  if (GET_CODE (y) == CONST)
2690 	    return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2691 				       ysize, canon_rtx (XEXP (y, 0)), c);
2692 	  else
2693 	    return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2694 				       ysize, y, c);
2695 	}
2696       if (GET_CODE (y) == CONST)
2697 	return memrefs_conflict_p (xsize, x, ysize,
2698 				   canon_rtx (XEXP (y, 0)), c);
2699 
2700       /* Assume a potential overlap for symbolic addresses that went
2701 	 through alignment adjustments (i.e., that have negative
2702 	 sizes), because we can't know how far they are from each
2703 	 other.  */
2704       if (CONSTANT_P (y))
2705 	return (maybe_lt (xsize, 0)
2706 		|| maybe_lt (ysize, 0)
2707 		|| offset_overlap_p (c, xsize, ysize));
2708 
2709       return -1;
2710     }
2711 
2712   return -1;
2713 }
2714 
2715 /* Functions to compute memory dependencies.
2716 
2717    Since we process the insns in execution order, we can build tables
2718    to keep track of what registers are fixed (and not aliased), what registers
2719    are varying in known ways, and what registers are varying in unknown
2720    ways.
2721 
2722    If both memory references are volatile, then there must always be a
2723    dependence between the two references, since their order cannot be
2724    changed.  A volatile and non-volatile reference can be interchanged
2725    though.
2726 
2727    We also must allow AND addresses, because they may generate accesses
2728    outside the object being referenced.  This is used to generate aligned
2729    addresses from unaligned addresses, for instance, the alpha
2730    storeqi_unaligned pattern.  */
2731 
2732 /* Read dependence: X is read after read in MEM takes place.  There can
2733    only be a dependence here if both reads are volatile, or if either is
2734    an explicit barrier.  */
2735 
2736 int
read_dependence(const_rtx mem,const_rtx x)2737 read_dependence (const_rtx mem, const_rtx x)
2738 {
2739   if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2740     return true;
2741   if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2742       || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2743     return true;
2744   return false;
2745 }
2746 
2747 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it.  */
2748 
2749 static tree
decl_for_component_ref(tree x)2750 decl_for_component_ref (tree x)
2751 {
2752   do
2753     {
2754       x = TREE_OPERAND (x, 0);
2755     }
2756   while (x && TREE_CODE (x) == COMPONENT_REF);
2757 
2758   return x && DECL_P (x) ? x : NULL_TREE;
2759 }
2760 
2761 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2762    for the offset of the field reference.  *KNOWN_P says whether the
2763    offset is known.  */
2764 
2765 static void
adjust_offset_for_component_ref(tree x,bool * known_p,poly_int64 * offset)2766 adjust_offset_for_component_ref (tree x, bool *known_p,
2767 				 poly_int64 *offset)
2768 {
2769   if (!*known_p)
2770     return;
2771   do
2772     {
2773       tree xoffset = component_ref_field_offset (x);
2774       tree field = TREE_OPERAND (x, 1);
2775       if (!poly_int_tree_p (xoffset))
2776 	{
2777 	  *known_p = false;
2778 	  return;
2779 	}
2780 
2781       poly_offset_int woffset
2782 	= (wi::to_poly_offset (xoffset)
2783 	   + (wi::to_offset (DECL_FIELD_BIT_OFFSET (field))
2784 	      >> LOG2_BITS_PER_UNIT)
2785 	   + *offset);
2786       if (!woffset.to_shwi (offset))
2787 	{
2788 	  *known_p = false;
2789 	  return;
2790 	}
2791 
2792       x = TREE_OPERAND (x, 0);
2793     }
2794   while (x && TREE_CODE (x) == COMPONENT_REF);
