1 /* Register Transfer Language (RTL) definitions for GCC
2    Copyright (C) 1987-2020 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #ifndef GCC_RTL_H
21 #define GCC_RTL_H
22 
23 /* This file is occasionally included by generator files which expect
24    machmode.h and other files to exist and would not normally have been
25    included by coretypes.h.  */
26 #ifdef GENERATOR_FILE
27 #include "real.h"
28 #include "fixed-value.h"
29 #include "statistics.h"
30 #include "vec.h"
31 #include "hash-table.h"
32 #include "hash-set.h"
33 #include "input.h"
34 #include "is-a.h"
35 #endif  /* GENERATOR_FILE */
36 
37 #include "hard-reg-set.h"
38 
39 class predefined_function_abi;
40 
41 /* Value used by some passes to "recognize" noop moves as valid
42  instructions.  */
43 #define NOOP_MOVE_INSN_CODE	INT_MAX
44 
45 /* Register Transfer Language EXPRESSIONS CODES */
46 
47 #define RTX_CODE	enum rtx_code
48 enum rtx_code  {
49 
50 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS)   ENUM ,
51 #include "rtl.def"		/* rtl expressions are documented here */
52 #undef DEF_RTL_EXPR
53 
54   LAST_AND_UNUSED_RTX_CODE};	/* A convenient way to get a value for
55 				   NUM_RTX_CODE.
56 				   Assumes default enum value assignment.  */
57 
58 /* The cast here, saves many elsewhere.  */
59 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
60 
61 /* Similar, but since generator files get more entries... */
62 #ifdef GENERATOR_FILE
63 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
64 #endif
65 
66 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
67 
68 enum rtx_class  {
69   /* We check bit 0-1 of some rtx class codes in the predicates below.  */
70 
71   /* Bit 0 = comparison if 0, arithmetic is 1
72      Bit 1 = 1 if commutative.  */
73   RTX_COMPARE,		/* 0 */
74   RTX_COMM_COMPARE,
75   RTX_BIN_ARITH,
76   RTX_COMM_ARITH,
77 
78   /* Must follow the four preceding values.  */
79   RTX_UNARY,		/* 4 */
80 
81   RTX_EXTRA,
82   RTX_MATCH,
83   RTX_INSN,
84 
85   /* Bit 0 = 1 if constant.  */
86   RTX_OBJ,		/* 8 */
87   RTX_CONST_OBJ,
88 
89   RTX_TERNARY,
90   RTX_BITFIELD_OPS,
91   RTX_AUTOINC
92 };
93 
94 #define RTX_OBJ_MASK (~1)
95 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
96 #define RTX_COMPARE_MASK (~1)
97 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
98 #define RTX_ARITHMETIC_MASK (~1)
99 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
100 #define RTX_BINARY_MASK (~3)
101 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
102 #define RTX_COMMUTATIVE_MASK (~2)
103 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
104 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
105 
106 extern const unsigned char rtx_length[NUM_RTX_CODE];
107 #define GET_RTX_LENGTH(CODE)		(rtx_length[(int) (CODE)])
108 
109 extern const char * const rtx_name[NUM_RTX_CODE];
110 #define GET_RTX_NAME(CODE)		(rtx_name[(int) (CODE)])
111 
112 extern const char * const rtx_format[NUM_RTX_CODE];
113 #define GET_RTX_FORMAT(CODE)		(rtx_format[(int) (CODE)])
114 
115 extern const enum rtx_class rtx_class[NUM_RTX_CODE];
116 #define GET_RTX_CLASS(CODE)		(rtx_class[(int) (CODE)])
117 
118 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
119    and NEXT_INSN fields).  */
120 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
121 
122 extern const unsigned char rtx_code_size[NUM_RTX_CODE];
123 extern const unsigned char rtx_next[NUM_RTX_CODE];
124 
125 /* The flags and bitfields of an ADDR_DIFF_VEC.  BASE is the base label
126    relative to which the offsets are calculated, as explained in rtl.def.  */
127 struct addr_diff_vec_flags
128 {
129   /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
130   unsigned min_align: 8;
131   /* Flags: */
132   unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC.  */
133   unsigned min_after_vec: 1;  /* minimum address target label is
134 				 after the ADDR_DIFF_VEC.  */
135   unsigned max_after_vec: 1;  /* maximum address target label is
136 				 after the ADDR_DIFF_VEC.  */
137   unsigned min_after_base: 1; /* minimum address target label is
138 				 after BASE.  */
139   unsigned max_after_base: 1; /* maximum address target label is
140 				 after BASE.  */
141   /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
142   unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned.  */
143   unsigned : 2;
144   unsigned scale : 8;
145 };
146 
147 /* Structure used to describe the attributes of a MEM.  These are hashed
148    so MEMs that the same attributes share a data structure.  This means
149    they cannot be modified in place.  */
class()150 class GTY(()) mem_attrs
151 {
152 public:
153   mem_attrs ();
154 
155   /* The expression that the MEM accesses, or null if not known.
156      This expression might be larger than the memory reference itself.
157      (In other words, the MEM might access only part of the object.)  */
158   tree expr;
159 
160   /* The offset of the memory reference from the start of EXPR.
161      Only valid if OFFSET_KNOWN_P.  */
162   poly_int64 offset;
163 
164   /* The size of the memory reference in bytes.  Only valid if
165      SIZE_KNOWN_P.  */
166   poly_int64 size;
167 
168   /* The alias set of the memory reference.  */
169   alias_set_type alias;
170 
171   /* The alignment of the reference in bits.  Always a multiple of
172      BITS_PER_UNIT.  Note that EXPR may have a stricter alignment
173      than the memory reference itself.  */
174   unsigned int align;
175 
176   /* The address space that the memory reference uses.  */
177   unsigned char addrspace;
178 
179   /* True if OFFSET is known.  */
180   bool offset_known_p;
181 
182   /* True if SIZE is known.  */
183   bool size_known_p;
184 };
185 
186 /* Structure used to describe the attributes of a REG in similar way as
187    mem_attrs does for MEM above.  Note that the OFFSET field is calculated
188    in the same way as for mem_attrs, rather than in the same way as a
189    SUBREG_BYTE.  For example, if a big-endian target stores a byte
190    object in the low part of a 4-byte register, the OFFSET field
191    will be -3 rather than 0.  */
192 
class(for_user)193 class GTY((for_user)) reg_attrs {
194 public:
195   tree decl;			/* decl corresponding to REG.  */
196   poly_int64 offset;		/* Offset from start of DECL.  */
197 };
198 
199 /* Common union for an element of an rtx.  */
200 
201 union rtunion
202 {
203   int rt_int;
204   unsigned int rt_uint;
205   poly_uint16_pod rt_subreg;
206   const char *rt_str;
207   rtx rt_rtx;
208   rtvec rt_rtvec;
209   machine_mode rt_type;
210   addr_diff_vec_flags rt_addr_diff_vec_flags;
211   struct cselib_val *rt_cselib;
212   tree rt_tree;
213   basic_block rt_bb;
214   mem_attrs *rt_mem;
215   class constant_descriptor_rtx *rt_constant;
216   struct dw_cfi_node *rt_cfi;
217 };
218 
219 /* Describes the properties of a REG.  */
220 struct GTY(()) reg_info {
221   /* The value of REGNO.  */
222   unsigned int regno;
223 
224   /* The value of REG_NREGS.  */
225   unsigned int nregs : 8;
226   unsigned int unused : 24;
227 
228   /* The value of REG_ATTRS.  */
229   reg_attrs *attrs;
230 };
231 
232 /* This structure remembers the position of a SYMBOL_REF within an
233    object_block structure.  A SYMBOL_REF only provides this information
234    if SYMBOL_REF_HAS_BLOCK_INFO_P is true.  */
235 struct GTY(()) block_symbol {
236   /* The usual SYMBOL_REF fields.  */
237   rtunion GTY ((skip)) fld[2];
238 
239   /* The block that contains this object.  */
240   struct object_block *block;
241 
242   /* The offset of this object from the start of its block.  It is negative
243      if the symbol has not yet been assigned an offset.  */
244   HOST_WIDE_INT offset;
245 };
246 
247 /* Describes a group of objects that are to be placed together in such
248    a way that their relative positions are known.  */
249 struct GTY((for_user)) object_block {
250   /* The section in which these objects should be placed.  */
251   section *sect;
252 
253   /* The alignment of the first object, measured in bits.  */
254   unsigned int alignment;
255 
256   /* The total size of the objects, measured in bytes.  */
257   HOST_WIDE_INT size;
258 
259   /* The SYMBOL_REFs for each object.  The vector is sorted in
260      order of increasing offset and the following conditions will
261      hold for each element X:
262 
263 	 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
264 	 !SYMBOL_REF_ANCHOR_P (X)
265 	 SYMBOL_REF_BLOCK (X) == [address of this structure]
266 	 SYMBOL_REF_BLOCK_OFFSET (X) >= 0.  */
267   vec<rtx, va_gc> *objects;
268 
269   /* All the anchor SYMBOL_REFs used to address these objects, sorted
270      in order of increasing offset, and then increasing TLS model.
271      The following conditions will hold for each element X in this vector:
272 
273 	 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
274 	 SYMBOL_REF_ANCHOR_P (X)
275 	 SYMBOL_REF_BLOCK (X) == [address of this structure]
276 	 SYMBOL_REF_BLOCK_OFFSET (X) >= 0.  */
277   vec<rtx, va_gc> *anchors;
278 };
279 
280 struct GTY((variable_size)) hwivec_def {
281   HOST_WIDE_INT elem[1];
282 };
283 
284 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT.  */
285 #define CWI_GET_NUM_ELEM(RTX)					\
286   ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
287 #define CWI_PUT_NUM_ELEM(RTX, NUM)					\
288   (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
289 
290 struct GTY((variable_size)) const_poly_int_def {
291   trailing_wide_ints<NUM_POLY_INT_COEFFS> coeffs;
292 };
293 
294 /* RTL expression ("rtx").  */
295 
296 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
297    field for gengtype to recognize that inheritance is occurring,
298    so that all subclasses are redirected to the traversal hook for the
299    base class.
300    However, all of the fields are in the base class, and special-casing
301    is at work.  Hence we use desc and tag of 0, generating a switch
302    statement of the form:
303      switch (0)
304        {
305        case 0: // all the work happens here
306       }
307    in order to work with the existing special-casing in gengtype.  */
308 
309 struct GTY((desc("0"), tag("0"),
310 	    chain_next ("RTX_NEXT (&%h)"),
311 	    chain_prev ("RTX_PREV (&%h)"))) rtx_def {
312   /* The kind of expression this is.  */
313   ENUM_BITFIELD(rtx_code) code: 16;
314 
315   /* The kind of value the expression has.  */
316   ENUM_BITFIELD(machine_mode) mode : 8;
317 
318   /* 1 in a MEM if we should keep the alias set for this mem unchanged
319      when we access a component.
320      1 in a JUMP_INSN if it is a crossing jump.
321      1 in a CALL_INSN if it is a sibling call.
322      1 in a SET that is for a return.
323      In a CODE_LABEL, part of the two-bit alternate entry field.
324      1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
325      1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
326      1 in a SUBREG generated by LRA for reload insns.
327      1 in a REG if this is a static chain register.
328      Dumped as "/j" in RTL dumps.  */
329   unsigned int jump : 1;
330   /* In a CODE_LABEL, part of the two-bit alternate entry field.
331      1 in a MEM if it cannot trap.
332      1 in a CALL_INSN logically equivalent to
333        ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P.
334      1 in a VALUE is SP_DERIVED_VALUE_P in cselib.c.
335      Dumped as "/c" in RTL dumps.  */
336   unsigned int call : 1;
337   /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
338      1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
339      1 in a SYMBOL_REF if it addresses something in the per-function
340      constants pool.
341      1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
342      1 in a NOTE, or EXPR_LIST for a const call.
343      1 in a JUMP_INSN of an annulling branch.
344      1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
345      1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
346      1 in a clobber temporarily created for LRA.
347      Dumped as "/u" in RTL dumps.  */
348   unsigned int unchanging : 1;
349   /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
350      1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
351      if it has been deleted.
352      1 in a REG expression if corresponds to a variable declared by the user,
353      0 for an internally generated temporary.
354      1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
355      1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
356      non-local label.
357      In a SYMBOL_REF, this flag is used for machine-specific purposes.
358      In a PREFETCH, this flag indicates that it should be considered a
359      scheduling barrier.
360      1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c.
361      Dumped as "/v" in RTL dumps.  */
362   unsigned int volatil : 1;
363   /* 1 in a REG if the register is used only in exit code a loop.
364      1 in a SUBREG expression if was generated from a variable with a
365      promoted mode.
366      1 in a CODE_LABEL if the label is used for nonlocal gotos
367      and must not be deleted even if its count is zero.
368      1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
369      together with the preceding insn.  Valid only within sched.
370      1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
371      from the target of a branch.  Valid from reorg until end of compilation;
372      cleared before used.
373 
374      The name of the field is historical.  It used to be used in MEMs
375      to record whether the MEM accessed part of a structure.
376      Dumped as "/s" in RTL dumps.  */
377   unsigned int in_struct : 1;
378   /* At the end of RTL generation, 1 if this rtx is used.  This is used for
379      copying shared structure.  See `unshare_all_rtl'.
380      In a REG, this is not needed for that purpose, and used instead
381      in `leaf_renumber_regs_insn'.
382      1 in a SYMBOL_REF, means that emit_library_call
383      has used it as the function.
384      1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
385      1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c.  */
386   unsigned int used : 1;
387   /* 1 in an INSN or a SET if this rtx is related to the call frame,
388      either changing how we compute the frame address or saving and
389      restoring registers in the prologue and epilogue.
390      1 in a REG or MEM if it is a pointer.
391      1 in a SYMBOL_REF if it addresses something in the per-function
392      constant string pool.
393      1 in a VALUE is VALUE_CHANGED in var-tracking.c.
394      Dumped as "/f" in RTL dumps.  */
395   unsigned frame_related : 1;
396   /* 1 in a REG or PARALLEL that is the current function's return value.
397      1 in a SYMBOL_REF for a weak symbol.
398      1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
399      1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
400      1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c.
401      Dumped as "/i" in RTL dumps.  */
402   unsigned return_val : 1;
403 
404   union {
405     /* The final union field is aligned to 64 bits on LP64 hosts,
406        giving a 32-bit gap after the fields above.  We optimize the
407        layout for that case and use the gap for extra code-specific
408        information.  */
409 
410     /* The ORIGINAL_REGNO of a REG.  */
411     unsigned int original_regno;
412 
413     /* The INSN_UID of an RTX_INSN-class code.  */
414     int insn_uid;
415 
416     /* The SYMBOL_REF_FLAGS of a SYMBOL_REF.  */
417     unsigned int symbol_ref_flags;
418 
419     /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION.  */
420     enum var_init_status var_location_status;
421 
422     /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
423        HOST_WIDE_INTs in the hwivec_def.  */
424     unsigned int num_elem;
425 
426     /* Information about a CONST_VECTOR.  */
427     struct
428     {
429       /* The value of CONST_VECTOR_NPATTERNS.  */
430       unsigned int npatterns : 16;
431 
432       /* The value of CONST_VECTOR_NELTS_PER_PATTERN.  */
433       unsigned int nelts_per_pattern : 8;
434 
435       /* For future expansion.  */
436       unsigned int unused : 8;
437     } const_vector;
438   } GTY ((skip)) u2;
439 
440   /* The first element of the operands of this rtx.
441      The number of operands and their types are controlled
442      by the `code' field, according to rtl.def.  */
443   union u {
444     rtunion fld[1];
445     HOST_WIDE_INT hwint[1];
446     struct reg_info reg;
447     struct block_symbol block_sym;
448     struct real_value rv;
449     struct fixed_value fv;
450     struct hwivec_def hwiv;
451     struct const_poly_int_def cpi;
452   } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
453 };
454 
455 /* A node for constructing singly-linked lists of rtx.  */
456 
457 struct GTY(()) rtx_expr_list : public rtx_def
458 {
459 private:
460   /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST).  */
461 
462 public:
463   /* Get next in list.  */
464   rtx_expr_list *next () const;
465 
466   /* Get at the underlying rtx.  */
467   rtx element () const;
468 };
469 
470 template <>
471 template <>
472 inline bool
test(rtx rt)473 is_a_helper <rtx_expr_list *>::test (rtx rt)
474 {
475   return rt->code == EXPR_LIST;
476 }
477 
478 struct GTY(()) rtx_insn_list : public rtx_def
479 {
480 private:
481   /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
482 
483      This is an instance of:
484 
485        DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
486 
487      i.e. a node for constructing singly-linked lists of rtx_insn *, where
488      the list is "external" to the insn (as opposed to the doubly-linked
489      list embedded within rtx_insn itself).  */
490 
491 public:
492   /* Get next in list.  */
493   rtx_insn_list *next () const;
494 
495   /* Get at the underlying instruction.  */
496   rtx_insn *insn () const;
497 
498 };
499 
500 template <>
501 template <>
502 inline bool
test(rtx rt)503 is_a_helper <rtx_insn_list *>::test (rtx rt)
504 {
505   return rt->code == INSN_LIST;
506 }
507 
508 /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
509    typically (but not always) of rtx_insn *, used in the late passes.  */
510 
511 struct GTY(()) rtx_sequence : public rtx_def
512 {
513 private:
514   /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE).  */
515 
516 public:
517   /* Get number of elements in sequence.  */
518   int len () const;
519 
520   /* Get i-th element of the sequence.  */
521   rtx element (int index) const;
522 
523   /* Get i-th element of the sequence, with a checked cast to
524      rtx_insn *.  */
525   rtx_insn *insn (int index) const;
526 };
527 
528 template <>
529 template <>
530 inline bool
test(rtx rt)531 is_a_helper <rtx_sequence *>::test (rtx rt)
532 {
533   return rt->code == SEQUENCE;
534 }
535 
536 template <>
537 template <>
538 inline bool
test(const_rtx rt)539 is_a_helper <const rtx_sequence *>::test (const_rtx rt)
540 {
541   return rt->code == SEQUENCE;
542 }
543 
544 struct GTY(()) rtx_insn : public rtx_def
545 {
546 public:
547   /* No extra fields, but adds the invariant:
548 
549      (INSN_P (X)
550       || NOTE_P (X)
551       || JUMP_TABLE_DATA_P (X)
552       || BARRIER_P (X)
553       || LABEL_P (X))
554 
555      i.e. that we must be able to use the following:
556       INSN_UID ()
557       NEXT_INSN ()
558       PREV_INSN ()
559     i.e. we have an rtx that has an INSN_UID field and can be part of
560     a linked list of insns.
