1 /* Swing Modulo Scheduling implementation.
2    Copyright (C) 2004-2020 Free Software Foundation, Inc.
3    Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "cfghooks.h"
30 #include "df.h"
31 #include "memmodel.h"
32 #include "optabs.h"
33 #include "regs.h"
34 #include "emit-rtl.h"
35 #include "gcov-io.h"
36 #include "profile.h"
37 #include "insn-attr.h"
38 #include "cfgrtl.h"
39 #include "sched-int.h"
40 #include "cfgloop.h"
41 #include "expr.h"
42 #include "ddg.h"
43 #include "tree-pass.h"
44 #include "dbgcnt.h"
45 #include "loop-unroll.h"
46 
47 #ifdef INSN_SCHEDULING
48 
49 /* This file contains the implementation of the Swing Modulo Scheduler,
50    described in the following references:
51    [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
52        Lifetime--sensitive modulo scheduling in a production environment.
53        IEEE Trans. on Comps., 50(3), March 2001
54    [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
55        Swing Modulo Scheduling: A Lifetime Sensitive Approach.
56        PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
57 
58    The basic structure is:
59    1. Build a data-dependence graph (DDG) for each loop.
60    2. Use the DDG to order the insns of a loop (not in topological order
61       necessarily, but rather) trying to place each insn after all its
62       predecessors _or_ after all its successors.
63    3. Compute MII: a lower bound on the number of cycles to schedule the loop.
64    4. Use the ordering to perform list-scheduling of the loop:
65       1. Set II = MII.  We will try to schedule the loop within II cycles.
66       2. Try to schedule the insns one by one according to the ordering.
67 	 For each insn compute an interval of cycles by considering already-
68 	 scheduled preds and succs (and associated latencies); try to place
69 	 the insn in the cycles of this window checking for potential
70 	 resource conflicts (using the DFA interface).
71 	 Note: this is different from the cycle-scheduling of schedule_insns;
72 	 here the insns are not scheduled monotonically top-down (nor bottom-
73 	 up).
74       3. If failed in scheduling all insns - bump II++ and try again, unless
75 	 II reaches an upper bound MaxII, in which case report failure.
76    5. If we succeeded in scheduling the loop within II cycles, we now
77       generate prolog and epilog, decrease the counter of the loop, and
78       perform modulo variable expansion for live ranges that span more than
79       II cycles (i.e. use register copies to prevent a def from overwriting
80       itself before reaching the use).
81 
82     SMS works with countable loops (1) whose control part can be easily
83     decoupled from the rest of the loop and (2) whose loop count can
84     be easily adjusted.  This is because we peel a constant number of
85     iterations into a prologue and epilogue for which we want to avoid
86     emitting the control part, and a kernel which is to iterate that
87     constant number of iterations less than the original loop.  So the
88     control part should be a set of insns clearly identified and having
89     its own iv, not otherwise used in the loop (at-least for now), which
90     initializes a register before the loop to the number of iterations.
91     Currently SMS relies on the do-loop pattern to recognize such loops,
92     where (1) the control part comprises of all insns defining and/or
93     using a certain 'count' register and (2) the loop count can be
94     adjusted by modifying this register prior to the loop.
95     TODO: Rely on cfgloop analysis instead.  */
96 
97 /* This page defines partial-schedule structures and functions for
98    modulo scheduling.  */
99 
100 typedef struct partial_schedule *partial_schedule_ptr;
101 typedef struct ps_insn *ps_insn_ptr;
102 
103 /* The minimum (absolute) cycle that a node of ps was scheduled in.  */
104 #define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
105 
106 /* The maximum (absolute) cycle that a node of ps was scheduled in.  */
107 #define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
108 
109 /* Perform signed modulo, always returning a non-negative value.  */
110 #define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
111 
112 /* The number of different iterations the nodes in ps span, assuming
113    the stage boundaries are placed efficiently.  */
114 #define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
115                          + 1 + ii - 1) / ii)
116 /* The stage count of ps.  */
117 #define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
118 
119 /* A single instruction in the partial schedule.  */
120 struct ps_insn
121 {
122   /* Identifies the instruction to be scheduled.  Values smaller than
123      the ddg's num_nodes refer directly to ddg nodes.  A value of
124      X - num_nodes refers to register move X.  */
125   int id;
126 
127   /* The (absolute) cycle in which the PS instruction is scheduled.
128      Same as SCHED_TIME (node).  */
129   int cycle;
130 
131   /* The next/prev PS_INSN in the same row.  */
132   ps_insn_ptr next_in_row,
133 	      prev_in_row;
134 
135 };
136 
137 /* Information about a register move that has been added to a partial
138    schedule.  */
139 struct ps_reg_move_info
140 {
141   /* The source of the move is defined by the ps_insn with id DEF.
142      The destination is used by the ps_insns with the ids in USES.  */
143   int def;
144   sbitmap uses;
145 
146   /* The original form of USES' instructions used OLD_REG, but they
147      should now use NEW_REG.  */
148   rtx old_reg;
149   rtx new_reg;
150 
151   /* The number of consecutive stages that the move occupies.  */
152   int num_consecutive_stages;
153 
154   /* An instruction that sets NEW_REG to the correct value.  The first
155      move associated with DEF will have an rhs of OLD_REG; later moves
156      use the result of the previous move.  */
157   rtx_insn *insn;
158 };
159 
160 /* Holds the partial schedule as an array of II rows.  Each entry of the
161    array points to a linked list of PS_INSNs, which represents the
162    instructions that are scheduled for that row.  */
163 struct partial_schedule
164 {
165   int ii;	/* Number of rows in the partial schedule.  */
166   int history;  /* Threshold for conflict checking using DFA.  */
167 
168   /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii).  */
169   ps_insn_ptr *rows;
170 
171   /* All the moves added for this partial schedule.  Index X has
172      a ps_insn id of X + g->num_nodes.  */
173   vec<ps_reg_move_info> reg_moves;
174 
175   /*  rows_length[i] holds the number of instructions in the row.
176       It is used only (as an optimization) to back off quickly from
177       trying to schedule a node in a full row; that is, to avoid running
178       through futile DFA state transitions.  */
179   int *rows_length;
180 
181   /* The earliest absolute cycle of an insn in the partial schedule.  */
182   int min_cycle;
183 
184   /* The latest absolute cycle of an insn in the partial schedule.  */
185   int max_cycle;
186 
187   ddg_ptr g;	/* The DDG of the insns in the partial schedule.  */
188 
189   int stage_count;  /* The stage count of the partial schedule.  */
190 };
191 
192 
193 static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
194 static void free_partial_schedule (partial_schedule_ptr);
195 static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
196 void print_partial_schedule (partial_schedule_ptr, FILE *);
197 static void verify_partial_schedule (partial_schedule_ptr, sbitmap);
198 static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
199 						int, int, sbitmap, sbitmap);
200 static void rotate_partial_schedule (partial_schedule_ptr, int);
201 void set_row_column_for_ps (partial_schedule_ptr);
202 static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap);
203 static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr);
204 
205 
206 /* This page defines constants and structures for the modulo scheduling
207    driver.  */
208 
209 static int sms_order_nodes (ddg_ptr, int, int *, int *);
210 static void set_node_sched_params (ddg_ptr);
211 static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
212 static void permute_partial_schedule (partial_schedule_ptr, rtx_insn *);
213 static void generate_prolog_epilog (partial_schedule_ptr, class loop *,
214                                     rtx, rtx);
215 static int calculate_stage_count (partial_schedule_ptr, int);
216 static void calculate_must_precede_follow (ddg_node_ptr, int, int,
217 					   int, int, sbitmap, sbitmap, sbitmap);
218 static int get_sched_window (partial_schedule_ptr, ddg_node_ptr,
219 			     sbitmap, int, int *, int *, int *);
220 static bool try_scheduling_node_in_cycle (partial_schedule_ptr, int, int,
221 					  sbitmap, int *, sbitmap, sbitmap);
222 static void remove_node_from_ps (partial_schedule_ptr, ps_insn_ptr);
223 
224 #define NODE_ASAP(node) ((node)->aux.count)
225 
226 #define SCHED_PARAMS(x) (&node_sched_param_vec[x])
227 #define SCHED_TIME(x) (SCHED_PARAMS (x)->time)
228 #define SCHED_ROW(x) (SCHED_PARAMS (x)->row)
229 #define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage)
230 #define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column)
231 
232 /* The scheduling parameters held for each node.  */
233 typedef struct node_sched_params
234 {
235   int time;	/* The absolute scheduling cycle.  */
236 
237   int row;    /* Holds time % ii.  */
238   int stage;  /* Holds time / ii.  */
239 
240   /* The column of a node inside the ps.  If nodes u, v are on the same row,
241      u will precede v if column (u) < column (v).  */
242   int column;
243 } *node_sched_params_ptr;
244 
245 /* The following three functions are copied from the current scheduler
246    code in order to use sched_analyze() for computing the dependencies.
247    They are used when initializing the sched_info structure.  */
248 static const char *
sms_print_insn(const rtx_insn * insn,int aligned ATTRIBUTE_UNUSED)249 sms_print_insn (const rtx_insn *insn, int aligned ATTRIBUTE_UNUSED)
250 {
251   static char tmp[80];
252 
253   sprintf (tmp, "i%4d", INSN_UID (insn));
254   return tmp;
255 }
256 
257 static void
compute_jump_reg_dependencies(rtx insn ATTRIBUTE_UNUSED,regset used ATTRIBUTE_UNUSED)258 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
259 			       regset used ATTRIBUTE_UNUSED)
260 {
261 }
262 
263 static struct common_sched_info_def sms_common_sched_info;
264 
265 static struct sched_deps_info_def sms_sched_deps_info =
266   {
267     compute_jump_reg_dependencies,
268     NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
269     NULL,
270     0, 0, 0
271   };
272 
273 static struct haifa_sched_info sms_sched_info =
274 {
275   NULL,
276   NULL,
277   NULL,
278   NULL,
279   NULL,
280   sms_print_insn,
281   NULL,
282   NULL, /* insn_finishes_block_p */
283   NULL, NULL,
284   NULL, NULL,
285   0, 0,
286 
287   NULL, NULL, NULL, NULL,
288   NULL, NULL,
289   0
290 };
291 
292 /* Partial schedule instruction ID in PS is a register move.  Return
293    information about it.  */
294 static struct ps_reg_move_info *
ps_reg_move(partial_schedule_ptr ps,int id)295 ps_reg_move (partial_schedule_ptr ps, int id)
296 {
297   gcc_checking_assert (id >= ps->g->num_nodes);
298   return &ps->reg_moves[id - ps->g->num_nodes];
299 }
300 
301 /* Return the rtl instruction that is being scheduled by partial schedule
302    instruction ID, which belongs to schedule PS.  */
303 static rtx_insn *
ps_rtl_insn(partial_schedule_ptr ps,int id)304 ps_rtl_insn (partial_schedule_ptr ps, int id)
305 {
306   if (id < ps->g->num_nodes)
307     return ps->g->nodes[id].insn;
308   else
309     return ps_reg_move (ps, id)->insn;
310 }
311 
312 /* Partial schedule instruction ID, which belongs to PS, occurred in
313    the original (unscheduled) loop.  Return the first instruction
314    in the loop that was associated with ps_rtl_insn (PS, ID).
315    If the instruction had some notes before it, this is the first
316    of those notes.  */
317 static rtx_insn *
ps_first_note(partial_schedule_ptr ps,int id)318 ps_first_note (partial_schedule_ptr ps, int id)
319 {
320   gcc_assert (id < ps->g->num_nodes);
321   return ps->g->nodes[id].first_note;
322 }
323 
324 /* Return the number of consecutive stages that are occupied by
325    partial schedule instruction ID in PS.  */
326 static int
ps_num_consecutive_stages(partial_schedule_ptr ps,int id)327 ps_num_consecutive_stages (partial_schedule_ptr ps, int id)
328 {
329   if (id < ps->g->num_nodes)
330     return 1;
331   else
332     return ps_reg_move (ps, id)->num_consecutive_stages;
333 }
334 
335 /* Given HEAD and TAIL which are the first and last insns in a loop;
336    return the register which controls the loop.  Return zero if it has
337    more than one occurrence in the loop besides the control part or the
338    do-loop pattern is not of the form we expect.  */
339 static rtx
doloop_register_get(rtx_insn * head,rtx_insn * tail)340 doloop_register_get (rtx_insn *head, rtx_insn *tail)
341 {
342   rtx reg, condition;
343   rtx_insn *insn, *first_insn_not_to_check;
344 
345   if (!JUMP_P (tail))
346     return NULL_RTX;
347 
348   if (!targetm.code_for_doloop_end)
349     return NULL_RTX;
350 
351   /* TODO: Free SMS's dependence on doloop_condition_get.  */
352   condition = doloop_condition_get (tail);
353   if (! condition)
354     return NULL_RTX;
355 
356   if (REG_P (XEXP (condition, 0)))
357     reg = XEXP (condition, 0);
358   else if (GET_CODE (XEXP (condition, 0)) == PLUS
359 	   && REG_P (XEXP (XEXP (condition, 0), 0)))
360     reg = XEXP (XEXP (condition, 0), 0);
361   else
362     gcc_unreachable ();
363 
364   /* Check that the COUNT_REG has no other occurrences in the loop
365      until the decrement.  We assume the control part consists of
366      either a single (parallel) branch-on-count or a (non-parallel)
367      branch immediately preceded by a single (decrement) insn.  */
368   first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail
369                              : prev_nondebug_insn (tail));
370 
371   for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn))
372     if (NONDEBUG_INSN_P (insn) && reg_mentioned_p (reg, insn))
373       {
374         if (dump_file)
375         {
376           fprintf (dump_file, "SMS count_reg found ");
377           print_rtl_single (dump_file, reg);
378           fprintf (dump_file, " outside control in insn:\n");
379           print_rtl_single (dump_file, insn);
380         }
381 
382         return NULL_RTX;
383       }
384 
385   return reg;
386 }
387 
388 /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
389    that the number of iterations is a compile-time constant.  If so,
390    return the rtx_insn that sets COUNT_REG to a constant, and set COUNT to
391    this constant.  Otherwise return 0.  */
392 static rtx_insn *
const_iteration_count(rtx count_reg,basic_block pre_header,int64_t * count)393 const_iteration_count (rtx count_reg, basic_block pre_header,
394 		       int64_t * count)
395 {
396   rtx_insn *insn;
397   rtx_insn *head, *tail;
398 
399   if (! pre_header)
400     return NULL;
401 
402   get_ebb_head_tail (pre_header, pre_header, &head, &tail);
403 
404   for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
405     if (NONDEBUG_INSN_P (insn) && single_set (insn) &&
406 	rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
407       {
408 	rtx pat = single_set (insn);
409 
410 	if (CONST_INT_P (SET_SRC (pat)))
411 	  {
412 	    *count = INTVAL (SET_SRC (pat));
413 	    return insn;
414 	  }
415 
416 	return NULL;
417       }
418 
419   return NULL;
420 }
421 
422 /* A very simple resource-based lower bound on the initiation interval.
423    ??? Improve the accuracy of this bound by considering the
424    utilization of various units.  */
425 static int
res_MII(ddg_ptr g)426 res_MII (ddg_ptr g)
427 {
428   if (targetm.sched.sms_res_mii)
429     return targetm.sched.sms_res_mii (g);
430 
431   return g->num_nodes / issue_rate;
432 }
433 
434 
435 /* A vector that contains the sched data for each ps_insn.  */
436 static vec<node_sched_params> node_sched_param_vec;
437 
438 /* Allocate sched_params for each node and initialize it.  */
439 static void
set_node_sched_params(ddg_ptr g)440 set_node_sched_params (ddg_ptr g)
441 {
442   node_sched_param_vec.truncate (0);
443   node_sched_param_vec.safe_grow_cleared (g->num_nodes);
444 }
445 
446 /* Make sure that node_sched_param_vec has an entry for every move in PS.  */
447 static void
extend_node_sched_params(partial_schedule_ptr ps)448 extend_node_sched_params (partial_schedule_ptr ps)
449 {
450   node_sched_param_vec.safe_grow_cleared (ps->g->num_nodes
451 					  + ps->reg_moves.length ());
452 }
453 
454 /* Update the sched_params (time, row and stage) for node U using the II,
455    the CYCLE of U and MIN_CYCLE.
