1 /* Post reload partially redundant load elimination
2    Copyright (C) 2004-2020 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "emit-rtl.h"
33 #include "recog.h"
34 
35 #include "cfgrtl.h"
36 #include "profile.h"
37 #include "expr.h"
38 #include "tree-pass.h"
39 #include "dbgcnt.h"
40 #include "intl.h"
41 #include "gcse-common.h"
42 #include "gcse.h"
43 #include "regs.h"
44 #include "function-abi.h"
45 
46 /* The following code implements gcse after reload, the purpose of this
47    pass is to cleanup redundant loads generated by reload and other
48    optimizations that come after gcse. It searches for simple inter-block
49    redundancies and tries to eliminate them by adding moves and loads
50    in cold places.
51 
52    Perform partially redundant load elimination, try to eliminate redundant
53    loads created by the reload pass.  We try to look for full or partial
54    redundant loads fed by one or more loads/stores in predecessor BBs,
55    and try adding loads to make them fully redundant.  We also check if
56    it's worth adding loads to be able to delete the redundant load.
57 
58    Algorithm:
59    1. Build available expressions hash table:
60        For each load/store instruction, if the loaded/stored memory didn't
61        change until the end of the basic block add this memory expression to
62        the hash table.
63    2. Perform Redundancy elimination:
64       For each load instruction do the following:
65 	 perform partial redundancy elimination, check if it's worth adding
66 	 loads to make the load fully redundant.  If so add loads and
67 	 register copies and delete the load.
68    3. Delete instructions made redundant in step 2.
69 
70    Future enhancement:
71      If the loaded register is used/defined between load and some store,
72      look for some other free register between load and all its stores,
73      and replace the load with a copy from this register to the loaded
74      register.
75 */
76 
77 
78 /* Keep statistics of this pass.  */
79 static struct
80 {
81   int moves_inserted;
82   int copies_inserted;
83   int insns_deleted;
84 } stats;
85 
86 /* We need to keep a hash table of expressions.  The table entries are of
87    type 'struct expr', and for each expression there is a single linked
88    list of occurrences.  */
89 
90 /* Expression elements in the hash table.  */
91 struct expr
92 {
93   /* The expression (SET_SRC for expressions, PATTERN for assignments).  */
94   rtx expr;
95 
96   /* The same hash for this entry.  */
97   hashval_t hash;
98 
99   /* Index in the transparent bitmaps.  */
100   unsigned int bitmap_index;
101 
102   /* List of available occurrence in basic blocks in the function.  */
103   struct occr *avail_occr;
104 };
105 
106 /* Hashtable helpers.  */
107 
108 struct expr_hasher : nofree_ptr_hash <expr>
109 {
110   static inline hashval_t hash (const expr *);
111   static inline bool equal (const expr *, const expr *);
112 };
113 
114 
115 /* Hash expression X.
116    DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
117    or if the expression contains something we don't want to insert in the
118    table.  */
119 
120 static hashval_t
hash_expr(rtx x,int * do_not_record_p)121 hash_expr (rtx x, int *do_not_record_p)
122 {
123   *do_not_record_p = 0;
124   return hash_rtx (x, GET_MODE (x), do_not_record_p,
125 		   NULL,  /*have_reg_qty=*/false);
126 }
127 
128 /* Callback for hashtab.
129    Return the hash value for expression EXP.  We don't actually hash
130    here, we just return the cached hash value.  */
131 
132 inline hashval_t
hash(const expr * exp)133 expr_hasher::hash (const expr *exp)
134 {
135   return exp->hash;
136 }
137 
138 /* Callback for hashtab.
139    Return nonzero if exp1 is equivalent to exp2.  */
140 
141 inline bool
equal(const expr * exp1,const expr * exp2)142 expr_hasher::equal (const expr *exp1, const expr *exp2)
143 {
144   int equiv_p = exp_equiv_p (exp1->expr, exp2->expr, 0, true);
145 
146   gcc_assert (!equiv_p || exp1->hash == exp2->hash);
147   return equiv_p;
148 }
149 
150 /* The table itself.  */
151 static hash_table<expr_hasher> *expr_table;
152 
153 
154 static struct obstack expr_obstack;
155 
156 /* Occurrence of an expression.
157    There is at most one occurrence per basic block.  If a pattern appears
158    more than once, the last appearance is used.  */
159 
160 struct occr
161 {
162   /* Next occurrence of this expression.  */
163   struct occr *next;
164   /* The insn that computes the expression.  */
165   rtx_insn *insn;
166   /* Nonzero if this [anticipatable] occurrence has been deleted.  */
167   char deleted_p;
168 };
169 
170 static struct obstack occr_obstack;
171 
172 /* The following structure holds the information about the occurrences of
173    the redundant instructions.  */
174 struct unoccr
175 {
176   struct unoccr *next;
177   edge pred;
178   rtx_insn *insn;
179 };
180 
181 static struct obstack unoccr_obstack;
182 
183 /* Array where each element is the CUID if the insn that last set the hard
184    register with the number of the element, since the start of the current
185    basic block.
186 
187    This array is used during the building of the hash table (step 1) to
188    determine if a reg is killed before the end of a basic block.
189 
190    It is also used when eliminating partial redundancies (step 2) to see
191    if a reg was modified since the start of a basic block.  */
192 static int *reg_avail_info;
193 
194 /* A list of insns that may modify memory within the current basic block.  */
195 struct modifies_mem
196 {
197   rtx_insn *insn;
198   struct modifies_mem *next;
199 };
200 static struct modifies_mem *modifies_mem_list;
201 
202 /* The modifies_mem structs also go on an obstack, only this obstack is
203    freed each time after completing the analysis or transformations on
204    a basic block.  So we allocate a dummy modifies_mem_obstack_bottom
205    object on the obstack to keep track of the bottom of the obstack.  */
206 static struct obstack modifies_mem_obstack;
207 static struct modifies_mem  *modifies_mem_obstack_bottom;
208 
209 /* Mapping of insn UIDs to CUIDs.