561   */
562 
563   /* Returns true if this insn has been deleted.  */
564 
deletedrtx_insn565   bool deleted () const { return volatil; }
566 
567   /* Mark this insn as deleted.  */
568 
set_deletedrtx_insn569   void set_deleted () { volatil = true; }
570 
571   /* Mark this insn as not deleted.  */
572 
set_undeletedrtx_insn573   void set_undeleted () { volatil = false; }
574 };
575 
576 /* Subclasses of rtx_insn.  */
577 
578 struct GTY(()) rtx_debug_insn : public rtx_insn
579 {
580   /* No extra fields, but adds the invariant:
581        DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
582      i.e. an annotation for tracking variable assignments.
583 
584      This is an instance of:
585        DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
586      from rtl.def.  */
587 };
588 
589 struct GTY(()) rtx_nonjump_insn : public rtx_insn
590 {
591   /* No extra fields, but adds the invariant:
592        NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
593      i.e an instruction that cannot jump.
594 
595      This is an instance of:
596        DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
597      from rtl.def.  */
598 };
599 
600 struct GTY(()) rtx_jump_insn : public rtx_insn
601 {
602 public:
603   /* No extra fields, but adds the invariant:
604        JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
605      i.e. an instruction that can possibly jump.
606 
607      This is an instance of:
608        DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
609      from rtl.def.  */
610 
611   /* Returns jump target of this instruction.  The returned value is not
612      necessarily a code label: it may also be a RETURN or SIMPLE_RETURN
613      expression.  Also, when the code label is marked "deleted", it is
614      replaced by a NOTE.  In some cases the value is NULL_RTX.  */
615 
616   inline rtx jump_label () const;
617 
618   /* Returns jump target cast to rtx_code_label *.  */
619 
620   inline rtx_code_label *jump_target () const;
621 
622   /* Set jump target.  */
623 
624   inline void set_jump_target (rtx_code_label *);
625 };
626 
627 struct GTY(()) rtx_call_insn : public rtx_insn
628 {
629   /* No extra fields, but adds the invariant:
630        CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
631      i.e. an instruction that can possibly call a subroutine
632      but which will not change which instruction comes next
633      in the current function.
634 
635      This is an instance of:
636        DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
637      from rtl.def.  */
638 };
639 
640 struct GTY(()) rtx_jump_table_data : public rtx_insn
641 {
642   /* No extra fields, but adds the invariant:
643        JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
644      i.e. a data for a jump table, considered an instruction for
645      historical reasons.
646 
647      This is an instance of:
648        DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
649      from rtl.def.  */
650 
651   /* This can be either:
652 
653        (a) a table of absolute jumps, in which case PATTERN (this) is an
654            ADDR_VEC with arg 0 a vector of labels, or
655 
656        (b) a table of relative jumps (e.g. for -fPIC), in which case
657            PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
658 	   arg 1 the vector of labels.
659 
660      This method gets the underlying vec.  */
661 
662   inline rtvec get_labels () const;
663   inline scalar_int_mode get_data_mode () const;
664 };
665 
666 struct GTY(()) rtx_barrier : public rtx_insn
667 {
668   /* No extra fields, but adds the invariant:
669        BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
670      i.e. a marker that indicates that control will not flow through.
671 
672      This is an instance of:
673        DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
674      from rtl.def.  */
675 };
676 
677 struct GTY(()) rtx_code_label : public rtx_insn
678 {
679   /* No extra fields, but adds the invariant:
680        LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
681      i.e. a label in the assembler.
682 
683      This is an instance of:
684        DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
685      from rtl.def.  */
686 };
687 
688 struct GTY(()) rtx_note : public rtx_insn
689 {
690   /* No extra fields, but adds the invariant:
691        NOTE_P(X) aka (GET_CODE (X) == NOTE)
692      i.e. a note about the corresponding source code.
693 
694      This is an instance of:
695        DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
696      from rtl.def.  */
697 };
698 
699 /* The size in bytes of an rtx header (code, mode and flags).  */
700 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
701 
702 /* The size in bytes of an rtx with code CODE.  */
703 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
704 
705 #define NULL_RTX (rtx) 0
706 
707 /* The "next" and "previous" RTX, relative to this one.  */
708 
709 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL			\
710 		     : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
711 
712 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
713  */
714 #define RTX_PREV(X) ((INSN_P (X)       			\
715                       || NOTE_P (X)       		\
716                       || JUMP_TABLE_DATA_P (X)		\
717                       || BARRIER_P (X)        		\
718                       || LABEL_P (X))    		\
719 		     && PREV_INSN (as_a <rtx_insn *> (X)) != NULL	\
720                      && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
721                      ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
722 
723 /* Define macros to access the `code' field of the rtx.  */
724 
725 #define GET_CODE(RTX)	    ((enum rtx_code) (RTX)->code)
726 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
727 
728 #define GET_MODE(RTX)		((machine_mode) (RTX)->mode)
729 #define PUT_MODE_RAW(RTX, MODE)	((RTX)->mode = (MODE))
730 
731 /* RTL vector.  These appear inside RTX's when there is a need
732    for a variable number of things.  The principle use is inside
733    PARALLEL expressions.  */
734 
735 struct GTY(()) rtvec_def {
736   int num_elem;		/* number of elements */
737   rtx GTY ((length ("%h.num_elem"))) elem[1];
738 };
739 
740 #define NULL_RTVEC (rtvec) 0
741 
742 #define GET_NUM_ELEM(RTVEC)		((RTVEC)->num_elem)
743 #define PUT_NUM_ELEM(RTVEC, NUM)	((RTVEC)->num_elem = (NUM))
744 
745 /* Predicate yielding nonzero iff X is an rtx for a register.  */
746 #define REG_P(X) (GET_CODE (X) == REG)
747 
748 /* Predicate yielding nonzero iff X is an rtx for a memory location.  */
749 #define MEM_P(X) (GET_CODE (X) == MEM)
750 
751 #if TARGET_SUPPORTS_WIDE_INT
752 
753 /* Match CONST_*s that can represent compile-time constant integers.  */
754 #define CASE_CONST_SCALAR_INT \
755    case CONST_INT: \
756    case CONST_WIDE_INT
757 
758 /* Match CONST_*s for which pointer equality corresponds to value
759    equality.  */
760 #define CASE_CONST_UNIQUE \
761    case CONST_INT: \
762    case CONST_WIDE_INT: \
763    case CONST_POLY_INT: \
764    case CONST_DOUBLE: \
765    case CONST_FIXED
766 
767 /* Match all CONST_* rtxes.  */
768 #define CASE_CONST_ANY \
769    case CONST_INT: \
770    case CONST_WIDE_INT: \
771    case CONST_POLY_INT: \
772    case CONST_DOUBLE: \
773    case CONST_FIXED: \
774    case CONST_VECTOR
775 
776 #else
777 
778 /* Match CONST_*s that can represent compile-time constant integers.  */
779 #define CASE_CONST_SCALAR_INT \
780    case CONST_INT: \
781    case CONST_DOUBLE
782 
783 /* Match CONST_*s for which pointer equality corresponds to value
784    equality.  */
785 #define CASE_CONST_UNIQUE \
786    case CONST_INT: \
787    case CONST_DOUBLE: \
788    case CONST_FIXED
789 
790 /* Match all CONST_* rtxes.  */
791 #define CASE_CONST_ANY \
792    case CONST_INT: \
793    case CONST_DOUBLE: \
794    case CONST_FIXED: \
795    case CONST_VECTOR
796 #endif
797 
798 /* Predicate yielding nonzero iff X is an rtx for a constant integer.  */
799 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
800 
801 /* Predicate yielding nonzero iff X is an rtx for a constant integer.  */
802 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
803 
804 /* Predicate yielding nonzero iff X is an rtx for a polynomial constant
805    integer.  */
806 #define CONST_POLY_INT_P(X) \
807   (NUM_POLY_INT_COEFFS > 1 && GET_CODE (X) == CONST_POLY_INT)
808 
809 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point.  */
810 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
811 
812 /* Predicate yielding true iff X is an rtx for a double-int
813    or floating point constant.  */
814 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
815 
816 /* Predicate yielding true iff X is an rtx for a double-int.  */
817 #define CONST_DOUBLE_AS_INT_P(X) \
818   (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
819 
820 /* Predicate yielding true iff X is an rtx for a integer const.  */
821 #if TARGET_SUPPORTS_WIDE_INT
822 #define CONST_SCALAR_INT_P(X) \
823   (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
824 #else
825 #define CONST_SCALAR_INT_P(X) \
826   (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
827 #endif
828 
829 /* Predicate yielding true iff X is an rtx for a double-int.  */
830 #define CONST_DOUBLE_AS_FLOAT_P(X) \
831   (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
832 
833 /* Predicate yielding nonzero iff X is a label insn.  */
834 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
835 
836 /* Predicate yielding nonzero iff X is a jump insn.  */
837 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
838 
839 /* Predicate yielding nonzero iff X is a call insn.  */
840 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
841 
842 /* Predicate yielding nonzero iff X is an insn that cannot jump.  */
843 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
844 
845 /* Predicate yielding nonzero iff X is a debug note/insn.  */
846 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
847 
848 /* Predicate yielding nonzero iff X is an insn that is not a debug insn.  */
849 #define NONDEBUG_INSN_P(X) (NONJUMP_INSN_P (X) || JUMP_P (X) || CALL_P (X))
850 
851 /* Nonzero if DEBUG_MARKER_INSN_P may possibly hold.  */
852 #define MAY_HAVE_DEBUG_MARKER_INSNS debug_nonbind_markers_p
853 /* Nonzero if DEBUG_BIND_INSN_P may possibly hold.  */
854 #define MAY_HAVE_DEBUG_BIND_INSNS flag_var_tracking_assignments
855 /* Nonzero if DEBUG_INSN_P may possibly hold.  */
856 #define MAY_HAVE_DEBUG_INSNS					\
857   (MAY_HAVE_DEBUG_MARKER_INSNS || MAY_HAVE_DEBUG_BIND_INSNS)
858 
859 /* Predicate yielding nonzero iff X is a real insn.  */
860 #define INSN_P(X) (NONDEBUG_INSN_P (X) || DEBUG_INSN_P (X))
861 
862 /* Predicate yielding nonzero iff X is a note insn.  */
863 #define NOTE_P(X) (GET_CODE (X) == NOTE)
864 
865 /* Predicate yielding nonzero iff X is a barrier insn.  */
866 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
867 
868 /* Predicate yielding nonzero iff X is a data for a jump table.  */
869 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
870 
871 /* Predicate yielding nonzero iff RTX is a subreg.  */
872 #define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG)
873 
874 /* Predicate yielding true iff RTX is a symbol ref.  */
875 #define SYMBOL_REF_P(RTX) (GET_CODE (RTX) == SYMBOL_REF)
876 
877 template <>
878 template <>
879 inline bool
test(rtx rt)880 is_a_helper <rtx_insn *>::test (rtx rt)
881 {
882   return (INSN_P (rt)
883 	  || NOTE_P (rt)
884 	  || JUMP_TABLE_DATA_P (rt)
885 	  || BARRIER_P (rt)
886 	  || LABEL_P (rt));
887 }
888 
889 template <>
890 template <>
891 inline bool
test(const_rtx rt)892 is_a_helper <const rtx_insn *>::test (const_rtx rt)
893 {
894   return (INSN_P (rt)
895 	  || NOTE_P (rt)
896 	  || JUMP_TABLE_DATA_P (rt)
897 	  || BARRIER_P (rt)
898 	  || LABEL_P (rt));
899 }
900 
901 template <>
902 template <>
903 inline bool
test(rtx rt)904 is_a_helper <rtx_debug_insn *>::test (rtx rt)
905 {
906   return DEBUG_INSN_P (rt);
907 }
908 
909 template <>
910 template <>
911 inline bool
test(rtx rt)912 is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
913 {
914   return NONJUMP_INSN_P (rt);
915 }
916 
917 template <>
918 template <>
919 inline bool
test(rtx rt)920 is_a_helper <rtx_jump_insn *>::test (rtx rt)
921 {
922   return JUMP_P (rt);
923 }
924 
925 template <>
926 template <>
927 inline bool
test(rtx_insn * insn)928 is_a_helper <rtx_jump_insn *>::test (rtx_insn *insn)
929 {
930   return JUMP_P (insn);
931 }
932 
933 template <>
934 template <>
935 inline bool
test(rtx rt)936 is_a_helper <rtx_call_insn *>::test (rtx rt)
937 {
938   return CALL_P (rt);
939 }
940 
941 template <>
942 template <>
943 inline bool
test(rtx_insn * insn)944 is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
945 {
946   return CALL_P (insn);
947 }
948 
949 template <>
950 template <>
951 inline bool
test(rtx rt)952 is_a_helper <rtx_jump_table_data *>::test (rtx rt)
953 {
954   return JUMP_TABLE_DATA_P (rt);
955 }
956 
957 template <>
958 template <>
959 inline bool
test(rtx_insn * insn)960 is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
961 {
962   return JUMP_TABLE_DATA_P (insn);
963 }
964 
965 template <>
966 template <>
967 inline bool
test(rtx rt)968 is_a_helper <rtx_barrier *>::test (rtx rt)
969 {
970   return BARRIER_P (rt);
971 }
972 
973 template <>
974 template <>
975 inline bool
test(rtx rt)976 is_a_helper <rtx_code_label *>::test (rtx rt)
977 {
978   return LABEL_P (rt);
979 }
980 
981 template <>
982 template <>
983 inline bool
test(rtx_insn * insn)984 is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
985 {
986   return LABEL_P (insn);
987 }
988 
989 template <>
990 template <>
991 inline bool
test(rtx rt)992 is_a_helper <rtx_note *>::test (rtx rt)
993 {
994   return NOTE_P (rt);
995 }
996 
997 template <>
998 template <>
999 inline bool
test(rtx_insn * insn)1000 is_a_helper <rtx_note *>::test (rtx_insn *insn)
1001 {
1002   return NOTE_P (insn);
1003 }
1004 
1005 /* Predicate yielding nonzero iff X is a return or simple_return.  */
1006 #define ANY_RETURN_P(X) \
1007   (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
1008 
1009 /* 1 if X is a unary operator.  */
1010 
1011 #define UNARY_P(X)   \
1012   (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
1013 
1014 /* 1 if X is a binary operator.  */
1015 
1016 #define BINARY_P(X)   \
1017   ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
1018 
1019 /* 1 if X is an arithmetic operator.  */
1020 
1021 #define ARITHMETIC_P(X)   \
1022   ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK)			\
1023     == RTX_ARITHMETIC_RESULT)
1024 
1025 /* 1 if X is an arithmetic operator.  */
1026 
1027 #define COMMUTATIVE_ARITH_P(X)   \
1028   (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
1029 
1030 /* 1 if X is a commutative arithmetic operator or a comparison operator.