456    We're not simply taking the following
457    SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
458    because the stages may not be aligned on cycle 0.  */
459 static void
update_node_sched_params(int u,int ii,int cycle,int min_cycle)460 update_node_sched_params (int u, int ii, int cycle, int min_cycle)
461 {
462   int sc_until_cycle_zero;
463   int stage;
464 
465   SCHED_TIME (u) = cycle;
466   SCHED_ROW (u) = SMODULO (cycle, ii);
467 
468   /* The calculation of stage count is done adding the number
469      of stages before cycle zero and after cycle zero.  */
470   sc_until_cycle_zero = CALC_STAGE_COUNT (-1, min_cycle, ii);
471 
472   if (SCHED_TIME (u) < 0)
473     {
474       stage = CALC_STAGE_COUNT (-1, SCHED_TIME (u), ii);
475       SCHED_STAGE (u) = sc_until_cycle_zero - stage;
476     }
477   else
478     {
479       stage = CALC_STAGE_COUNT (SCHED_TIME (u), 0, ii);
480       SCHED_STAGE (u) = sc_until_cycle_zero + stage - 1;
481     }
482 }
483 
484 static void
print_node_sched_params(FILE * file,int num_nodes,partial_schedule_ptr ps)485 print_node_sched_params (FILE *file, int num_nodes, partial_schedule_ptr ps)
486 {
487   int i;
488 
489   if (! file)
490     return;
491   for (i = 0; i < num_nodes; i++)
492     {
493       node_sched_params_ptr nsp = SCHED_PARAMS (i);
494 
495       fprintf (file, "Node = %d; INSN = %d\n", i,
496 	       INSN_UID (ps_rtl_insn (ps, i)));
497       fprintf (file, " asap = %d:\n", NODE_ASAP (&ps->g->nodes[i]));
498       fprintf (file, " time = %d:\n", nsp->time);
499       fprintf (file, " stage = %d:\n", nsp->stage);
500     }
501 }
502 
503 /* Set SCHED_COLUMN for each instruction in row ROW of PS.  */
504 static void
set_columns_for_row(partial_schedule_ptr ps,int row)505 set_columns_for_row (partial_schedule_ptr ps, int row)
506 {
507   ps_insn_ptr cur_insn;
508   int column;
509 
510   column = 0;
511   for (cur_insn = ps->rows[row]; cur_insn; cur_insn = cur_insn->next_in_row)
512     SCHED_COLUMN (cur_insn->id) = column++;
513 }
514 
515 /* Set SCHED_COLUMN for each instruction in PS.  */
516 static void
set_columns_for_ps(partial_schedule_ptr ps)517 set_columns_for_ps (partial_schedule_ptr ps)
518 {
519   int row;
520 
521   for (row = 0; row < ps->ii; row++)
522     set_columns_for_row (ps, row);
523 }
524 
525 /* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS.
526    Its single predecessor has already been scheduled, as has its
527    ddg node successors.  (The move may have also another move as its
528    successor, in which case that successor will be scheduled later.)
529 
530    The move is part of a chain that satisfies register dependencies
531    between a producing ddg node and various consuming ddg nodes.
532    If some of these dependencies have a distance of 1 (meaning that
533    the use is upward-exposed) then DISTANCE1_USES is nonnull and
534    contains the set of uses with distance-1 dependencies.
535    DISTANCE1_USES is null otherwise.
536 
537    MUST_FOLLOW is a scratch bitmap that is big enough to hold
538    all current ps_insn ids.
539 
540    Return true on success.  */
541 static bool
schedule_reg_move(partial_schedule_ptr ps,int i_reg_move,sbitmap distance1_uses,sbitmap must_follow)542 schedule_reg_move (partial_schedule_ptr ps, int i_reg_move,
543 		   sbitmap distance1_uses, sbitmap must_follow)
544 {
545   unsigned int u;
546   int this_time, this_distance, this_start, this_end, this_latency;
547   int start, end, c, ii;
548   sbitmap_iterator sbi;
549   ps_reg_move_info *move;
550   rtx_insn *this_insn;
551   ps_insn_ptr psi;
552 
553   move = ps_reg_move (ps, i_reg_move);
554   ii = ps->ii;
555   if (dump_file)
556     {
557       fprintf (dump_file, "Scheduling register move INSN %d; ii = %d"
558 	       ", min cycle = %d\n\n", INSN_UID (move->insn), ii,
559 	       PS_MIN_CYCLE (ps));
560       print_rtl_single (dump_file, move->insn);
561       fprintf (dump_file, "\n%11s %11s %5s\n", "start", "end", "time");
562       fprintf (dump_file, "=========== =========== =====\n");
563     }
564 
565   start = INT_MIN;
566   end = INT_MAX;
567 
568   /* For dependencies of distance 1 between a producer ddg node A
569      and consumer ddg node B, we have a chain of dependencies:
570 
571         A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B
572 
573      where Mi is the ith move.  For dependencies of distance 0 between
574      a producer ddg node A and consumer ddg node C, we have a chain of
575      dependencies:
576 
577         A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C
578 
579      where Mi' occupies the same position as Mi but occurs a stage later.
580      We can only schedule each move once, so if we have both types of
581      chain, we model the second as:
582 
583         A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C
584 
585      First handle the dependencies between the previously-scheduled
586      predecessor and the move.  */
587   this_insn = ps_rtl_insn (ps, move->def);
588   this_latency = insn_latency (this_insn, move->insn);
589   this_distance = distance1_uses && move->def < ps->g->num_nodes ? 1 : 0;
590   this_time = SCHED_TIME (move->def) - this_distance * ii;
591   this_start = this_time + this_latency;
592   this_end = this_time + ii;
593   if (dump_file)
594     fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
595 	     this_start, this_end, SCHED_TIME (move->def),
596 	     INSN_UID (this_insn), this_latency, this_distance,
597 	     INSN_UID (move->insn));
598 
599   if (start < this_start)
600     start = this_start;
601   if (end > this_end)
602     end = this_end;
603 
604   /* Handle the dependencies between the move and previously-scheduled
605      successors.  */
606   EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, u, sbi)
607     {
608       this_insn = ps_rtl_insn (ps, u);
609       this_latency = insn_latency (move->insn, this_insn);
610       if (distance1_uses && !bitmap_bit_p (distance1_uses, u))
611 	this_distance = -1;
612       else
613 	this_distance = 0;
614       this_time = SCHED_TIME (u) + this_distance * ii;
615       this_start = this_time - ii;
616       this_end = this_time - this_latency;
617       if (dump_file)
618 	fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
619 		 this_start, this_end, SCHED_TIME (u), INSN_UID (move->insn),
620 		 this_latency, this_distance, INSN_UID (this_insn));
621 
622       if (start < this_start)
623 	start = this_start;
624       if (end > this_end)
625 	end = this_end;
626     }
627 
628   if (dump_file)
629     {
630       fprintf (dump_file, "----------- ----------- -----\n");
631       fprintf (dump_file, "%11d %11d %5s %s\n", start, end, "", "(max, min)");
632     }
633 
634   bitmap_clear (must_follow);
635   bitmap_set_bit (must_follow, move->def);
636 
637   start = MAX (start, end - (ii - 1));
638   for (c = end; c >= start; c--)
639     {
640       psi = ps_add_node_check_conflicts (ps, i_reg_move, c,
641 					 move->uses, must_follow);
642       if (psi)
643 	{
644 	  update_node_sched_params (i_reg_move, ii, c, PS_MIN_CYCLE (ps));
645 	  if (dump_file)
646 	    fprintf (dump_file, "\nScheduled register move INSN %d at"
647 		     " time %d, row %d\n\n", INSN_UID (move->insn), c,
648 		     SCHED_ROW (i_reg_move));
649 	  return true;
650 	}
651     }
652 
653   if (dump_file)
654     fprintf (dump_file, "\nNo available slot\n\n");
655 
656   return false;
657 }
658 
659 /*
660    Breaking intra-loop register anti-dependences:
661    Each intra-loop register anti-dependence implies a cross-iteration true
662    dependence of distance 1. Therefore, we can remove such false dependencies
663    and figure out if the partial schedule broke them by checking if (for a
664    true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
665    if so generate a register move.   The number of such moves is equal to:
666               SCHED_TIME (use) - SCHED_TIME (def)       { 0 broken
667    nreg_moves = ----------------------------------- + 1 - {   dependence.
668                             ii                          { 1 if not.
669 */
670 static bool
schedule_reg_moves(partial_schedule_ptr ps)671 schedule_reg_moves (partial_schedule_ptr ps)
672 {
673   ddg_ptr g = ps->g;
674   int ii = ps->ii;
675   int i;
676 
677   for (i = 0; i < g->num_nodes; i++)
678     {
679       ddg_node_ptr u = &g->nodes[i];
680       ddg_edge_ptr e;
681       int nreg_moves = 0, i_reg_move;
682       rtx prev_reg, old_reg;
683       int first_move;
684       int distances[2];
685       sbitmap distance1_uses;
686       rtx set = single_set (u->insn);
687 
688       /* Skip instructions that do not set a register.  */
689       if (set && !REG_P (SET_DEST (set)))
690         continue;
691 
692       /* Compute the number of reg_moves needed for u, by looking at life
693 	 ranges started at u (excluding self-loops).  */
694       distances[0] = distances[1] = false;
695       for (e = u->out; e; e = e->next_out)
696 	if (e->type == TRUE_DEP && e->dest != e->src)
697 	  {
698 	    int nreg_moves4e = (SCHED_TIME (e->dest->cuid)
699 				- SCHED_TIME (e->src->cuid)) / ii;
700 
701             if (e->distance == 1)
702               nreg_moves4e = (SCHED_TIME (e->dest->cuid)
703 			      - SCHED_TIME (e->src->cuid) + ii) / ii;
704 
705 	    /* If dest precedes src in the schedule of the kernel, then dest
706 	       will read before src writes and we can save one reg_copy.  */
707 	    if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
708 		&& SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
709 	      nreg_moves4e--;
710 
711             if (nreg_moves4e >= 1)
712 	      {
713 		/* !single_set instructions are not supported yet and
714 		   thus we do not except to encounter them in the loop
715 		   except from the doloop part.  For the latter case
716 		   we assume no regmoves are generated as the doloop
717 		   instructions are tied to the branch with an edge.  */
718 		gcc_assert (set);
719 		/* If the instruction contains auto-inc register then
720 		   validate that the regmov is being generated for the
721 		   target regsiter rather then the inc'ed register.	*/
722 		gcc_assert (!autoinc_var_is_used_p (u->insn, e->dest->insn));
723 	      }
724 
725 	    if (nreg_moves4e)
726 	      {
727 		gcc_assert (e->distance < 2);
728 		distances[e->distance] = true;
729 	      }
730 	    nreg_moves = MAX (nreg_moves, nreg_moves4e);
731 	  }
732 
733       if (nreg_moves == 0)
734 	continue;
735 
736       /* Create NREG_MOVES register moves.  */
737       first_move = ps->reg_moves.length ();
738       ps->reg_moves.safe_grow_cleared (first_move + nreg_moves);
739       extend_node_sched_params (ps);
740 
741       /* Record the moves associated with this node.  */
742       first_move += ps->g->num_nodes;
743 
744       /* Generate each move.  */
745       old_reg = prev_reg = SET_DEST (set);
746       if (HARD_REGISTER_P (old_reg))
747 	return false;
748 
749       for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
750 	{
751 	  ps_reg_move_info *move = ps_reg_move (ps, first_move + i_reg_move);
752 
753 	  move->def = i_reg_move > 0 ? first_move + i_reg_move - 1 : i;
754 	  move->uses = sbitmap_alloc (first_move + nreg_moves);
755 	  move->old_reg = old_reg;
756 	  move->new_reg = gen_reg_rtx (GET_MODE (prev_reg));
757 	  move->num_consecutive_stages = distances[0] && distances[1] ? 2 : 1;
758 	  move->insn = gen_move_insn (move->new_reg, copy_rtx (prev_reg));
759 	  bitmap_clear (move->uses);
760 
761 	  prev_reg = move->new_reg;
762 	}
763 
764       distance1_uses = distances[1] ? sbitmap_alloc (g->num_nodes) : NULL;
765 
766       if (distance1_uses)
767 	bitmap_clear (distance1_uses);
768 
769       /* Every use of the register defined by node may require a different
770 	 copy of this register, depending on the time the use is scheduled.