210    CUIDs are like UIDs except they increase monotonically in each basic
211    block, have no gaps, and only apply to real insns.  */
212 static int *uid_cuid;
213 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
214 
215 /* Bitmap of blocks which have memory stores.  */
216 static bitmap modify_mem_list_set;
217 
218 /* Bitmap of blocks which have calls.  */
219 static bitmap blocks_with_calls;
220 
221 /* Vector indexed by block # with a list of all the insns that
222    modify memory within the block.  */
223 static vec<rtx_insn *> *modify_mem_list;
224 
225 /* Vector indexed by block # with a canonicalized list of insns
226    that modify memory in the block.  */
227 static vec<modify_pair> *canon_modify_mem_list;
228 
229 /* Vector of simple bitmaps indexed by block number.  Each component sbitmap
230    indicates which expressions are transparent through the block.  */
231 static sbitmap *transp;
232 
233 
234 /* Helpers for memory allocation/freeing.  */
235 static void alloc_mem (void);
236 static void free_mem (void);
237 
238 /* Support for hash table construction and transformations.  */
239 static bool oprs_unchanged_p (rtx, rtx_insn *, bool);
240 static void record_last_reg_set_info (rtx_insn *, rtx);
241 static void record_last_reg_set_info_regno (rtx_insn *, int);
242 static void record_last_mem_set_info (rtx_insn *);
243 static void record_last_set_info (rtx, const_rtx, void *);
244 static void record_opr_changes (rtx_insn *);
245 
246 static void find_mem_conflicts (rtx, const_rtx, void *);
247 static int load_killed_in_block_p (int, rtx, bool);
248 static void reset_opr_set_tables (void);
249 
250 /* Hash table support.  */
251 static hashval_t hash_expr (rtx, int *);
252 static void insert_expr_in_table (rtx, rtx_insn *);
253 static struct expr *lookup_expr_in_table (rtx);
254 static void dump_hash_table (FILE *);
255 
256 /* Helpers for eliminate_partially_redundant_load.  */
257 static bool reg_killed_on_edge (rtx, edge);
258 static bool reg_used_on_edge (rtx, edge);
259 
260 static rtx get_avail_load_store_reg (rtx_insn *);
261 
262 static bool bb_has_well_behaved_predecessors (basic_block);
263 static struct occr* get_bb_avail_insn (basic_block, struct occr *, int);
264 static void hash_scan_set (rtx_insn *);
265 static void compute_hash_table (void);
266 
267 /* The work horses of this pass.  */
268 static void eliminate_partially_redundant_load (basic_block,
269 						rtx_insn *,
270 						struct expr *);
271 static void eliminate_partially_redundant_loads (void);
272 
273 
274 /* Allocate memory for the CUID mapping array and register/memory
275    tracking tables.  */
276 
277 static void
alloc_mem(void)278 alloc_mem (void)
279 {
280   int i;
281   basic_block bb;
282   rtx_insn *insn;
283 
284   /* Find the largest UID and create a mapping from UIDs to CUIDs.  */
285   uid_cuid = XCNEWVEC (int, get_max_uid () + 1);
286   i = 1;
287   FOR_EACH_BB_FN (bb, cfun)
288     FOR_BB_INSNS (bb, insn)
289       {
290         if (INSN_P (insn))
291 	  uid_cuid[INSN_UID (insn)] = i++;
292 	else
293 	  uid_cuid[INSN_UID (insn)] = i;
294       }
295 
296   /* Allocate the available expressions hash table.  We don't want to
297      make the hash table too small, but unnecessarily making it too large
298      also doesn't help.  The i/4 is a gcse.c relic, and seems like a
299      reasonable choice.  */
300   expr_table = new hash_table<expr_hasher> (MAX (i / 4, 13));
301 
302   /* We allocate everything on obstacks because we often can roll back
303      the whole obstack to some point.  Freeing obstacks is very fast.  */
304   gcc_obstack_init (&expr_obstack);
305   gcc_obstack_init (&occr_obstack);
306   gcc_obstack_init (&unoccr_obstack);
307   gcc_obstack_init (&modifies_mem_obstack);
308 
309   /* Working array used to track the last set for each register
310      in the current block.  */
311   reg_avail_info = (int *) xmalloc (FIRST_PSEUDO_REGISTER * sizeof (int));
312 
313   /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
314      can roll it back in reset_opr_set_tables.  */
315   modifies_mem_obstack_bottom =
316     (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
317 					   sizeof (struct modifies_mem));
318 
319   blocks_with_calls = BITMAP_ALLOC (NULL);
320   modify_mem_list_set = BITMAP_ALLOC (NULL);
321 
322   modify_mem_list = (vec_rtx_heap *) xcalloc (last_basic_block_for_fn (cfun),
323 					      sizeof (vec_rtx_heap));
324   canon_modify_mem_list
325     = (vec_modify_pair_heap *) xcalloc (last_basic_block_for_fn (cfun),
326 					sizeof (vec_modify_pair_heap));
327 }
328 
329 /* Free memory allocated by alloc_mem.  */
330 
331 static void
free_mem(void)332 free_mem (void)
333 {
334   free (uid_cuid);
335 
336   delete expr_table;
337   expr_table = NULL;
338 
339   obstack_free (&expr_obstack, NULL);
340   obstack_free (&occr_obstack, NULL);
341   obstack_free (&unoccr_obstack, NULL);
342   obstack_free (&modifies_mem_obstack, NULL);
343 
344   unsigned i;
345   bitmap_iterator bi;
346   EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
347     {
348       modify_mem_list[i].release ();
349       canon_modify_mem_list[i].release ();
350     }
351 
352   BITMAP_FREE (blocks_with_calls);
353   BITMAP_FREE (modify_mem_list_set);
354   free (reg_avail_info);
355   free (modify_mem_list);
356   free (canon_modify_mem_list);
357 }
358 
359 
360 /* Insert expression X in INSN in the hash TABLE.
361    If it is already present, record it as the last occurrence in INSN's
362    basic block.  */
363 
364 static void
insert_expr_in_table(rtx x,rtx_insn * insn)365 insert_expr_in_table (rtx x, rtx_insn *insn)
366 {
367   int do_not_record_p;
368   hashval_t hash;
369   struct expr *cur_expr, **slot;
370   struct occr *avail_occr;
371 
372   hash = hash_expr (x, &do_not_record_p);
373 
374   /* Do not insert expression in the table if it contains volatile operands,
375      or if hash_expr determines the expression is something we don't want
376      to or can't handle.  */
377   if (do_not_record_p)
378     return;
379 
380   /* We anticipate that redundant expressions are rare, so for convenience
381      allocate a new hash table element here already and set its fields.