2795 }
2796 
2797 /* Return nonzero if we can determine the exprs corresponding to memrefs
2798    X and Y and they do not overlap.
2799    If LOOP_VARIANT is set, skip offset-based disambiguation */
2800 
2801 int
nonoverlapping_memrefs_p(const_rtx x,const_rtx y,bool loop_invariant)2802 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2803 {
2804   tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2805   rtx rtlx, rtly;
2806   rtx basex, basey;
2807   bool moffsetx_known_p, moffsety_known_p;
2808   poly_int64 moffsetx = 0, moffsety = 0;
2809   poly_int64 offsetx = 0, offsety = 0, sizex, sizey;
2810 
2811   /* Unless both have exprs, we can't tell anything.  */
2812   if (exprx == 0 || expry == 0)
2813     return 0;
2814 
2815   /* For spill-slot accesses make sure we have valid offsets.  */
2816   if ((exprx == get_spill_slot_decl (false)
2817        && ! MEM_OFFSET_KNOWN_P (x))
2818       || (expry == get_spill_slot_decl (false)
2819 	  && ! MEM_OFFSET_KNOWN_P (y)))
2820     return 0;
2821 
2822   /* If the field reference test failed, look at the DECLs involved.  */
2823   moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2824   if (moffsetx_known_p)
2825     moffsetx = MEM_OFFSET (x);
2826   if (TREE_CODE (exprx) == COMPONENT_REF)
2827     {
2828       tree t = decl_for_component_ref (exprx);
2829       if (! t)
2830 	return 0;
2831       adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2832       exprx = t;
2833     }
2834 
2835   moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2836   if (moffsety_known_p)
2837     moffsety = MEM_OFFSET (y);
2838   if (TREE_CODE (expry) == COMPONENT_REF)
2839     {
2840       tree t = decl_for_component_ref (expry);
2841       if (! t)
2842 	return 0;
2843       adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2844       expry = t;
2845     }
2846 
2847   if (! DECL_P (exprx) || ! DECL_P (expry))
2848     return 0;
2849 
2850   /* If we refer to different gimple registers, or one gimple register
2851      and one non-gimple-register, we know they can't overlap.  First,
2852      gimple registers don't have their addresses taken.  Now, there
2853      could be more than one stack slot for (different versions of) the
2854      same gimple register, but we can presumably tell they don't
2855      overlap based on offsets from stack base addresses elsewhere.
2856      It's important that we don't proceed to DECL_RTL, because gimple
2857      registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be
2858      able to do anything about them since no SSA information will have
2859      remained to guide it.  */
2860   if (is_gimple_reg (exprx) || is_gimple_reg (expry))
2861     return exprx != expry
2862       || (moffsetx_known_p && moffsety_known_p
2863 	  && MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y)
2864 	  && !offset_overlap_p (moffsety - moffsetx,
2865 				MEM_SIZE (x), MEM_SIZE (y)));
2866 
2867   /* With invalid code we can end up storing into the constant pool.
2868      Bail out to avoid ICEing when creating RTL for this.
2869      See gfortran.dg/lto/20091028-2_0.f90.  */
2870   if (TREE_CODE (exprx) == CONST_DECL
2871       || TREE_CODE (expry) == CONST_DECL)
2872     return 1;
2873 
2874   /* If one decl is known to be a function or label in a function and
2875      the other is some kind of data, they can't overlap.  */
2876   if ((TREE_CODE (exprx) == FUNCTION_DECL
2877        || TREE_CODE (exprx) == LABEL_DECL)
2878       != (TREE_CODE (expry) == FUNCTION_DECL
2879 	  || TREE_CODE (expry) == LABEL_DECL))
2880     return 1;
2881 
2882   /* If either of the decls doesn't have DECL_RTL set (e.g. marked as
2883      living in multiple places), we can't tell anything.  Exception
2884      are FUNCTION_DECLs for which we can create DECL_RTL on demand.  */
2885   if ((!DECL_RTL_SET_P (exprx) && TREE_CODE (exprx) != FUNCTION_DECL)
2886       || (!DECL_RTL_SET_P (expry) && TREE_CODE (expry) != FUNCTION_DECL))
2887     return 0;
2888 
2889   rtlx = DECL_RTL (exprx);
2890   rtly = DECL_RTL (expry);
2891 
2892   /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2893      can't overlap unless they are the same because we never reuse that part
2894      of the stack frame used for locals for spilled pseudos.  */
2895   if ((!MEM_P (rtlx) || !MEM_P (rtly))
2896       && ! rtx_equal_p (rtlx, rtly))
2897     return 1;
2898 
2899   /* If we have MEMs referring to different address spaces (which can