1031    These two are sometimes selected together because it is possible to
1032    swap the two operands.  */
1033 
1034 #define SWAPPABLE_OPERANDS_P(X)   \
1035   ((1 << GET_RTX_CLASS (GET_CODE (X)))					\
1036     & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE)			\
1037        | (1 << RTX_COMPARE)))
1038 
1039 /* 1 if X is a non-commutative operator.  */
1040 
1041 #define NON_COMMUTATIVE_P(X)   \
1042   ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK)		\
1043     == RTX_NON_COMMUTATIVE_RESULT)
1044 
1045 /* 1 if X is a commutative operator on integers.  */
1046 
1047 #define COMMUTATIVE_P(X)   \
1048   ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK)		\
1049     == RTX_COMMUTATIVE_RESULT)
1050 
1051 /* 1 if X is a relational operator.  */
1052 
1053 #define COMPARISON_P(X)   \
1054   ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
1055 
1056 /* 1 if X is a constant value that is an integer.  */
1057 
1058 #define CONSTANT_P(X)   \
1059   (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
1060 
1061 /* 1 if X is a LABEL_REF.  */
1062 #define LABEL_REF_P(X)  \
1063   (GET_CODE (X) == LABEL_REF)
1064 
1065 /* 1 if X can be used to represent an object.  */
1066 #define OBJECT_P(X)							\
1067   ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
1068 
1069 /* General accessor macros for accessing the fields of an rtx.  */
1070 
1071 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
1072 /* The bit with a star outside the statement expr and an & inside is
1073    so that N can be evaluated only once.  */
1074 #define RTL_CHECK1(RTX, N, C1) __extension__				\
1075 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
1076      const enum rtx_code _code = GET_CODE (_rtx);			\
1077      if (_n < 0 || _n >= GET_RTX_LENGTH (_code))			\
1078        rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__,		\
1079 				__FUNCTION__);				\
1080      if (GET_RTX_FORMAT (_code)[_n] != C1)				\
1081        rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__,	\
1082 			       __FUNCTION__);				\
1083      &_rtx->u.fld[_n]; }))
1084 
1085 #define RTL_CHECK2(RTX, N, C1, C2) __extension__			\
1086 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
1087      const enum rtx_code _code = GET_CODE (_rtx);			\
1088      if (_n < 0 || _n >= GET_RTX_LENGTH (_code))			\
1089        rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__,		\
1090 				__FUNCTION__);				\
1091      if (GET_RTX_FORMAT (_code)[_n] != C1				\
1092 	 && GET_RTX_FORMAT (_code)[_n] != C2)				\
1093        rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__,	\
1094 			       __FUNCTION__);				\
1095      &_rtx->u.fld[_n]; }))
1096 
1097 #define RTL_CHECKC1(RTX, N, C) __extension__				\
1098 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
1099      if (GET_CODE (_rtx) != (C))					\
1100        rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__,		\
1101 			       __FUNCTION__);				\
1102      &_rtx->u.fld[_n]; }))
1103 
1104 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__			\
1105 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
1106      const enum rtx_code _code = GET_CODE (_rtx);			\
1107      if (_code != (C1) && _code != (C2))				\
1108        rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__,	\
1109 			       __FUNCTION__); \
1110      &_rtx->u.fld[_n]; }))
1111 
1112 #define RTL_CHECKC3(RTX, N, C1, C2, C3) __extension__			\
1113 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
1114      const enum rtx_code _code = GET_CODE (_rtx);			\
1115      if (_code != (C1) && _code != (C2) && _code != (C3))		\
1116        rtl_check_failed_code3 (_rtx, (C1), (C2), (C3), __FILE__,	\
1117 			       __LINE__, __FUNCTION__);			\
1118      &_rtx->u.fld[_n]; }))
1119 
1120 #define RTVEC_ELT(RTVEC, I) __extension__				\
1121 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I);	\
1122      if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec))				\
1123        rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__,	\
1124 				  __FUNCTION__);			\
1125      &_rtvec->elem[_i]; }))
1126 
1127 #define XWINT(RTX, N) __extension__					\
1128 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
1129      const enum rtx_code _code = GET_CODE (_rtx);			\
1130      if (_n < 0 || _n >= GET_RTX_LENGTH (_code))			\
1131        rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__,		\
1132 				__FUNCTION__);				\
1133      if (GET_RTX_FORMAT (_code)[_n] != 'w')				\
1134        rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__,	\
1135 			       __FUNCTION__);				\
1136      &_rtx->u.hwint[_n]; }))
1137 
1138 #define CWI_ELT(RTX, I) __extension__					\
1139 (*({ __typeof (RTX) const _cwi = (RTX);					\
1140      int _max = CWI_GET_NUM_ELEM (_cwi);				\
1141      const int _i = (I);						\
1142      if (_i < 0 || _i >= _max)						\
1143        cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__,		\
1144 				__FUNCTION__);				\
1145      &_cwi->u.hwiv.elem[_i]; }))
1146 
1147 #define XCWINT(RTX, N, C) __extension__					\
1148 (*({ __typeof (RTX) const _rtx = (RTX);					\
1149      if (GET_CODE (_rtx) != (C))					\
1150        rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__,		\
1151 			       __FUNCTION__);				\
1152      &_rtx->u.hwint[N]; }))
1153 
1154 #define XCMWINT(RTX, N, C, M) __extension__				\
1155 (*({ __typeof (RTX) const _rtx = (RTX);					\
1156      if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M))		\
1157        rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__,	\
1158 				   __LINE__, __FUNCTION__);		\
1159      &_rtx->u.hwint[N]; }))
1160 
1161 #define XCNMPRV(RTX, C, M) __extension__				\
1162 ({ __typeof (RTX) const _rtx = (RTX);					\
1163    if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M))		\
1164      rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__,	\
1165 				 __LINE__, __FUNCTION__);		\
1166    &_rtx->u.rv; })
1167 
1168 #define XCNMPFV(RTX, C, M) __extension__				\
1169 ({ __typeof (RTX) const _rtx = (RTX);					\
1170    if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M))		\
1171      rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__,	\
1172 				 __LINE__, __FUNCTION__);		\
1173    &_rtx->u.fv; })
1174 
1175 #define REG_CHECK(RTX) __extension__					\
1176 ({ __typeof (RTX) const _rtx = (RTX);					\
1177    if (GET_CODE (_rtx) != REG)						\
1178      rtl_check_failed_code1 (_rtx, REG,  __FILE__, __LINE__,		\
1179 			     __FUNCTION__);				\
1180    &_rtx->u.reg; })
1181 
1182 #define BLOCK_SYMBOL_CHECK(RTX) __extension__				\
1183 ({ __typeof (RTX) const _symbol = (RTX);				\
1184    const unsigned int flags = SYMBOL_REF_FLAGS (_symbol);		\
1185    if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0)			\
1186      rtl_check_failed_block_symbol (__FILE__, __LINE__,			\
1187 				    __FUNCTION__);			\
1188    &_symbol->u.block_sym; })
1189 
1190 #define HWIVEC_CHECK(RTX,C) __extension__				\
1191 ({ __typeof (RTX) const _symbol = (RTX);				\
1192    RTL_CHECKC1 (_symbol, 0, C);						\
1193    &_symbol->u.hwiv; })
1194 
1195 extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1196 				     const char *)
1197     ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1198 extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1199 				    const char *)
1200     ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1201 extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1202 				    int, const char *)
1203     ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1204 extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1205 				    int, const char *)
1206     ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1207 extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1208 				    const char *, int, const char *)
1209     ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1210 extern void rtl_check_failed_code3 (const_rtx, enum rtx_code, enum rtx_code,
1211 				    enum rtx_code, const char *, int,
1212 				    const char *)
1213     ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1214 extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, machine_mode,
1215 					bool, const char *, int, const char *)
1216     ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1217 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1218     ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1219 extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1220 				     const char *)
1221     ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1222 extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1223 				       const char *)
1224     ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1225 
1226 #else   /* not ENABLE_RTL_CHECKING */
1227 
1228 #define RTL_CHECK1(RTX, N, C1)      ((RTX)->u.fld[N])
1229 #define RTL_CHECK2(RTX, N, C1, C2)  ((RTX)->u.fld[N])
1230 #define RTL_CHECKC1(RTX, N, C)	    ((RTX)->u.fld[N])
1231 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1232 #define RTL_CHECKC3(RTX, N, C1, C2, C3) ((RTX)->u.fld[N])
1233 #define RTVEC_ELT(RTVEC, I)	    ((RTVEC)->elem[I])
1234 #define XWINT(RTX, N)		    ((RTX)->u.hwint[N])
1235 #define CWI_ELT(RTX, I)		    ((RTX)->u.hwiv.elem[I])
1236 #define XCWINT(RTX, N, C)	    ((RTX)->u.hwint[N])
1237 #define XCMWINT(RTX, N, C, M)	    ((RTX)->u.hwint[N])
1238 #define XCNMWINT(RTX, N, C, M)	    ((RTX)->u.hwint[N])
1239 #define XCNMPRV(RTX, C, M)	    (&(RTX)->u.rv)
1240 #define XCNMPFV(RTX, C, M)	    (&(RTX)->u.fv)
1241 #define REG_CHECK(RTX)		    (&(RTX)->u.reg)
1242 #define BLOCK_SYMBOL_CHECK(RTX)	    (&(RTX)->u.block_sym)
1243 #define HWIVEC_CHECK(RTX,C)	    (&(RTX)->u.hwiv)
1244 
1245 #endif
1246 
1247 /* General accessor macros for accessing the flags of an rtx.  */
1248 
1249 /* Access an individual rtx flag, with no checking of any kind.  */
1250 #define RTX_FLAG(RTX, FLAG)	((RTX)->FLAG)
1251 
1252 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1253 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__			\
1254 ({ __typeof (RTX) const _rtx = (RTX);					\
1255    if (GET_CODE (_rtx) != C1)						\
1256      rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
1257 			     __FUNCTION__);				\
1258    _rtx; })
1259 
1260 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__		\
1261 ({ __typeof (RTX) const _rtx = (RTX);					\
1262    if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2)			\
1263      rtl_check_failed_flag  (NAME,_rtx, __FILE__, __LINE__,		\
1264 			      __FUNCTION__);				\
1265    _rtx; })
1266 
1267 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__		\
1268 ({ __typeof (RTX) const _rtx = (RTX);					\
1269    if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2			\
1270        && GET_CODE (_rtx) != C3)					\
1271      rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
1272 			     __FUNCTION__);				\
1273    _rtx; })
1274 
1275 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__	\
1276 ({ __typeof (RTX) const _rtx = (RTX);					\
1277    if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2			\
1278        && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4)		\
1279      rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
1280 			      __FUNCTION__);				\
1281    _rtx; })
1282 
1283 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__	\
1284 ({ __typeof (RTX) const _rtx = (RTX);					\
1285    if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2			\
1286        && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4		\
1287        && GET_CODE (_rtx) != C5)					\
1288      rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
1289 			     __FUNCTION__);				\
1290    _rtx; })
1291 
1292 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6)		\
1293   __extension__								\
1294 ({ __typeof (RTX) const _rtx = (RTX);					\
1295    if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2			\
1296        && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4		\
1297        && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6)		\
1298      rtl_check_failed_flag  (NAME,_rtx, __FILE__, __LINE__,		\
1299 			     __FUNCTION__);				\
1300    _rtx; })
1301 
1302 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7)		\
1303   __extension__								\
1304 ({ __typeof (RTX) const _rtx = (RTX);					\
1305    if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2			\
1306        && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4		\
1307        && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6		\
1308        && GET_CODE (_rtx) != C7)					\
1309      rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
1310 			     __FUNCTION__);				\
1311    _rtx; })
1312 
1313 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) 				\
1314   __extension__								\
1315 ({ __typeof (RTX) const _rtx = (RTX);					\
1316    if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx)))				\
1317      rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__,		\
1318 			    __FUNCTION__);				\
1319    _rtx; })
1320 
1321 extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1322 				   int, const char *)
1323     ATTRIBUTE_NORETURN ATTRIBUTE_COLD
1324     ;
1325 
1326 #else	/* not ENABLE_RTL_FLAG_CHECKING */
1327 
1328 #define RTL_FLAG_CHECK1(NAME, RTX, C1)					(RTX)
1329 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2)				(RTX)
1330 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3)				(RTX)
1331 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4)			(RTX)
1332 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5)			(RTX)
1333 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6)		(RTX)
1334 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7)		(RTX)
1335 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) 				(RTX)
1336 #endif
1337 
1338 #define XINT(RTX, N)	(RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1339 #define XUINT(RTX, N)   (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1340 #define XSTR(RTX, N)	(RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1341 #define XEXP(RTX, N)	(RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1342 #define XVEC(RTX, N)	(RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1343 #define XMODE(RTX, N)	(RTL_CHECK1 (RTX, N, 'M').rt_type)
1344 #define XTREE(RTX, N)   (RTL_CHECK1 (RTX, N, 't').rt_tree)
1345 #define XBBDEF(RTX, N)	(RTL_CHECK1 (RTX, N, 'B').rt_bb)
1346 #define XTMPL(RTX, N)	(RTL_CHECK1 (RTX, N, 'T').rt_str)
1347 #define XCFI(RTX, N)	(RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1348 
1349 #define XVECEXP(RTX, N, M)	RTVEC_ELT (XVEC (RTX, N), M)
1350 #define XVECLEN(RTX, N)		GET_NUM_ELEM (XVEC (RTX, N))
1351 
1352 /* These are like XINT, etc. except that they expect a '0' field instead
1353    of the normal type code.  */
1354 
1355 #define X0INT(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_int)
1356 #define X0UINT(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_uint)
1357 #define X0STR(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_str)
1358 #define X0EXP(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1359 #define X0VEC(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1360 #define X0MODE(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_type)
1361 #define X0TREE(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_tree)
1362 #define X0BBDEF(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_bb)
1363 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1364 #define X0CSELIB(RTX, N)   (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1365 #define X0MEMATTR(RTX, N)  (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1366 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1367 
1368 /* Access a '0' field with any type.  */
1369 #define X0ANY(RTX, N)	   RTL_CHECK1 (RTX, N, '0')
1370 
1371 #define XCINT(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_int)
1372 #define XCUINT(RTX, N, C)     (RTL_CHECKC1 (RTX, N, C).rt_uint)
1373 #define XCSUBREG(RTX, N, C)   (RTL_CHECKC1 (RTX, N, C).rt_subreg)
1374 #define XCSTR(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_str)
1375 #define XCEXP(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1376 #define XCVEC(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1377 #define XCMODE(RTX, N, C)     (RTL_CHECKC1 (RTX, N, C).rt_type)
1378 #define XCTREE(RTX, N, C)     (RTL_CHECKC1 (RTX, N, C).rt_tree)
1379 #define XCBBDEF(RTX, N, C)    (RTL_CHECKC1 (RTX, N, C).rt_bb)
1380 #define XCCFI(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1381 #define XCCSELIB(RTX, N, C)   (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1382 
1383 #define XCVECEXP(RTX, N, M, C)	RTVEC_ELT (XCVEC (RTX, N, C), M)
1384 #define XCVECLEN(RTX, N, C)	GET_NUM_ELEM (XCVEC (RTX, N, C))
1385 
1386 #define XC2EXP(RTX, N, C1, C2)      (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1387 #define XC3EXP(RTX, N, C1, C2, C3)  (RTL_CHECKC3 (RTX, N, C1, C2, C3).rt_rtx)
1388 
1389 
1390 /* Methods of rtx_expr_list.  */
1391 
next()1392 inline rtx_expr_list *rtx_expr_list::next () const
1393 {
1394   rtx tmp = XEXP (this, 1);
1395   return safe_as_a <rtx_expr_list *> (tmp);
1396 }
1397 
element()1398 inline rtx rtx_expr_list::element () const
1399 {
1400   return XEXP (this, 0);
1401 }
1402 
1403 /* Methods of rtx_insn_list.  */
1404 
next()1405 inline rtx_insn_list *rtx_insn_list::next () const
1406 {
1407   rtx tmp = XEXP (this, 1);
1408   return safe_as_a <rtx_insn_list *> (tmp);
1409 }
1410 
insn()1411 inline rtx_insn *rtx_insn_list::insn () const
1412 {
1413   rtx tmp = XEXP (this, 0);
1414   return safe_as_a <rtx_insn *> (tmp);
1415 }
1416 
1417 /* Methods of rtx_sequence.  */
1418 
len()1419 inline int rtx_sequence::len () const
1420 {
1421   return XVECLEN (this, 0);
1422 }
1423 
element(int index)1424 inline rtx rtx_sequence::element (int index) const
1425 {
1426   return XVECEXP (this, 0, index);
1427 }
1428 
insn(int index)1429 inline rtx_insn *rtx_sequence::insn (int index) const
1430 {
1431   return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1432 }
1433 
1434 /* ACCESS MACROS for particular fields of insns.  */
1435 
1436 /* Holds a unique number for each insn.
1437    These are not necessarily sequentially increasing.  */
INSN_UID(const_rtx insn)1438 inline int INSN_UID (const_rtx insn)
1439 {
1440   return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1441 				    (insn))->u2.insn_uid;
1442 }
INSN_UID(rtx insn)1443 inline int& INSN_UID (rtx insn)
1444 {
1445   return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1446 				    (insn))->u2.insn_uid;
1447 }
1448 
1449 /* Chain insns together in sequence.  */
1450 
1451 /* For now these are split in two: an rvalue form:
1452      PREV_INSN/NEXT_INSN
1453    and an lvalue form:
1454      SET_NEXT_INSN/SET_PREV_INSN.  */
1455 
PREV_INSN(const rtx_insn * insn)1456 inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1457 {
1458   rtx prev = XEXP (insn, 0);
1459   return safe_as_a <rtx_insn *> (prev);
1460 }
1461 
SET_PREV_INSN(rtx_insn * insn)1462 inline rtx& SET_PREV_INSN (rtx_insn *insn)
1463 {
1464   return XEXP (insn, 0);
1465 }
1466 
NEXT_INSN(const rtx_insn * insn)1467 inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1468 {
1469   rtx next = XEXP (insn, 1);
1470   return safe_as_a <rtx_insn *> (next);
1471 }
1472 
SET_NEXT_INSN(rtx_insn * insn)1473 inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1474 {
1475   return XEXP (insn, 1);
1476 }
1477 
BLOCK_FOR_INSN(const_rtx insn)1478 inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1479 {
1480   return XBBDEF (insn, 2);
1481 }
1482 
BLOCK_FOR_INSN(rtx insn)1483 inline basic_block& BLOCK_FOR_INSN (rtx insn)
1484 {
1485   return XBBDEF (insn, 2);
1486 }
1487 
set_block_for_insn(rtx_insn * insn,basic_block bb)1488 inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1489 {
1490   BLOCK_FOR_INSN (insn) = bb;
1491 }
1492 
1493 /* The body of an insn.  */
PATTERN(const_rtx insn)1494 inline rtx PATTERN (const_rtx insn)
1495 {
1496   return XEXP (insn, 3);
1497 }
1498 
PATTERN(rtx insn)1499 inline rtx& PATTERN (rtx insn)
1500 {
1501   return XEXP (insn, 3);
1502 }
1503 
INSN_LOCATION(const rtx_insn * insn)1504 inline unsigned int INSN_LOCATION (const rtx_insn *insn)
1505 {
1506   return XUINT (insn, 4);
1507 }
1508 
INSN_LOCATION(rtx_insn * insn)1509 inline unsigned int& INSN_LOCATION (rtx_insn *insn)
1510 {
1511   return XUINT (insn, 4);
1512 }
1513 
INSN_HAS_LOCATION(const rtx_insn * insn)1514 inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1515 {
1516   return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1517 }
1518 
1519 /* LOCATION of an RTX if relevant.  */
1520 #define RTL_LOCATION(X) (INSN_P (X) ? \
1521 			 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1522 			 : UNKNOWN_LOCATION)
1523 
1524 /* Code number of instruction, from when it was recognized.