382      If we don't do this, we need a hack with a static struct expr.  Anyway,
383      obstack_free is really fast and one more obstack_alloc doesn't hurt if
384      we're going to see more expressions later on.  */
385   cur_expr = (struct expr *) obstack_alloc (&expr_obstack,
386 					    sizeof (struct expr));
387   cur_expr->expr = x;
388   cur_expr->hash = hash;
389   cur_expr->avail_occr = NULL;
390 
391   slot = expr_table->find_slot_with_hash (cur_expr, hash, INSERT);
392 
393   if (! (*slot))
394     {
395       /* The expression isn't found, so insert it.  */
396       *slot = cur_expr;
397 
398       /* Anytime we add an entry to the table, record the index
399 	 of the new entry.  The bitmap index starts counting
400 	 at zero.  */
401       cur_expr->bitmap_index = expr_table->elements () - 1;
402     }
403   else
404     {
405       /* The expression is already in the table, so roll back the
406 	 obstack and use the existing table entry.  */
407       obstack_free (&expr_obstack, cur_expr);
408       cur_expr = *slot;
409     }
410 
411   /* Search for another occurrence in the same basic block.  We insert
412      insns blockwise from start to end, so keep appending to the
413      start of the list so we have to check only a single element.  */
414   avail_occr = cur_expr->avail_occr;
415   if (avail_occr
416       && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
417     avail_occr->insn = insn;
418   else
419     {
420       /* First occurrence of this expression in this basic block.  */
421       avail_occr = (struct occr *) obstack_alloc (&occr_obstack,
422 						  sizeof (struct occr));
423       avail_occr->insn = insn;
424       avail_occr->next = cur_expr->avail_occr;
425       avail_occr->deleted_p = 0;
426       cur_expr->avail_occr = avail_occr;
427     }
428 }
429 
430 
431 /* Lookup pattern PAT in the expression hash table.
432    The result is a pointer to the table entry, or NULL if not found.  */
433 
434 static struct expr *
lookup_expr_in_table(rtx pat)435 lookup_expr_in_table (rtx pat)
436 {
437   int do_not_record_p;
438   struct expr **slot, *tmp_expr;
439   hashval_t hash = hash_expr (pat, &do_not_record_p);
440 
441   if (do_not_record_p)
442     return NULL;
443 
444   tmp_expr = (struct expr *) obstack_alloc (&expr_obstack,
445 					    sizeof (struct expr));
446   tmp_expr->expr = pat;
447   tmp_expr->hash = hash;
448   tmp_expr->avail_occr = NULL;
449 
450   slot = expr_table->find_slot_with_hash (tmp_expr, hash, INSERT);
451   obstack_free (&expr_obstack, tmp_expr);
452 
453   if (!slot)
454     return NULL;
455   else
456     return (*slot);
457 }
458 
459 
460 /* Dump all expressions and occurrences that are currently in the
461    expression hash table to FILE.  */
462 
463 /* This helper is called via htab_traverse.  */
464 int
dump_expr_hash_table_entry(expr ** slot,FILE * file)465 dump_expr_hash_table_entry (expr **slot, FILE *file)
466 {
467   struct expr *exprs = *slot;
468   struct occr *occr;
469 
470   fprintf (file, "expr: ");
471   print_rtl (file, exprs->expr);
472   fprintf (file,"\nhashcode: %u\n", exprs->hash);
473   fprintf (file,"list of occurrences:\n");
474   occr = exprs->avail_occr;
475   while (occr)
476     {
477       rtx_insn *insn = occr->insn;
478       print_rtl_single (file, insn);
479       fprintf (file, "\n");
480       occr = occr->next;
481     }
482   fprintf (file, "\n");
483   return 1;
484 }
485 
486 static void
dump_hash_table(FILE * file)487 dump_hash_table (FILE *file)
488 {
489   fprintf (file, "\n\nexpression hash table\n");
490   fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
491            (long) expr_table->size (),
492            (long) expr_table->elements (),
493            expr_table->collisions ());
494   if (!expr_table->is_empty ())
495     {
496       fprintf (file, "\n\ntable entries:\n");
497       expr_table->traverse <FILE *, dump_expr_hash_table_entry> (file);
498     }
499   fprintf (file, "\n");
500 }
501 
502 /* Return true if register X is recorded as being set by an instruction
503    whose CUID is greater than the one given.  */
504 
505 static bool
reg_changed_after_insn_p(rtx x,int cuid)506 reg_changed_after_insn_p (rtx x, int cuid)
507 {
508   unsigned int regno, end_regno;
509 
510   regno = REGNO (x);
511   end_regno = END_REGNO (x);
512   do
513     if (reg_avail_info[regno] > cuid)
514       return true;
515   while (++regno < end_regno);
516   return false;
517 }
518 
519 /* Return nonzero if the operands of expression X are unchanged
520    1) from the start of INSN's basic block up to but not including INSN
521       if AFTER_INSN is false, or
522    2) from INSN to the end of INSN's basic block if AFTER_INSN is true.  */
523 
524 static bool
oprs_unchanged_p(rtx x,rtx_insn * insn,bool after_insn)525 oprs_unchanged_p (rtx x, rtx_insn *insn, bool after_insn)
526 {
527   int i, j;
528   enum rtx_code code;
529   const char *fmt;
530 
531   if (x == 0)
532     return 1;
533 
534   code = GET_CODE (x);
535   switch (code)
536     {
537     case REG:
538       /* We are called after register allocation.  */
539       gcc_assert (REGNO (x) < FIRST_PSEUDO_REGISTER);
540       if (after_insn)
541 	return !reg_changed_after_insn_p (x, INSN_CUID (insn) - 1);
542       else
543 	return !reg_changed_after_insn_p (x, 0);
544 
545     case MEM:
546       if (load_killed_in_block_p (INSN_CUID (insn), x, after_insn))
547 	return 0;
548       else
549 	return oprs_unchanged_p (XEXP (x, 0), insn, after_insn);
550 
551     case PC:
552     case CC0: /*FIXME*/
553     case CONST:
554     CASE_CONST_ANY:
555     case SYMBOL_REF:
556     case LABEL_REF:
557     case ADDR_VEC:
558     case ADDR_DIFF_VEC:
559       return 1;
560 
561     case PRE_DEC:
562     case PRE_INC:
563     case POST_DEC:
564     case POST_INC:
565     case PRE_MODIFY:
566     case POST_MODIFY:
567       if (after_insn)
568 	return 0;
569       break;
570 
571     default:
572       break;
573     }
574 
575   for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
576     {
577       if (fmt[i] == 'e')
578 	{
579 	  if (! oprs_unchanged_p (XEXP (x, i), insn, after_insn))
580 	    return 0;
581 	}
582       else if (fmt[i] == 'E')
583 	for (j = 0; j < XVECLEN (x, i); j++)
584 	  if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, after_insn))
585 	    return 0;
586     }
587 
588   return 1;
589 }
590 
591 
592 /* Used for communication between find_mem_conflicts and
593    load_killed_in_block_p.  Nonzero if find_mem_conflicts finds a
594    conflict between two memory references.