2900      potentially overlap), we cannot easily tell from the addresses
2901      whether the references overlap.  */
2902   if (MEM_P (rtlx) && MEM_P (rtly)
2903       && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2904     return 0;
2905 
2906   /* Get the base and offsets of both decls.  If either is a register, we
2907      know both are and are the same, so use that as the base.  The only
2908      we can avoid overlap is if we can deduce that they are nonoverlapping
2909      pieces of that decl, which is very rare.  */
2910   basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2911   basex = strip_offset_and_add (basex, &offsetx);
2912 
2913   basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2914   basey = strip_offset_and_add (basey, &offsety);
2915 
2916   /* If the bases are different, we know they do not overlap if both
2917      are constants or if one is a constant and the other a pointer into the
2918      stack frame.  Otherwise a different base means we can't tell if they
2919      overlap or not.  */
2920   if (compare_base_decls (exprx, expry) == 0)
2921     return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2922 	    || (CONSTANT_P (basex) && REG_P (basey)
2923 		&& REGNO_PTR_FRAME_P (REGNO (basey)))
2924 	    || (CONSTANT_P (basey) && REG_P (basex)
2925 		&& REGNO_PTR_FRAME_P (REGNO (basex))));
2926 
2927   /* Offset based disambiguation not appropriate for loop invariant */
2928   if (loop_invariant)
2929     return 0;
2930 
2931   /* Offset based disambiguation is OK even if we do not know that the
2932      declarations are necessarily different
2933     (i.e. compare_base_decls (exprx, expry) == -1)  */
2934 
2935   sizex = (!MEM_P (rtlx) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtlx)))
2936 	   : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2937 	   : -1);
2938   sizey = (!MEM_P (rtly) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtly)))
2939 	   : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2940 	   : -1);
2941 
2942   /* If we have an offset for either memref, it can update the values computed
2943      above.  */
2944   if (moffsetx_known_p)
2945     offsetx += moffsetx, sizex -= moffsetx;
2946   if (moffsety_known_p)
2947     offsety += moffsety, sizey -= moffsety;
2948 
2949   /* If a memref has both a size and an offset, we can use the smaller size.
2950      We can't do this if the offset isn't known because we must view this
2951      memref as being anywhere inside the DECL's MEM.  */
2952   if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2953     sizex = MEM_SIZE (x);
2954   if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2955     sizey = MEM_SIZE (y);
2956 
2957   return !ranges_maybe_overlap_p (offsetx, sizex, offsety, sizey);
2958 }
2959 
2960 /* Helper for true_dependence and canon_true_dependence.
2961    Checks for true dependence: X is read after store in MEM takes place.
2962 
2963    If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2964    NULL_RTX, and the canonical addresses of MEM and X are both computed
2965    here.  If MEM_CANONICALIZED, then MEM must be already canonicalized.
2966 
2967    If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2968 
2969    Returns 1 if there is a true dependence, 0 otherwise.  */
2970 
2971 static int
true_dependence_1(const_rtx mem,machine_mode mem_mode,rtx mem_addr,const_rtx x,rtx x_addr,bool mem_canonicalized)2972 true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2973 		   const_rtx x, rtx x_addr, bool mem_canonicalized)
2974 {
2975   rtx true_mem_addr;
2976   rtx base;
2977   int ret;
2978 
2979   gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2980 		       : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2981 
2982   if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2983     return 1;
2984 
2985   /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2986      This is used in epilogue deallocation functions, and in cselib.  */
2987   if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2988     return 1;
2989   if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2990     return 1;
2991   if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2992       || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2993     return 1;
2994 
2995   if (! x_addr)
2996     x_addr = XEXP (x, 0);
2997   x_addr = get_addr (x_addr);
2998 
2999   if (! mem_addr)
3000     {
3001       mem_addr = XEXP (mem, 0);
3002       if (mem_mode == VOIDmode)