771 	 Record which uses require which move results.  */
772       for (e = u->out; e; e = e->next_out)
773 	if (e->type == TRUE_DEP && e->dest != e->src)
774 	  {
775 	    int dest_copy = (SCHED_TIME (e->dest->cuid)
776 			     - SCHED_TIME (e->src->cuid)) / ii;
777 
778 	    if (e->distance == 1)
779 	      dest_copy = (SCHED_TIME (e->dest->cuid)
780 			   - SCHED_TIME (e->src->cuid) + ii) / ii;
781 
782 	    if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
783 		&& SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
784 	      dest_copy--;
785 
786 	    if (dest_copy)
787 	      {
788 		ps_reg_move_info *move;
789 
790 		move = ps_reg_move (ps, first_move + dest_copy - 1);
791 		bitmap_set_bit (move->uses, e->dest->cuid);
792 		if (e->distance == 1)
793 		  bitmap_set_bit (distance1_uses, e->dest->cuid);
794 	      }
795 	  }
796 
797       auto_sbitmap must_follow (first_move + nreg_moves);
798       for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
799 	if (!schedule_reg_move (ps, first_move + i_reg_move,
800 				distance1_uses, must_follow))
801 	  break;
802       if (distance1_uses)
803 	sbitmap_free (distance1_uses);
804       if (i_reg_move < nreg_moves)
805 	return false;
806     }
807   return true;
808 }
809 
810 /* Emit the moves associated with PS.  Apply the substitutions
811    associated with them.  */
812 static void
apply_reg_moves(partial_schedule_ptr ps)813 apply_reg_moves (partial_schedule_ptr ps)
814 {
815   ps_reg_move_info *move;
816   int i;
817 
818   FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
819     {
820       unsigned int i_use;
821       sbitmap_iterator sbi;
822 
823       EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, i_use, sbi)
824 	{
825 	  replace_rtx (ps->g->nodes[i_use].insn, move->old_reg, move->new_reg);
826 	  df_insn_rescan (ps->g->nodes[i_use].insn);
827 	}
828     }
829 }
830 
831 /* Bump the SCHED_TIMEs of all nodes by AMOUNT.  Set the values of
832    SCHED_ROW and SCHED_STAGE.  Instruction scheduled on cycle AMOUNT
833    will move to cycle zero.  */
834 static void
reset_sched_times(partial_schedule_ptr ps,int amount)835 reset_sched_times (partial_schedule_ptr ps, int amount)
836 {
837   int row;
838   int ii = ps->ii;
839   ps_insn_ptr crr_insn;
840 
841   for (row = 0; row < ii; row++)
842     for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
843       {
844 	int u = crr_insn->id;
845 	int normalized_time = SCHED_TIME (u) - amount;
846 	int new_min_cycle = PS_MIN_CYCLE (ps) - amount;
847 
848         if (dump_file)
849           {
850             /* Print the scheduling times after the rotation.  */
851 	    rtx_insn *insn = ps_rtl_insn (ps, u);
852 
853             fprintf (dump_file, "crr_insn->node=%d (insn id %d), "
854                      "crr_insn->cycle=%d, min_cycle=%d", u,
855                      INSN_UID (insn), normalized_time, new_min_cycle);
856             if (JUMP_P (insn))
857               fprintf (dump_file, " (branch)");
858             fprintf (dump_file, "\n");
859           }
860 
861 	gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
862 	gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
863 
864 	crr_insn->cycle = normalized_time;
865 	update_node_sched_params (u, ii, normalized_time, new_min_cycle);
866       }
867 }
868 
869 /* Permute the insns according to their order in PS, from row 0 to
870    row ii-1, and position them right before LAST.  This schedules
871    the insns of the loop kernel.  */
872 static void
permute_partial_schedule(partial_schedule_ptr ps,rtx_insn * last)873 permute_partial_schedule (partial_schedule_ptr ps, rtx_insn *last)
874 {
875   int ii = ps->ii;
876   int row;
877   ps_insn_ptr ps_ij;
878 
879   for (row = 0; row < ii ; row++)
880     for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
881       {
882 	rtx_insn *insn = ps_rtl_insn (ps, ps_ij->id);
883 
884 	if (PREV_INSN (last) != insn)
885 	  {
886 	    if (ps_ij->id < ps->g->num_nodes)
887 	      reorder_insns_nobb (ps_first_note (ps, ps_ij->id), insn,
888 				  PREV_INSN (last));
889 	    else
890 	      add_insn_before (insn, last, NULL);
891 	  }
892       }
893 }
894 
895 /* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
896    respectively only if cycle C falls on the border of the scheduling
897    window boundaries marked by START and END cycles.  STEP is the
898    direction of the window.  */
899 static inline void
set_must_precede_follow(sbitmap * tmp_follow,sbitmap must_follow,sbitmap * tmp_precede,sbitmap must_precede,int c,int start,int end,int step)900 set_must_precede_follow (sbitmap *tmp_follow, sbitmap must_follow,
901 			 sbitmap *tmp_precede, sbitmap must_precede, int c,
902 			 int start, int end, int step)
903 {
904   *tmp_precede = NULL;
905   *tmp_follow = NULL;
906 
907   if (c == start)
908     {
909       if (step == 1)
910 	*tmp_precede = must_precede;
911       else			/* step == -1.  */
912 	*tmp_follow = must_follow;
913     }
914   if (c == end - step)
915     {
916       if (step == 1)
917 	*tmp_follow = must_follow;
918       else			/* step == -1.  */
919 	*tmp_precede = must_precede;
920     }
921 
922 }
923 
924 /* Return True if the branch can be moved to row ii-1 while
925    normalizing the partial schedule PS to start from cycle zero and thus
926    optimize the SC.  Otherwise return False.  */
927 static bool
optimize_sc(partial_schedule_ptr ps,ddg_ptr g)928 optimize_sc (partial_schedule_ptr ps, ddg_ptr g)
929 {
930   int amount = PS_MIN_CYCLE (ps);
931   int start, end, step;
932   int ii = ps->ii;
933   bool ok = false;
934   int stage_count, stage_count_curr;
935 
936   /* Compare the SC after normalization and SC after bringing the branch
937      to row ii-1.  If they are equal just bail out.  */
938   stage_count = calculate_stage_count (ps, amount);
939   stage_count_curr =
940     calculate_stage_count (ps, SCHED_TIME (g->closing_branch->cuid) - (ii - 1));
941 
942   if (stage_count == stage_count_curr)
943     {
944       if (dump_file)
945 	fprintf (dump_file, "SMS SC already optimized.\n");
946 
947       return false;
948     }
949 
950   if (dump_file)
951     {
952       fprintf (dump_file, "SMS Trying to optimize branch location\n");
953       fprintf (dump_file, "SMS partial schedule before trial:\n");
954       print_partial_schedule (ps, dump_file);
955     }
956 
957   /* First, normalize the partial scheduling.  */
958   reset_sched_times (ps, amount);
959   rotate_partial_schedule (ps, amount);
960   if (dump_file)
961     {
962       fprintf (dump_file,
963 	       "SMS partial schedule after normalization (ii, %d, SC %d):\n",
964 	       ii, stage_count);
965       print_partial_schedule (ps, dump_file);
966     }
967 
968   if (SMODULO (SCHED_TIME (g->closing_branch->cuid), ii) == ii - 1)
969     return true;
970 
971   auto_sbitmap sched_nodes (g->num_nodes);
972   bitmap_ones (sched_nodes);
973 
974   /* Calculate the new placement of the branch.  It should be in row
975      ii-1 and fall into it's scheduling window.  */
976   if (get_sched_window (ps, g->closing_branch, sched_nodes, ii, &start,
977 			&step, &end) == 0)
978     {
979       bool success;
980       ps_insn_ptr next_ps_i;
981       int branch_cycle = SCHED_TIME (g->closing_branch->cuid);
982       int row = SMODULO (branch_cycle, ps->ii);
983       int num_splits = 0;
984       sbitmap tmp_precede, tmp_follow;
985       int min_cycle, c;
986 
987       if (dump_file)
988 	fprintf (dump_file, "\nTrying to schedule node %d "
989 		 "INSN = %d  in (%d .. %d) step %d\n",
990 		 g->closing_branch->cuid,
991 		 (INSN_UID (g->closing_branch->insn)), start, end, step);
992 
993       gcc_assert ((step > 0 && start < end) || (step < 0 && start > end));
994       if (step == 1)
995 	{
996 	  c = start + ii - SMODULO (start, ii) - 1;
997 	  gcc_assert (c >= start);
998 	  if (c >= end)
999 	    {
1000 	      if (dump_file)
1001 		fprintf (dump_file,
1002 			 "SMS failed to schedule branch at cycle: %d\n", c);
1003 	      return false;
1004 	    }
1005 	}
1006       else
1007 	{
1008 	  c = start - SMODULO (start, ii) - 1;
1009 	  gcc_assert (c <= start);
1010 
1011 	  if (c <= end)
1012 	    {
1013 	      if (dump_file)
1014 		fprintf (dump_file,
1015 			 "SMS failed to schedule branch at cycle: %d\n", c);
1016 	      return false;
1017 	    }
1018 	}
1019 
1020       auto_sbitmap must_precede (g->num_nodes);
1021       auto_sbitmap must_follow (g->num_nodes);
1022 
1023       /* Try to schedule the branch is it's new cycle.  */
1024       calculate_must_precede_follow (g->closing_branch, start, end,
1025 				     step, ii, sched_nodes,
1026 				     must_precede, must_follow);
1027 
1028       set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1029 			       must_precede, c, start, end, step);
1030 
1031       /* Find the element in the partial schedule related to the closing
1032          branch so we can remove it from it's current cycle.  */
1033       for (next_ps_i = ps->rows[row];
1034 	   next_ps_i; next_ps_i = next_ps_i->next_in_row)
1035 	if (next_ps_i->id == g->closing_branch->cuid)
1036 	  break;
1037 
1038       min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1039       remove_node_from_ps (ps, next_ps_i);
1040       success =
1041 	try_scheduling_node_in_cycle (ps, g->closing_branch->cuid, c,
1042 				      sched_nodes, &num_splits,
1043 				      tmp_precede, tmp_follow);
1044       gcc_assert (num_splits == 0);
1045       if (!success)
1046 	{
1047 	  if (dump_file)
1048 	    fprintf (dump_file,
1049 		     "SMS failed to schedule branch at cycle: %d, "
1050 		     "bringing it back to cycle %d\n", c, branch_cycle);
1051 
1052 	  /* The branch was failed to be placed in row ii - 1.
1053 	     Put it back in it's original place in the partial
1054 	     schedualing.  */
1055 	  set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1056 				   must_precede, branch_cycle, start, end,
1057 				   step);
1058 	  success =
1059 	    try_scheduling_node_in_cycle (ps, g->closing_branch->cuid,
1060 					  branch_cycle, sched_nodes,
1061 					  &num_splits, tmp_precede,
1062 					  tmp_follow);
1063 	  gcc_assert (success && (num_splits == 0));
1064 	  ok = false;
1065 	}
1066       else
1067 	{
1068 	  /* The branch is placed in row ii - 1.  */
1069 	  if (dump_file)
1070 	    fprintf (dump_file,
1071 		     "SMS success in moving branch to cycle %d\n", c);
1072 
1073 	  update_node_sched_params (g->closing_branch->cuid, ii, c,
1074 				    PS_MIN_CYCLE (ps));
1075 	  ok = true;
1076 	}
1077 
1078       /* This might have been added to a new first stage.  */
1079       if (PS_MIN_CYCLE (ps) < min_cycle)
1080 	reset_sched_times (ps, 0);
1081     }
1082 
1083   return ok;
1084 }
1085 
1086 static void
duplicate_insns_of_cycles(partial_schedule_ptr ps,int from_stage,int to_stage,rtx count_reg)1087 duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
1088 			   int to_stage, rtx count_reg)
1089 {
1090   int row;
1091   ps_insn_ptr ps_ij;
1092 
1093   for (row = 0; row < ps->ii; row++)
1094     for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
1095       {
1096 	int u = ps_ij->id;
1097 	int first_u, last_u;
1098 	rtx_insn *u_insn;
1099 
1100         /* Do not duplicate any insn which refers to count_reg as it
1101            belongs to the control part.
1102            The closing branch is scheduled as well and thus should
1103            be ignored.
1104            TODO: This should be done by analyzing the control part of
1105            the loop.  */
1106 	u_insn = ps_rtl_insn (ps, u);
1107         if (reg_mentioned_p (count_reg, u_insn)
1108             || JUMP_P (u_insn))
1109           continue;
1110 
1111 	first_u = SCHED_STAGE (u);
1112 	last_u = first_u + ps_num_consecutive_stages (ps, u) - 1;
1113 	if (from_stage <= last_u && to_stage >= first_u)
1114 	  {
1115 	    if (u < ps->g->num_nodes)
1116 	      duplicate_insn_chain (ps_first_note (ps, u), u_insn);
1117 	    else
1118 	      emit_insn (copy_rtx (PATTERN (u_insn)));
1119 	  }
1120       }
1121 }
1122 
1123 
1124 /* Generate the instructions (including reg_moves) for prolog & epilog.  */
1125 static void
generate_prolog_epilog(partial_schedule_ptr ps,class loop * loop,rtx count_reg,rtx count_init)1126 generate_prolog_epilog (partial_schedule_ptr ps, class loop *loop,
1127                         rtx count_reg, rtx count_init)
1128 {
1129   int i;
1130   int last_stage = PS_STAGE_COUNT (ps) - 1;
1131   edge e;
1132 
1133   /* Generate the prolog, inserting its insns on the loop-entry edge.  */
1134   start_sequence ();
1135 
1136   if (!count_init)
1137     {
1138       /* Generate instructions at the beginning of the prolog to
1139          adjust the loop count by STAGE_COUNT.  If loop count is constant
1140          (count_init), this constant is adjusted by STAGE_COUNT in
1141          generate_prolog_epilog function.  */
1142       rtx sub_reg = NULL_RTX;
1143 
1144       sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS, count_reg,
1145 				     gen_int_mode (last_stage,
1146 						   GET_MODE (count_reg)),
1147                                      count_reg, 1, OPTAB_DIRECT);
1148       gcc_assert (REG_P (sub_reg));
1149       if (REGNO (sub_reg) != REGNO (count_reg))
1150         emit_move_insn (count_reg, sub_reg);
1151     }
1152 
1153   for (i = 0; i < last_stage; i++)
1154     duplicate_insns_of_cycles (ps, 0, i, count_reg);
1155 
1156   /* Put the prolog on the entry edge.  */
1157   e = loop_preheader_edge (loop);
1158   split_edge_and_insert (e, get_insns ());
1159   if (!flag_resched_modulo_sched)
1160     e->dest->flags |= BB_DISABLE_SCHEDULE;
1161 
1162   end_sequence ();
1163 
1164   /* Generate the epilog, inserting its insns on the loop-exit edge.  */
1165   start_sequence ();
1166 
1167   for (i = 0; i < last_stage; i++)
1168     duplicate_insns_of_cycles (ps, i + 1, last_stage, count_reg);
1169 
1170   /* Put the epilogue on the exit edge.  */
1171   gcc_assert (single_exit (loop));
1172   e = single_exit (loop);
1173   split_edge_and_insert (e, get_insns ());
1174   if (!flag_resched_modulo_sched)
1175     e->dest->flags |= BB_DISABLE_SCHEDULE;
1176 
1177   end_sequence ();
1178 }
1179 
1180 /* Mark LOOP as software pipelined so the later
1181    scheduling passes don't touch it.  */
1182 static void
mark_loop_unsched(class loop * loop)1183 mark_loop_unsched (class loop *loop)
1184 {
1185   unsigned i;
1186   basic_block *bbs = get_loop_body (loop);
1187 
1188   for (i = 0; i < loop->num_nodes; i++)
1189     bbs[i]->flags |= BB_DISABLE_SCHEDULE;
1190 
1191   free (bbs);
1192 }
1193 
1194 /* Return true if all the BBs of the loop are empty except the
1195    loop header.  */
1196 static bool
loop_single_full_bb_p(class loop * loop)1197 loop_single_full_bb_p (class loop *loop)
1198 {
1199   unsigned i;
1200   basic_block *bbs = get_loop_body (loop);
1201 
1202   for (i = 0; i < loop->num_nodes ; i++)
1203     {
1204       rtx_insn *head, *tail;
1205       bool empty_bb = true;
1206 
1207       if (bbs[i] == loop->header)
1208         continue;
1209 
1210       /* Make sure that basic blocks other than the header
1211          have only notes labels or jumps.  */
1212       get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
1213       for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
1214         {
1215           if (NOTE_P (head) || LABEL_P (head)
1216  	      || (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head))))
1217  	    continue;
1218  	  empty_bb = false;
1219  	  break;
1220         }
1221 
1222       if (! empty_bb)
1223         {
1224           free (bbs);
1225           return false;
1226         }
1227     }
1228   free (bbs);
1229   return true;
1230 }
1231 
1232 /* Dump file:line from INSN's location info to dump_file.  */
1233 
1234 static void
dump_insn_location(rtx_insn * insn)1235 dump_insn_location (rtx_insn *insn)
1236 {
1237   if (dump_file && INSN_HAS_LOCATION (insn))
1238     {
1239       expanded_location xloc = insn_location (insn);
1240       fprintf (dump_file, " %s:%i", xloc.file, xloc.line);
1241     }
1242 }
1243 
1244 /* A simple loop from SMS point of view; it is a loop that is composed of
1245    either a single basic block or two BBs - a header and a latch.  */
1246 #define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) 		    \
1247 				  && (EDGE_COUNT (loop->latch->preds) == 1) \
1248                                   && (EDGE_COUNT (loop->latch->succs) == 1))
1249 
1250 /* Return true if the loop is in its canonical form and false if not.