595    This is a bit of a hack to work around the limitations of note_stores.  */
596 static int mems_conflict_p;
597 
598 /* DEST is the output of an instruction.  If it is a memory reference, and
599    possibly conflicts with the load found in DATA, then set mems_conflict_p
600    to a nonzero value.  */
601 
602 static void
find_mem_conflicts(rtx dest,const_rtx setter ATTRIBUTE_UNUSED,void * data)603 find_mem_conflicts (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
604 		    void *data)
605 {
606   rtx mem_op = (rtx) data;
607 
608   while (GET_CODE (dest) == SUBREG
609 	 || GET_CODE (dest) == ZERO_EXTRACT
610 	 || GET_CODE (dest) == STRICT_LOW_PART)
611     dest = XEXP (dest, 0);
612 
613   /* If DEST is not a MEM, then it will not conflict with the load.  Note
614      that function calls are assumed to clobber memory, but are handled
615      elsewhere.  */
616   if (! MEM_P (dest))
617     return;
618 
619   if (true_dependence (dest, GET_MODE (dest), mem_op))
620     mems_conflict_p = 1;
621 }
622 
623 
624 /* Return nonzero if the expression in X (a memory reference) is killed
625    in the current basic block before (if AFTER_INSN is false) or after
626    (if AFTER_INSN is true) the insn with the CUID in UID_LIMIT.
627 
628    This function assumes that the modifies_mem table is flushed when
629    the hash table construction or redundancy elimination phases start
630    processing a new basic block.  */
631 
632 static int
load_killed_in_block_p(int uid_limit,rtx x,bool after_insn)633 load_killed_in_block_p (int uid_limit, rtx x, bool after_insn)
634 {
635   struct modifies_mem *list_entry = modifies_mem_list;
636 
637   while (list_entry)
638     {
639       rtx_insn *setter = list_entry->insn;
640 
641       /* Ignore entries in the list that do not apply.  */
642       if ((after_insn
643 	   && INSN_CUID (setter) < uid_limit)
644 	  || (! after_insn
645 	      && INSN_CUID (setter) > uid_limit))
646 	{
647 	  list_entry = list_entry->next;
648 	  continue;
649 	}
650 
651       /* If SETTER is a call everything is clobbered.  Note that calls
652 	 to pure functions are never put on the list, so we need not
653 	 worry about them.  */
654       if (CALL_P (setter))
655 	return 1;
656 
657       /* SETTER must be an insn of some kind that sets memory.  Call
658 	 note_stores to examine each hunk of memory that is modified.
659 	 It will set mems_conflict_p to nonzero if there may be a
660 	 conflict between X and SETTER.  */
661       mems_conflict_p = 0;
662       note_stores (setter, find_mem_conflicts, x);
663       if (mems_conflict_p)
664 	return 1;
665 
666       list_entry = list_entry->next;
667     }
668   return 0;
669 }
670 
671 
672 /* Record register first/last/block set information for REGNO in INSN.  */
673 
674 static inline void
record_last_reg_set_info(rtx_insn * insn,rtx reg)675 record_last_reg_set_info (rtx_insn *insn, rtx reg)
676 {
677   unsigned int regno, end_regno;
678 
679   regno = REGNO (reg);
680   end_regno = END_REGNO (reg);
681   do
682     reg_avail_info[regno] = INSN_CUID (insn);
683   while (++regno < end_regno);
684 }
685 
686 static inline void
record_last_reg_set_info_regno(rtx_insn * insn,int regno)687 record_last_reg_set_info_regno (rtx_insn *insn, int regno)
688 {
689   reg_avail_info[regno] = INSN_CUID (insn);
690 }
691 
692 
693 /* Record memory modification information for INSN.  We do not actually care
694    about the memory location(s) that are set, or even how they are set (consider
695    a CALL_INSN).  We merely need to record which insns modify memory.  */
696 
697 static void
record_last_mem_set_info(rtx_insn * insn)698 record_last_mem_set_info (rtx_insn *insn)
699 {
700   struct modifies_mem *list_entry;
701 
702   list_entry = (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
703 						      sizeof (struct modifies_mem));
704   list_entry->insn = insn;
705   list_entry->next = modifies_mem_list;
706   modifies_mem_list = list_entry;
707 
708   record_last_mem_set_info_common (insn, modify_mem_list,
709 				   canon_modify_mem_list,
710 				   modify_mem_list_set,
711 				   blocks_with_calls);
712 }
713 
714 /* Called from compute_hash_table via note_stores to handle one
715    SET or CLOBBER in an insn.  DATA is really the instruction in which
716    the SET is taking place.  */
717 
718 static void
record_last_set_info(rtx dest,const_rtx setter ATTRIBUTE_UNUSED,void * data)719 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
720 {
721   rtx_insn *last_set_insn = (rtx_insn *) data;
722 
723   if (GET_CODE (dest) == SUBREG)
724     dest = SUBREG_REG (dest);
725 
726   if (REG_P (dest))
727     record_last_reg_set_info (last_set_insn, dest);
728   else if (MEM_P (dest))
729     {
730       /* Ignore pushes, they don't clobber memory.  They may still
731 	 clobber the stack pointer though.  Some targets do argument
732 	 pushes without adding REG_INC notes.  See e.g. PR25196,
733 	 where a pushsi2 on i386 doesn't have REG_INC notes.  Note
734 	 such changes here too.  */
735       if (! push_operand (dest, GET_MODE (dest)))
736 	record_last_mem_set_info (last_set_insn);
737       else
738 	record_last_reg_set_info_regno (last_set_insn, STACK_POINTER_REGNUM);
739     }
740 }
741 
742 
743 /* Reset tables used to keep track of what's still available since the
744    start of the block.  */
745 
746 static void
reset_opr_set_tables(void)747 reset_opr_set_tables (void)
748 {
749   memset (reg_avail_info, 0, FIRST_PSEUDO_REGISTER * sizeof (int));
750   obstack_free (&modifies_mem_obstack, modifies_mem_obstack_bottom);
751   modifies_mem_list = NULL;
752 }
753 
754 
755 /* Record things set by INSN.
756    This data is used by oprs_unchanged_p.  */
757 
758 static void
record_opr_changes(rtx_insn * insn)759 record_opr_changes (rtx_insn *insn)
760 {
761   rtx note;
762 
763   /* Find all stores and record them.  */
764   note_stores (insn, record_last_set_info, insn);
765 
766   /* Also record autoincremented REGs for this insn as changed.  */
767   for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
768     if (REG_NOTE_KIND (note) == REG_INC)
769       record_last_reg_set_info (insn, XEXP (note, 0));
770 
771   /* Finally, if this is a call, record all call clobbers.  */
772   if (CALL_P (insn))
773     {
774       unsigned int regno;
775       hard_reg_set_iterator hrsi;
776       /* We don't track modes of hard registers, so we need to be
777 	 conservative and assume that partial kills are full kills.  */
778       HARD_REG_SET callee_clobbers
779 	= insn_callee_abi (insn).full_and_partial_reg_clobbers ();
780       EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, regno, hrsi)
781 	record_last_reg_set_info_regno (insn, regno);
782 
783       if (! RTL_CONST_OR_PURE_CALL_P (insn))
784 	record_last_mem_set_info (insn);
785     }
786 }
787 
788 
789 /* Scan the pattern of INSN and add an entry to the hash TABLE.