1525    -1 means this instruction has not been recognized yet.  */
1526 #define INSN_CODE(INSN) XINT (INSN, 5)
1527 
get_labels()1528 inline rtvec rtx_jump_table_data::get_labels () const
1529 {
1530   rtx pat = PATTERN (this);
1531   if (GET_CODE (pat) == ADDR_VEC)
1532     return XVEC (pat, 0);
1533   else
1534     return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1535 }
1536 
1537 /* Return the mode of the data in the table, which is always a scalar
1538    integer.  */
1539 
1540 inline scalar_int_mode
get_data_mode()1541 rtx_jump_table_data::get_data_mode () const
1542 {
1543   return as_a <scalar_int_mode> (GET_MODE (PATTERN (this)));
1544 }
1545 
1546 /* If LABEL is followed by a jump table, return the table, otherwise
1547    return null.  */
1548 
1549 inline rtx_jump_table_data *
jump_table_for_label(const rtx_code_label * label)1550 jump_table_for_label (const rtx_code_label *label)
1551 {
1552   return safe_dyn_cast <rtx_jump_table_data *> (NEXT_INSN (label));
1553 }
1554 
1555 #define RTX_FRAME_RELATED_P(RTX)					\
1556   (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN,	\
1557 		    CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1558 
1559 /* 1 if JUMP RTX is a crossing jump.  */
1560 #define CROSSING_JUMP_P(RTX) \
1561   (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1562 
1563 /* 1 if RTX is a call to a const function.  Built from ECF_CONST and
1564    TREE_READONLY.  */
1565 #define RTL_CONST_CALL_P(RTX)					\
1566   (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1567 
1568 /* 1 if RTX is a call to a pure function.  Built from ECF_PURE and
1569    DECL_PURE_P.  */
1570 #define RTL_PURE_CALL_P(RTX)					\
1571   (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1572 
1573 /* 1 if RTX is a call to a const or pure function.  */
1574 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1575   (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1576 
1577 /* 1 if RTX is a call to a looping const or pure function.  Built from
1578    ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P.  */
1579 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX)				\
1580   (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1581 
1582 /* 1 if RTX is a call_insn for a sibling call.  */
1583 #define SIBLING_CALL_P(RTX)						\
1584   (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1585 
1586 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch.  */
1587 #define INSN_ANNULLED_BRANCH_P(RTX)					\
1588   (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1589 
1590 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1591    If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1592    executed if the branch is taken.  For annulled branches with this bit
1593    clear, the insn should be executed only if the branch is not taken.  */
1594 #define INSN_FROM_TARGET_P(RTX)						\
1595   (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1596 		    CALL_INSN)->in_struct)
1597 
1598 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1599    See the comments for ADDR_DIFF_VEC in rtl.def.  */
1600 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1601 
1602 /* In a VALUE, the value cselib has assigned to RTX.
1603    This is a "struct cselib_val", see cselib.h.  */
1604 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1605 
1606 /* Holds a list of notes on what this insn does to various REGs.
1607    It is a chain of EXPR_LIST rtx's, where the second operand is the
1608    chain pointer and the first operand is the REG being described.
1609    The mode field of the EXPR_LIST contains not a real machine mode
1610    but a value from enum reg_note.  */
1611 #define REG_NOTES(INSN)	XEXP(INSN, 6)
1612 
1613 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1614    question.  */
1615 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1616 
1617 enum reg_note
1618 {
1619 #define DEF_REG_NOTE(NAME) NAME,
1620 #include "reg-notes.def"
1621 #undef DEF_REG_NOTE
1622   REG_NOTE_MAX
1623 };
1624 
1625 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST.  */
1626 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1627 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1628   PUT_MODE_RAW (LINK, (machine_mode) (KIND))
1629 
1630 /* Names for REG_NOTE's in EXPR_LIST insn's.  */
1631 
1632 extern const char * const reg_note_name[];
1633 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1634 
1635 /* This field is only present on CALL_INSNs.  It holds a chain of EXPR_LIST of
1636    USE, CLOBBER and SET expressions.
1637      USE expressions list the registers filled with arguments that
1638    are passed to the function.
1639      CLOBBER expressions document the registers explicitly clobbered
1640    by this CALL_INSN.
1641      SET expressions say that the return value of the call (the SET_DEST)
1642    is equivalent to a value available before the call (the SET_SRC).
1643    This kind of SET is used when the return value is predictable in
1644    advance.  It is purely an optimisation hint; unlike USEs and CLOBBERs,
1645    it does not affect register liveness.
1646 
1647      Pseudo registers cannot be mentioned in this list.  */
1648 #define CALL_INSN_FUNCTION_USAGE(INSN)	XEXP(INSN, 7)
1649 
1650 /* The label-number of a code-label.  The assembler label
1651    is made from `L' and the label-number printed in decimal.
1652    Label numbers are unique in a compilation.  */
1653 #define CODE_LABEL_NUMBER(INSN)	XINT (INSN, 5)
1654 
1655 /* In a NOTE that is a line number, this is a string for the file name that the
1656    line is in.  We use the same field to record block numbers temporarily in
1657    NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes.  (We avoid lots of casts
1658    between ints and pointers if we use a different macro for the block number.)
1659    */
1660 
1661 /* Opaque data.  */
1662 #define NOTE_DATA(INSN)	        RTL_CHECKC1 (INSN, 3, NOTE)
1663 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1664 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1665 #define NOTE_BLOCK(INSN)	XCTREE (INSN, 3, NOTE)
1666 #define NOTE_EH_HANDLER(INSN)	XCINT (INSN, 3, NOTE)
1667 #define NOTE_BASIC_BLOCK(INSN)	XCBBDEF (INSN, 3, NOTE)
1668 #define NOTE_VAR_LOCATION(INSN)	XCEXP (INSN, 3, NOTE)
1669 #define NOTE_MARKER_LOCATION(INSN) XCUINT (INSN, 3, NOTE)
1670 #define NOTE_CFI(INSN)		XCCFI (INSN, 3, NOTE)
1671 #define NOTE_LABEL_NUMBER(INSN)	XCINT (INSN, 3, NOTE)
1672 
1673 /* In a NOTE that is a line number, this is the line number.
1674    Other kinds of NOTEs are identified by negative numbers here.  */
1675 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1676 
1677 /* Nonzero if INSN is a note marking the beginning of a basic block.  */
1678 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1679   (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1680 
1681 /* Nonzero if INSN is a debug nonbind marker note,
1682    for which NOTE_MARKER_LOCATION can be used.  */
1683 #define NOTE_MARKER_P(INSN)				\
1684   (NOTE_P (INSN) &&					\
1685    (NOTE_KIND (INSN) == NOTE_INSN_BEGIN_STMT		\
1686     || NOTE_KIND (INSN) == NOTE_INSN_INLINE_ENTRY))
1687 
1688 /* Variable declaration and the location of a variable.  */
1689 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1690 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1691 
1692 /* Initialization status of the variable in the location.  Status
1693    can be unknown, uninitialized or initialized.  See enumeration
1694    type below.  */
1695 #define PAT_VAR_LOCATION_STATUS(PAT) \
1696   (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1697    ->u2.var_location_status)
1698 
1699 /* Accessors for a NOTE_INSN_VAR_LOCATION.  */
1700 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1701   PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1702 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1703   PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1704 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1705   PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1706 
1707 /* Evaluate to TRUE if INSN is a debug insn that denotes a variable
1708    location/value tracking annotation.  */
1709 #define DEBUG_BIND_INSN_P(INSN)			\
1710   (DEBUG_INSN_P (INSN)				\
1711    && (GET_CODE (PATTERN (INSN))		\
1712        == VAR_LOCATION))
1713 /* Evaluate to TRUE if INSN is a debug insn that denotes a program
1714    source location marker.  */
1715 #define DEBUG_MARKER_INSN_P(INSN)		\
1716   (DEBUG_INSN_P (INSN)				\
1717    && (GET_CODE (PATTERN (INSN))		\
1718        != VAR_LOCATION))
1719 /* Evaluate to the marker kind.  */
1720 #define INSN_DEBUG_MARKER_KIND(INSN)		  \
1721   (GET_CODE (PATTERN (INSN)) == DEBUG_MARKER	  \
1722    ? (GET_MODE (PATTERN (INSN)) == VOIDmode	  \
1723       ? NOTE_INSN_BEGIN_STMT			  \
1724       : GET_MODE (PATTERN (INSN)) == BLKmode	  \
1725       ? NOTE_INSN_INLINE_ENTRY			  \
1726       : (enum insn_note)-1) 			  \
1727    : (enum insn_note)-1)
1728 /* Create patterns for debug markers.  These and the above abstract
1729    the representation, so that it's easier to get rid of the abuse of
1730    the mode to hold the marker kind.  Other marker types are
1731    envisioned, so a single bit flag won't do; maybe separate RTL codes
1732    wouldn't be a problem.  */
1733 #define GEN_RTX_DEBUG_MARKER_BEGIN_STMT_PAT() \
1734   gen_rtx_DEBUG_MARKER (VOIDmode)
1735 #define GEN_RTX_DEBUG_MARKER_INLINE_ENTRY_PAT() \
1736   gen_rtx_DEBUG_MARKER (BLKmode)
1737 
1738 /* The VAR_LOCATION rtx in a DEBUG_INSN.  */
1739 #define INSN_VAR_LOCATION(INSN) \
1740   (RTL_FLAG_CHECK1 ("INSN_VAR_LOCATION", PATTERN (INSN), VAR_LOCATION))
1741 /* A pointer to the VAR_LOCATION rtx in a DEBUG_INSN.  */
1742 #define INSN_VAR_LOCATION_PTR(INSN) \
1743   (&PATTERN (INSN))
1744 
1745 /* Accessors for a tree-expanded var location debug insn.  */
1746 #define INSN_VAR_LOCATION_DECL(INSN) \
1747   PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1748 #define INSN_VAR_LOCATION_LOC(INSN) \
1749   PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1750 #define INSN_VAR_LOCATION_STATUS(INSN) \
1751   PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1752 
1753 /* Expand to the RTL that denotes an unknown variable location in a
1754    DEBUG_INSN.  */
1755 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1756 
1757 /* Determine whether X is such an unknown location.  */
1758 #define VAR_LOC_UNKNOWN_P(X) \
1759   (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1760 
1761 /* 1 if RTX is emitted after a call, but it should take effect before
1762    the call returns.  */
1763 #define NOTE_DURING_CALL_P(RTX)				\
1764   (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1765 
1766 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX.  */
1767 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1768 
1769 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of.  */
1770 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1771 
1772 /* PARM_DECL DEBUG_PARAMETER_REF references.  */
1773 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1774 
1775 /* Codes that appear in the NOTE_KIND field for kinds of notes
1776    that are not line numbers.  These codes are all negative.
1777 
1778    Notice that we do not try to use zero here for any of
1779    the special note codes because sometimes the source line
1780    actually can be zero!  This happens (for example) when we
1781    are generating code for the per-translation-unit constructor
1782    and destructor routines for some C++ translation unit.  */
1783 
1784 enum insn_note
1785 {
1786 #define DEF_INSN_NOTE(NAME) NAME,
1787 #include "insn-notes.def"
1788 #undef DEF_INSN_NOTE
1789 
1790   NOTE_INSN_MAX
1791 };
1792 
1793 /* Names for NOTE insn's other than line numbers.  */
1794 
1795 extern const char * const note_insn_name[NOTE_INSN_MAX];
1796 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1797   (note_insn_name[(NOTE_CODE)])
1798 
1799 /* The name of a label, in case it corresponds to an explicit label
1800    in the input source code.  */
1801 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1802 
1803 /* In jump.c, each label contains a count of the number
1804    of LABEL_REFs that point at it, so unused labels can be deleted.  */
1805 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1806 
1807 /* Labels carry a two-bit field composed of the ->jump and ->call
1808    bits.  This field indicates whether the label is an alternate
1809    entry point, and if so, what kind.  */
1810 enum label_kind
1811 {
1812   LABEL_NORMAL = 0,	/* ordinary label */
1813   LABEL_STATIC_ENTRY,	/* alternate entry point, not exported */
1814   LABEL_GLOBAL_ENTRY,	/* alternate entry point, exported */
1815   LABEL_WEAK_ENTRY	/* alternate entry point, exported as weak symbol */
1816 };
1817 
1818 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1819 
1820 /* Retrieve the kind of LABEL.  */
1821 #define LABEL_KIND(LABEL) __extension__					\
1822 ({ __typeof (LABEL) const _label = (LABEL);				\
1823    if (! LABEL_P (_label))						\
1824      rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__,	\
1825 			    __FUNCTION__);				\
1826    (enum label_kind) ((_label->jump << 1) | _label->call); })
1827 
1828 /* Set the kind of LABEL.  */
1829 #define SET_LABEL_KIND(LABEL, KIND) do {				\
1830    __typeof (LABEL) const _label = (LABEL);				\
1831    const unsigned int _kind = (KIND);					\
1832    if (! LABEL_P (_label))						\
1833      rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1834 			    __FUNCTION__);				\
1835    _label->jump = ((_kind >> 1) & 1);					\
1836    _label->call = (_kind & 1);						\
1837 } while (0)
1838 
1839 #else
1840 
1841 /* Retrieve the kind of LABEL.  */
1842 #define LABEL_KIND(LABEL) \
1843    ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1844 
1845 /* Set the kind of LABEL.  */
1846 #define SET_LABEL_KIND(LABEL, KIND) do {				\
1847    rtx const _label = (LABEL);						\
1848    const unsigned int _kind = (KIND);					\
1849    _label->jump = ((_kind >> 1) & 1);					\
1850    _label->call = (_kind & 1);						\
1851 } while (0)
1852 
1853 #endif /* rtl flag checking */
1854 
1855 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1856 
1857 /* In jump.c, each JUMP_INSN can point to a label that it can jump to,
1858    so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1859    be decremented and possibly the label can be deleted.  */
1860 #define JUMP_LABEL(INSN)   XCEXP (INSN, 7, JUMP_INSN)
1861 
JUMP_LABEL_AS_INSN(const rtx_insn * insn)1862 inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1863 {
1864   return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1865 }
1866 
1867 /* Methods of rtx_jump_insn.  */
1868 
jump_label()1869 inline rtx rtx_jump_insn::jump_label () const
1870 {
1871   return JUMP_LABEL (this);
1872 }
1873 
jump_target()1874 inline rtx_code_label *rtx_jump_insn::jump_target () const
1875 {
1876   return safe_as_a <rtx_code_label *> (JUMP_LABEL (this));
1877 }
1878 
set_jump_target(rtx_code_label * target)1879 inline void rtx_jump_insn::set_jump_target (rtx_code_label *target)
1880 {
1881   JUMP_LABEL (this) = target;
1882 }
1883 
1884 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1885    goes through all the LABEL_REFs that jump to that label.  The chain
1886    eventually winds up at the CODE_LABEL: it is circular.  */
1887 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1888 
1889 /* Get the label that a LABEL_REF references.  */
1890 static inline rtx_insn *
label_ref_label(const_rtx ref)1891 label_ref_label (const_rtx ref)
1892 {
1893   return as_a<rtx_insn *> (XCEXP (ref, 0, LABEL_REF));
1894 }
1895 
1896 /* Set the label that LABEL_REF ref refers to.  */
1897 
1898 static inline void
set_label_ref_label(rtx ref,rtx_insn * label)1899 set_label_ref_label (rtx ref, rtx_insn *label)
1900 {
1901   XCEXP (ref, 0, LABEL_REF) = label;
1902 }
1903 
1904 /* For a REG rtx, REGNO extracts the register number.  REGNO can only
1905    be used on RHS.  Use SET_REGNO to change the value.  */
1906 #define REGNO(RTX) (rhs_regno(RTX))
1907 #define SET_REGNO(RTX, N) (df_ref_change_reg_with_loc (RTX, N))
1908 
1909 /* Return the number of consecutive registers in a REG.  This is always
1910    1 for pseudo registers and is determined by TARGET_HARD_REGNO_NREGS for
1911    hard registers.  */
1912 #define REG_NREGS(RTX) (REG_CHECK (RTX)->nregs)
1913 
1914 /* ORIGINAL_REGNO holds the number the register originally had; for a
1915    pseudo register turned into a hard reg this will hold the old pseudo
1916    register number.  */
1917 #define ORIGINAL_REGNO(RTX) \
1918   (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1919 
1920 /* Force the REGNO macro to only be used on the lhs.  */
1921 static inline unsigned int
rhs_regno(const_rtx x)1922 rhs_regno (const_rtx x)
1923 {
1924   return REG_CHECK (x)->regno;
1925 }
1926 
1927 /* Return the final register in REG X plus one.  */
1928 static inline unsigned int
END_REGNO(const_rtx x)1929 END_REGNO (const_rtx x)
1930 {
1931   return REGNO (x) + REG_NREGS (x);
1932 }
1933 
1934 /* Change the REGNO and REG_NREGS of REG X to the specified values,
1935    bypassing the df machinery.  */
1936 static inline void
set_regno_raw(rtx x,unsigned int regno,unsigned int nregs)1937 set_regno_raw (rtx x, unsigned int regno, unsigned int nregs)
1938 {
1939   reg_info *reg = REG_CHECK (x);
1940   reg->regno = regno;
1941   reg->nregs = nregs;
1942 }
1943 
1944 /* 1 if RTX is a reg or parallel that is the current function's return
1945    value.  */
1946 #define REG_FUNCTION_VALUE_P(RTX)					\
1947   (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1948 
1949 /* 1 if RTX is a reg that corresponds to a variable declared by the user.  */
1950 #define REG_USERVAR_P(RTX)						\
1951   (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1952 
1953 /* 1 if RTX is a reg that holds a pointer value.  */
1954 #define REG_POINTER(RTX)						\
1955   (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1956 
1957 /* 1 if RTX is a mem that holds a pointer value.  */
1958 #define MEM_POINTER(RTX)						\
1959   (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1960 
1961 /* 1 if the given register REG corresponds to a hard register.  */
1962 #define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1963 
1964 /* 1 if the given register number REG_NO corresponds to a hard register.  */
1965 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1966 
1967 /* For a CONST_INT rtx, INTVAL extracts the integer.  */
1968 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1969 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1970 
1971 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1972    elements actually needed to represent the constant.