1251    i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit.  */
1252 static bool
loop_canon_p(class loop * loop)1253 loop_canon_p (class loop *loop)
1254 {
1255 
1256   if (loop->inner || !loop_outer (loop))
1257   {
1258     if (dump_file)
1259       fprintf (dump_file, "SMS loop inner or !loop_outer\n");
1260     return false;
1261   }
1262 
1263   if (!single_exit (loop))
1264     {
1265       if (dump_file)
1266 	{
1267 	  rtx_insn *insn = BB_END (loop->header);
1268 
1269 	  fprintf (dump_file, "SMS loop many exits");
1270 	  dump_insn_location (insn);
1271 	  fprintf (dump_file, "\n");
1272 	}
1273       return false;
1274     }
1275 
1276   if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
1277     {
1278       if (dump_file)
1279 	{
1280 	  rtx_insn *insn = BB_END (loop->header);
1281 
1282 	  fprintf (dump_file, "SMS loop many BBs.");
1283 	  dump_insn_location (insn);
1284 	  fprintf (dump_file, "\n");
1285 	}
1286       return false;
1287     }
1288 
1289     return true;
1290 }
1291 
1292 /* If there are more than one entry for the loop,
1293    make it one by splitting the first entry edge and
1294    redirecting the others to the new BB.  */
1295 static void
canon_loop(class loop * loop)1296 canon_loop (class loop *loop)
1297 {
1298   edge e;
1299   edge_iterator i;
1300 
1301   /* Avoid annoying special cases of edges going to exit
1302      block.  */
1303   FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
1304     if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
1305       split_edge (e);
1306 
1307   if (loop->latch == loop->header
1308       || EDGE_COUNT (loop->latch->succs) > 1)
1309     {
1310       FOR_EACH_EDGE (e, i, loop->header->preds)
1311         if (e->src == loop->latch)
1312           break;
1313       split_edge (e);
1314     }
1315 }
1316 
1317 /* Setup infos.  */
1318 static void
setup_sched_infos(void)1319 setup_sched_infos (void)
1320 {
1321   memcpy (&sms_common_sched_info, &haifa_common_sched_info,
1322 	  sizeof (sms_common_sched_info));
1323   sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS;
1324   common_sched_info = &sms_common_sched_info;
1325 
1326   sched_deps_info = &sms_sched_deps_info;
1327   current_sched_info = &sms_sched_info;
1328 }
1329 
1330 /* Probability in % that the sms-ed loop rolls enough so that optimized
1331    version may be entered.  Just a guess.  */
1332 #define PROB_SMS_ENOUGH_ITERATIONS 80
1333 
1334 /* Main entry point, perform SMS scheduling on the loops of the function
1335    that consist of single basic blocks.  */
1336 static void
sms_schedule(void)1337 sms_schedule (void)
1338 {
1339   rtx_insn *insn;
1340   ddg_ptr *g_arr, g;
1341   int * node_order;
1342   int maxii, max_asap;
1343   partial_schedule_ptr ps;
1344   basic_block bb = NULL;
1345   class loop *loop;
1346   basic_block condition_bb = NULL;
1347   edge latch_edge;
1348   HOST_WIDE_INT trip_count, max_trip_count;
1349 
1350   loop_optimizer_init (LOOPS_HAVE_PREHEADERS
1351 		       | LOOPS_HAVE_RECORDED_EXITS);
1352   if (number_of_loops (cfun) <= 1)
1353     {
1354       loop_optimizer_finalize ();
1355       return;  /* There are no loops to schedule.  */
1356     }
1357 
1358   /* Initialize issue_rate.  */
1359   if (targetm.sched.issue_rate)
1360     {
1361       int temp = reload_completed;
1362 
1363       reload_completed = 1;
1364       issue_rate = targetm.sched.issue_rate ();
1365       reload_completed = temp;
1366     }
1367   else
1368     issue_rate = 1;
1369 
1370   /* Initialize the scheduler.  */
1371   setup_sched_infos ();
1372   haifa_sched_init ();
1373 
1374   /* Allocate memory to hold the DDG array one entry for each loop.
1375      We use loop->num as index into this array.  */
1376   g_arr = XCNEWVEC (ddg_ptr, number_of_loops (cfun));
1377 
1378   if (dump_file)
1379   {
1380     fprintf (dump_file, "\n\nSMS analysis phase\n");
1381     fprintf (dump_file, "===================\n\n");
1382   }
1383 
1384   /* Build DDGs for all the relevant loops and hold them in G_ARR
1385      indexed by the loop index.  */
1386   FOR_EACH_LOOP (loop, 0)
1387     {
1388       rtx_insn *head, *tail;
1389       rtx count_reg;
1390 
1391       /* For debugging.  */
1392       if (dbg_cnt (sms_sched_loop) == false)
1393         {
1394           if (dump_file)
1395             fprintf (dump_file, "SMS reached max limit... \n");
1396 
1397 	  break;
1398         }
1399 
1400       if (dump_file)
1401 	{
1402 	  rtx_insn *insn = BB_END (loop->header);
1403 
1404 	  fprintf (dump_file, "SMS loop num: %d", loop->num);
1405 	  dump_insn_location (insn);
1406 	  fprintf (dump_file, "\n");
1407 	}
1408 
1409       if (! loop_canon_p (loop))
1410         continue;
1411 
1412       if (! loop_single_full_bb_p (loop))
1413       {
1414         if (dump_file)
1415           fprintf (dump_file, "SMS not loop_single_full_bb_p\n");
1416 	continue;
1417       }
1418 
1419       bb = loop->header;
1420 
1421       get_ebb_head_tail (bb, bb, &head, &tail);
1422       latch_edge = loop_latch_edge (loop);
1423       gcc_assert (single_exit (loop));
1424       trip_count = get_estimated_loop_iterations_int (loop);
1425       max_trip_count = get_max_loop_iterations_int (loop);
1426 
1427       /* Perform SMS only on loops that their average count is above threshold.  */
1428 
1429       if ( latch_edge->count () > profile_count::zero ()
1430           && (latch_edge->count()
1431 	      < single_exit (loop)->count ().apply_scale
1432 				 (param_sms_loop_average_count_threshold, 1)))
1433 	{
1434 	  if (dump_file)
1435 	    {
1436 	      dump_insn_location (tail);
1437 	      fprintf (dump_file, "\nSMS single-bb-loop\n");
1438 	      if (profile_info && flag_branch_probabilities)
1439 	    	{
1440 	      	  fprintf (dump_file, "SMS loop-count ");
1441 	      	  fprintf (dump_file, "%" PRId64,
1442 	             	   (int64_t) bb->count.to_gcov_type ());
1443 	      	  fprintf (dump_file, "\n");
1444                   fprintf (dump_file, "SMS trip-count ");
1445                   fprintf (dump_file, "%" PRId64 "max %" PRId64,
1446                            (int64_t) trip_count, (int64_t) max_trip_count);
1447                   fprintf (dump_file, "\n");
1448 	    	}
1449 	    }
1450           continue;
1451         }
1452 
1453       /* Make sure this is a doloop.  */
1454       if ( !(count_reg = doloop_register_get (head, tail)))
1455       {
1456         if (dump_file)
1457           fprintf (dump_file, "SMS doloop_register_get failed\n");
1458 	continue;
1459       }
1460 
1461       /* Don't handle BBs with calls or barriers
1462 	 or !single_set with the exception of instructions that include
1463 	 count_reg---these instructions are part of the control part
1464 	 that do-loop recognizes.
1465          ??? Should handle insns defining subregs.  */
1466      for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
1467       {
1468          rtx set;
1469 
1470         if (CALL_P (insn)
1471             || BARRIER_P (insn)
1472             || (NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1473                 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE
1474                 && !reg_mentioned_p (count_reg, insn))
1475             || (INSN_P (insn) && (set = single_set (insn))
1476                 && GET_CODE (SET_DEST (set)) == SUBREG))
1477         break;
1478       }
1479 
1480       if (insn != NEXT_INSN (tail))
1481 	{
1482 	  if (dump_file)
1483 	    {
1484 	      if (CALL_P (insn))
1485 		fprintf (dump_file, "SMS loop-with-call\n");
1486 	      else if (BARRIER_P (insn))
1487 		fprintf (dump_file, "SMS loop-with-barrier\n");
1488               else if ((NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1489                 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
1490                 fprintf (dump_file, "SMS loop-with-not-single-set\n");
1491               else
1492                fprintf (dump_file, "SMS loop with subreg in lhs\n");
1493 	      print_rtl_single (dump_file, insn);
1494 	    }
1495 
1496 	  continue;
1497 	}
1498 
1499       /* Always schedule the closing branch with the rest of the
1500          instructions. The branch is rotated to be in row ii-1 at the
1501          end of the scheduling procedure to make sure it's the last
1502          instruction in the iteration.  */
1503       if (! (g = create_ddg (bb, 1)))
1504         {
1505           if (dump_file)
1506 	    fprintf (dump_file, "SMS create_ddg failed\n");
1507 	  continue;
1508         }
1509 
1510       g_arr[loop->num] = g;
1511       if (dump_file)
1512         fprintf (dump_file, "...OK\n");
1513 
1514     }
1515   if (dump_file)
1516   {
1517     fprintf (dump_file, "\nSMS transformation phase\n");
1518     fprintf (dump_file, "=========================\n\n");
1519   }
1520 
1521   /* We don't want to perform SMS on new loops - created by versioning.  */
1522   FOR_EACH_LOOP (loop, 0)
1523     {
1524       rtx_insn *head, *tail;
1525       rtx count_reg;
1526       rtx_insn *count_init;
1527       int mii, rec_mii, stage_count, min_cycle;
1528       int64_t loop_count = 0;
1529       bool opt_sc_p;
1530 
1531       if (! (g = g_arr[loop->num]))
1532         continue;
1533 
1534       if (dump_file)
1535 	{
1536 	  rtx_insn *insn = BB_END (loop->header);
1537 
1538 	  fprintf (dump_file, "SMS loop num: %d", loop->num);
1539 	  dump_insn_location (insn);
1540 	  fprintf (dump_file, "\n");
1541 
1542 	  print_ddg (dump_file, g);
1543 	}
1544 
1545       get_ebb_head_tail (loop->header, loop->header, &head, &tail);
1546 
1547       latch_edge = loop_latch_edge (loop);
1548       gcc_assert (single_exit (loop));
1549       trip_count = get_estimated_loop_iterations_int (loop);
1550       max_trip_count = get_max_loop_iterations_int (loop);
1551 
1552       if (dump_file)
1553 	{
1554 	  dump_insn_location (tail);
1555 	  fprintf (dump_file, "\nSMS single-bb-loop\n");
1556 	  if (profile_info && flag_branch_probabilities)
1557 	    {
1558 	      fprintf (dump_file, "SMS loop-count ");
1559 	      fprintf (dump_file, "%" PRId64,
1560 	               (int64_t) bb->count.to_gcov_type ());
1561 	      fprintf (dump_file, "\n");
1562 	    }
1563 	  fprintf (dump_file, "SMS doloop\n");
1564 	  fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
1565           fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
1566           fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
1567 	}
1568 
1569 
1570       /* In case of th loop have doloop register it gets special
1571 	 handling.  */
1572       count_init = NULL;
1573       if ((count_reg = doloop_register_get (head, tail)))
1574 	{
1575 	  basic_block pre_header;
1576 
1577 	  pre_header = loop_preheader_edge (loop)->src;
1578 	  count_init = const_iteration_count (count_reg, pre_header,
1579 					      &loop_count);
1580 	}
1581       gcc_assert (count_reg);
1582 
1583       if (dump_file && count_init)
1584         {
1585           fprintf (dump_file, "SMS const-doloop ");
1586           fprintf (dump_file, "%" PRId64,
1587 		     loop_count);
1588           fprintf (dump_file, "\n");
1589         }
1590 
1591       node_order = XNEWVEC (int, g->num_nodes);
1592 
1593       mii = 1; /* Need to pass some estimate of mii.  */
1594       rec_mii = sms_order_nodes (g, mii, node_order, &max_asap);
1595       mii = MAX (res_MII (g), rec_mii);
1596       mii = MAX (mii, 1);
1597       maxii = MAX (max_asap, param_sms_max_ii_factor * mii);
1598 
1599       if (dump_file)
1600 	fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
1601 		 rec_mii, mii, maxii);
1602 
1603       for (;;)
1604 	{
1605 	  set_node_sched_params (g);
1606 
1607 	  stage_count = 0;
1608 	  opt_sc_p = false;
1609 	  ps = sms_schedule_by_order (g, mii, maxii, node_order);
1610 
1611 	  if (ps)
1612 	    {
1613 	      /* Try to achieve optimized SC by normalizing the partial
1614 		 schedule (having the cycles start from cycle zero).
1615 		 The branch location must be placed in row ii-1 in the
1616 		 final scheduling.	If failed, shift all instructions to
1617 		 position the branch in row ii-1.  */
1618 	      opt_sc_p = optimize_sc (ps, g);
1619 	      if (opt_sc_p)
1620 		stage_count = calculate_stage_count (ps, 0);
1621 	      else
1622 		{
1623 		  /* Bring the branch to cycle ii-1.  */
1624 		  int amount = (SCHED_TIME (g->closing_branch->cuid)
1625 				- (ps->ii - 1));
1626 
1627 		  if (dump_file)
1628 		    fprintf (dump_file, "SMS schedule branch at cycle ii-1\n");
1629 
1630 		  stage_count = calculate_stage_count (ps, amount);
1631 		}
1632 
1633 	      gcc_assert (stage_count >= 1);
1634 	    }
1635 
1636 	  /* The default value of param_sms_min_sc is 2 as stage count of
1637 	     1 means that there is no interleaving between iterations thus
1638 	     we let the scheduling passes do the job in this case.  */
1639 	  if (stage_count < param_sms_min_sc
1640 	      || (count_init && (loop_count <= stage_count))
1641 	      || (max_trip_count >= 0 && max_trip_count <= stage_count)
1642 	      || (trip_count >= 0 && trip_count <= stage_count))
1643 	    {
1644 	      if (dump_file)
1645 		{
1646 		  fprintf (dump_file, "SMS failed... \n");
1647 		  fprintf (dump_file, "SMS sched-failed (stage-count=%d,"
1648 			   " loop-count=", stage_count);
1649 		  fprintf (dump_file, "%" PRId64, loop_count);
1650 		  fprintf (dump_file, ", trip-count=");
1651 		  fprintf (dump_file, "%" PRId64 "max %" PRId64,
1652 			   (int64_t) trip_count, (int64_t) max_trip_count);
1653 		  fprintf (dump_file, ")\n");
1654 		}
1655 	      break;
1656 	    }
1657 
1658           if (!opt_sc_p)
1659             {
1660 	      /* Rotate the partial schedule to have the branch in row ii-1.  */
1661               int amount = SCHED_TIME (g->closing_branch->cuid) - (ps->ii - 1);
1662 
1663               reset_sched_times (ps, amount);
1664               rotate_partial_schedule (ps, amount);
1665             }
1666 
1667 	  set_columns_for_ps (ps);
1668 
1669 	  min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1670 	  if (!schedule_reg_moves (ps))
1671 	    {
1672 	      mii = ps->ii + 1;
1673 	      free_partial_schedule (ps);
1674 	      continue;
1675 	    }
1676 
1677 	  /* Moves that handle incoming values might have been added
1678 	     to a new first stage.  Bump the stage count if so.