3003 	mem_mode = GET_MODE (mem);
3004     }
3005   true_mem_addr = get_addr (mem_addr);
3006 
3007   /* Read-only memory is by definition never modified, and therefore can't
3008      conflict with anything.  However, don't assume anything when AND
3009      addresses are involved and leave to the code below to determine
3010      dependence.  We don't expect to find read-only set on MEM, but
3011      stupid user tricks can produce them, so don't die.  */
3012   if (MEM_READONLY_P (x)
3013       && GET_CODE (x_addr) != AND
3014       && GET_CODE (true_mem_addr) != AND)
3015     return 0;
3016 
3017   /* If we have MEMs referring to different address spaces (which can
3018      potentially overlap), we cannot easily tell from the addresses
3019      whether the references overlap.  */
3020   if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3021     return 1;
3022 
3023   base = find_base_term (x_addr);
3024   if (base && (GET_CODE (base) == LABEL_REF
3025 	       || (GET_CODE (base) == SYMBOL_REF
3026 		   && CONSTANT_POOL_ADDRESS_P (base))))
3027     return 0;
3028 
3029   rtx mem_base = find_base_term (true_mem_addr);
3030   if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
3031 			  GET_MODE (x), mem_mode))
3032     return 0;
3033 
3034   x_addr = canon_rtx (x_addr);
3035   if (!mem_canonicalized)
3036     mem_addr = canon_rtx (true_mem_addr);
3037 
3038   if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
3039 				 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
3040     return ret;
3041 
3042   if (mems_in_disjoint_alias_sets_p (x, mem))
3043     return 0;
3044 
3045   if (nonoverlapping_memrefs_p (mem, x, false))
3046     return 0;
3047 
3048   return rtx_refs_may_alias_p (x, mem, true);
3049 }
3050 
3051 /* True dependence: X is read after store in MEM takes place.  */
3052 
3053 int
true_dependence(const_rtx mem,machine_mode mem_mode,const_rtx x)3054 true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x)
3055 {
3056   return true_dependence_1 (mem, mem_mode, NULL_RTX,
3057 			    x, NULL_RTX, /*mem_canonicalized=*/false);
3058 }
3059 
3060 /* Canonical true dependence: X is read after store in MEM takes place.
3061    Variant of true_dependence which assumes MEM has already been
3062    canonicalized (hence we no longer do that here).
3063    The mem_addr argument has been added, since true_dependence_1 computed
3064    this value prior to canonicalizing.  */
3065 
3066 int
canon_true_dependence(const_rtx mem,machine_mode mem_mode,rtx mem_addr,const_rtx x,rtx x_addr)3067 canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
3068 		       const_rtx x, rtx x_addr)
3069 {
3070   return true_dependence_1 (mem, mem_mode, mem_addr,
3071 			    x, x_addr, /*mem_canonicalized=*/true);
3072 }
3073 
3074 /* Returns nonzero if a write to X might alias a previous read from
3075    (or, if WRITEP is true, a write to) MEM.
3076    If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
3077    and X_MODE the mode for that access.
3078    If MEM_CANONICALIZED is true, MEM is canonicalized.  */
3079 
3080 static int
write_dependence_p(const_rtx mem,const_rtx x,machine_mode x_mode,rtx x_addr,bool mem_canonicalized,bool x_canonicalized,bool writep)3081 write_dependence_p (const_rtx mem,
3082 		    const_rtx x, machine_mode x_mode, rtx x_addr,
3083 		    bool mem_canonicalized, bool x_canonicalized, bool writep)
3084 {
3085   rtx mem_addr;
3086   rtx true_mem_addr, true_x_addr;
3087   rtx base;
3088   int ret;
3089 
3090   gcc_checking_assert (x_canonicalized
3091 		       ? (x_addr != NULL_RTX
3092 			  && (x_mode != VOIDmode || GET_MODE (x) == VOIDmode))
3093 		       : (x_addr == NULL_RTX && x_mode == VOIDmode));
3094 
3095   if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3096     return 1;
3097 
3098   /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3099      This is used in epilogue deallocation functions.  */
3100   if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3101     return 1;
3102   if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3103     return 1;
3104   if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3105       || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3106     return 1;
3107 
3108   if (!x_addr)
3109     x_addr = XEXP (x, 0);
3110   true_x_addr = get_addr (x_addr);
3111 
3112   mem_addr = XEXP (mem, 0);
3113   true_mem_addr = get_addr (mem_addr);
3114 
3115   /* A read from read-only memory can't conflict with read-write memory.