790    After reload we are interested in loads/stores only.  */
791 
792 static void
hash_scan_set(rtx_insn * insn)793 hash_scan_set (rtx_insn *insn)
794 {
795   rtx pat = PATTERN (insn);
796   rtx src = SET_SRC (pat);
797   rtx dest = SET_DEST (pat);
798 
799   /* We are only interested in loads and stores.  */
800   if (! MEM_P (src) && ! MEM_P (dest))
801     return;
802 
803   /* Don't mess with jumps and nops.  */
804   if (JUMP_P (insn) || set_noop_p (pat))
805     return;
806 
807   if (REG_P (dest))
808     {
809       if (/* Don't CSE something if we can't do a reg/reg copy.  */
810 	  can_copy_p (GET_MODE (dest))
811 	  /* Is SET_SRC something we want to gcse?  */
812 	  && general_operand (src, GET_MODE (src))
813 #ifdef STACK_REGS
814 	  /* Never consider insns touching the register stack.  It may
815 	     create situations that reg-stack cannot handle (e.g. a stack
816 	     register live across an abnormal edge).  */
817 	  && (REGNO (dest) < FIRST_STACK_REG || REGNO (dest) > LAST_STACK_REG)
818 #endif
819 	  /* An expression is not available if its operands are
820 	     subsequently modified, including this insn.  */
821 	  && oprs_unchanged_p (src, insn, true))
822 	{
823 	  insert_expr_in_table (src, insn);
824 	}
825     }
826   else if (REG_P (src))
827     {
828       /* Only record sets of pseudo-regs in the hash table.  */
829       if (/* Don't CSE something if we can't do a reg/reg copy.  */
830 	  can_copy_p (GET_MODE (src))
831 	  /* Is SET_DEST something we want to gcse?  */
832 	  && general_operand (dest, GET_MODE (dest))
833 #ifdef STACK_REGS
834 	  /* As above for STACK_REGS.  */
835 	  && (REGNO (src) < FIRST_STACK_REG || REGNO (src) > LAST_STACK_REG)
836 #endif
837 	  && ! (flag_float_store && FLOAT_MODE_P (GET_MODE (dest)))
838 	  /* Check if the memory expression is killed after insn.  */
839 	  && ! load_killed_in_block_p (INSN_CUID (insn) + 1, dest, true)
840 	  && oprs_unchanged_p (XEXP (dest, 0), insn, true))
841 	{
842 	  insert_expr_in_table (dest, insn);
843 	}
844     }
845 }
846 
847 
848 /* Create hash table of memory expressions available at end of basic
849    blocks.  Basically you should think of this hash table as the
850    representation of AVAIL_OUT.  This is the set of expressions that
851    is generated in a basic block and not killed before the end of the
852    same basic block.  Notice that this is really a local computation.  */
853 
854 static void
compute_hash_table(void)855 compute_hash_table (void)
856 {
857   basic_block bb;
858 
859   FOR_EACH_BB_FN (bb, cfun)
860     {
861       rtx_insn *insn;
862 
863       /* First pass over the instructions records information used to
864 	 determine when registers and memory are last set.
865 	 Since we compute a "local" AVAIL_OUT, reset the tables that
866 	 help us keep track of what has been modified since the start
867 	 of the block.  */
868       reset_opr_set_tables ();
869       FOR_BB_INSNS (bb, insn)
870 	{
871 	  if (INSN_P (insn))
872             record_opr_changes (insn);
873 	}
874 
875       /* The next pass actually builds the hash table.  */
876       FOR_BB_INSNS (bb, insn)
877 	if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SET)
878 	  hash_scan_set (insn);
879     }
880 }
881 
882 
883 /* Check if register REG is killed in any insn waiting to be inserted on
884    edge E.  This function is required to check that our data flow analysis
885    is still valid prior to commit_edge_insertions.  */
886 
887 static bool
reg_killed_on_edge(rtx reg,edge e)888 reg_killed_on_edge (rtx reg, edge e)
889 {
890   rtx_insn *insn;
891 
892   for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
893     if (INSN_P (insn) && reg_set_p (reg, insn))
894       return true;
895 
896   return false;
897 }
898 
899 /* Similar to above - check if register REG is used in any insn waiting
900    to be inserted on edge E.
901    Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
902    with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p.  */
903 
904 static bool
reg_used_on_edge(rtx reg,edge e)905 reg_used_on_edge (rtx reg, edge e)
906 {
907   rtx_insn *insn;
908 
909   for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
910     if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
911       return true;
912 
913   return false;
914 }
915 
916 /* Return the loaded/stored register of a load/store instruction.  */
917 
918 static rtx
get_avail_load_store_reg(rtx_insn * insn)919 get_avail_load_store_reg (rtx_insn *insn)
920 {
921   if (REG_P (SET_DEST (PATTERN (insn))))
922     /* A load.  */
923     return SET_DEST (PATTERN (insn));
924   else
925     {
926       /* A store.  */
927       gcc_assert (REG_P (SET_SRC (PATTERN (insn))));
928       return SET_SRC (PATTERN (insn));
929     }
930 }
931 
932 /* Return nonzero if the predecessors of BB are "well behaved".  */
933 
934 static bool
bb_has_well_behaved_predecessors(basic_block bb)935 bb_has_well_behaved_predecessors (basic_block bb)
936 {
937   edge pred;
938   edge_iterator ei;
939 
940   if (EDGE_COUNT (bb->preds) == 0)
941     return false;
942 
943   FOR_EACH_EDGE (pred, ei, bb->preds)
944     {
945       /* commit_one_edge_insertion refuses to insert on abnormal edges even if
946 	 the source has only one successor so EDGE_CRITICAL_P is too weak.  */
947       if ((pred->flags & EDGE_ABNORMAL) && !single_pred_p (pred->dest))
948 	return false;
949 
950       if ((pred->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
951 	return false;
952 
953       if (tablejump_p (BB_END (pred->src), NULL, NULL))
954 	return false;
955     }
956   return true;
957 }
958 
959 
960 /* Search for the occurrences of expression in BB.  */
961 
962 static struct occr*
get_bb_avail_insn(basic_block bb,struct occr * orig_occr,int bitmap_index)963 get_bb_avail_insn (basic_block bb, struct occr *orig_occr, int bitmap_index)
964 {
965   struct occr *occr = orig_occr;
966 
967   for (; occr != NULL; occr = occr->next)
968     if (BLOCK_FOR_INSN (occr->insn) == bb)
969       return occr;
970 
971   /* If we could not find an occurrence in BB, see if BB
972      has a single predecessor with an occurrence that is
973      transparent through BB.  */
974   if (transp
975       && single_pred_p (bb)
976       && bitmap_bit_p (transp[bb->index], bitmap_index)
977       && (occr = get_bb_avail_insn (single_pred (bb), orig_occr, bitmap_index)))
978     {
979       rtx avail_reg = get_avail_load_store_reg (occr->insn);
980       if (!reg_set_between_p (avail_reg,
981 			      PREV_INSN (BB_HEAD (bb)),
982 			      NEXT_INSN (BB_END (bb)))
983 	  && !reg_killed_on_edge (avail_reg, single_pred_edge (bb)))
984 	return occr;
985     }
986 
987   return NULL;
988 }
989 
990 
991 /* This helper is called via htab_traverse.  */
992 int
compute_expr_transp(expr ** slot,FILE * dump_file ATTRIBUTE_UNUSED)993 compute_expr_transp (expr **slot, FILE *dump_file ATTRIBUTE_UNUSED)
994 {
995   struct expr *expr = *slot;
996 
997   compute_transp (expr->expr, expr->bitmap_index, transp,
998 		  blocks_with_calls, modify_mem_list_set,
999 		  canon_modify_mem_list);
1000   return 1;
1001 }
1002 
1003 /* This handles the case where several stores feed a partially redundant
1004    load. It checks if the redundancy elimination is possible and if it's
1005    worth it.