1679 
1680 	     ??? Perhaps we could consider rotating the schedule here
1681 	     instead?  */
1682 	  if (PS_MIN_CYCLE (ps) < min_cycle)
1683 	    {
1684 	      reset_sched_times (ps, 0);
1685 	      stage_count++;
1686 	    }
1687 
1688 	  /* The stage count should now be correct without rotation.  */
1689 	  gcc_checking_assert (stage_count == calculate_stage_count (ps, 0));
1690 	  PS_STAGE_COUNT (ps) = stage_count;
1691 
1692 	  canon_loop (loop);
1693 
1694           if (dump_file)
1695             {
1696 	      dump_insn_location (tail);
1697 	      fprintf (dump_file, " SMS succeeded %d %d (with ii, sc)\n",
1698 		       ps->ii, stage_count);
1699 	      print_partial_schedule (ps, dump_file);
1700 	    }
1701 
1702           /* case the BCT count is not known , Do loop-versioning */
1703 	  if (count_reg && ! count_init)
1704             {
1705 	      rtx comp_rtx = gen_rtx_GT (VOIDmode, count_reg,
1706 					 gen_int_mode (stage_count,
1707 						       GET_MODE (count_reg)));
1708 	      profile_probability prob = profile_probability::guessed_always ()
1709 				.apply_scale (PROB_SMS_ENOUGH_ITERATIONS, 100);
1710 
1711 	      loop_version (loop, comp_rtx, &condition_bb,
1712 	  		    prob, prob.invert (),
1713 			    prob, prob.invert (), true);
1714 	     }
1715 
1716 	  /* Set new iteration count of loop kernel.  */
1717           if (count_reg && count_init)
1718 	    SET_SRC (single_set (count_init)) = GEN_INT (loop_count
1719 						     - stage_count + 1);
1720 
1721 	  /* Now apply the scheduled kernel to the RTL of the loop.  */
1722 	  permute_partial_schedule (ps, g->closing_branch->first_note);
1723 
1724           /* Mark this loop as software pipelined so the later
1725 	     scheduling passes don't touch it.  */
1726 	  if (! flag_resched_modulo_sched)
1727 	    mark_loop_unsched (loop);
1728 
1729 	  /* The life-info is not valid any more.  */
1730 	  df_set_bb_dirty (g->bb);
1731 
1732 	  apply_reg_moves (ps);
1733 	  if (dump_file)
1734 	    print_node_sched_params (dump_file, g->num_nodes, ps);
1735 	  /* Generate prolog and epilog.  */
1736           generate_prolog_epilog (ps, loop, count_reg, count_init);
1737 	  break;
1738 	}
1739 
1740       free_partial_schedule (ps);
1741       node_sched_param_vec.release ();
1742       free (node_order);
1743       free_ddg (g);
1744     }
1745 
1746   free (g_arr);
1747 
1748   /* Release scheduler data, needed until now because of DFA.  */
1749   haifa_sched_finish ();
1750   loop_optimizer_finalize ();
1751 }
1752 
1753 /* The SMS scheduling algorithm itself
1754    -----------------------------------
1755    Input: 'O' an ordered list of insns of a loop.
1756    Output: A scheduling of the loop - kernel, prolog, and epilogue.
1757 
1758    'Q' is the empty Set
1759    'PS' is the partial schedule; it holds the currently scheduled nodes with
1760 	their cycle/slot.
1761    'PSP' previously scheduled predecessors.
1762    'PSS' previously scheduled successors.
1763    't(u)' the cycle where u is scheduled.
1764    'l(u)' is the latency of u.
1765    'd(v,u)' is the dependence distance from v to u.
1766    'ASAP(u)' the earliest time at which u could be scheduled as computed in
1767 	     the node ordering phase.
1768    'check_hardware_resources_conflicts(u, PS, c)'
1769 			     run a trace around cycle/slot through DFA model
1770 			     to check resource conflicts involving instruction u
1771 			     at cycle c given the partial schedule PS.
1772    'add_to_partial_schedule_at_time(u, PS, c)'
1773 			     Add the node/instruction u to the partial schedule
1774 			     PS at time c.
1775    'calculate_register_pressure(PS)'
1776 			     Given a schedule of instructions, calculate the register
1777 			     pressure it implies.  One implementation could be the
1778 			     maximum number of overlapping live ranges.
1779    'maxRP' The maximum allowed register pressure, it is usually derived from the number
1780 	   registers available in the hardware.
1781 
1782    1. II = MII.
1783    2. PS = empty list
1784    3. for each node u in O in pre-computed order
1785    4.   if (PSP(u) != Q && PSS(u) == Q) then
1786    5.     Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1787    6.     start = Early_start; end = Early_start + II - 1; step = 1
1788    11.  else if (PSP(u) == Q && PSS(u) != Q) then
1789    12.      Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1790    13.     start = Late_start; end = Late_start - II + 1; step = -1
1791    14.  else if (PSP(u) != Q && PSS(u) != Q) then
1792    15.     Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1793    16.     Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1794    17.     start = Early_start;
1795    18.     end = min(Early_start + II - 1 , Late_start);
1796    19.     step = 1
1797    20.     else "if (PSP(u) == Q && PSS(u) == Q)"
1798    21.	  start = ASAP(u); end = start + II - 1; step = 1
1799    22.  endif
1800 
1801    23.  success = false
1802    24.  for (c = start ; c != end ; c += step)
1803    25.     if check_hardware_resources_conflicts(u, PS, c) then
1804    26.       add_to_partial_schedule_at_time(u, PS, c)
1805    27.       success = true
1806    28.       break
1807    29.     endif
1808    30.  endfor
1809    31.  if (success == false) then
1810    32.    II = II + 1
1811    33.    if (II > maxII) then
1812    34.       finish - failed to schedule
1813    35.	 endif
1814    36.    goto 2.
1815    37.  endif
1816    38. endfor
1817    39. if (calculate_register_pressure(PS) > maxRP) then
1818    40.    goto 32.
1819    41. endif
1820    42. compute epilogue & prologue
1821    43. finish - succeeded to schedule
1822 
1823    ??? The algorithm restricts the scheduling window to II cycles.
1824    In rare cases, it may be better to allow windows of II+1 cycles.
1825    The window would then start and end on the same row, but with
1826    different "must precede" and "must follow" requirements.  */
1827 
1828 /* A threshold for the number of repeated unsuccessful attempts to insert
1829    an empty row, before we flush the partial schedule and start over.  */
1830 #define MAX_SPLIT_NUM 10
1831 /* Given the partial schedule PS, this function calculates and returns the
1832    cycles in which we can schedule the node with the given index I.
1833    NOTE: Here we do the backtracking in SMS, in some special cases. We have
1834    noticed that there are several cases in which we fail    to SMS the loop
1835    because the sched window of a node is empty    due to tight data-deps. In
1836    such cases we want to unschedule    some of the predecessors/successors
1837    until we get non-empty    scheduling window.  It returns -1 if the
1838    scheduling window is empty and zero otherwise.  */
1839 
1840 static int
get_sched_window(partial_schedule_ptr ps,ddg_node_ptr u_node,sbitmap sched_nodes,int ii,int * start_p,int * step_p,int * end_p)1841 get_sched_window (partial_schedule_ptr ps, ddg_node_ptr u_node,
1842 		  sbitmap sched_nodes, int ii, int *start_p, int *step_p,
1843 		  int *end_p)
1844 {
1845   int start, step, end;
1846   int early_start, late_start;
1847   ddg_edge_ptr e;
1848   auto_sbitmap psp (ps->g->num_nodes);
1849   auto_sbitmap pss (ps->g->num_nodes);
1850   sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
1851   sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
1852   int psp_not_empty;
1853   int pss_not_empty;
1854   int count_preds;
1855   int count_succs;
1856 
1857   /* 1. compute sched window for u (start, end, step).  */
1858   bitmap_clear (psp);
1859   bitmap_clear (pss);
1860   psp_not_empty = bitmap_and (psp, u_node_preds, sched_nodes);
1861   pss_not_empty = bitmap_and (pss, u_node_succs, sched_nodes);
1862 
1863   /* We first compute a forward range (start <= end), then decide whether
1864      to reverse it.  */
1865   early_start = INT_MIN;
1866   late_start = INT_MAX;
1867   start = INT_MIN;
1868   end = INT_MAX;
1869   step = 1;
1870 
1871   count_preds = 0;
1872   count_succs = 0;
1873 
1874   if (dump_file && (psp_not_empty || pss_not_empty))
1875     {
1876       fprintf (dump_file, "\nAnalyzing dependencies for node %d (INSN %d)"
1877 	       "; ii = %d\n\n", u_node->cuid, INSN_UID (u_node->insn), ii);
1878       fprintf (dump_file, "%11s %11s %11s %11s %5s\n",
1879 	       "start", "early start", "late start", "end", "time");
1880       fprintf (dump_file, "=========== =========== =========== ==========="
1881 	       " =====\n");
1882     }
1883   /* Calculate early_start and limit end.  Both bounds are inclusive.  */
1884   if (psp_not_empty)
1885     for (e = u_node->in; e != 0; e = e->next_in)
1886       {
1887 	int v = e->src->cuid;
1888 
1889 	if (bitmap_bit_p (sched_nodes, v))
1890 	  {
1891 	    int p_st = SCHED_TIME (v);
1892 	    int earliest = p_st + e->latency - (e->distance * ii);
1893 	    int latest = (e->data_type == MEM_DEP ? p_st + ii - 1 : INT_MAX);
1894 
1895 	    if (dump_file)
1896 	      {
1897 		fprintf (dump_file, "%11s %11d %11s %11d %5d",
1898 			 "", earliest, "", latest, p_st);
1899 		print_ddg_edge (dump_file, e);
1900 		fprintf (dump_file, "\n");
1901 	      }
1902 
1903 	    early_start = MAX (early_start, earliest);
1904 	    end = MIN (end, latest);
1905 
1906 	    if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1907 	      count_preds++;
1908 	  }
1909       }
1910 
1911   /* Calculate late_start and limit start.  Both bounds are inclusive.  */
1912   if (pss_not_empty)
1913     for (e = u_node->out; e != 0; e = e->next_out)
1914       {
1915 	int v = e->dest->cuid;
1916 
1917 	if (bitmap_bit_p (sched_nodes, v))
1918 	  {
1919 	    int s_st = SCHED_TIME (v);
1920 	    int earliest = (e->data_type == MEM_DEP ? s_st - ii + 1 : INT_MIN);
1921 	    int latest = s_st - e->latency + (e->distance * ii);
1922 
1923 	    if (dump_file)
1924 	      {
1925 		fprintf (dump_file, "%11d %11s %11d %11s %5d",
1926 			 earliest, "", latest, "", s_st);
1927 		print_ddg_edge (dump_file, e);
1928 		fprintf (dump_file, "\n");
1929 	      }
1930 
1931 	    start = MAX (start, earliest);
1932 	    late_start = MIN (late_start, latest);
1933 
1934 	    if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1935 	      count_succs++;
1936 	  }
1937       }
1938 
1939   if (dump_file && (psp_not_empty || pss_not_empty))
1940     {
1941       fprintf (dump_file, "----------- ----------- ----------- -----------"
1942 	       " -----\n");
1943       fprintf (dump_file, "%11d %11d %11d %11d %5s %s\n",
1944 	       start, early_start, late_start, end, "",
1945 	       "(max, max, min, min)");
1946     }
1947 
1948   /* Get a target scheduling window no bigger than ii.  */
1949   if (early_start == INT_MIN && late_start == INT_MAX)
1950     early_start = NODE_ASAP (u_node);
1951   else if (early_start == INT_MIN)
1952     early_start = late_start - (ii - 1);
1953   late_start = MIN (late_start, early_start + (ii - 1));
1954 
1955   /* Apply memory dependence limits.  */
1956   start = MAX (start, early_start);
1957   end = MIN (end, late_start);
1958 
1959   if (dump_file && (psp_not_empty || pss_not_empty))
1960     fprintf (dump_file, "%11s %11d %11d %11s %5s final window\n",
1961 	     "", start, end, "", "");
1962 
1963   /* If there are at least as many successors as predecessors, schedule the
1964      node close to its successors.  */
1965   if (pss_not_empty && count_succs >= count_preds)
1966     {
1967       std::swap (start, end);
1968       step = -1;
1969     }
1970 
1971   /* Now that we've finalized the window, make END an exclusive rather
1972      than an inclusive bound.  */
1973   end += step;
1974 
1975   *start_p = start;
1976   *step_p = step;
1977   *end_p = end;
1978 
1979   if ((start >= end && step == 1) || (start <= end && step == -1))
1980     {
1981       if (dump_file)
1982 	fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n",
1983 		 start, end, step);
1984       return -1;
1985     }
1986 
1987   return 0;
1988 }
1989 
1990 /* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
1991    node currently been scheduled.  At the end of the calculation
1992    MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
1993    U_NODE which are (1) already scheduled in the first/last row of
1994    U_NODE's scheduling window, (2) whose dependence inequality with U
1995    becomes an equality when U is scheduled in this same row, and (3)
1996    whose dependence latency is zero.
1997 
1998    The first and last rows are calculated using the following parameters:
1999    START/END rows - The cycles that begins/ends the traversal on the window;
2000    searching for an empty cycle to schedule U_NODE.
2001    STEP - The direction in which we traverse the window.
2002    II - The initiation interval.  */
2003 
2004 static void
calculate_must_precede_follow(ddg_node_ptr u_node,int start,int end,int step,int ii,sbitmap sched_nodes,sbitmap must_precede,sbitmap must_follow)2005 calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end,
2006 			       int step, int ii, sbitmap sched_nodes,
2007 			       sbitmap must_precede, sbitmap must_follow)
2008 {
2009   ddg_edge_ptr e;
2010   int first_cycle_in_window, last_cycle_in_window;
2011 
2012   gcc_assert (must_precede && must_follow);
2013 
2014   /* Consider the following scheduling window:
2015      {first_cycle_in_window, first_cycle_in_window+1, ...,
2016      last_cycle_in_window}.  If step is 1 then the following will be
2017      the order we traverse the window: {start=first_cycle_in_window,
2018      first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
2019      or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
2020      end=first_cycle_in_window-1} if step is -1.  */
2021   first_cycle_in_window = (step == 1) ? start : end - step;
2022   last_cycle_in_window = (step == 1) ? end - step : start;
2023 
2024   bitmap_clear (must_precede);
2025   bitmap_clear (must_follow);
2026 
2027   if (dump_file)
2028     fprintf (dump_file, "\nmust_precede: ");
2029 
2030   /* Instead of checking if:
2031       (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
2032       && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
2033              first_cycle_in_window)
2034       && e->latency == 0
2035      we use the fact that latency is non-negative:
2036       SCHED_TIME (e->src) - (e->distance * ii) <=
2037       SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
2038       first_cycle_in_window
2039      and check only if
2040       SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window  */
2041   for (e = u_node->in; e != 0; e = e->next_in)
2042     if (bitmap_bit_p (sched_nodes, e->src->cuid)
2043 	&& ((SCHED_TIME (e->src->cuid) - (e->distance * ii)) ==
2044              first_cycle_in_window))
2045       {
2046 	if (dump_file)
2047 	  fprintf (dump_file, "%d ", e->src->cuid);
2048 
2049 	bitmap_set_bit (must_precede, e->src->cuid);
2050       }
2051 
2052   if (dump_file)
2053     fprintf (dump_file, "\nmust_follow: ");
2054 
2055   /* Instead of checking if:
2056       (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
2057       && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
2058              last_cycle_in_window)
2059       && e->latency == 0
2060      we use the fact that latency is non-negative:
2061       SCHED_TIME (e->dest) + (e->distance * ii) >=
2062       SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
2063       last_cycle_in_window
2064      and check only if
2065       SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window  */
2066   for (e = u_node->out; e != 0; e = e->next_out)
2067     if (bitmap_bit_p (sched_nodes, e->dest->cuid)
2068 	&& ((SCHED_TIME (e->dest->cuid) + (e->distance * ii)) ==
2069              last_cycle_in_window))
2070       {
2071 	if (dump_file)
2072 	  fprintf (dump_file, "%d ", e->dest->cuid);
2073 
2074 	bitmap_set_bit (must_follow, e->dest->cuid);
2075       }
2076 
2077   if (dump_file)
2078     fprintf (dump_file, "\n");
2079 }
2080 
2081 /* Return 1 if U_NODE can be scheduled in CYCLE.  Use the following
2082    parameters to decide if that's possible:
2083    PS - The partial schedule.
2084    U - The serial number of U_NODE.
2085    NUM_SPLITS - The number of row splits made so far.
2086    MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
2087    the first row of the scheduling window)
2088    MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
2089    last row of the scheduling window)  */
2090 
2091 static bool
try_scheduling_node_in_cycle(partial_schedule_ptr ps,int u,int cycle,sbitmap sched_nodes,int * num_splits,sbitmap must_precede,sbitmap must_follow)2092 try_scheduling_node_in_cycle (partial_schedule_ptr ps,
2093 			      int u, int cycle, sbitmap sched_nodes,
2094 			      int *num_splits, sbitmap must_precede,
2095 			      sbitmap must_follow)
2096 {
2097   ps_insn_ptr psi;
2098   bool success = 0;
2099 
2100   verify_partial_schedule (ps, sched_nodes);
2101   psi = ps_add_node_check_conflicts (ps, u, cycle, must_precede, must_follow);
2102   if (psi)
2103     {
2104       SCHED_TIME (u) = cycle;
2105       bitmap_set_bit (sched_nodes, u);
2106       success = 1;
2107       *num_splits = 0;
2108       if (dump_file)
2109 	fprintf (dump_file, "Scheduled w/o split in %d\n", cycle);
2110 
2111     }
2112 
2113   return success;
2114 }
2115 
2116 /* This function implements the scheduling algorithm for SMS according to the
2117    above algorithm.  */
2118 static partial_schedule_ptr
sms_schedule_by_order(ddg_ptr g,int mii,int maxii,int * nodes_order)2119 sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
2120 {
2121   int ii = mii;
2122   int i, c, success, num_splits = 0;
2123   int flush_and_start_over = true;
2124   int num_nodes = g->num_nodes;
2125   int start, end, step; /* Place together into one struct?  */
2126   auto_sbitmap sched_nodes (num_nodes);
2127   auto_sbitmap must_precede (num_nodes);
2128   auto_sbitmap must_follow (num_nodes);
2129   auto_sbitmap tobe_scheduled (num_nodes);
2130 
2131   /* Value of param_sms_dfa_history is a limit on the number of cycles that
2132      resource conflicts can span.  ??? Should be provided by DFA, and be
2133      dependent on the type of insn scheduled.  Set to 0 by default to save
2134      compile time.  */
2135   partial_schedule_ptr ps = create_partial_schedule (ii, g,
2136 						     param_sms_dfa_history);
2137 
2138   bitmap_ones (tobe_scheduled);
2139   bitmap_clear (sched_nodes);
2140 
2141   while (flush_and_start_over && (ii < maxii))
2142     {
2143 
2144       if (dump_file)
2145 	fprintf (dump_file, "Starting with ii=%d\n", ii);
2146       flush_and_start_over = false;
2147       bitmap_clear (sched_nodes);
2148 
2149       for (i = 0; i < num_nodes; i++)
2150 	{
2151 	  int u = nodes_order[i];
2152   	  ddg_node_ptr u_node = &ps->g->nodes[u];
2153 	  rtx_insn *insn = u_node->insn;
2154 
2155 	  gcc_checking_assert (NONDEBUG_INSN_P (insn));
2156 
2157 	  if (bitmap_bit_p (sched_nodes, u))
2158 	    continue;
2159 
2160 	  /* Try to get non-empty scheduling window.  */
2161 	 success = 0;
2162          if (get_sched_window (ps, u_node, sched_nodes, ii, &start,
2163                                 &step, &end) == 0)
2164             {
2165               if (dump_file)
2166                 fprintf (dump_file, "\nTrying to schedule node %d "
2167 			 "INSN = %d  in (%d .. %d) step %d\n", u, (INSN_UID
2168                         (g->nodes[u].insn)), start, end, step);
2169 
2170               gcc_assert ((step > 0 && start < end)
2171                           || (step < 0 && start > end));
2172 
2173               calculate_must_precede_follow (u_node, start, end, step, ii,
2174                                              sched_nodes, must_precede,
2175                                              must_follow);
2176 
2177               for (c = start; c != end; c += step)
2178                 {
2179 		  sbitmap tmp_precede, tmp_follow;
2180 
2181                   set_must_precede_follow (&tmp_follow, must_follow,
2182 		                           &tmp_precede, must_precede,
2183                                            c, start, end, step);
2184                   success =
2185                     try_scheduling_node_in_cycle (ps, u, c,
2186                                                   sched_nodes,
2187                                                   &num_splits, tmp_precede,
2188                                                   tmp_follow);
2189                   if (success)
2190                     break;
2191                 }
2192 
2193               verify_partial_schedule (ps, sched_nodes);
2194             }
2195             if (!success)
2196             {
2197               int split_row;
2198 
2199               if (ii++ == maxii)
2200                 break;
2201 
2202               if (num_splits >= MAX_SPLIT_NUM)
2203                 {
2204                   num_splits = 0;
2205                   flush_and_start_over = true;
2206                   verify_partial_schedule (ps, sched_nodes);
2207                   reset_partial_schedule (ps, ii);
2208                   verify_partial_schedule (ps, sched_nodes);
2209                   break;
2210                 }
2211 
2212               num_splits++;
2213               /* The scheduling window is exclusive of 'end'
2214                  whereas compute_split_window() expects an inclusive,
2215                  ordered range.  */
2216               if (step == 1)
2217                 split_row = compute_split_row (sched_nodes, start, end - 1,
2218                                                ps->ii, u_node);
2219               else
2220                 split_row = compute_split_row (sched_nodes, end + 1, start,
2221                                                ps->ii, u_node);
2222 
2223               ps_insert_empty_row (ps, split_row, sched_nodes);
2224               i--;              /* Go back and retry node i.  */
2225 
2226               if (dump_file)
2227                 fprintf (dump_file, "num_splits=%d\n", num_splits);
2228             }
2229 
2230           /* ??? If (success), check register pressure estimates.  */
2231         }                       /* Continue with next node.  */
2232     }                           /* While flush_and_start_over.  */
2233   if (ii >= maxii)
2234     {
2235       free_partial_schedule (ps);
2236       ps = NULL;
2237     }
2238   else
2239     gcc_assert (bitmap_equal_p (tobe_scheduled, sched_nodes));
2240 
2241   return ps;
2242 }
2243 
2244 /* This function inserts a new empty row into PS at the position
2245    according to SPLITROW, keeping all already scheduled instructions
2246    intact and updating their SCHED_TIME and cycle accordingly.  */
2247 static void
ps_insert_empty_row(partial_schedule_ptr ps,int split_row,sbitmap sched_nodes)2248 ps_insert_empty_row (partial_schedule_ptr ps, int split_row,
2249 		     sbitmap sched_nodes)
2250 {
2251   ps_insn_ptr crr_insn;
2252   ps_insn_ptr *rows_new;
2253   int ii = ps->ii;
2254   int new_ii = ii + 1;
2255   int row;
2256   int *rows_length_new;
2257 
2258   verify_partial_schedule (ps, sched_nodes);
2259 
2260   /* We normalize sched_time and rotate ps to have only non-negative sched
2261      times, for simplicity of updating cycles after inserting new row.  */
2262   split_row -= ps->min_cycle;
2263   split_row = SMODULO (split_row, ii);
2264   if (dump_file)
2265     fprintf (dump_file, "split_row=%d\n", split_row);
2266 
2267   reset_sched_times (ps, PS_MIN_CYCLE (ps));
2268   rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
2269 
2270   rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr));
2271   rows_length_new = (int *) xcalloc (new_ii, sizeof (int));
2272   for (row = 0; row < split_row; row++)
2273     {
2274       rows_new[row] = ps->rows[row];
2275       rows_length_new[row] = ps->rows_length[row];
2276       ps->rows[row] = NULL;
2277       for (crr_insn = rows_new[row];
2278 	   crr_insn; crr_insn = crr_insn->next_in_row)
2279 	{
2280 	  int u = crr_insn->id;
2281 	  int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii);
2282 
2283 	  SCHED_TIME (u) = new_time;
2284 	  crr_insn->cycle = new_time;
2285 	  SCHED_ROW (u) = new_time % new_ii;
2286 	  SCHED_STAGE (u) = new_time / new_ii;
2287 	}
2288 
2289     }
2290 
2291   rows_new[split_row] = NULL;
2292 
2293   for (row = split_row; row < ii; row++)
2294     {
2295       rows_new[row + 1] = ps->rows[row];
2296       rows_length_new[row + 1] = ps->rows_length[row];
2297       ps->rows[row] = NULL;
2298       for (crr_insn = rows_new[row + 1];
2299 	   crr_insn; crr_insn = crr_insn->next_in_row)
2300 	{
2301 	  int u = crr_insn->id;
2302 	  int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1;
2303 
2304 	  SCHED_TIME (u) = new_time;
2305 	  crr_insn->cycle = new_time;
2306 	  SCHED_ROW (u) = new_time % new_ii;
2307 	  SCHED_STAGE (u) = new_time / new_ii;
2308 	}
2309     }
2310 
2311   /* Updating ps.  */
2312   ps->min_cycle = ps->min_cycle + ps->min_cycle / ii
2313     + (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0);
2314   ps->max_cycle = ps->max_cycle + ps->max_cycle / ii
2315     + (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0);
2316   free (ps->rows);
2317   ps->rows = rows_new;
2318   free (ps->rows_length);
2319   ps->rows_length = rows_length_new;
2320   ps->ii = new_ii;
2321   gcc_assert (ps->min_cycle >= 0);
2322 
2323   verify_partial_schedule (ps, sched_nodes);
2324 
2325   if (dump_file)
2326     fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle,
2327 	     ps->max_cycle);
2328 }
2329 
2330 /* Given U_NODE which is the node that failed to be scheduled; LOW and
2331    UP which are the boundaries of it's scheduling window; compute using
2332    SCHED_NODES and II a row in the partial schedule that can be split
2333    which will separate a critical predecessor from a critical successor
2334    thereby expanding the window, and return it.  */
2335 static int
compute_split_row(sbitmap sched_nodes,int low,int up,int ii,ddg_node_ptr u_node)2336 compute_split_row (sbitmap sched_nodes, int low, int up, int ii,
2337 		   ddg_node_ptr u_node)
2338 {
2339   ddg_edge_ptr e;
2340   int lower = INT_MIN, upper = INT_MAX;
2341   int crit_pred = -1;
2342   int crit_succ = -1;
2343   int crit_cycle;
2344 
2345   for (e = u_node->in; e != 0; e = e->next_in)
2346     {
2347       int v = e->src->cuid;
2348 
2349       if (bitmap_bit_p (sched_nodes, v)
2350 	  && (low == SCHED_TIME (v) + e->latency - (e->distance * ii)))
2351 	if (SCHED_TIME (v) > lower)
2352 	  {
2353 	    crit_pred = v;
2354 	    lower = SCHED_TIME (v);
2355 	  }
2356     }
2357 
2358   if (crit_pred >= 0)
2359     {
2360       crit_cycle = SCHED_TIME (crit_pred) + 1;
2361       return SMODULO (crit_cycle, ii);
2362     }
2363 
2364   for (e = u_node->out; e != 0; e = e->next_out)
2365     {
2366       int v = e->dest->cuid;
2367 
2368       if (bitmap_bit_p (sched_nodes, v)
2369 	  && (up == SCHED_TIME (v) - e->latency + (e->distance * ii)))
2370 	if (SCHED_TIME (v) < upper)
2371 	  {
2372 	    crit_succ = v;
2373 	    upper = SCHED_TIME (v);
2374 	  }
2375     }
2376 
2377   if (crit_succ >= 0)
2378     {
2379       crit_cycle = SCHED_TIME (crit_succ);
2380       return SMODULO (crit_cycle, ii);
2381     }
2382 
2383   if (dump_file)
2384     fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n");
2385 
2386   return SMODULO ((low + up + 1) / 2, ii);
2387 }
2388 
2389 static void
verify_partial_schedule(partial_schedule_ptr ps,sbitmap sched_nodes)2390 verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes)
2391 {
2392   int row;
2393   ps_insn_ptr crr_insn;
2394 
2395   for (row = 0; row < ps->ii; row++)
2396     {
2397       int length = 0;
2398 
2399       for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
2400 	{
2401 	  int u = crr_insn->id;
2402 
2403 	  length++;
2404 	  gcc_assert (bitmap_bit_p (sched_nodes, u));
2405 	  /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
2406 	     popcount (sched_nodes) == number of insns in ps.  */
2407 	  gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
2408 	  gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
2409 	}
2410 
2411       gcc_assert (ps->rows_length[row] == length);
2412     }
2413 }
2414 
2415 
2416 /* This page implements the algorithm for ordering the nodes of a DDG
2417    for modulo scheduling, activated through the
2418    "int sms_order_nodes (ddg_ptr, int mii, int * result)" API.  */
2419 
2420 #define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
2421 #define ASAP(x) (ORDER_PARAMS ((x))->asap)
2422 #define ALAP(x) (ORDER_PARAMS ((x))->alap)
2423 #define HEIGHT(x) (ORDER_PARAMS ((x))->height)
2424 #define MOB(x) (ALAP ((x)) - ASAP ((x)))
2425 #define DEPTH(x) (ASAP ((x)))
2426 
2427 typedef struct node_order_params * nopa;
2428 
2429 static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
2430 static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
2431 static nopa  calculate_order_params (ddg_ptr, int, int *);
2432 static int find_max_asap (ddg_ptr, sbitmap);
2433 static int find_max_hv_min_mob (ddg_ptr, sbitmap);
2434 static int find_max_dv_min_mob (ddg_ptr, sbitmap);
2435 
2436 enum sms_direction {BOTTOMUP, TOPDOWN};
2437 
2438 struct node_order_params
2439 {
2440   int asap;
2441   int alap;
2442   int height;
2443 };
2444 
2445 /* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1.  */
2446 static void
check_nodes_order(int * node_order,int num_nodes)2447 check_nodes_order (int *node_order, int num_nodes)
2448 {
2449   int i;
2450   auto_sbitmap tmp (num_nodes);
2451 
2452   bitmap_clear (tmp);
2453 
2454   if (dump_file)
2455     fprintf (dump_file, "SMS final nodes order: \n");
2456 
2457   for (i = 0; i < num_nodes; i++)
2458     {
2459       int u = node_order[i];
2460 
2461       if (dump_file)
2462         fprintf (dump_file, "%d ", u);
2463       gcc_assert (u < num_nodes && u >= 0 && !bitmap_bit_p (tmp, u));
2464 
2465       bitmap_set_bit (tmp, u);
2466     }
2467 
2468   if (dump_file)
2469     fprintf (dump_file, "\n");
2470 }
2471 
2472 /* Order the nodes of G for scheduling and pass the result in
2473    NODE_ORDER.  Also set aux.count of each node to ASAP.
2474    Put maximal ASAP to PMAX_ASAP.  Return the recMII for the given DDG.  */
2475 static int
sms_order_nodes(ddg_ptr g,int mii,int * node_order,int * pmax_asap)2476 sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap)
2477 {
2478   int i;
2479   int rec_mii = 0;
2480   ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
2481 
2482   nopa nops = calculate_order_params (g, mii, pmax_asap);
2483 
2484   if (dump_file)
2485     print_sccs (dump_file, sccs, g);
2486 
2487   order_nodes_of_sccs (sccs, node_order);
2488 
2489   if (sccs->num_sccs > 0)
2490     /* First SCC has the largest recurrence_length.  */
2491     rec_mii = sccs->sccs[0]->recurrence_length;
2492 
2493   /* Save ASAP before destroying node_order_params.  */
2494   for (i = 0; i < g->num_nodes; i++)
2495     {
2496       ddg_node_ptr v = &g->nodes[i];
2497       v->aux.count = ASAP (v);
2498     }
2499 
2500   free (nops);
2501   free_ddg_all_sccs (sccs);
2502   check_nodes_order (node_order, g->num_nodes);
2503 
2504   return rec_mii;
2505 }
2506 
2507 static void
order_nodes_of_sccs(ddg_all_sccs_ptr all_sccs,int * node_order)2508 order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
2509 {
2510   int i, pos = 0;
2511   ddg_ptr g = all_sccs->ddg;
2512   int num_nodes = g->num_nodes;
2513   auto_sbitmap prev_sccs (num_nodes);
2514   auto_sbitmap on_path (num_nodes);
2515   auto_sbitmap tmp (num_nodes);
2516   auto_sbitmap ones (num_nodes);
2517 
2518   bitmap_clear (prev_sccs);
2519   bitmap_ones (ones);
2520 
2521   /* Perform the node ordering starting from the SCC with the highest recMII.