3116      Don't assume anything when AND addresses are involved and leave to
3117      the code below to determine dependence.  */
3118   if (!writep
3119       && MEM_READONLY_P (mem)
3120       && GET_CODE (true_x_addr) != AND
3121       && GET_CODE (true_mem_addr) != AND)
3122     return 0;
3123 
3124   /* If we have MEMs referring to different address spaces (which can
3125      potentially overlap), we cannot easily tell from the addresses
3126      whether the references overlap.  */
3127   if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3128     return 1;
3129 
3130   base = find_base_term (true_mem_addr);
3131   if (! writep
3132       && base
3133       && (GET_CODE (base) == LABEL_REF
3134 	  || (GET_CODE (base) == SYMBOL_REF
3135 	      && CONSTANT_POOL_ADDRESS_P (base))))
3136     return 0;
3137 
3138   rtx x_base = find_base_term (true_x_addr);
3139   if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
3140 			  GET_MODE (x), GET_MODE (mem)))
3141     return 0;
3142 
3143   if (!x_canonicalized)
3144     {
3145       x_addr = canon_rtx (true_x_addr);
3146       x_mode = GET_MODE (x);
3147     }
3148   if (!mem_canonicalized)
3149     mem_addr = canon_rtx (true_mem_addr);
3150 
3151   if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
3152 				 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
3153     return ret;
3154 
3155   if (nonoverlapping_memrefs_p (x, mem, false))
3156     return 0;
3157 
3158   return rtx_refs_may_alias_p (x, mem, false);
3159 }
3160 
3161 /* Anti dependence: X is written after read in MEM takes place.  */
3162 
3163 int
anti_dependence(const_rtx mem,const_rtx x)3164 anti_dependence (const_rtx mem, const_rtx x)
3165 {
3166   return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3167 			     /*mem_canonicalized=*/false,
3168 			     /*x_canonicalized*/false, /*writep=*/false);
3169 }
3170 
3171 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3172    Also, consider X in X_MODE (which might be from an enclosing
3173    STRICT_LOW_PART / ZERO_EXTRACT).
3174    If MEM_CANONICALIZED is true, MEM is canonicalized.  */
3175 
3176 int
canon_anti_dependence(const_rtx mem,bool mem_canonicalized,const_rtx x,machine_mode x_mode,rtx x_addr)3177 canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
3178 		       const_rtx x, machine_mode x_mode, rtx x_addr)
3179 {
3180   return write_dependence_p (mem, x, x_mode, x_addr,
3181 			     mem_canonicalized, /*x_canonicalized=*/true,
3182 			     /*writep=*/false);
3183 }
3184 
3185 /* Output dependence: X is written after store in MEM takes place.  */
3186 
3187 int
output_dependence(const_rtx mem,const_rtx x)3188 output_dependence (const_rtx mem, const_rtx x)
3189 {
3190   return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3191 			     /*mem_canonicalized=*/false,
3192 			     /*x_canonicalized*/false, /*writep=*/true);
3193 }
3194 
3195 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3196    Also, consider X in X_MODE (which might be from an enclosing
3197    STRICT_LOW_PART / ZERO_EXTRACT).
3198    If MEM_CANONICALIZED is true, MEM is canonicalized.  */
3199 
3200 int
canon_output_dependence(const_rtx mem,bool mem_canonicalized,const_rtx x,machine_mode x_mode,rtx x_addr)3201 canon_output_dependence (const_rtx mem, bool mem_canonicalized,
3202 			 const_rtx x, machine_mode x_mode, rtx x_addr)
3203 {
3204   return write_dependence_p (mem, x, x_mode, x_addr,
3205 			     mem_canonicalized, /*x_canonicalized=*/true,
3206 			     /*writep=*/true);
3207 }
3208 
3209 
3210 
3211 /* Check whether X may be aliased with MEM.  Don't do offset-based
3212   memory disambiguation & TBAA.  */
3213 int
may_alias_p(const_rtx mem,const_rtx x)3214 may_alias_p (const_rtx mem, const_rtx x)
3215 {
3216   rtx x_addr, mem_addr;
3217 
3218   if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3219     return 1;
3220 
3221   /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3222      This is used in epilogue deallocation functions.  */
3223   if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3224     return 1;
3225   if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3226     return 1;
3227   if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3228       || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3229     return 1;
3230 
3231   x_addr = XEXP (x, 0);
3232   x_addr = get_addr (x_addr);
3233 
3234   mem_addr = XEXP (mem, 0);
3235   mem_addr = get_addr (mem_addr);
3236 
3237   /* Read-only memory is by definition never modified, and therefore can't
3238      conflict with anything.  However, don't assume anything when AND
3239      addresses are involved and leave to the code below to determine
3240      dependence.  We don't expect to find read-only set on MEM, but
3241      stupid user tricks can produce them, so don't die.  */