1006 
1007    Redundancy elimination is possible if,
1008    1) None of the operands of an insn have been modified since the start
1009       of the current basic block.
1010    2) In any predecessor of the current basic block, the same expression
1011       is generated.
1012 
1013    See the function body for the heuristics that determine if eliminating
1014    a redundancy is also worth doing, assuming it is possible.  */
1015 
1016 static void
eliminate_partially_redundant_load(basic_block bb,rtx_insn * insn,struct expr * expr)1017 eliminate_partially_redundant_load (basic_block bb, rtx_insn *insn,
1018 				    struct expr *expr)
1019 {
1020   edge pred;
1021   rtx_insn *avail_insn = NULL;
1022   rtx avail_reg;
1023   rtx dest, pat;
1024   struct occr *a_occr;
1025   struct unoccr *occr, *avail_occrs = NULL;
1026   struct unoccr *unoccr, *unavail_occrs = NULL, *rollback_unoccr = NULL;
1027   int npred_ok = 0;
1028   profile_count ok_count = profile_count::zero ();
1029 		 /* Redundant load execution count.  */
1030   profile_count critical_count = profile_count::zero ();
1031 		 /* Execution count of critical edges.  */
1032   edge_iterator ei;
1033   bool critical_edge_split = false;
1034 
1035   /* The execution count of the loads to be added to make the
1036      load fully redundant.  */
1037   profile_count not_ok_count = profile_count::zero ();
1038   basic_block pred_bb;
1039 
1040   pat = PATTERN (insn);
1041   dest = SET_DEST (pat);
1042 
1043   /* Check that the loaded register is not used, set, or killed from the
1044      beginning of the block.  */
1045   if (reg_changed_after_insn_p (dest, 0)
1046       || reg_used_between_p (dest, PREV_INSN (BB_HEAD (bb)), insn))
1047     return;
1048 
1049   /* Check potential for replacing load with copy for predecessors.  */
1050   FOR_EACH_EDGE (pred, ei, bb->preds)
1051     {
1052       rtx_insn *next_pred_bb_end;
1053 
1054       avail_insn = NULL;
1055       avail_reg = NULL_RTX;
1056       pred_bb = pred->src;
1057       for (a_occr = get_bb_avail_insn (pred_bb,
1058 				       expr->avail_occr,
1059 				       expr->bitmap_index);
1060 	   a_occr;
1061 	   a_occr = get_bb_avail_insn (pred_bb,
1062 				       a_occr->next,
1063 				       expr->bitmap_index))
1064 	{
1065 	  /* Check if the loaded register is not used.  */
1066 	  avail_insn = a_occr->insn;
1067 	  avail_reg = get_avail_load_store_reg (avail_insn);
1068 	  gcc_assert (avail_reg);
1069 
1070 	  /* Make sure we can generate a move from register avail_reg to
1071 	     dest.  */
1072 	  rtx_insn *move = gen_move_insn (copy_rtx (dest),
1073 					  copy_rtx (avail_reg));
1074 	  extract_insn (move);
1075 	  if (! constrain_operands (1, get_preferred_alternatives (insn,
1076 								   pred_bb))
1077 	      || reg_killed_on_edge (avail_reg, pred)
1078 	      || reg_used_on_edge (dest, pred))
1079 	    {
1080 	      avail_insn = NULL;
1081 	      continue;
1082 	    }
1083 	  next_pred_bb_end = NEXT_INSN (BB_END (BLOCK_FOR_INSN (avail_insn)));
1084 	  if (!reg_set_between_p (avail_reg, avail_insn, next_pred_bb_end))
1085 	    /* AVAIL_INSN remains non-null.  */
1086 	    break;
1087 	  else
1088 	    avail_insn = NULL;
1089 	}
1090 
1091       if (EDGE_CRITICAL_P (pred) && pred->count ().initialized_p ())
1092 	critical_count += pred->count ();
1093 
1094       if (avail_insn != NULL_RTX)
1095 	{
1096 	  npred_ok++;
1097 	  if (pred->count ().initialized_p ())
1098 	    ok_count = ok_count + pred->count ();
1099 	  if (! set_noop_p (PATTERN (gen_move_insn (copy_rtx (dest),
1100 						    copy_rtx (avail_reg)))))
1101 	    {
1102 	      /* Check if there is going to be a split.  */
1103 	      if (EDGE_CRITICAL_P (pred))
1104 		critical_edge_split = true;
1105 	    }
1106 	  else /* Its a dead move no need to generate.  */
1107 	    continue;
1108 	  occr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1109 						  sizeof (struct unoccr));
1110 	  occr->insn = avail_insn;
1111 	  occr->pred = pred;
1112 	  occr->next = avail_occrs;
1113 	  avail_occrs = occr;
1114 	  if (! rollback_unoccr)
1115 	    rollback_unoccr = occr;
1116 	}
1117       else
1118 	{
1119 	  /* Adding a load on a critical edge will cause a split.  */
1120 	  if (EDGE_CRITICAL_P (pred))
1121 	    critical_edge_split = true;
1122 	  if (pred->count ().initialized_p ())
1123 	    not_ok_count = not_ok_count + pred->count ();
1124 	  unoccr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1125 						    sizeof (struct unoccr));
1126 	  unoccr->insn = NULL;
1127 	  unoccr->pred = pred;
1128 	  unoccr->next = unavail_occrs;
1129 	  unavail_occrs = unoccr;
1130 	  if (! rollback_unoccr)
1131 	    rollback_unoccr = unoccr;
1132 	}
1133     }
1134 
1135   if (/* No load can be replaced by copy.  */
1136       npred_ok == 0
1137       /* Prevent exploding the code.  */
1138       || (optimize_bb_for_size_p (bb) && npred_ok > 1)
1139       /* If we don't have profile information we cannot tell if splitting
1140          a critical edge is profitable or not so don't do it.  */
1141       || ((!profile_info || profile_status_for_fn (cfun) != PROFILE_READ
1142 	   || targetm.cannot_modify_jumps_p ())
1143 	  && critical_edge_split))
1144     goto cleanup;
1145 