2522      For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc.  */
2523   for (i = 0; i < all_sccs->num_sccs; i++)
2524     {
2525       ddg_scc_ptr scc = all_sccs->sccs[i];
2526 
2527       /* Add nodes on paths from previous SCCs to the current SCC.  */
2528       find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
2529       bitmap_ior (tmp, scc->nodes, on_path);
2530 
2531       /* Add nodes on paths from the current SCC to previous SCCs.  */
2532       find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
2533       bitmap_ior (tmp, tmp, on_path);
2534 
2535       /* Remove nodes of previous SCCs from current extended SCC.  */
2536       bitmap_and_compl (tmp, tmp, prev_sccs);
2537 
2538       pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2539       /* Above call to order_nodes_in_scc updated prev_sccs |= tmp.  */
2540     }
2541 
2542   /* Handle the remaining nodes that do not belong to any scc.  Each call
2543      to order_nodes_in_scc handles a single connected component.  */
2544   while (pos < g->num_nodes)
2545     {
2546       bitmap_and_compl (tmp, ones, prev_sccs);
2547       pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2548     }
2549 }
2550 
2551 /* MII is needed if we consider backarcs (that do not close recursive cycles).  */
2552 static struct node_order_params *
calculate_order_params(ddg_ptr g,int mii ATTRIBUTE_UNUSED,int * pmax_asap)2553 calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap)
2554 {
2555   int u;
2556   int max_asap;
2557   int num_nodes = g->num_nodes;
2558   ddg_edge_ptr e;
2559   /* Allocate a place to hold ordering params for each node in the DDG.  */
2560   nopa node_order_params_arr;
2561 
2562   /* Initialize of ASAP/ALAP/HEIGHT to zero.  */
2563   node_order_params_arr = (nopa) xcalloc (num_nodes,
2564 					  sizeof (struct node_order_params));
2565 
2566   /* Set the aux pointer of each node to point to its order_params structure.  */
2567   for (u = 0; u < num_nodes; u++)
2568     g->nodes[u].aux.info = &node_order_params_arr[u];
2569 
2570   /* Disregarding a backarc from each recursive cycle to obtain a DAG,
2571      calculate ASAP, ALAP, mobility, distance, and height for each node
2572      in the dependence (direct acyclic) graph.  */
2573 
2574   /* We assume that the nodes in the array are in topological order.  */
2575 
2576   max_asap = 0;
2577   for (u = 0; u < num_nodes; u++)
2578     {
2579       ddg_node_ptr u_node = &g->nodes[u];
2580 
2581       ASAP (u_node) = 0;
2582       for (e = u_node->in; e; e = e->next_in)
2583 	if (e->distance == 0)
2584 	  ASAP (u_node) = MAX (ASAP (u_node),
2585 			       ASAP (e->src) + e->latency);
2586       max_asap = MAX (max_asap, ASAP (u_node));
2587     }
2588 
2589   for (u = num_nodes - 1; u > -1; u--)
2590     {
2591       ddg_node_ptr u_node = &g->nodes[u];
2592 
2593       ALAP (u_node) = max_asap;
2594       HEIGHT (u_node) = 0;
2595       for (e = u_node->out; e; e = e->next_out)
2596 	if (e->distance == 0)
2597 	  {
2598 	    ALAP (u_node) = MIN (ALAP (u_node),
2599 				 ALAP (e->dest) - e->latency);
2600 	    HEIGHT (u_node) = MAX (HEIGHT (u_node),
2601 				   HEIGHT (e->dest) + e->latency);
2602 	  }
2603     }
2604   if (dump_file)
2605   {
2606     fprintf (dump_file, "\nOrder params\n");
2607     for (u = 0; u < num_nodes; u++)
2608       {
2609         ddg_node_ptr u_node = &g->nodes[u];
2610 
2611         fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u,
2612                  ASAP (u_node), ALAP (u_node), HEIGHT (u_node));
2613       }
2614   }
2615 
2616   *pmax_asap = max_asap;
2617   return node_order_params_arr;
2618 }
2619 
2620 static int
find_max_asap(ddg_ptr g,sbitmap nodes)2621 find_max_asap (ddg_ptr g, sbitmap nodes)
2622 {
2623   unsigned int u = 0;
2624   int max_asap = -1;
2625   int result = -1;
2626   sbitmap_iterator sbi;
2627 
2628   EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2629     {
2630       ddg_node_ptr u_node = &g->nodes[u];
2631 
2632       if (max_asap < ASAP (u_node))
2633 	{
2634 	  max_asap = ASAP (u_node);
2635 	  result = u;
2636 	}
2637     }
2638   return result;
2639 }
2640 
2641 static int
find_max_hv_min_mob(ddg_ptr g,sbitmap nodes)2642 find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
2643 {
2644   unsigned int u = 0;
2645   int max_hv = -1;
2646   int min_mob = INT_MAX;
2647   int result = -1;
2648   sbitmap_iterator sbi;
2649 
2650   EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2651     {
2652       ddg_node_ptr u_node = &g->nodes[u];
2653 
2654       if (max_hv < HEIGHT (u_node))
2655 	{
2656 	  max_hv = HEIGHT (u_node);
2657 	  min_mob = MOB (u_node);
2658 	  result = u;
2659 	}
2660       else if ((max_hv == HEIGHT (u_node))
2661 	       && (min_mob > MOB (u_node)))
2662 	{
2663 	  min_mob = MOB (u_node);
2664 	  result = u;
2665 	}
2666     }
2667   return result;
2668 }
2669 
2670 static int
find_max_dv_min_mob(ddg_ptr g,sbitmap nodes)2671 find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
2672 {
2673   unsigned int u = 0;
2674   int max_dv = -1;
2675   int min_mob = INT_MAX;
2676   int result = -1;
2677   sbitmap_iterator sbi;
2678 
2679   EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2680     {
2681       ddg_node_ptr u_node = &g->nodes[u];
2682 
2683       if (max_dv < DEPTH (u_node))
2684 	{
2685 	  max_dv = DEPTH (u_node);
2686 	  min_mob = MOB (u_node);
2687 	  result = u;
2688 	}
2689       else if ((max_dv == DEPTH (u_node))
2690 	       && (min_mob > MOB (u_node)))
2691 	{
2692 	  min_mob = MOB (u_node);
2693 	  result = u;
2694 	}
2695     }
2696   return result;
2697 }
2698 
2699 /* Places the nodes of SCC into the NODE_ORDER array starting
2700    at position POS, according to the SMS ordering algorithm.
2701    NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
2702    the NODE_ORDER array, starting from position zero.  */
2703 static int
order_nodes_in_scc(ddg_ptr g,sbitmap nodes_ordered,sbitmap scc,int * node_order,int pos)2704 order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
2705 		    int * node_order, int pos)
2706 {
2707   enum sms_direction dir;
2708   int num_nodes = g->num_nodes;
2709   auto_sbitmap workset (num_nodes);
2710   auto_sbitmap tmp (num_nodes);
2711   sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
2712   auto_sbitmap predecessors (num_nodes);
2713   auto_sbitmap successors (num_nodes);
2714 
2715   bitmap_clear (predecessors);
2716   find_predecessors (predecessors, g, nodes_ordered);
2717 
2718   bitmap_clear (successors);
2719   find_successors (successors, g, nodes_ordered);
2720 
2721   bitmap_clear (tmp);
2722   if (bitmap_and (tmp, predecessors, scc))
2723     {
2724       bitmap_copy (workset, tmp);
2725       dir = BOTTOMUP;
2726     }
2727   else if (bitmap_and (tmp, successors, scc))
2728     {
2729       bitmap_copy (workset, tmp);
2730       dir = TOPDOWN;
2731     }
2732   else
2733     {
2734       int u;
2735 
2736       bitmap_clear (workset);
2737       if ((u = find_max_asap (g, scc)) >= 0)
2738 	bitmap_set_bit (workset, u);
2739       dir = BOTTOMUP;
2740     }
2741 
2742   bitmap_clear (zero_bitmap);
2743   while (!bitmap_equal_p (workset, zero_bitmap))
2744     {
2745       int v;
2746       ddg_node_ptr v_node;
2747       sbitmap v_node_preds;
2748       sbitmap v_node_succs;
2749 
2750       if (dir == TOPDOWN)
2751 	{
2752 	  while (!bitmap_equal_p (workset, zero_bitmap))
2753 	    {
2754 	      v = find_max_hv_min_mob (g, workset);
2755 	      v_node = &g->nodes[v];
2756 	      node_order[pos++] = v;
2757 	      v_node_succs = NODE_SUCCESSORS (v_node);
2758 	      bitmap_and (tmp, v_node_succs, scc);
2759 
2760 	      /* Don't consider the already ordered successors again.  */
2761 	      bitmap_and_compl (tmp, tmp, nodes_ordered);
2762 	      bitmap_ior (workset, workset, tmp);
2763 	      bitmap_clear_bit (workset, v);
2764 	      bitmap_set_bit (nodes_ordered, v);
2765 	    }
2766 	  dir = BOTTOMUP;
2767 	  bitmap_clear (predecessors);
2768 	  find_predecessors (predecessors, g, nodes_ordered);
2769 	  bitmap_and (workset, predecessors, scc);
2770 	}
2771       else
2772 	{
2773 	  while (!bitmap_equal_p (workset, zero_bitmap))
2774 	    {
2775 	      v = find_max_dv_min_mob (g, workset);
2776 	      v_node = &g->nodes[v];
2777 	      node_order[pos++] = v;
2778 	      v_node_preds = NODE_PREDECESSORS (v_node);
2779 	      bitmap_and (tmp, v_node_preds, scc);
2780 
2781 	      /* Don't consider the already ordered predecessors again.  */
2782 	      bitmap_and_compl (tmp, tmp, nodes_ordered);
2783 	      bitmap_ior (workset, workset, tmp);
2784 	      bitmap_clear_bit (workset, v);
2785 	      bitmap_set_bit (nodes_ordered, v);
2786 	    }
2787 	  dir = TOPDOWN;
2788 	  bitmap_clear (successors);
2789 	  find_successors (successors, g, nodes_ordered);
2790 	  bitmap_and (workset, successors, scc);
2791 	}
2792     }
2793   sbitmap_free (zero_bitmap);
2794   return pos;
2795 }
2796 
2797 
2798 /* This page contains functions for manipulating partial-schedules during
2799    modulo scheduling.  */
2800 
2801 /* Create a partial schedule and allocate a memory to hold II rows.  */
2802 
2803 static partial_schedule_ptr
create_partial_schedule(int ii,ddg_ptr g,int history)2804 create_partial_schedule (int ii, ddg_ptr g, int history)
2805 {
2806   partial_schedule_ptr ps = XNEW (struct partial_schedule);
2807   ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
2808   ps->rows_length = (int *) xcalloc (ii, sizeof (int));
2809   ps->reg_moves.create (0);
2810   ps->ii = ii;
2811   ps->history = history;
2812   ps->min_cycle = INT_MAX;
2813   ps->max_cycle = INT_MIN;
2814   ps->g = g;
2815 
2816   return ps;
2817 }
2818 
2819 /* Free the PS_INSNs in rows array of the given partial schedule.