1973    CONST_WIDE_INT_ELT gets one of the elements.  0 is the least
1974    significant HOST_WIDE_INT.  */
1975 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1976 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1977 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1978 
1979 /* For a CONST_POLY_INT, CONST_POLY_INT_COEFFS gives access to the
1980    individual coefficients, in the form of a trailing_wide_ints structure.  */
1981 #define CONST_POLY_INT_COEFFS(RTX) \
1982   (RTL_FLAG_CHECK1("CONST_POLY_INT_COEFFS", (RTX), \
1983 		   CONST_POLY_INT)->u.cpi.coeffs)
1984 
1985 /* For a CONST_DOUBLE:
1986 #if TARGET_SUPPORTS_WIDE_INT == 0
1987    For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1988      low-order word and ..._HIGH the high-order.
1989 #endif
1990    For a float, there is a REAL_VALUE_TYPE structure, and
1991      CONST_DOUBLE_REAL_VALUE(r) is a pointer to it.  */
1992 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
1993 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
1994 #define CONST_DOUBLE_REAL_VALUE(r) \
1995   ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
1996 
1997 #define CONST_FIXED_VALUE(r) \
1998   ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
1999 #define CONST_FIXED_VALUE_HIGH(r) \
2000   ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
2001 #define CONST_FIXED_VALUE_LOW(r) \
2002   ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
2003 
2004 /* For a CONST_VECTOR, return element #n.  */
2005 #define CONST_VECTOR_ELT(RTX, N) const_vector_elt (RTX, N)
2006 
2007 /* See rtl.texi for a description of these macros.  */
2008 #define CONST_VECTOR_NPATTERNS(RTX) \
2009  (RTL_FLAG_CHECK1 ("CONST_VECTOR_NPATTERNS", (RTX), CONST_VECTOR) \
2010   ->u2.const_vector.npatterns)
2011 
2012 #define CONST_VECTOR_NELTS_PER_PATTERN(RTX) \
2013  (RTL_FLAG_CHECK1 ("CONST_VECTOR_NELTS_PER_PATTERN", (RTX), CONST_VECTOR) \
2014   ->u2.const_vector.nelts_per_pattern)
2015 
2016 #define CONST_VECTOR_DUPLICATE_P(RTX) \
2017   (CONST_VECTOR_NELTS_PER_PATTERN (RTX) == 1)
2018 
2019 #define CONST_VECTOR_STEPPED_P(RTX) \
2020   (CONST_VECTOR_NELTS_PER_PATTERN (RTX) == 3)
2021 
2022 #define CONST_VECTOR_ENCODED_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
2023 
2024 /* Return the number of elements encoded directly in a CONST_VECTOR.  */
2025 
2026 inline unsigned int
const_vector_encoded_nelts(const_rtx x)2027 const_vector_encoded_nelts (const_rtx x)
2028 {
2029   return CONST_VECTOR_NPATTERNS (x) * CONST_VECTOR_NELTS_PER_PATTERN (x);
2030 }
2031 
2032 /* For a CONST_VECTOR, return the number of elements in a vector.  */
2033 #define CONST_VECTOR_NUNITS(RTX) GET_MODE_NUNITS (GET_MODE (RTX))
2034 
2035 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
2036    SUBREG_BYTE extracts the byte-number.  */
2037 
2038 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
2039 #define SUBREG_BYTE(RTX) XCSUBREG (RTX, 1, SUBREG)
2040 
2041 /* in rtlanal.c */
2042 /* Return the right cost to give to an operation
2043    to make the cost of the corresponding register-to-register instruction
2044    N times that of a fast register-to-register instruction.  */
2045 #define COSTS_N_INSNS(N) ((N) * 4)
2046 
2047 /* Maximum cost of an rtl expression.  This value has the special meaning
2048    not to use an rtx with this cost under any circumstances.  */
2049 #define MAX_COST INT_MAX
2050 
2051 /* Return true if CODE always has VOIDmode.  */
2052 
2053 static inline bool
always_void_p(enum rtx_code code)2054 always_void_p (enum rtx_code code)
2055 {
2056   return code == SET;
2057 }
2058 
2059 /* A structure to hold all available cost information about an rtl
2060    expression.  */
2061 struct full_rtx_costs
2062 {
2063   int speed;
2064   int size;
2065 };
2066 
2067 /* Initialize a full_rtx_costs structure C to the maximum cost.  */
2068 static inline void
init_costs_to_max(struct full_rtx_costs * c)2069 init_costs_to_max (struct full_rtx_costs *c)
2070 {
2071   c->speed = MAX_COST;
2072   c->size = MAX_COST;
2073 }
2074 
2075 /* Initialize a full_rtx_costs structure C to zero cost.  */
2076 static inline void
init_costs_to_zero(struct full_rtx_costs * c)2077 init_costs_to_zero (struct full_rtx_costs *c)
2078 {
2079   c->speed = 0;
2080   c->size = 0;
2081 }
2082 
2083 /* Compare two full_rtx_costs structures A and B, returning true
2084    if A < B when optimizing for speed.  */
2085 static inline bool
costs_lt_p(struct full_rtx_costs * a,struct full_rtx_costs * b,bool speed)2086 costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
2087 	    bool speed)
2088 {
2089   if (speed)
2090     return (a->speed < b->speed
2091 	    || (a->speed == b->speed && a->size < b->size));
2092   else
2093     return (a->size < b->size
2094 	    || (a->size == b->size && a->speed < b->speed));
2095 }
2096 
2097 /* Increase both members of the full_rtx_costs structure C by the
2098    cost of N insns.  */
2099 static inline void
costs_add_n_insns(struct full_rtx_costs * c,int n)2100 costs_add_n_insns (struct full_rtx_costs *c, int n)
2101 {
2102   c->speed += COSTS_N_INSNS (n);
2103   c->size += COSTS_N_INSNS (n);
2104 }
2105 
2106 /* Describes the shape of a subreg:
2107 
2108    inner_mode == the mode of the SUBREG_REG
2109    offset     == the SUBREG_BYTE
2110    outer_mode == the mode of the SUBREG itself.  */
2111 class subreg_shape {
2112 public:
2113   subreg_shape (machine_mode, poly_uint16, machine_mode);
2114   bool operator == (const subreg_shape &) const;
2115   bool operator != (const subreg_shape &) const;
2116   unsigned HOST_WIDE_INT unique_id () const;
2117 
2118   machine_mode inner_mode;
2119   poly_uint16 offset;
2120   machine_mode outer_mode;
2121 };
2122 
2123 inline
subreg_shape(machine_mode inner_mode_in,poly_uint16 offset_in,machine_mode outer_mode_in)2124 subreg_shape::subreg_shape (machine_mode inner_mode_in,
2125 			    poly_uint16 offset_in,
2126 			    machine_mode outer_mode_in)
2127   : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in)
2128 {}
2129 
2130 inline bool
2131 subreg_shape::operator == (const subreg_shape &other) const
2132 {
2133   return (inner_mode == other.inner_mode
2134 	  && known_eq (offset, other.offset)
2135 	  && outer_mode == other.outer_mode);
2136 }
2137 
2138 inline bool
2139 subreg_shape::operator != (const subreg_shape &other) const
2140 {
2141   return !operator == (other);
2142 }
2143 
2144 /* Return an integer that uniquely identifies this shape.  Structures
2145    like rtx_def assume that a mode can fit in an 8-bit bitfield and no
2146    current mode is anywhere near being 65536 bytes in size, so the
2147    id comfortably fits in an int.  */
2148 
2149 inline unsigned HOST_WIDE_INT
unique_id()2150 subreg_shape::unique_id () const
2151 {
2152   { STATIC_ASSERT (MAX_MACHINE_MODE <= 256); }
2153   { STATIC_ASSERT (NUM_POLY_INT_COEFFS <= 3); }
2154   { STATIC_ASSERT (sizeof (offset.coeffs[0]) <= 2); }
2155   int res = (int) inner_mode + ((int) outer_mode << 8);
2156   for (int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2157     res += (HOST_WIDE_INT) offset.coeffs[i] << ((1 + i) * 16);
2158   return res;
2159 }
2160 
2161 /* Return the shape of a SUBREG rtx.  */
2162 
2163 static inline subreg_shape
shape_of_subreg(const_rtx x)2164 shape_of_subreg (const_rtx x)
2165 {
2166   return subreg_shape (GET_MODE (SUBREG_REG (x)),
2167 		       SUBREG_BYTE (x), GET_MODE (x));
2168 }
2169 
2170 /* Information about an address.  This structure is supposed to be able
2171    to represent all supported target addresses.  Please extend it if it
2172    is not yet general enough.  */
2173 struct address_info {
2174   /* The mode of the value being addressed, or VOIDmode if this is
2175      a load-address operation with no known address mode.  */
2176   machine_mode mode;
2177 
2178   /* The address space.  */
2179   addr_space_t as;
2180 
2181   /* True if this is an RTX_AUTOINC address.  */
2182   bool autoinc_p;
2183 
2184   /* A pointer to the top-level address.  */
2185   rtx *outer;
2186 
2187   /* A pointer to the inner address, after all address mutations
2188      have been stripped from the top-level address.  It can be one
2189      of the following:
2190 
2191      - A {PRE,POST}_{INC,DEC} of *BASE.  SEGMENT, INDEX and DISP are null.
2192 
2193      - A {PRE,POST}_MODIFY of *BASE.  In this case either INDEX or DISP
2194        points to the step value, depending on whether the step is variable
2195        or constant respectively.  SEGMENT is null.
2196 
2197      - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
2198        with null fields evaluating to 0.  */
2199   rtx *inner;
2200 
2201   /* Components that make up *INNER.  Each one may be null or nonnull.
2202      When nonnull, their meanings are as follows:
2203 
2204      - *SEGMENT is the "segment" of memory to which the address refers.
2205        This value is entirely target-specific and is only called a "segment"
2206        because that's its most typical use.  It contains exactly one UNSPEC,
2207        pointed to by SEGMENT_TERM.  The contents of *SEGMENT do not need
2208        reloading.
2209 
2210      - *BASE is a variable expression representing a base address.
2211        It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
2212 
2213      - *INDEX is a variable expression representing an index value.
2214        It may be a scaled expression, such as a MULT.  It has exactly
2215        one REG, SUBREG or MEM, pointed to by INDEX_TERM.
2216 
2217      - *DISP is a constant, possibly mutated.  DISP_TERM points to the
2218        unmutated RTX_CONST_OBJ.  */
2219   rtx *segment;
2220   rtx *base;
2221   rtx *index;
2222   rtx *disp;
2223 
2224   rtx *segment_term;
2225   rtx *base_term;
2226   rtx *index_term;
2227   rtx *disp_term;
2228 
2229   /* In a {PRE,POST}_MODIFY address, this points to a second copy
2230      of BASE_TERM, otherwise it is null.  */
2231   rtx *base_term2;
2232 
2233   /* ADDRESS if this structure describes an address operand, MEM if
2234      it describes a MEM address.  */
2235   enum rtx_code addr_outer_code;
2236 
2237   /* If BASE is nonnull, this is the code of the rtx that contains it.  */
2238   enum rtx_code base_outer_code;
2239 };
2240 
2241 /* This is used to bundle an rtx and a mode together so that the pair
2242    can be used with the wi:: routines.  If we ever put modes into rtx
2243    integer constants, this should go away and then just pass an rtx in.  */
2244 typedef std::pair <rtx, machine_mode> rtx_mode_t;
2245 
2246 namespace wi
2247 {
2248   template <>
2249   struct int_traits <rtx_mode_t>
2250   {
2251     static const enum precision_type precision_type = VAR_PRECISION;
2252     static const bool host_dependent_precision = false;
2253     /* This ought to be true, except for the special case that BImode
2254        is canonicalized to STORE_FLAG_VALUE, which might be 1.  */
2255     static const bool is_sign_extended = false;
2256     static unsigned int get_precision (const rtx_mode_t &);
2257     static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
2258 				      const rtx_mode_t &);
2259   };
2260 }
2261 
2262 inline unsigned int
2263 wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
2264 {
2265   return GET_MODE_PRECISION (as_a <scalar_mode> (x.second));
2266 }
2267 
2268 inline wi::storage_ref
2269 wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
2270 					unsigned int precision,
2271 					const rtx_mode_t &x)
2272 {
2273   gcc_checking_assert (precision == get_precision (x));
2274   switch (GET_CODE (x.first))
2275     {
2276     case CONST_INT:
2277       if (precision < HOST_BITS_PER_WIDE_INT)
2278 	/* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
2279 	   targets is 1 rather than -1.  */
2280 	gcc_checking_assert (INTVAL (x.first)
2281 			     == sext_hwi (INTVAL (x.first), precision)
2282 			     || (x.second == BImode && INTVAL (x.first) == 1));
2283 
2284       return wi::storage_ref (&INTVAL (x.first), 1, precision);
2285 
2286     case CONST_WIDE_INT:
2287       return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
2288 			      CONST_WIDE_INT_NUNITS (x.first), precision);
2289 
2290 #if TARGET_SUPPORTS_WIDE_INT == 0
2291     case CONST_DOUBLE:
2292       return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
2293 #endif
2294 
2295     default:
2296       gcc_unreachable ();
2297     }
2298 }
2299 
2300 namespace wi
2301 {
2302   hwi_with_prec shwi (HOST_WIDE_INT, machine_mode mode);
2303   wide_int min_value (machine_mode, signop);
2304   wide_int max_value (machine_mode, signop);
2305 }
2306 
2307 inline wi::hwi_with_prec
2308 wi::shwi (HOST_WIDE_INT val, machine_mode mode)
2309 {
2310   return shwi (val, GET_MODE_PRECISION (as_a <scalar_mode> (mode)));
2311 }
2312 
2313 /* Produce the smallest number that is represented in MODE.  The precision
2314    is taken from MODE and the sign from SGN.  */
2315 inline wide_int
2316 wi::min_value (machine_mode mode, signop sgn)
2317 {
2318   return min_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
2319 }
2320 
2321 /* Produce the largest number that is represented in MODE.  The precision
2322    is taken from MODE and the sign from SGN.  */
2323 inline wide_int
2324 wi::max_value (machine_mode mode, signop sgn)
2325 {
2326   return max_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
2327 }
2328 
2329 namespace wi
2330 {
2331   typedef poly_int<NUM_POLY_INT_COEFFS,
2332 		   generic_wide_int <wide_int_ref_storage <false, false> > >
2333     rtx_to_poly_wide_ref;
2334   rtx_to_poly_wide_ref to_poly_wide (const_rtx, machine_mode);
2335 }
2336 
2337 /* Return the value of a CONST_POLY_INT in its native precision.  */
2338 
2339 inline wi::rtx_to_poly_wide_ref
2340 const_poly_int_value (const_rtx x)
2341 {
2342   poly_int<NUM_POLY_INT_COEFFS, WIDE_INT_REF_FOR (wide_int)> res;
2343   for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2344     res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i];
2345   return res;
2346 }
2347 
2348 /* Return true if X is a scalar integer or a CONST_POLY_INT.  The value
2349    can then be extracted using wi::to_poly_wide.  */
2350 
2351 inline bool
2352 poly_int_rtx_p (const_rtx x)
2353 {
2354   return CONST_SCALAR_INT_P (x) || CONST_POLY_INT_P (x);
2355 }
2356 
2357 /* Access X (which satisfies poly_int_rtx_p) as a poly_wide_int.