3242   if (MEM_READONLY_P (x)
3243       && GET_CODE (x_addr) != AND
3244       && GET_CODE (mem_addr) != AND)
3245     return 0;
3246 
3247   /* If we have MEMs referring to different address spaces (which can
3248      potentially overlap), we cannot easily tell from the addresses
3249      whether the references overlap.  */
3250   if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3251     return 1;
3252 
3253   rtx x_base = find_base_term (x_addr);
3254   rtx mem_base = find_base_term (mem_addr);
3255   if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
3256 			  GET_MODE (x), GET_MODE (mem_addr)))
3257     return 0;
3258 
3259   if (nonoverlapping_memrefs_p (mem, x, true))
3260     return 0;
3261 
3262   /* TBAA not valid for loop_invarint */
3263   return rtx_refs_may_alias_p (x, mem, false);
3264 }
3265 
3266 void
init_alias_target(void)3267 init_alias_target (void)
3268 {
3269   int i;
3270 
3271   if (!arg_base_value)
3272     arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
3273 
3274   memset (static_reg_base_value, 0, sizeof static_reg_base_value);
3275 
3276   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3277     /* Check whether this register can hold an incoming pointer
3278        argument.  FUNCTION_ARG_REGNO_P tests outgoing register
3279        numbers, so translate if necessary due to register windows.  */
3280     if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
3281 	&& targetm.hard_regno_mode_ok (i, Pmode))
3282       static_reg_base_value[i] = arg_base_value;
3283 
3284   /* RTL code is required to be consistent about whether it uses the
3285      stack pointer, the frame pointer or the argument pointer to
3286      access a given area of the frame.  We can therefore use the
3287      base address to distinguish between the different areas.  */
3288   static_reg_base_value[STACK_POINTER_REGNUM]
3289     = unique_base_value (UNIQUE_BASE_VALUE_SP);
3290   static_reg_base_value[ARG_POINTER_REGNUM]
3291     = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
3292   static_reg_base_value[FRAME_POINTER_REGNUM]
3293     = unique_base_value (UNIQUE_BASE_VALUE_FP);
3294 
3295   /* The above rules extend post-reload, with eliminations applying
3296      consistently to each of the three pointers.  Cope with cases in
3297      which the frame pointer is eliminated to the hard frame pointer
3298      rather than the stack pointer.  */
3299   if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
3300     static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
3301       = unique_base_value (UNIQUE_BASE_VALUE_HFP);
3302 }
3303 
3304 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
3305    to be memory reference.  */
3306 static bool memory_modified;
3307 static void
memory_modified_1(rtx x,const_rtx pat ATTRIBUTE_UNUSED,void * data)3308 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3309 {
3310   if (MEM_P (x))
3311     {
3312       if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
3313 	memory_modified = true;
3314     }
3315 }
3316 
3317 
3318 /* Return true when INSN possibly modify memory contents of MEM
3319    (i.e. address can be modified).  */
3320 bool
memory_modified_in_insn_p(const_rtx mem,const_rtx insn)3321 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
3322 {
3323   if (!INSN_P (insn))
3324     return false;
3325   /* Conservatively assume all non-readonly MEMs might be modified in
3326      calls.  */
3327   if (CALL_P (insn))
3328     return true;
3329   memory_modified = false;
3330   note_stores (as_a<const rtx_insn *> (insn), memory_modified_1,
3331 	       CONST_CAST_RTX(mem));
3332   return memory_modified;
3333 }
3334 
3335 /* Initialize the aliasing machinery.  Initialize the REG_KNOWN_VALUE
3336    array.  */
3337 
3338 void
init_alias_analysis(void)3339 init_alias_analysis (void)
3340 {
3341   unsigned int maxreg = max_reg_num ();
3342   int changed, pass;
3343   int i;
3344   unsigned int ui;
3345   rtx_insn *insn;
3346   rtx val;
3347   int rpo_cnt;
3348   int *rpo;
3349 
3350   timevar_push (TV_ALIAS_ANALYSIS);
3351 
3352   vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
3353   reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
3354   bitmap_clear (reg_known_equiv_p);
3355 
3356   /* If we have memory allocated from the previous run, use it.  */
3357   if (old_reg_base_value)
3358     reg_base_value = old_reg_base_value;
3359 
3360   if (reg_base_value)
3361     reg_base_value->truncate (0);
3362 
3363   vec_safe_grow_cleared (reg_base_value, maxreg);
3364 
3365   new_reg_base_value = XNEWVEC (rtx, maxreg);
3366   reg_seen = sbitmap_alloc (maxreg);
3367 
3368   /* The basic idea is that each pass through this loop will use the
3369      "constant" information from the previous pass to propagate alias
3370      information through another level of assignments.