2820    ??? Consider caching the PS_INSN's.  */
2821 static void
free_ps_insns(partial_schedule_ptr ps)2822 free_ps_insns (partial_schedule_ptr ps)
2823 {
2824   int i;
2825 
2826   for (i = 0; i < ps->ii; i++)
2827     {
2828       while (ps->rows[i])
2829 	{
2830 	  ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
2831 
2832 	  free (ps->rows[i]);
2833 	  ps->rows[i] = ps_insn;
2834 	}
2835       ps->rows[i] = NULL;
2836     }
2837 }
2838 
2839 /* Free all the memory allocated to the partial schedule.  */
2840 
2841 static void
free_partial_schedule(partial_schedule_ptr ps)2842 free_partial_schedule (partial_schedule_ptr ps)
2843 {
2844   ps_reg_move_info *move;
2845   unsigned int i;
2846 
2847   if (!ps)
2848     return;
2849 
2850   FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
2851     sbitmap_free (move->uses);
2852   ps->reg_moves.release ();
2853 
2854   free_ps_insns (ps);
2855   free (ps->rows);
2856   free (ps->rows_length);
2857   free (ps);
2858 }
2859 
2860 /* Clear the rows array with its PS_INSNs, and create a new one with
2861    NEW_II rows.  */
2862 
2863 static void
reset_partial_schedule(partial_schedule_ptr ps,int new_ii)2864 reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
2865 {
2866   if (!ps)
2867     return;
2868   free_ps_insns (ps);
2869   if (new_ii == ps->ii)
2870     return;
2871   ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
2872 						 * sizeof (ps_insn_ptr));
2873   memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
2874   ps->rows_length = (int *) xrealloc (ps->rows_length, new_ii * sizeof (int));
2875   memset (ps->rows_length, 0, new_ii * sizeof (int));
2876   ps->ii = new_ii;
2877   ps->min_cycle = INT_MAX;
2878   ps->max_cycle = INT_MIN;
2879 }
2880 
2881 /* Prints the partial schedule as an ii rows array, for each rows
2882    print the ids of the insns in it.  */
2883 void
print_partial_schedule(partial_schedule_ptr ps,FILE * dump)2884 print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
2885 {
2886   int i;
2887 
2888   for (i = 0; i < ps->ii; i++)
2889     {
2890       ps_insn_ptr ps_i = ps->rows[i];
2891 
2892       fprintf (dump, "\n[ROW %d ]: ", i);
2893       while (ps_i)
2894 	{
2895 	  rtx_insn *insn = ps_rtl_insn (ps, ps_i->id);
2896 
2897 	  if (JUMP_P (insn))
2898 	    fprintf (dump, "%d (branch), ", INSN_UID (insn));
2899 	  else
2900 	    fprintf (dump, "%d, ", INSN_UID (insn));
2901 
2902 	  ps_i = ps_i->next_in_row;
2903 	}
2904     }
2905 }
2906 
2907 /* Creates an object of PS_INSN and initializes it to the given parameters.  */
2908 static ps_insn_ptr
create_ps_insn(int id,int cycle)2909 create_ps_insn (int id, int cycle)
2910 {
2911   ps_insn_ptr ps_i = XNEW (struct ps_insn);
2912 
2913   ps_i->id = id;
2914   ps_i->next_in_row = NULL;
2915   ps_i->prev_in_row = NULL;
2916   ps_i->cycle = cycle;
2917 
2918   return ps_i;
2919 }
2920 
2921 
2922 /* Removes the given PS_INSN from the partial schedule.  */
2923 static void
remove_node_from_ps(partial_schedule_ptr ps,ps_insn_ptr ps_i)2924 remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
2925 {
2926   int row;
2927 
2928   gcc_assert (ps && ps_i);
2929 
2930   row = SMODULO (ps_i->cycle, ps->ii);
2931   if (! ps_i->prev_in_row)
2932     {
2933       gcc_assert (ps_i == ps->rows[row]);
2934       ps->rows[row] = ps_i->next_in_row;
2935       if (ps->rows[row])
2936 	ps->rows[row]->prev_in_row = NULL;
2937     }
2938   else
2939     {
2940       ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
2941       if (ps_i->next_in_row)
2942 	ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
2943     }
2944 
2945   ps->rows_length[row] -= 1;
2946   free (ps_i);
2947   return;
2948 }
2949 
2950 /* Unlike what literature describes for modulo scheduling (which focuses
2951    on VLIW machines) the order of the instructions inside a cycle is
2952    important.  Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
2953    where the current instruction should go relative to the already
2954    scheduled instructions in the given cycle.  Go over these
2955    instructions and find the first possible column to put it in.  */
2956 static bool
ps_insn_find_column(partial_schedule_ptr ps,ps_insn_ptr ps_i,sbitmap must_precede,sbitmap must_follow)2957 ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
2958 		     sbitmap must_precede, sbitmap must_follow)
2959 {
2960   ps_insn_ptr next_ps_i;
2961   ps_insn_ptr first_must_follow = NULL;
2962   ps_insn_ptr last_must_precede = NULL;
2963   ps_insn_ptr last_in_row = NULL;
2964   int row;
2965 
2966   if (! ps_i)
2967     return false;
2968 
2969   row = SMODULO (ps_i->cycle, ps->ii);
2970 
2971   /* Find the first must follow and the last must precede
2972      and insert the node immediately after the must precede
2973      but make sure that it there is no must follow after it.  */
2974   for (next_ps_i = ps->rows[row];
2975        next_ps_i;
2976        next_ps_i = next_ps_i->next_in_row)
2977     {
2978       if (must_follow
2979 	  && bitmap_bit_p (must_follow, next_ps_i->id)
2980 	  && ! first_must_follow)
2981         first_must_follow = next_ps_i;
2982       if (must_precede && bitmap_bit_p (must_precede, next_ps_i->id))
2983         {
2984           /* If we have already met a node that must follow, then
2985 	     there is no possible column.  */
2986   	  if (first_must_follow)
2987             return false;
2988 	  else
2989             last_must_precede = next_ps_i;
2990         }
2991       /* The closing branch must be the last in the row.  */
2992       if (JUMP_P (ps_rtl_insn (ps, next_ps_i->id)))
2993 	return false;
2994 
2995        last_in_row = next_ps_i;
2996     }
2997 
2998   /* The closing branch is scheduled as well.  Make sure there is no
2999      dependent instruction after it as the branch should be the last
3000      instruction in the row.  */
3001   if (JUMP_P (ps_rtl_insn (ps, ps_i->id)))
3002     {
3003       if (first_must_follow)
3004 	return false;
3005       if (last_in_row)
3006 	{
3007 	  /* Make the branch the last in the row.  New instructions
3008 	     will be inserted at the beginning of the row or after the
3009 	     last must_precede instruction thus the branch is guaranteed
3010 	     to remain the last instruction in the row.  */
3011 	  last_in_row->next_in_row = ps_i;
3012 	  ps_i->prev_in_row = last_in_row;
3013 	  ps_i->next_in_row = NULL;
3014 	}
3015       else
3016 	ps->rows[row] = ps_i;
3017       return true;
3018     }
3019 
3020   /* Now insert the node after INSERT_AFTER_PSI.  */
3021 
3022   if (! last_must_precede)
3023     {
3024       ps_i->next_in_row = ps->rows[row];
3025       ps_i->prev_in_row = NULL;
3026       if (ps_i->next_in_row)
3027     	ps_i->next_in_row->prev_in_row = ps_i;
3028       ps->rows[row] = ps_i;
3029     }
3030   else
3031     {
3032       ps_i->next_in_row = last_must_precede->next_in_row;
3033       last_must_precede->next_in_row = ps_i;
3034       ps_i->prev_in_row = last_must_precede;
3035       if (ps_i->next_in_row)
3036         ps_i->next_in_row->prev_in_row = ps_i;
3037     }
3038 
3039   return true;
3040 }
3041 
3042 /* Advances the PS_INSN one column in its current row; returns false
3043    in failure and true in success.  Bit N is set in MUST_FOLLOW if
3044    the node with cuid N must be come after the node pointed to by
3045    PS_I when scheduled in the same cycle.  */
3046 static int
ps_insn_advance_column(partial_schedule_ptr ps,ps_insn_ptr ps_i,sbitmap must_follow)3047 ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
3048 			sbitmap must_follow)
3049 {
3050   ps_insn_ptr prev, next;
3051   int row;
3052 
3053   if (!ps || !ps_i)
3054     return false;
3055 
3056   row = SMODULO (ps_i->cycle, ps->ii);
3057 
3058   if (! ps_i->next_in_row)
3059     return false;
3060 
3061   /* Check if next_in_row is dependent on ps_i, both having same sched
3062      times (typically ANTI_DEP).  If so, ps_i cannot skip over it.  */
3063   if (must_follow && bitmap_bit_p (must_follow, ps_i->next_in_row->id))
3064     return false;
3065 
3066   /* Advance PS_I over its next_in_row in the doubly linked list.  */
3067   prev = ps_i->prev_in_row;
3068   next = ps_i->next_in_row;
3069 
3070   if (ps_i == ps->rows[row])
3071     ps->rows[row] = next;
3072 
3073   ps_i->next_in_row = next->next_in_row;
3074 
3075   if (next->next_in_row)
3076     next->next_in_row->prev_in_row = ps_i;
3077 
3078   next->next_in_row = ps_i;
3079   ps_i->prev_in_row = next;
3080 
3081   next->prev_in_row = prev;
3082   if (prev)
3083     prev->next_in_row = next;
3084 
3085   return true;
3086 }
3087 
3088 /* Inserts a DDG_NODE to the given partial schedule at the given cycle.
3089    Returns 0 if this is not possible and a PS_INSN otherwise.  Bit N is
3090    set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
3091    before/after (respectively) the node pointed to by PS_I when scheduled
3092    in the same cycle.  */
3093 static ps_insn_ptr
add_node_to_ps(partial_schedule_ptr ps,int id,int cycle,sbitmap must_precede,sbitmap must_follow)3094 add_node_to_ps (partial_schedule_ptr ps, int id, int cycle,
3095 		sbitmap must_precede, sbitmap must_follow)
3096 {
3097   ps_insn_ptr ps_i;
3098   int row = SMODULO (cycle, ps->ii);
3099 
3100   if (ps->rows_length[row] >= issue_rate)
3101     return NULL;
3102 
3103   ps_i = create_ps_insn (id, cycle);
3104 
3105   /* Finds and inserts PS_I according to MUST_FOLLOW and
3106      MUST_PRECEDE.  */
3107   if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
3108     {
3109       free (ps_i);
3110       return NULL;
3111     }
3112 
3113   ps->rows_length[row] += 1;
3114   return ps_i;
3115 }
3116 
3117 /* Advance time one cycle.  Assumes DFA is being used.  */
3118 static void
advance_one_cycle(void)3119 advance_one_cycle (void)
3120 {
3121   if (targetm.sched.dfa_pre_cycle_insn)
3122     state_transition (curr_state,
3123 		      targetm.sched.dfa_pre_cycle_insn ());
3124 
3125   state_transition (curr_state, NULL);
3126 
3127   if (targetm.sched.dfa_post_cycle_insn)
3128     state_transition (curr_state,
3129 		      targetm.sched.dfa_post_cycle_insn ());
3130 }
3131 
3132 
3133 
3134 /* Checks if PS has resource conflicts according to DFA, starting from
3135    FROM cycle to TO cycle; returns true if there are conflicts and false
3136    if there are no conflicts.  Assumes DFA is being used.  */
3137 static int
ps_has_conflicts(partial_schedule_ptr ps,int from,int to)3138 ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
3139 {
3140   int cycle;
3141 
3142   state_reset (curr_state);
3143 
3144   for (cycle = from; cycle <= to; cycle++)
3145     {
3146       ps_insn_ptr crr_insn;
3147       /* Holds the remaining issue slots in the current row.  */
3148       int can_issue_more = issue_rate;
3149 
3150       /* Walk through the DFA for the current row.  */
3151       for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
3152 	   crr_insn;
3153 	   crr_insn = crr_insn->next_in_row)
3154 	{
3155 	  rtx_insn *insn = ps_rtl_insn (ps, crr_insn->id);
3156 
3157 	  /* Check if there is room for the current insn.  */
3158 	  if (!can_issue_more || state_dead_lock_p (curr_state))
3159 	    return true;
3160 
3161 	  /* Update the DFA state and return with failure if the DFA found
3162 	     resource conflicts.  */
3163 	  if (state_transition (curr_state, insn) >= 0)
3164 	    return true;
3165 
3166 	  if (targetm.sched.variable_issue)
3167 	    can_issue_more =
3168 	      targetm.sched.variable_issue (sched_dump, sched_verbose,
3169 					    insn, can_issue_more);
3170 	  /* A naked CLOBBER or USE generates no instruction, so don't
3171 	     let them consume issue slots.  */
3172 	  else if (GET_CODE (PATTERN (insn)) != USE
3173 		   && GET_CODE (PATTERN (insn)) != CLOBBER)
3174 	    can_issue_more--;
3175 	}
3176 
3177       /* Advance the DFA to the next cycle.  */
3178       advance_one_cycle ();
3179     }
3180   return false;
3181 }
3182 
3183 /* Checks if the given node causes resource conflicts when added to PS at
3184    cycle C.  If not the node is added to PS and returned; otherwise zero
3185    is returned.  Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
3186    cuid N must be come before/after (respectively) the node pointed to by
3187    PS_I when scheduled in the same cycle.  */
3188 ps_insn_ptr
ps_add_node_check_conflicts(partial_schedule_ptr ps,int n,int c,sbitmap must_precede,sbitmap must_follow)3189 ps_add_node_check_conflicts (partial_schedule_ptr ps, int n,
3190    			     int c, sbitmap must_precede,
3191 			     sbitmap must_follow)
3192 {
3193   int i, first, amount, has_conflicts = 0;
3194   ps_insn_ptr ps_i;
3195 
3196   /* First add the node to the PS, if this succeeds check for
3197      conflicts, trying different issue slots in the same row.  */
3198   if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
3199     return NULL; /* Failed to insert the node at the given cycle.  */
3200 
3201   while (1)
3202     {
3203       has_conflicts = ps_has_conflicts (ps, c, c);
3204       if (ps->history > 0 && !has_conflicts)
3205 	{
3206 	  /* Check all 2h+1 intervals, starting from c-2h..c up to c..2h,
3207 	     but not more than ii intervals.  */
3208 	  first = c - ps->history;
3209 	  amount = 2 * ps->history + 1;
3210 	  if (amount > ps->ii)
3211 	    amount = ps->ii;
3212 	  for (i = first; i < first + amount; i++)
3213 	    {
3214 	      has_conflicts = ps_has_conflicts (ps,
3215 						i - ps->history,
3216 						i + ps->history);
3217 	      if (has_conflicts)
3218 		break;
3219 	    }
3220 	}
3221       if (!has_conflicts)
3222 	break;
3223       /* Try different issue slots to find one that the given node can be
3224 	 scheduled in without conflicts.  */
3225       if (! ps_insn_advance_column (ps, ps_i, must_follow))
3226 	break;
3227     }
3228 
3229   if (has_conflicts)
3230     {
3231       remove_node_from_ps (ps, ps_i);
3232       return NULL;
3233     }
3234 
3235   ps->min_cycle = MIN (ps->min_cycle, c);
3236   ps->max_cycle = MAX (ps->max_cycle, c);
3237   return ps_i;
3238 }
3239 
3240 /* Calculate the stage count of the partial schedule PS.  The calculation
3241    takes into account the rotation amount passed in ROTATION_AMOUNT.  */
3242 int
calculate_stage_count(partial_schedule_ptr ps,int rotation_amount)3243 calculate_stage_count (partial_schedule_ptr ps, int rotation_amount)
3244 {
3245   int new_min_cycle = PS_MIN_CYCLE (ps) - rotation_amount;
3246   int new_max_cycle = PS_MAX_CYCLE (ps) - rotation_amount;
3247   int stage_count = CALC_STAGE_COUNT (-1, new_min_cycle, ps->ii);
3248 
3249   /* The calculation of stage count is done adding the number of stages
3250      before cycle zero and after cycle zero.  */
3251   stage_count += CALC_STAGE_COUNT (new_max_cycle, 0, ps->ii);
3252 
3253   return stage_count;
3254 }
3255 
3256 /* Rotate the rows of PS such that insns scheduled at time
3257    START_CYCLE will appear in row 0.  Updates max/min_cycles.  */
3258 void
rotate_partial_schedule(partial_schedule_ptr ps,int start_cycle)3259 rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
3260 {
3261   int i, row, backward_rotates;
3262   int last_row = ps->ii - 1;
3263 
3264   if (start_cycle == 0)
3265     return;
3266 
3267   backward_rotates = SMODULO (start_cycle, ps->ii);
3268 
3269   /* Revisit later and optimize this into a single loop.  */
3270   for (i = 0; i < backward_rotates; i++)
3271     {
3272       ps_insn_ptr first_row = ps->rows[0];
3273       int first_row_length = ps->rows_length[0];
3274 
3275       for (row = 0; row < last_row; row++)
3276 	{
3277 	  ps->rows[row] = ps->rows[row + 1];
3278 	  ps->rows_length[row] = ps->rows_length[row + 1];
3279 	}
3280 
3281       ps->rows[last_row] = first_row;
3282       ps->rows_length[last_row] = first_row_length;
3283     }
3284 
3285   ps->max_cycle -= start_cycle;
3286   ps->min_cycle -= start_cycle;
3287 }
3288 
3289 #endif /* INSN_SCHEDULING */
3290 
3291 /* Run instruction scheduler.  */
3292 /* Perform SMS module scheduling.  */
3293 
3294 namespace {
3295 
3296 const pass_data pass_data_sms =
3297 {
3298   RTL_PASS, /* type */
3299   "sms", /* name */
3300   OPTGROUP_NONE, /* optinfo_flags */
3301   TV_SMS, /* tv_id */
3302   0, /* properties_required */
3303   0, /* properties_provided */
3304   0, /* properties_destroyed */
3305   0, /* todo_flags_start */
3306   TODO_df_finish, /* todo_flags_finish */
3307 };
3308 
3309 class pass_sms : public rtl_opt_pass
3310 {
3311 public:
pass_sms(gcc::context * ctxt)3312   pass_sms (gcc::context *ctxt)
3313     : rtl_opt_pass (pass_data_sms, ctxt)
3314   {}
3315 
3316   /* opt_pass methods: */
gate(function *)3317   virtual bool gate (function *)
3318 {
3319   return (optimize > 0 && flag_modulo_sched);
3320 }
3321 
3322   virtual unsigned int execute (function *);
3323 
3324 }; // class pass_sms
3325 
3326 unsigned int
execute(function * fun ATTRIBUTE_UNUSED)3327 pass_sms::execute (function *fun ATTRIBUTE_UNUSED)
3328 {
3329 #ifdef INSN_SCHEDULING
3330   basic_block bb;
3331 
3332   /* Collect loop information to be used in SMS.  */
3333   cfg_layout_initialize (0);
3334   sms_schedule ();
3335 
3336   /* Update the life information, because we add pseudos.  */
3337   max_regno = max_reg_num ();
3338 
3339   /* Finalize layout changes.  */
3340   FOR_EACH_BB_FN (bb, fun)
3341     if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
3342       bb->aux = bb->next_bb;
3343   free_dominance_info (CDI_DOMINATORS);
3344   cfg_layout_finalize ();
3345 #endif /* INSN_SCHEDULING */
3346   return 0;
3347 }
3348 
3349 } // anon namespace
3350 
3351 rtl_opt_pass *
make_pass_sms(gcc::context * ctxt)3352 make_pass_sms (gcc::context *ctxt)
3353 {
3354   return new pass_sms (ctxt);
3355 }
3356