2358    MODE is the mode of X.  */
2359 
2360 inline wi::rtx_to_poly_wide_ref
2361 wi::to_poly_wide (const_rtx x, machine_mode mode)
2362 {
2363   if (CONST_POLY_INT_P (x))
2364     return const_poly_int_value (x);
2365   return rtx_mode_t (const_cast<rtx> (x), mode);
2366 }
2367 
2368 /* Return the value of X as a poly_int64.  */
2369 
2370 inline poly_int64
2371 rtx_to_poly_int64 (const_rtx x)
2372 {
2373   if (CONST_POLY_INT_P (x))
2374     {
2375       poly_int64 res;
2376       for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2377 	res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi ();
2378       return res;
2379     }
2380   return INTVAL (x);
2381 }
2382 
2383 /* Return true if arbitrary value X is an integer constant that can
2384    be represented as a poly_int64.  Store the value in *RES if so,
2385    otherwise leave it unmodified.  */
2386 
2387 inline bool
2388 poly_int_rtx_p (const_rtx x, poly_int64_pod *res)
2389 {
2390   if (CONST_INT_P (x))
2391     {
2392       *res = INTVAL (x);
2393       return true;
2394     }
2395   if (CONST_POLY_INT_P (x))
2396     {
2397       for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2398 	if (!wi::fits_shwi_p (CONST_POLY_INT_COEFFS (x)[i]))
2399 	  return false;
2400       for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2401 	res->coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi ();
2402       return true;
2403     }
2404   return false;
2405 }
2406 
2407 extern void init_rtlanal (void);
2408 extern int rtx_cost (rtx, machine_mode, enum rtx_code, int, bool);
2409 extern int address_cost (rtx, machine_mode, addr_space_t, bool);
2410 extern void get_full_rtx_cost (rtx, machine_mode, enum rtx_code, int,
2411 			       struct full_rtx_costs *);
2412 extern bool native_encode_rtx (machine_mode, rtx, vec<target_unit> &,
2413 			       unsigned int, unsigned int);
2414 extern rtx native_decode_rtx (machine_mode, vec<target_unit>,
2415 			      unsigned int);
2416 extern rtx native_decode_vector_rtx (machine_mode, vec<target_unit>,
2417 				     unsigned int, unsigned int, unsigned int);
2418 extern poly_uint64 subreg_lsb (const_rtx);
2419 extern poly_uint64 subreg_size_lsb (poly_uint64, poly_uint64, poly_uint64);
2420 extern poly_uint64 subreg_size_offset_from_lsb (poly_uint64, poly_uint64,
2421 						poly_uint64);
2422 extern bool read_modify_subreg_p (const_rtx);
2423 
2424 /* Given a subreg's OUTER_MODE, INNER_MODE, and SUBREG_BYTE, return the
2425    bit offset at which the subreg begins (counting from the least significant
2426    bit of the operand).  */
2427 
2428 inline poly_uint64
2429 subreg_lsb_1 (machine_mode outer_mode, machine_mode inner_mode,
2430 	      poly_uint64 subreg_byte)
2431 {
2432   return subreg_size_lsb (GET_MODE_SIZE (outer_mode),
2433 			  GET_MODE_SIZE (inner_mode), subreg_byte);
2434 }
2435 
2436 /* Return the subreg byte offset for a subreg whose outer mode is
2437    OUTER_MODE, whose inner mode is INNER_MODE, and where there are
2438    LSB_SHIFT *bits* between the lsb of the outer value and the lsb of
2439    the inner value.  This is the inverse of subreg_lsb_1 (which converts
2440    byte offsets to bit shifts).  */
2441 
2442 inline poly_uint64
2443 subreg_offset_from_lsb (machine_mode outer_mode,
2444 			machine_mode inner_mode,
2445 			poly_uint64 lsb_shift)
2446 {
2447   return subreg_size_offset_from_lsb (GET_MODE_SIZE (outer_mode),
2448 				      GET_MODE_SIZE (inner_mode), lsb_shift);
2449 }
2450 
2451 extern unsigned int subreg_regno_offset (unsigned int, machine_mode,
2452 					 poly_uint64, machine_mode);
2453 extern bool subreg_offset_representable_p (unsigned int, machine_mode,
2454 					   poly_uint64, machine_mode);
2455 extern unsigned int subreg_regno (const_rtx);
2456 extern int simplify_subreg_regno (unsigned int, machine_mode,
2457 				  poly_uint64, machine_mode);
2458 extern unsigned int subreg_nregs (const_rtx);
2459 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
2460 extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, machine_mode);
2461 extern unsigned int num_sign_bit_copies (const_rtx, machine_mode);
2462 extern bool constant_pool_constant_p (rtx);
2463 extern bool truncated_to_mode (machine_mode, const_rtx);
2464 extern int low_bitmask_len (machine_mode, unsigned HOST_WIDE_INT);
2465 extern void split_double (rtx, rtx *, rtx *);
2466 extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2467 extern void decompose_address (struct address_info *, rtx *,
2468 			       machine_mode, addr_space_t, enum rtx_code);
2469 extern void decompose_lea_address (struct address_info *, rtx *);
2470 extern void decompose_mem_address (struct address_info *, rtx);
2471 extern void update_address (struct address_info *);
2472 extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2473 extern enum rtx_code get_index_code (const struct address_info *);
2474 
2475 /* 1 if RTX is a subreg containing a reg that is already known to be
2476    sign- or zero-extended from the mode of the subreg to the mode of
2477    the reg.  SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2478    extension.
2479 
2480    When used as a LHS, is means that this extension must be done
2481    when assigning to SUBREG_REG.  */
2482 
2483 #define SUBREG_PROMOTED_VAR_P(RTX)					\
2484   (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2485 
2486 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P().  In that case
2487    this gives the necessary extensions:
2488    0  - signed (SPR_SIGNED)
2489    1  - normal unsigned (SPR_UNSIGNED)
2490    2  - value is both sign and unsign extended for mode
2491 	(SPR_SIGNED_AND_UNSIGNED).
2492    -1 - pointer unsigned, which most often can be handled like unsigned
2493         extension, except for generating instructions where we need to
2494 	emit special code (ptr_extend insns) on some architectures
2495 	(SPR_POINTER). */
2496 
2497 const int SRP_POINTER = -1;
2498 const int SRP_SIGNED = 0;
2499 const int SRP_UNSIGNED = 1;
2500 const int SRP_SIGNED_AND_UNSIGNED = 2;
2501 
2502 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P().  */
2503 #define SUBREG_PROMOTED_SET(RTX, VAL)		                        \
2504 do {								        \
2505   rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET",		\
2506                                     (RTX), SUBREG);			\
2507   switch (VAL)								\
2508   {									\
2509     case SRP_POINTER:							\
2510       _rtx->volatil = 0;						\
2511       _rtx->unchanging = 0;						\
2512       break;								\
2513     case SRP_SIGNED:							\
2514       _rtx->volatil = 0;						\
2515       _rtx->unchanging = 1;						\
2516       break;								\
2517     case SRP_UNSIGNED:							\
2518       _rtx->volatil = 1;						\
2519       _rtx->unchanging = 0;						\
2520       break;								\
2521     case SRP_SIGNED_AND_UNSIGNED:					\
2522       _rtx->volatil = 1;						\
2523       _rtx->unchanging = 1;						\
2524       break;								\
2525   }									\
2526 } while (0)
2527 
2528 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2529    including SRP_SIGNED_AND_UNSIGNED if promoted for
2530    both signed and unsigned.  */
2531 #define SUBREG_PROMOTED_GET(RTX)	\
2532   (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2533    + (RTX)->unchanging - 1)
2534 
2535 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P().  */
2536 #define SUBREG_PROMOTED_SIGN(RTX)	\
2537   ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2538    : (RTX)->unchanging - 1)
2539 
2540 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2541    for SIGNED type.  */
2542 #define SUBREG_PROMOTED_SIGNED_P(RTX)	\
2543   (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2544 
2545 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2546    for UNSIGNED type.  */
2547 #define SUBREG_PROMOTED_UNSIGNED_P(RTX)	\
2548   (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2549 
2550 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN.  */
2551 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN)	\
2552 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER	\
2553  : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX)		\
2554  : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2555 
2556 /* True if the REG is the static chain register for some CALL_INSN.  */
2557 #define STATIC_CHAIN_REG_P(RTX)	\
2558   (RTL_FLAG_CHECK1 ("STATIC_CHAIN_REG_P", (RTX), REG)->jump)
2559 
2560 /* True if the subreg was generated by LRA for reload insns.  Such
2561    subregs are valid only during LRA.  */
2562 #define LRA_SUBREG_P(RTX)	\
2563   (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2564 
2565 /* Access various components of an ASM_OPERANDS rtx.  */
2566 
2567 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2568 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2569 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2570 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2571 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2572 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2573 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2574 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2575   XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2576 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2577   XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2578 #define ASM_OPERANDS_INPUT_MODE(RTX, N)  \
2579   GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2580 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2581 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2582 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2583 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2584 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2585 
2586 /* 1 if RTX is a mem that is statically allocated in read-only memory.  */
2587 #define MEM_READONLY_P(RTX) \
2588   (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2589 
2590 /* 1 if RTX is a mem and we should keep the alias set for this mem
2591    unchanged when we access a component.  Set to 1, or example, when we
2592    are already in a non-addressable component of an aggregate.  */
2593 #define MEM_KEEP_ALIAS_SET_P(RTX)					\
2594   (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2595 
2596 /* 1 if RTX is a mem or asm_operand for a volatile reference.  */
2597 #define MEM_VOLATILE_P(RTX)						\
2598   (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS,		\
2599 		    ASM_INPUT)->volatil)
2600 
2601 /* 1 if RTX is a mem that cannot trap.  */
2602 #define MEM_NOTRAP_P(RTX) \
2603   (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2604 
2605 /* The memory attribute block.  We provide access macros for each value
2606    in the block and provide defaults if none specified.  */
2607 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2608 
2609 /* The register attribute block.  We provide access macros for each value
2610    in the block and provide defaults if none specified.  */
2611 #define REG_ATTRS(RTX) (REG_CHECK (RTX)->attrs)
2612 
2613 #ifndef GENERATOR_FILE
2614 /* For a MEM rtx, the alias set.  If 0, this MEM is not in any alias
2615    set, and may alias anything.  Otherwise, the MEM can only alias
2616    MEMs in a conflicting alias set.  This value is set in a
2617    language-dependent manner in the front-end, and should not be
2618    altered in the back-end.  These set numbers are tested with
2619    alias_sets_conflict_p.  */
2620 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2621 
2622 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2623    refer to part of a DECL.  It may also be a COMPONENT_REF.  */
2624 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2625 
2626 /* For a MEM rtx, true if its MEM_OFFSET is known.  */
2627 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2628 
2629 /* For a MEM rtx, the offset from the start of MEM_EXPR.  */
2630 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2631 
2632 /* For a MEM rtx, the address space.  */
2633 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2634 
2635 /* For a MEM rtx, true if its MEM_SIZE is known.  */
2636 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2637 
2638 /* For a MEM rtx, the size in bytes of the MEM.  */
2639 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2640 
2641 /* For a MEM rtx, the alignment in bits.  We can use the alignment of the
2642    mode as a default when STRICT_ALIGNMENT, but not if not.  */
2643 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2644 #else
2645 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2646 #endif
2647 
2648 /* For a REG rtx, the decl it is known to refer to, if it is known to
2649    refer to part of a DECL.  */
2650 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2651 
2652 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2653    HOST_WIDE_INT.  */
2654 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2655 
2656 /* Copy the attributes that apply to memory locations from RHS to LHS.  */
2657 #define MEM_COPY_ATTRIBUTES(LHS, RHS)				\
2658   (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS),			\
2659    MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS),			\
2660    MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS),			\
2661    MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS),	\
2662    MEM_POINTER (LHS) = MEM_POINTER (RHS),			\
2663    MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2664 
2665 /* 1 if RTX is a label_ref for a nonlocal label.  */
2666 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2667    REG_LABEL_TARGET note.  */
2668 #define LABEL_REF_NONLOCAL_P(RTX)					\
2669   (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2670 
2671 /* 1 if RTX is a code_label that should always be considered to be needed.  */
2672 #define LABEL_PRESERVE_P(RTX)						\
2673   (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2674 
2675 /* During sched, 1 if RTX is an insn that must be scheduled together
2676    with the preceding insn.  */
2677 #define SCHED_GROUP_P(RTX)						\
2678   (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN,		\
2679 		    JUMP_INSN, CALL_INSN)->in_struct)
2680 
2681 /* For a SET rtx, SET_DEST is the place that is set
2682    and SET_SRC is the value it is set to.  */
2683 #define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2684 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2685 #define SET_IS_RETURN_P(RTX)						\
2686   (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2687 
2688 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression.  */
2689 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2690 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2691 
2692 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2693    conditionally executing the code on, COND_EXEC_CODE is the code
2694    to execute if the condition is true.  */
2695 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2696 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2697 
2698 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2699    constants pool.  */
2700 #define CONSTANT_POOL_ADDRESS_P(RTX)					\
2701   (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2702 
2703 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2704    tree constant pool.  This information is private to varasm.c.  */
2705 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX)				\
2706   (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P",			\
2707 		    (RTX), SYMBOL_REF)->frame_related)
2708 
2709 /* Used if RTX is a symbol_ref, for machine-specific purposes.  */
2710 #define SYMBOL_REF_FLAG(RTX)						\
2711   (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2712 
2713 /* 1 if RTX is a symbol_ref that has been the library function in
2714    emit_library_call.  */
2715 #define SYMBOL_REF_USED(RTX)						\
2716   (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2717 
2718 /* 1 if RTX is a symbol_ref for a weak symbol.  */
2719 #define SYMBOL_REF_WEAK(RTX)						\
2720   (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2721 
2722 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2723    SYMBOL_REF_CONSTANT.  */
2724 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2725 
2726 /* Set RTX's SYMBOL_REF_DECL to DECL.  RTX must not be a constant
2727    pool symbol.  */
2728 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2729   (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2730 
2731 /* The tree (decl or constant) associated with the symbol, or null.  */
2732 #define SYMBOL_REF_DECL(RTX) \
2733   (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2734 
2735 /* Set RTX's SYMBOL_REF_CONSTANT to C.  RTX must be a constant pool symbol.  */
2736 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2737   (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2738 
2739 /* The rtx constant pool entry for a symbol, or null.  */
2740 #define SYMBOL_REF_CONSTANT(RTX) \
2741   (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2742 
2743 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2744    information derivable from the tree decl associated with this symbol.
2745    Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2746    decl.  In some cases this is a bug.  But beyond that, it's nice to cache
2747    this information to avoid recomputing it.  Finally, this allows space for
2748    the target to store more than one bit of information, as with
2749    SYMBOL_REF_FLAG.  */
2750 #define SYMBOL_REF_FLAGS(RTX) \
2751   (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2752    ->u2.symbol_ref_flags)
2753 
2754 /* These flags are common enough to be defined for all targets.  They
2755    are computed by the default version of targetm.encode_section_info.  */
2756 
2757 /* Set if this symbol is a function.  */
2758 #define SYMBOL_FLAG_FUNCTION	(1 << 0)
2759 #define SYMBOL_REF_FUNCTION_P(RTX) \
2760   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2761 /* Set if targetm.binds_local_p is true.  */
2762 #define SYMBOL_FLAG_LOCAL	(1 << 1)
2763 #define SYMBOL_REF_LOCAL_P(RTX) \
2764   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2765 /* Set if targetm.in_small_data_p is true.  */
2766 #define SYMBOL_FLAG_SMALL	(1 << 2)
2767 #define SYMBOL_REF_SMALL_P(RTX) \
2768   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2769 /* The three-bit field at [5:3] is true for TLS variables; use
2770    SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model.  */
2771 #define SYMBOL_FLAG_TLS_SHIFT	3
2772 #define SYMBOL_REF_TLS_MODEL(RTX) \
2773   ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2774 /* Set if this symbol is not defined in this translation unit.  */
2775 #define SYMBOL_FLAG_EXTERNAL	(1 << 6)
2776 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2777   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2778 /* Set if this symbol has a block_symbol structure associated with it.  */
2779 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2780 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2781   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2782 /* Set if this symbol is a section anchor.  SYMBOL_REF_ANCHOR_P implies
2783    SYMBOL_REF_HAS_BLOCK_INFO_P.  */
2784 #define SYMBOL_FLAG_ANCHOR	(1 << 8)
2785 #define SYMBOL_REF_ANCHOR_P(RTX) \
2786   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2787 
2788 /* Subsequent bits are available for the target to use.  */
2789 #define SYMBOL_FLAG_MACH_DEP_SHIFT	9
2790 #define SYMBOL_FLAG_MACH_DEP		(1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2791 
2792 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2793    structure to which the symbol belongs, or NULL if it has not been
2794    assigned a block.  */
2795 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2796 
2797 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2798    the first object in SYMBOL_REF_BLOCK (RTX).  The value is negative if
2799    RTX has not yet been assigned to a block, or it has not been given an
2800    offset within that block.  */
2801 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2802 
2803 /* True if RTX is flagged to be a scheduling barrier.  */
2804 #define PREFETCH_SCHEDULE_BARRIER_P(RTX)					\
2805   (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2806 
2807 /* Indicate whether the machine has any sort of auto increment addressing.