3371 
3372      The propagation is done on the CFG in reverse post-order, to propagate
3373      things forward as far as possible in each iteration.
3374 
3375      This could get expensive if the assignment chains are long.  Maybe
3376      we should throttle the number of iterations, possibly based on
3377      the optimization level or flag_expensive_optimizations.
3378 
3379      We could propagate more information in the first pass by making use
3380      of DF_REG_DEF_COUNT to determine immediately that the alias information
3381      for a pseudo is "constant".
3382 
3383      A program with an uninitialized variable can cause an infinite loop
3384      here.  Instead of doing a full dataflow analysis to detect such problems
3385      we just cap the number of iterations for the loop.
3386 
3387      The state of the arrays for the set chain in question does not matter
3388      since the program has undefined behavior.  */
3389 
3390   rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
3391   rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3392 
3393   /* The prologue/epilogue insns are not threaded onto the
3394      insn chain until after reload has completed.  Thus,
3395      there is no sense wasting time checking if INSN is in
3396      the prologue/epilogue until after reload has completed.  */
3397   bool could_be_prologue_epilogue = ((targetm.have_prologue ()
3398 				      || targetm.have_epilogue ())
3399 				     && reload_completed);
3400 
3401   pass = 0;
3402   do
3403     {
3404       /* Assume nothing will change this iteration of the loop.  */
3405       changed = 0;
3406 
3407       /* We want to assign the same IDs each iteration of this loop, so
3408 	 start counting from one each iteration of the loop.  */
3409       unique_id = 1;
3410 
3411       /* We're at the start of the function each iteration through the
3412 	 loop, so we're copying arguments.  */
3413       copying_arguments = true;
3414 
3415       /* Wipe the potential alias information clean for this pass.  */
3416       memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
3417 
3418       /* Wipe the reg_seen array clean.  */
3419       bitmap_clear (reg_seen);
3420 
3421       /* Initialize the alias information for this pass.  */
3422       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3423 	if (static_reg_base_value[i]
3424 	    /* Don't treat the hard frame pointer as special if we
3425 	       eliminated the frame pointer to the stack pointer instead.  */
3426 	    && !(i == HARD_FRAME_POINTER_REGNUM
3427 		 && reload_completed
3428 		 && !frame_pointer_needed
3429 		 && targetm.can_eliminate (FRAME_POINTER_REGNUM,
3430 					   STACK_POINTER_REGNUM)))
3431 	  {
3432 	    new_reg_base_value[i] = static_reg_base_value[i];
3433 	    bitmap_set_bit (reg_seen, i);
3434 	  }
3435 
3436       /* Walk the insns adding values to the new_reg_base_value array.  */
3437       for (i = 0; i < rpo_cnt; i++)
3438 	{
3439 	  basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
3440 	  FOR_BB_INSNS (bb, insn)
3441 	    {
3442 	      if (NONDEBUG_INSN_P (insn))
3443 		{
3444 		  rtx note, set;
3445 
3446 		  if (could_be_prologue_epilogue
3447 		      && prologue_epilogue_contains (insn))
3448 		    continue;
3449 
3450 		  /* If this insn has a noalias note, process it,  Otherwise,
3451 		     scan for sets.  A simple set will have no side effects
3452 		     which could change the base value of any other register.  */
3453 
3454 		  if (GET_CODE (PATTERN (insn)) == SET
3455 		      && REG_NOTES (insn) != 0
3456 		      && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
3457 		    record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
3458 		  else
3459 		    note_stores (insn, record_set, NULL);
3460 
3461 		  set = single_set (insn);
3462 
3463 		  if (set != 0
3464 		      && REG_P (SET_DEST (set))
3465 		      && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3466 		    {
3467 		      unsigned int regno = REGNO (SET_DEST (set));
3468 		      rtx src = SET_SRC (set);
3469 		      rtx t;