1146   /* Check if it's worth applying the partial redundancy elimination.  */
1147   if (ok_count.to_gcov_type ()
1148       < param_gcse_after_reload_partial_fraction * not_ok_count.to_gcov_type ())
1149     goto cleanup;
1150 
1151   gcov_type threshold;
1152 #if (GCC_VERSION >= 5000)
1153   if (__builtin_mul_overflow (param_gcse_after_reload_critical_fraction,
1154 			      critical_count.to_gcov_type (), &threshold))
1155     threshold = profile_count::max_count;
1156 #else
1157   threshold
1158     = (param_gcse_after_reload_critical_fraction
1159        * critical_count.to_gcov_type ());
1160 #endif
1161 
1162   if (ok_count.to_gcov_type () < threshold)
1163     goto cleanup;
1164 
1165   /* Generate moves to the loaded register from where
1166      the memory is available.  */
1167   for (occr = avail_occrs; occr; occr = occr->next)
1168     {
1169       avail_insn = occr->insn;
1170       pred = occr->pred;
1171       /* Set avail_reg to be the register having the value of the
1172 	 memory.  */
1173       avail_reg = get_avail_load_store_reg (avail_insn);
1174       gcc_assert (avail_reg);
1175 
1176       insert_insn_on_edge (gen_move_insn (copy_rtx (dest),
1177 					  copy_rtx (avail_reg)),
1178 			   pred);
1179       stats.moves_inserted++;
1180 
1181       if (dump_file)
1182 	fprintf (dump_file,
1183 		 "generating move from %d to %d on edge from %d to %d\n",
1184 		 REGNO (avail_reg),
1185 		 REGNO (dest),
1186 		 pred->src->index,
1187 		 pred->dest->index);
1188     }
1189 
1190   /* Regenerate loads where the memory is unavailable.  */
1191   for (unoccr = unavail_occrs; unoccr; unoccr = unoccr->next)
1192     {
1193       pred = unoccr->pred;
1194       insert_insn_on_edge (copy_insn (PATTERN (insn)), pred);
1195       stats.copies_inserted++;
1196 
1197       if (dump_file)
1198 	{
1199 	  fprintf (dump_file,
1200 		   "generating on edge from %d to %d a copy of load: ",
1201 		   pred->src->index,
1202 		   pred->dest->index);
1203 	  print_rtl (dump_file, PATTERN (insn));
1204 	  fprintf (dump_file, "\n");
1205 	}
1206     }
1207 
1208   /* Delete the insn if it is not available in this block and mark it
1209      for deletion if it is available. If insn is available it may help
1210      discover additional redundancies, so mark it for later deletion.  */
1211   for (a_occr = get_bb_avail_insn (bb, expr->avail_occr, expr->bitmap_index);
1212        a_occr && (a_occr->insn != insn);
1213        a_occr = get_bb_avail_insn (bb, a_occr->next, expr->bitmap_index))
1214     ;
1215 
1216   if (!a_occr)
1217     {
1218       stats.insns_deleted++;
1219 
1220       if (dump_file)
1221 	{
1222 	  fprintf (dump_file, "deleting insn:\n");
1223           print_rtl_single (dump_file, insn);
1224           fprintf (dump_file, "\n");
1225 	}
1226       delete_insn (insn);
1227     }
1228   else
1229     a_occr->deleted_p = 1;
1230 
1231 cleanup:
1232   if (rollback_unoccr)
1233     obstack_free (&unoccr_obstack, rollback_unoccr);
1234 }
1235 
1236 /* Performing the redundancy elimination as described before.  */
1237 
1238 static void
eliminate_partially_redundant_loads(void)1239 eliminate_partially_redundant_loads (void)
1240 {
1241   rtx_insn *insn;
1242   basic_block bb;
1243 
1244   /* Note we start at block 1.  */
1245 
1246   if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1247     return;
1248 
1249   FOR_BB_BETWEEN (bb,
1250 		  ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->next_bb,
1251 		  EXIT_BLOCK_PTR_FOR_FN (cfun),
1252 		  next_bb)
1253     {
1254       /* Don't try anything on basic blocks with strange predecessors.  */
1255       if (! bb_has_well_behaved_predecessors (bb))
1256 	continue;
1257 
1258       /* Do not try anything on cold basic blocks.  */
1259       if (optimize_bb_for_size_p (bb))
1260 	continue;
1261 
1262       /* Reset the table of things changed since the start of the current
1263 	 basic block.  */
1264       reset_opr_set_tables ();
1265 
1266       /* Look at all insns in the current basic block and see if there are
1267 	 any loads in it that we can record.  */
1268       FOR_BB_INSNS (bb, insn)
1269 	{
1270 	  /* Is it a load - of the form (set (reg) (mem))?  */
1271 	  if (NONJUMP_INSN_P (insn)
1272               && GET_CODE (PATTERN (insn)) == SET
1273 	      && REG_P (SET_DEST (PATTERN (insn)))
1274 	      && MEM_P (SET_SRC (PATTERN (insn))))
1275 	    {
1276 	      rtx pat = PATTERN (insn);
1277 	      rtx src = SET_SRC (pat);
1278 	      struct expr *expr;
1279 
1280 	      if (!MEM_VOLATILE_P (src)
1281 		  && GET_MODE (src) != BLKmode
1282 		  && general_operand (src, GET_MODE (src))
1283 		  /* Are the operands unchanged since the start of the
1284 		     block?  */
1285 		  && oprs_unchanged_p (src, insn, false)
1286 		  && !(cfun->can_throw_non_call_exceptions && may_trap_p (src))
1287 		  && !side_effects_p (src)
1288 		  /* Is the expression recorded?  */
1289 		  && (expr = lookup_expr_in_table (src)) != NULL)
1290 		{
1291 		  /* We now have a load (insn) and an available memory at
1292 		     its BB start (expr). Try to remove the loads if it is
1293 		     redundant.  */
1294 		  eliminate_partially_redundant_load (bb, insn, expr);
1295 		}
1296 	    }
1297 