2808    If not, we can avoid checking for REG_INC notes.  */
2809 
2810 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2811      || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2812      || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2813      || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2814 #define AUTO_INC_DEC 1
2815 #else
2816 #define AUTO_INC_DEC 0
2817 #endif
2818 
2819 /* Define a macro to look for REG_INC notes,
2820    but save time on machines where they never exist.  */
2821 
2822 #if AUTO_INC_DEC
2823 #define FIND_REG_INC_NOTE(INSN, REG)			\
2824   ((REG) != NULL_RTX && REG_P ((REG))			\
2825    ? find_regno_note ((INSN), REG_INC, REGNO (REG))	\
2826    : find_reg_note ((INSN), REG_INC, (REG)))
2827 #else
2828 #define FIND_REG_INC_NOTE(INSN, REG) 0
2829 #endif
2830 
2831 #ifndef HAVE_PRE_INCREMENT
2832 #define HAVE_PRE_INCREMENT 0
2833 #endif
2834 
2835 #ifndef HAVE_PRE_DECREMENT
2836 #define HAVE_PRE_DECREMENT 0
2837 #endif
2838 
2839 #ifndef HAVE_POST_INCREMENT
2840 #define HAVE_POST_INCREMENT 0
2841 #endif
2842 
2843 #ifndef HAVE_POST_DECREMENT
2844 #define HAVE_POST_DECREMENT 0
2845 #endif
2846 
2847 #ifndef HAVE_POST_MODIFY_DISP
2848 #define HAVE_POST_MODIFY_DISP 0
2849 #endif
2850 
2851 #ifndef HAVE_POST_MODIFY_REG
2852 #define HAVE_POST_MODIFY_REG 0
2853 #endif
2854 
2855 #ifndef HAVE_PRE_MODIFY_DISP
2856 #define HAVE_PRE_MODIFY_DISP 0
2857 #endif
2858 
2859 #ifndef HAVE_PRE_MODIFY_REG
2860 #define HAVE_PRE_MODIFY_REG 0
2861 #endif
2862 
2863 
2864 /* Some architectures do not have complete pre/post increment/decrement
2865    instruction sets, or only move some modes efficiently.  These macros
2866    allow us to tune autoincrement generation.  */
2867 
2868 #ifndef USE_LOAD_POST_INCREMENT
2869 #define USE_LOAD_POST_INCREMENT(MODE)   HAVE_POST_INCREMENT
2870 #endif
2871 
2872 #ifndef USE_LOAD_POST_DECREMENT
2873 #define USE_LOAD_POST_DECREMENT(MODE)   HAVE_POST_DECREMENT
2874 #endif
2875 
2876 #ifndef USE_LOAD_PRE_INCREMENT
2877 #define USE_LOAD_PRE_INCREMENT(MODE)    HAVE_PRE_INCREMENT
2878 #endif
2879 
2880 #ifndef USE_LOAD_PRE_DECREMENT
2881 #define USE_LOAD_PRE_DECREMENT(MODE)    HAVE_PRE_DECREMENT
2882 #endif
2883 
2884 #ifndef USE_STORE_POST_INCREMENT
2885 #define USE_STORE_POST_INCREMENT(MODE)  HAVE_POST_INCREMENT
2886 #endif
2887 
2888 #ifndef USE_STORE_POST_DECREMENT
2889 #define USE_STORE_POST_DECREMENT(MODE)  HAVE_POST_DECREMENT
2890 #endif
2891 
2892 #ifndef USE_STORE_PRE_INCREMENT
2893 #define USE_STORE_PRE_INCREMENT(MODE)   HAVE_PRE_INCREMENT
2894 #endif
2895 
2896 #ifndef USE_STORE_PRE_DECREMENT
2897 #define USE_STORE_PRE_DECREMENT(MODE)   HAVE_PRE_DECREMENT
2898 #endif
2899 
2900 /* Nonzero when we are generating CONCATs.  */
2901 extern int generating_concat_p;
2902 
2903 /* Nonzero when we are expanding trees to RTL.  */
2904 extern int currently_expanding_to_rtl;
2905 
2906 /* Generally useful functions.  */
2907 
2908 #ifndef GENERATOR_FILE
2909 /* Return the cost of SET X.  SPEED_P is true if optimizing for speed
2910    rather than size.  */
2911 
2912 static inline int
2913 set_rtx_cost (rtx x, bool speed_p)
2914 {
2915   return rtx_cost (x, VOIDmode, INSN, 4, speed_p);
2916 }
2917 
2918 /* Like set_rtx_cost, but return both the speed and size costs in C.  */
2919 
2920 static inline void
2921 get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2922 {
2923   get_full_rtx_cost (x, VOIDmode, INSN, 4, c);
2924 }
2925 
2926 /* Return the cost of moving X into a register, relative to the cost
2927    of a register move.  SPEED_P is true if optimizing for speed rather
2928    than size.  */
2929 
2930 static inline int
2931 set_src_cost (rtx x, machine_mode mode, bool speed_p)
2932 {
2933   return rtx_cost (x, mode, SET, 1, speed_p);
2934 }
2935 
2936 /* Like set_src_cost, but return both the speed and size costs in C.  */
2937 
2938 static inline void
2939 get_full_set_src_cost (rtx x, machine_mode mode, struct full_rtx_costs *c)
2940 {
2941   get_full_rtx_cost (x, mode, SET, 1, c);
2942 }
2943 #endif
2944 
2945 /* A convenience macro to validate the arguments of a zero_extract
2946    expression.  It determines whether SIZE lies inclusively within
2947    [1, RANGE], POS lies inclusively within between [0, RANGE - 1]
2948    and the sum lies inclusively within [1, RANGE].  RANGE must be
2949    >= 1, but SIZE and POS may be negative.  */
2950 #define EXTRACT_ARGS_IN_RANGE(SIZE, POS, RANGE) \
2951   (IN_RANGE ((POS), 0, (unsigned HOST_WIDE_INT) (RANGE) - 1) \
2952    && IN_RANGE ((SIZE), 1, (unsigned HOST_WIDE_INT) (RANGE) \
2953 			   - (unsigned HOST_WIDE_INT)(POS)))
2954 
2955 /* In explow.c */
2956 extern HOST_WIDE_INT trunc_int_for_mode	(HOST_WIDE_INT, machine_mode);
2957 extern poly_int64 trunc_int_for_mode (poly_int64, machine_mode);
2958 extern rtx plus_constant (machine_mode, rtx, poly_int64, bool = false);
2959 extern HOST_WIDE_INT get_stack_check_protect (void);
2960 
2961 /* In rtl.c */
2962 extern rtx rtx_alloc (RTX_CODE CXX_MEM_STAT_INFO);
2963 inline rtx
2964 rtx_init (rtx rt, RTX_CODE code)
2965 {
2966   memset (rt, 0, RTX_HDR_SIZE);
2967   PUT_CODE (rt, code);
2968   return rt;
2969 }
2970 #define rtx_alloca(code) \
2971   rtx_init ((rtx) alloca (RTX_CODE_SIZE ((code))), (code))
2972 extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2973 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2974 #define const_wide_int_alloc(NWORDS)				\
2975   rtx_alloc_v (CONST_WIDE_INT,					\
2976 	       (sizeof (struct hwivec_def)			\
2977 		+ ((NWORDS)-1) * sizeof (HOST_WIDE_INT)))	\
2978 
2979 extern rtvec rtvec_alloc (int);
2980 extern rtvec shallow_copy_rtvec (rtvec);
2981 extern bool shared_const_p (const_rtx);
2982 extern rtx copy_rtx (rtx);
2983 extern enum rtx_code classify_insn (rtx);
2984 extern void dump_rtx_statistics (void);
2985 
2986 /* In emit-rtl.c */
2987 extern rtx copy_rtx_if_shared (rtx);
2988 
2989 /* In rtl.c */
2990 extern unsigned int rtx_size (const_rtx);
2991 extern rtx shallow_copy_rtx (const_rtx CXX_MEM_STAT_INFO);
2992 extern int rtx_equal_p (const_rtx, const_rtx);
2993 extern bool rtvec_all_equal_p (const_rtvec);
2994 
2995 /* Return true if X is a vector constant with a duplicated element value.  */
2996 
2997 inline bool
2998 const_vec_duplicate_p (const_rtx x)
2999 {
3000   return (GET_CODE (x) == CONST_VECTOR
3001 	  && CONST_VECTOR_NPATTERNS (x) == 1
3002 	  && CONST_VECTOR_DUPLICATE_P (x));
3003 }
3004 
3005 /* Return true if X is a vector constant with a duplicated element value.
3006    Store the duplicated element in *ELT if so.  */
3007 
3008 template <typename T>
3009 inline bool
3010 const_vec_duplicate_p (T x, T *elt)
3011 {
3012   if (const_vec_duplicate_p (x))
3013     {
3014       *elt = CONST_VECTOR_ENCODED_ELT (x, 0);
3015       return true;
3016     }
3017   return false;
3018 }
3019 
3020 /* Return true if X is a vector with a duplicated element value, either
3021    constant or nonconstant.  Store the duplicated element in *ELT if so.  */
3022 
3023 template <typename T>
3024 inline bool
3025 vec_duplicate_p (T x, T *elt)
3026 {
3027   if (GET_CODE (x) == VEC_DUPLICATE
3028       && !VECTOR_MODE_P (GET_MODE (XEXP (x, 0))))
3029     {
3030       *elt = XEXP (x, 0);
3031       return true;
3032     }
3033   return const_vec_duplicate_p (x, elt);
3034 }
3035 
3036 /* If X is a vector constant with a duplicated element value, return that
3037    element value, otherwise return X.  */
3038 
3039 template <typename T>
3040 inline T
3041 unwrap_const_vec_duplicate (T x)
3042 {
3043   if (const_vec_duplicate_p (x))
3044     x = CONST_VECTOR_ELT (x, 0);
3045   return x;
3046 }
3047 
3048 /* In emit-rtl.c.  */
3049 extern wide_int const_vector_int_elt (const_rtx, unsigned int);
3050 extern rtx const_vector_elt (const_rtx, unsigned int);
3051 extern bool const_vec_series_p_1 (const_rtx, rtx *, rtx *);
3052 
3053 /* Return true if X is an integer constant vector that contains a linear
3054    series of the form:
3055 
3056    { B, B + S, B + 2 * S, B + 3 * S, ... }
3057 
3058    for a nonzero S.  Store B and S in *BASE_OUT and *STEP_OUT on sucess.  */
3059 
3060 inline bool
3061 const_vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
3062 {
3063   if (GET_CODE (x) == CONST_VECTOR
3064       && CONST_VECTOR_NPATTERNS (x) == 1
3065       && !CONST_VECTOR_DUPLICATE_P (x))
3066     return const_vec_series_p_1 (x, base_out, step_out);
3067   return false;
3068 }
3069 
3070 /* Return true if X is a vector that contains a linear series of the
3071    form:
3072 
3073    { B, B + S, B + 2 * S, B + 3 * S, ... }
3074 
3075    where B and S are constant or nonconstant.  Store B and S in
3076    *BASE_OUT and *STEP_OUT on sucess.  */
3077 
3078 inline bool
3079 vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
3080 {
3081   if (GET_CODE (x) == VEC_SERIES)
3082     {
3083       *base_out = XEXP (x, 0);
3084       *step_out = XEXP (x, 1);
3085       return true;
3086     }
3087   return const_vec_series_p (x, base_out, step_out);
3088 }
3089 
3090 /* Return the unpromoted (outer) mode of SUBREG_PROMOTED_VAR_P subreg X.  */
3091 
3092 inline scalar_int_mode
3093 subreg_unpromoted_mode (rtx x)
3094 {
3095   gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
3096   return as_a <scalar_int_mode> (GET_MODE (x));
3097 }
3098 
3099 /* Return the promoted (inner) mode of SUBREG_PROMOTED_VAR_P subreg X.  */
3100 
3101 inline scalar_int_mode
3102 subreg_promoted_mode (rtx x)
3103 {
3104   gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
3105   return as_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)));
3106 }
3107 
3108 /* In emit-rtl.c */
3109 extern rtvec gen_rtvec_v (int, rtx *);
3110 extern rtvec gen_rtvec_v (int, rtx_insn **);
3111 extern rtx gen_reg_rtx (machine_mode);
3112 extern rtx gen_rtx_REG_offset (rtx, machine_mode, unsigned int, poly_int64);
3113 extern rtx gen_reg_rtx_offset (rtx, machine_mode, int);
3114 extern rtx gen_reg_rtx_and_attrs (rtx);
3115 extern rtx_code_label *gen_label_rtx (void);
3116 extern rtx gen_lowpart_common (machine_mode, rtx);
3117 
3118 /* In cse.c */
3119 extern rtx gen_lowpart_if_possible (machine_mode, rtx);
3120 
3121 /* In emit-rtl.c */
3122 extern rtx gen_highpart (machine_mode, rtx);
3123 extern rtx gen_highpart_mode (machine_mode, machine_mode, rtx);
3124 extern rtx operand_subword (rtx, poly_uint64, int, machine_mode);
3125 
3126 /* In emit-rtl.c */
3127 extern rtx operand_subword_force (rtx, poly_uint64, machine_mode);
3128 extern int subreg_lowpart_p (const_rtx);
3129 extern poly_uint64 subreg_size_lowpart_offset (poly_uint64, poly_uint64);
3130 
3131 /* Return true if a subreg of mode OUTERMODE would only access part of
3132    an inner register with mode INNERMODE.  The other bits of the inner
3133    register would then be "don't care" on read.  The behavior for writes
3134    depends on REGMODE_NATURAL_SIZE; bits in the same REGMODE_NATURAL_SIZE-d
3135    chunk would be clobbered but other bits would be preserved.  */
3136 
3137 inline bool
3138 partial_subreg_p (machine_mode outermode, machine_mode innermode)
3139 {
3140   /* Modes involved in a subreg must be ordered.  In particular, we must
3141      always know at compile time whether the subreg is paradoxical.  */
3142   poly_int64 outer_prec = GET_MODE_PRECISION (outermode);
3143   poly_int64 inner_prec = GET_MODE_PRECISION (innermode);
3144   gcc_checking_assert (ordered_p (outer_prec, inner_prec));
3145   return maybe_lt (outer_prec, inner_prec);
3146 }
3147 
3148 /* Likewise return true if X is a subreg that is smaller than the inner
3149    register.  Use read_modify_subreg_p to test whether writing to such
3150    a subreg preserves any part of the inner register.  */
3151 
3152 inline bool
3153 partial_subreg_p (const_rtx x)
3154 {
3155   if (GET_CODE (x) != SUBREG)
3156     return false;
3157   return partial_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3158 }
3159 
3160 /* Return true if a subreg with the given outer and inner modes is
3161    paradoxical.  */
3162 
3163 inline bool
3164 paradoxical_subreg_p (machine_mode outermode, machine_mode innermode)
3165 {
3166   /* Modes involved in a subreg must be ordered.  In particular, we must
3167      always know at compile time whether the subreg is paradoxical.  */
3168   poly_int64 outer_prec = GET_MODE_PRECISION (outermode);
3169   poly_int64 inner_prec = GET_MODE_PRECISION (innermode);
3170   gcc_checking_assert (ordered_p (outer_prec, inner_prec));
3171   return maybe_gt (outer_prec, inner_prec);
3172 }
3173 
3174 /* Return true if X is a paradoxical subreg, false otherwise.  */
3175 
3176 inline bool
3177 paradoxical_subreg_p (const_rtx x)
3178 {
3179   if (GET_CODE (x) != SUBREG)
3180     return false;
3181   return paradoxical_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3182 }
3183 
3184 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value.  */
3185 
3186 inline poly_uint64
3187 subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
3188 {
3189   return subreg_size_lowpart_offset (GET_MODE_SIZE (outermode),
3190 				     GET_MODE_SIZE (innermode));
3191 }
3192 
3193 /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3194    return the smaller of the two modes if they are different sizes,
3195    otherwise return the outer mode.  */
3196 
3197 inline machine_mode
3198 narrower_subreg_mode (machine_mode outermode, machine_mode innermode)
3199 {
3200   return paradoxical_subreg_p (outermode, innermode) ? innermode : outermode;
3201 }
3202 
3203 /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3204    return the mode that is big enough to hold both the outer and inner
3205    values.  Prefer the outer mode in the event of a tie.  */
3206 
3207 inline machine_mode
3208 wider_subreg_mode (machine_mode outermode, machine_mode innermode)
3209 {
3210   return partial_subreg_p (outermode, innermode) ? innermode : outermode;
3211 }
3212 
3213 /* Likewise for subreg X.  */
3214 
3215 inline machine_mode
3216 wider_subreg_mode (const_rtx x)
3217 {
3218   return wider_subreg_mode (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3219 }
3220 
3221 extern poly_uint64 subreg_size_highpart_offset (poly_uint64, poly_uint64);
3222 
3223 /* Return the SUBREG_BYTE for an OUTERMODE highpart of an INNERMODE value.  */
3224 
3225 inline poly_uint64
3226 subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
3227 {
3228   return subreg_size_highpart_offset (GET_MODE_SIZE (outermode),
3229 				      GET_MODE_SIZE (innermode));
3230 }
3231 
3232 extern poly_int64 byte_lowpart_offset (machine_mode, machine_mode);
3233 extern poly_int64 subreg_memory_offset (machine_mode, machine_mode,
3234 					poly_uint64);
3235 extern poly_int64 subreg_memory_offset (const_rtx);
3236 extern rtx make_safe_from (rtx, rtx);
3237 extern rtx convert_memory_address_addr_space_1 (scalar_int_mode, rtx,
3238 						addr_space_t, bool, bool);
3239 extern rtx convert_memory_address_addr_space (scalar_int_mode, rtx,
3240 					      addr_space_t);
3241 #define convert_memory_address(to_mode,x) \
3242 	convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
3243 extern const char *get_insn_name (int);
3244 extern rtx_insn *get_last_insn_anywhere (void);
3245 extern rtx_insn *get_first_nonnote_insn (void);
3246 extern rtx_insn *get_last_nonnote_insn (void);