3470 
3471 		      note = find_reg_equal_equiv_note (insn);
3472 		      if (note && REG_NOTE_KIND (note) == REG_EQUAL
3473 			  && DF_REG_DEF_COUNT (regno) != 1)
3474 			note = NULL_RTX;
3475 
3476 		      poly_int64 offset;
3477 		      if (note != NULL_RTX
3478 			  && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3479 			  && ! rtx_varies_p (XEXP (note, 0), 1)
3480 			  && ! reg_overlap_mentioned_p (SET_DEST (set),
3481 							XEXP (note, 0)))
3482 			{
3483 			  set_reg_known_value (regno, XEXP (note, 0));
3484 			  set_reg_known_equiv_p (regno,
3485 						 REG_NOTE_KIND (note) == REG_EQUIV);
3486 			}
3487 		      else if (DF_REG_DEF_COUNT (regno) == 1
3488 			       && GET_CODE (src) == PLUS
3489 			       && REG_P (XEXP (src, 0))
3490 			       && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
3491 			       && poly_int_rtx_p (XEXP (src, 1), &offset))
3492 			{
3493 			  t = plus_constant (GET_MODE (src), t, offset);
3494 			  set_reg_known_value (regno, t);
3495 			  set_reg_known_equiv_p (regno, false);
3496 			}
3497 		      else if (DF_REG_DEF_COUNT (regno) == 1
3498 			       && ! rtx_varies_p (src, 1))
3499 			{
3500 			  set_reg_known_value (regno, src);
3501 			  set_reg_known_equiv_p (regno, false);
3502 			}
3503 		    }
3504 		}
3505 	      else if (NOTE_P (insn)
3506 		       && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3507 		copying_arguments = false;
3508 	    }
3509 	}
3510 
3511       /* Now propagate values from new_reg_base_value to reg_base_value.  */
3512       gcc_assert (maxreg == (unsigned int) max_reg_num ());
3513 
3514       for (ui = 0; ui < maxreg; ui++)
3515 	{
3516 	  if (new_reg_base_value[ui]
3517 	      && new_reg_base_value[ui] != (*reg_base_value)[ui]
3518 	      && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
3519 	    {
3520 	      (*reg_base_value)[ui] = new_reg_base_value[ui];
3521 	      changed = 1;
3522 	    }
3523 	}
3524     }
3525   while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
3526   XDELETEVEC (rpo);
3527 
3528   /* Fill in the remaining entries.  */
3529   FOR_EACH_VEC_ELT (*reg_known_value, i, val)
3530     {
3531       int regno = i + FIRST_PSEUDO_REGISTER;
3532       if (! val)
3533 	set_reg_known_value (regno, regno_reg_rtx[regno]);
3534     }
3535 
3536   /* Clean up.  */
3537   free (new_reg_base_value);
3538   new_reg_base_value = 0;
3539   sbitmap_free (reg_seen);
3540   reg_seen = 0;
3541   timevar_pop (TV_ALIAS_ANALYSIS);
3542 }
3543 
3544 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3545    Special API for var-tracking pass purposes.  */
3546 
3547 void
vt_equate_reg_base_value(const_rtx reg1,const_rtx reg2)3548 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3549 {
3550   (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
3551 }
3552 
3553 void
end_alias_analysis(void)3554 end_alias_analysis (void)
3555 {
3556   old_reg_base_value = reg_base_value;
3557   vec_free (reg_known_value);
3558   sbitmap_free (reg_known_equiv_p);
3559 }
3560 
3561 void
dump_alias_stats_in_alias_c(FILE * s)3562 dump_alias_stats_in_alias_c (FILE *s)
3563 {
3564   fprintf (s, "  TBAA oracle: %llu disambiguations %llu queries\n"
3565 	      "               %llu are in alias set 0\n"
3566 	      "               %llu queries asked about the same object\n"
3567 	      "               %llu queries asked about the same alias set\n"
3568 	      "               %llu access volatile\n"
3569 	      "               %llu are dependent in the DAG\n"
3570 	      "               %llu are aritificially in conflict with void *\n",
3571 	   alias_stats.num_disambiguated,
3572 	   alias_stats.num_alias_zero + alias_stats.num_same_alias_set
3573 	   + alias_stats.num_same_objects + alias_stats.num_volatile
3574 	   + alias_stats.num_dag + alias_stats.num_disambiguated
3575 	   + alias_stats.num_universal,
3576 	   alias_stats.num_alias_zero, alias_stats.num_same_alias_set,
3577 	   alias_stats.num_same_objects, alias_stats.num_volatile,
3578 	   alias_stats.num_dag, alias_stats.num_universal);
3579 }
3580 #include "gt-alias.h"
3581