1298 	  /* Keep track of everything modified by this insn, so that we
1299 	     know what has been modified since the start of the current
1300 	     basic block.  */
1301 	  if (INSN_P (insn))
1302 	    record_opr_changes (insn);
1303 	}
1304     }
1305 
1306   commit_edge_insertions ();
1307 }
1308 
1309 /* Go over the expression hash table and delete insns that were
1310    marked for later deletion.  */
1311 
1312 /* This helper is called via htab_traverse.  */
1313 int
delete_redundant_insns_1(expr ** slot,void * data ATTRIBUTE_UNUSED)1314 delete_redundant_insns_1 (expr **slot, void *data ATTRIBUTE_UNUSED)
1315 {
1316   struct expr *exprs = *slot;
1317   struct occr *occr;
1318 
1319   for (occr = exprs->avail_occr; occr != NULL; occr = occr->next)
1320     {
1321       if (occr->deleted_p && dbg_cnt (gcse2_delete))
1322 	{
1323 	  delete_insn (occr->insn);
1324 	  stats.insns_deleted++;
1325 
1326 	  if (dump_file)
1327 	    {
1328 	      fprintf (dump_file, "deleting insn:\n");
1329 	      print_rtl_single (dump_file, occr->insn);
1330 	      fprintf (dump_file, "\n");
1331 	    }
1332 	}
1333     }
1334 
1335   return 1;
1336 }
1337 
1338 static void
delete_redundant_insns(void)1339 delete_redundant_insns (void)
1340 {
1341   expr_table->traverse <void *, delete_redundant_insns_1> (NULL);
1342   if (dump_file)
1343     fprintf (dump_file, "\n");
1344 }
1345 
1346 /* Main entry point of the GCSE after reload - clean some redundant loads
1347    due to spilling.  */
1348 
1349 static void
gcse_after_reload_main(rtx f ATTRIBUTE_UNUSED)1350 gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED)
1351 {
1352   /* Disable computing transparentness if it is too expensive.  */
1353   bool do_transp
1354     = !gcse_or_cprop_is_too_expensive (_("using simple load CSE after register "
1355 					 "allocation"));
1356 
1357   memset (&stats, 0, sizeof (stats));
1358 
1359   /* Allocate memory for this pass.
1360      Also computes and initializes the insns' CUIDs.  */
1361   alloc_mem ();
1362 
1363   /* We need alias analysis.  */
1364   init_alias_analysis ();
1365 
1366   compute_hash_table ();
1367 
1368   if (dump_file)
1369     dump_hash_table (dump_file);
1370 
1371   if (!expr_table->is_empty ())
1372     {
1373       /* Knowing which MEMs are transparent through a block can signifiantly
1374 	 increase the number of redundant loads found.  So compute transparency
1375 	 information for each memory expression in the hash table.  */
1376       df_analyze ();
1377       if (do_transp)
1378 	{
1379 	  /* This cannot be part of the normal allocation routine because
1380 	     we have to know the number of elements in the hash table.  */
1381 	  transp = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
1382 					 expr_table->elements ());
1383 	  bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
1384 	  expr_table->traverse <FILE *, compute_expr_transp> (dump_file);
1385 	}
1386       else
1387 	transp = NULL;
1388       eliminate_partially_redundant_loads ();
1389       delete_redundant_insns ();
1390       if (do_transp)
1391 	sbitmap_vector_free (transp);
1392 
1393       if (dump_file)
1394 	{
1395 	  fprintf (dump_file, "GCSE AFTER RELOAD stats:\n");
1396 	  fprintf (dump_file, "copies inserted: %d\n", stats.copies_inserted);
1397 	  fprintf (dump_file, "moves inserted:  %d\n", stats.moves_inserted);
1398 	  fprintf (dump_file, "insns deleted:   %d\n", stats.insns_deleted);
1399 	  fprintf (dump_file, "\n\n");
1400 	}
1401 
1402       statistics_counter_event (cfun, "copies inserted",
1403 				stats.copies_inserted);
1404       statistics_counter_event (cfun, "moves inserted",
1405 				stats.moves_inserted);
1406       statistics_counter_event (cfun, "insns deleted",
1407 				stats.insns_deleted);
1408     }
1409 
1410   /* We are finished with alias.  */
1411   end_alias_analysis ();
1412 
1413   free_mem ();
1414 }
1415 
1416 
1417 
1418 static unsigned int
rest_of_handle_gcse2(void)1419 rest_of_handle_gcse2 (void)
1420 {
1421   gcse_after_reload_main (get_insns ());
1422   rebuild_jump_labels (get_insns ());
1423   return 0;
1424 }
1425 
1426 namespace {
1427 
1428 const pass_data pass_data_gcse2 =
1429 {
1430   RTL_PASS, /* type */
1431   "gcse2", /* name */
1432   OPTGROUP_NONE, /* optinfo_flags */
1433   TV_GCSE_AFTER_RELOAD, /* tv_id */
1434   0, /* properties_required */
1435   0, /* properties_provided */
1436   0, /* properties_destroyed */
1437   0, /* todo_flags_start */
1438   0, /* todo_flags_finish */
1439 };
1440 
1441 class pass_gcse2 : public rtl_opt_pass
1442 {
1443 public:
pass_gcse2(gcc::context * ctxt)1444   pass_gcse2 (gcc::context *ctxt)
1445     : rtl_opt_pass (pass_data_gcse2, ctxt)
1446   {}
1447 
1448   /* opt_pass methods: */
gate(function * fun)1449   virtual bool gate (function *fun)
1450     {
1451       return (optimize > 0 && flag_gcse_after_reload
1452 	      && optimize_function_for_speed_p (fun));
1453     }
1454 
execute(function *)1455   virtual unsigned int execute (function *) { return rest_of_handle_gcse2 (); }
1456 
1457 }; // class pass_gcse2
1458 
1459 } // anon namespace
1460 
1461 rtl_opt_pass *
make_pass_gcse2(gcc::context * ctxt)1462 make_pass_gcse2 (gcc::context *ctxt)
1463 {
1464   return new pass_gcse2 (ctxt);
1465 }
1466