3247 extern void start_sequence (void);
3248 extern void push_to_sequence (rtx_insn *);
3249 extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
3250 extern void end_sequence (void);
3251 #if TARGET_SUPPORTS_WIDE_INT == 0
3252 extern double_int rtx_to_double_int (const_rtx);
3253 #endif
3254 extern void cwi_output_hex (FILE *, const_rtx);
3255 #if TARGET_SUPPORTS_WIDE_INT == 0
3256 extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
3257 			       machine_mode);
3258 #endif
3259 extern rtx immed_wide_int_const (const poly_wide_int_ref &, machine_mode);
3260 
3261 /* In varasm.c  */
3262 extern rtx force_const_mem (machine_mode, rtx);
3263 
3264 /* In varasm.c  */
3265 
3266 struct function;
3267 extern rtx get_pool_constant (const_rtx);
3268 extern rtx get_pool_constant_mark (rtx, bool *);
3269 extern fixed_size_mode get_pool_mode (const_rtx);
3270 extern rtx simplify_subtraction (rtx);
3271 extern void decide_function_section (tree);
3272 
3273 /* In emit-rtl.c */
3274 extern rtx_insn *emit_insn_before (rtx, rtx_insn *);
3275 extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
3276 extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, location_t);
3277 extern rtx_jump_insn *emit_jump_insn_before (rtx, rtx_insn *);
3278 extern rtx_jump_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
3279 extern rtx_jump_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *,
3280 						    location_t);
3281 extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
3282 extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
3283 extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, location_t);
3284 extern rtx_insn *emit_debug_insn_before (rtx, rtx_insn *);
3285 extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx_insn *);
3286 extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx_insn *, location_t);
3287 extern rtx_barrier *emit_barrier_before (rtx_insn *);
3288 extern rtx_code_label *emit_label_before (rtx_code_label *, rtx_insn *);
3289 extern rtx_note *emit_note_before (enum insn_note, rtx_insn *);
3290 extern rtx_insn *emit_insn_after (rtx, rtx_insn *);
3291 extern rtx_insn *emit_insn_after_noloc (rtx, rtx_insn *, basic_block);
3292 extern rtx_insn *emit_insn_after_setloc (rtx, rtx_insn *, location_t);
3293 extern rtx_jump_insn *emit_jump_insn_after (rtx, rtx_insn *);
3294 extern rtx_jump_insn *emit_jump_insn_after_noloc (rtx, rtx_insn *);
3295 extern rtx_jump_insn *emit_jump_insn_after_setloc (rtx, rtx_insn *, location_t);
3296 extern rtx_insn *emit_call_insn_after (rtx, rtx_insn *);
3297 extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx_insn *);
3298 extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx_insn *, location_t);
3299 extern rtx_insn *emit_debug_insn_after (rtx, rtx_insn *);
3300 extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx_insn *);
3301 extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx_insn *, location_t);
3302 extern rtx_barrier *emit_barrier_after (rtx_insn *);
3303 extern rtx_insn *emit_label_after (rtx_insn *, rtx_insn *);
3304 extern rtx_note *emit_note_after (enum insn_note, rtx_insn *);
3305 extern rtx_insn *emit_insn (rtx);
3306 extern rtx_insn *emit_debug_insn (rtx);
3307 extern rtx_insn *emit_jump_insn (rtx);
3308 extern rtx_insn *emit_call_insn (rtx);
3309 extern rtx_code_label *emit_label (rtx);
3310 extern rtx_jump_table_data *emit_jump_table_data (rtx);
3311 extern rtx_barrier *emit_barrier (void);
3312 extern rtx_note *emit_note (enum insn_note);
3313 extern rtx_note *emit_note_copy (rtx_note *);
3314 extern rtx_insn *gen_clobber (rtx);
3315 extern rtx_insn *emit_clobber (rtx);
3316 extern rtx_insn *gen_use (rtx);
3317 extern rtx_insn *emit_use (rtx);
3318 extern rtx_insn *make_insn_raw (rtx);
3319 extern void add_function_usage_to (rtx, rtx);
3320 extern rtx_call_insn *last_call_insn (void);
3321 extern rtx_insn *previous_insn (rtx_insn *);
3322 extern rtx_insn *next_insn (rtx_insn *);
3323 extern rtx_insn *prev_nonnote_insn (rtx_insn *);
3324 extern rtx_insn *next_nonnote_insn (rtx_insn *);
3325 extern rtx_insn *prev_nondebug_insn (rtx_insn *);
3326 extern rtx_insn *next_nondebug_insn (rtx_insn *);
3327 extern rtx_insn *prev_nonnote_nondebug_insn (rtx_insn *);
3328 extern rtx_insn *prev_nonnote_nondebug_insn_bb (rtx_insn *);
3329 extern rtx_insn *next_nonnote_nondebug_insn (rtx_insn *);
3330 extern rtx_insn *next_nonnote_nondebug_insn_bb (rtx_insn *);
3331 extern rtx_insn *prev_real_insn (rtx_insn *);
3332 extern rtx_insn *next_real_insn (rtx_insn *);
3333 extern rtx_insn *prev_real_nondebug_insn (rtx_insn *);
3334 extern rtx_insn *next_real_nondebug_insn (rtx);
3335 extern rtx_insn *prev_active_insn (rtx_insn *);
3336 extern rtx_insn *next_active_insn (rtx_insn *);
3337 extern int active_insn_p (const rtx_insn *);
3338 extern rtx_insn *next_cc0_user (rtx_insn *);
3339 extern rtx_insn *prev_cc0_setter (rtx_insn *);
3340 
3341 /* In emit-rtl.c  */
3342 extern int insn_line (const rtx_insn *);
3343 extern const char * insn_file (const rtx_insn *);
3344 extern tree insn_scope (const rtx_insn *);
3345 extern expanded_location insn_location (const rtx_insn *);
3346 extern location_t prologue_location, epilogue_location;
3347 
3348 /* In jump.c */
3349 extern enum rtx_code reverse_condition (enum rtx_code);
3350 extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
3351 extern enum rtx_code swap_condition (enum rtx_code);
3352 extern enum rtx_code unsigned_condition (enum rtx_code);
3353 extern enum rtx_code signed_condition (enum rtx_code);
3354 extern void mark_jump_label (rtx, rtx_insn *, int);
3355 
3356 /* Return true if integer comparison operator CODE interprets its operands
3357    as unsigned.  */
3358 
3359 inline bool
3360 unsigned_condition_p (enum rtx_code code)
3361 {
3362   return unsigned_condition (code) == code;
3363 }
3364 
3365 /* In jump.c */
3366 extern rtx_insn *delete_related_insns (rtx);
3367 
3368 /* In recog.c  */
3369 extern rtx *find_constant_term_loc (rtx *);
3370 
3371 /* In emit-rtl.c  */
3372 extern rtx_insn *try_split (rtx, rtx_insn *, int);
3373 
3374 /* In insn-recog.c (generated by genrecog).  */
3375 extern rtx_insn *split_insns (rtx, rtx_insn *);
3376 
3377 /* In simplify-rtx.c  */
3378 extern rtx simplify_const_unary_operation (enum rtx_code, machine_mode,
3379 					   rtx, machine_mode);
3380 extern rtx simplify_unary_operation (enum rtx_code, machine_mode, rtx,
3381 				     machine_mode);
3382 extern rtx simplify_const_binary_operation (enum rtx_code, machine_mode,
3383 					    rtx, rtx);
3384 extern rtx simplify_binary_operation (enum rtx_code, machine_mode, rtx,
3385 				      rtx);
3386 extern rtx simplify_ternary_operation (enum rtx_code, machine_mode,
3387 				       machine_mode, rtx, rtx, rtx);
3388 extern rtx simplify_const_relational_operation (enum rtx_code,
3389 						machine_mode, rtx, rtx);
3390 extern rtx simplify_relational_operation (enum rtx_code, machine_mode,
3391 					  machine_mode, rtx, rtx);
3392 extern rtx simplify_gen_binary (enum rtx_code, machine_mode, rtx, rtx);
3393 extern rtx simplify_gen_unary (enum rtx_code, machine_mode, rtx,
3394 			       machine_mode);
3395 extern rtx simplify_gen_ternary (enum rtx_code, machine_mode,
3396 				 machine_mode, rtx, rtx, rtx);
3397 extern rtx simplify_gen_relational (enum rtx_code, machine_mode,
3398 				    machine_mode, rtx, rtx);
3399 extern rtx simplify_subreg (machine_mode, rtx, machine_mode, poly_uint64);
3400 extern rtx simplify_gen_subreg (machine_mode, rtx, machine_mode, poly_uint64);
3401 extern rtx lowpart_subreg (machine_mode, rtx, machine_mode);
3402 extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
3403 				    rtx (*fn) (rtx, const_rtx, void *), void *);
3404 extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
3405 extern rtx simplify_rtx (const_rtx);
3406 extern rtx avoid_constant_pool_reference (rtx);
3407 extern rtx delegitimize_mem_from_attrs (rtx);
3408 extern bool mode_signbit_p (machine_mode, const_rtx);
3409 extern bool val_signbit_p (machine_mode, unsigned HOST_WIDE_INT);
3410 extern bool val_signbit_known_set_p (machine_mode,
3411 				     unsigned HOST_WIDE_INT);
3412 extern bool val_signbit_known_clear_p (machine_mode,
3413 				       unsigned HOST_WIDE_INT);
3414 
3415 /* In reginfo.c  */
3416 extern machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
3417 					  const predefined_function_abi *);
3418 extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &);
3419 
3420 /* In emit-rtl.c  */
3421 extern rtx set_for_reg_notes (rtx);
3422 extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
3423 extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
3424 extern void set_insn_deleted (rtx_insn *);
3425 
3426 /* Functions in rtlanal.c */
3427 
3428 extern rtx single_set_2 (const rtx_insn *, const_rtx);
3429 extern bool contains_symbol_ref_p (const_rtx);
3430 extern bool contains_symbolic_reference_p (const_rtx);
3431 extern bool contains_constant_pool_address_p (const_rtx);
3432 
3433 /* Handle the cheap and common cases inline for performance.  */
3434 
3435 inline rtx single_set (const rtx_insn *insn)
3436 {
3437   if (!INSN_P (insn))
3438     return NULL_RTX;
3439 
3440   if (GET_CODE (PATTERN (insn)) == SET)
3441     return PATTERN (insn);
3442 
3443   /* Defer to the more expensive case.  */
3444   return single_set_2 (insn, PATTERN (insn));
3445 }
3446 
3447 extern scalar_int_mode get_address_mode (rtx mem);
3448 extern int rtx_addr_can_trap_p (const_rtx);
3449 extern bool nonzero_address_p (const_rtx);
3450 extern int rtx_unstable_p (const_rtx);
3451 extern bool rtx_varies_p (const_rtx, bool);
3452 extern bool rtx_addr_varies_p (const_rtx, bool);
3453 extern rtx get_call_rtx_from (const rtx_insn *);
3454 extern tree get_call_fndecl (const rtx_insn *);
3455 extern HOST_WIDE_INT get_integer_term (const_rtx);
3456 extern rtx get_related_value (const_rtx);
3457 extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
3458 extern void split_const (rtx, rtx *, rtx *);
3459 extern rtx strip_offset (rtx, poly_int64_pod *);
3460 extern poly_int64 get_args_size (const_rtx);
3461 extern bool unsigned_reg_p (rtx);
3462 extern int reg_mentioned_p (const_rtx, const_rtx);
3463 extern int count_occurrences (const_rtx, const_rtx, int);
3464 extern int reg_referenced_p (const_rtx, const_rtx);
3465 extern int reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3466 extern int reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3467 extern int commutative_operand_precedence (rtx);
3468 extern bool swap_commutative_operands_p (rtx, rtx);
3469 extern int modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3470 extern int no_labels_between_p (const rtx_insn *, const rtx_insn *);
3471 extern int modified_in_p (const_rtx, const_rtx);
3472 extern int reg_set_p (const_rtx, const_rtx);
3473 extern int multiple_sets (const_rtx);
3474 extern int set_noop_p (const_rtx);
3475 extern int noop_move_p (const rtx_insn *);
3476 extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
3477 extern int reg_overlap_mentioned_p (const_rtx, const_rtx);
3478 extern const_rtx set_of (const_rtx, const_rtx);
3479 extern void record_hard_reg_sets (rtx, const_rtx, void *);
3480 extern void record_hard_reg_uses (rtx *, void *);
3481 extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
3482 extern void find_all_hard_reg_sets (const rtx_insn *, HARD_REG_SET *, bool);
3483 extern void note_pattern_stores (const_rtx,
3484 				 void (*) (rtx, const_rtx, void *), void *);
3485 extern void note_stores (const rtx_insn *,
3486 			 void (*) (rtx, const_rtx, void *), void *);
3487 extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
3488 extern int dead_or_set_p (const rtx_insn *, const_rtx);
3489 extern int dead_or_set_regno_p (const rtx_insn *, unsigned int);
3490 extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
3491 extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
3492 extern rtx find_reg_equal_equiv_note (const_rtx);
3493 extern rtx find_constant_src (const rtx_insn *);
3494 extern int find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
3495 extern int find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
3496 extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
3497 extern void add_reg_note (rtx, enum reg_note, rtx);
3498 extern void add_int_reg_note (rtx_insn *, enum reg_note, int);
3499 extern void add_args_size_note (rtx_insn *, poly_int64);
3500 extern void add_shallow_copy_of_reg_note (rtx_insn *, rtx);
3501 extern rtx duplicate_reg_note (rtx);
3502 extern void remove_note (rtx_insn *, const_rtx);
3503 extern bool remove_reg_equal_equiv_notes (rtx_insn *);
3504 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
3505 extern int side_effects_p (const_rtx);
3506 extern int volatile_refs_p (const_rtx);
3507 extern int volatile_insn_p (const_rtx);
3508 extern int may_trap_p_1 (const_rtx, unsigned);
3509 extern int may_trap_p (const_rtx);
3510 extern int may_trap_or_fault_p (const_rtx);
3511 extern bool can_throw_internal (const_rtx);
3512 extern bool can_throw_external (const_rtx);
3513 extern bool insn_could_throw_p (const_rtx);
3514 extern bool insn_nothrow_p (const_rtx);
3515 extern bool can_nonlocal_goto (const rtx_insn *);
3516 extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
3517 extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
3518 extern rtx replace_rtx (rtx, rtx, rtx, bool = false);
3519 extern void replace_label (rtx *, rtx, rtx, bool);
3520 extern void replace_label_in_insn (rtx_insn *, rtx_insn *, rtx_insn *, bool);
3521 extern bool rtx_referenced_p (const_rtx, const_rtx);
3522 extern bool tablejump_p (const rtx_insn *, rtx_insn **, rtx_jump_table_data **);
3523 extern rtx tablejump_casesi_pattern (const rtx_insn *insn);
3524 extern int computed_jump_p (const rtx_insn *);
3525 extern bool tls_referenced_p (const_rtx);
3526 extern bool contains_mem_rtx_p (rtx x);
3527 
3528 /* Overload for refers_to_regno_p for checking a single register.  */
3529 inline bool
3530 refers_to_regno_p (unsigned int regnum, const_rtx x, rtx* loc = NULL)
3531 {
3532   return refers_to_regno_p (regnum, regnum + 1, x, loc);
3533 }
3534 
3535 /* Callback for for_each_inc_dec, to process the autoinc operation OP
3536    within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
3537    NULL.  The callback is passed the same opaque ARG passed to
3538    for_each_inc_dec.  Return zero to continue looking for other
3539    autoinc operations or any other value to interrupt the traversal and
3540    return that value to the caller of for_each_inc_dec.  */
3541 typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
3542 				    rtx srcoff, void *arg);
3543 extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
3544 
3545 typedef int (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
3546                                               rtx *, rtx *);
3547 extern int rtx_equal_p_cb (const_rtx, const_rtx,
3548                            rtx_equal_p_callback_function);
3549 
3550 typedef int (*hash_rtx_callback_function) (const_rtx, machine_mode, rtx *,
3551                                            machine_mode *);
3552 extern unsigned hash_rtx_cb (const_rtx, machine_mode, int *, int *,
3553                              bool, hash_rtx_callback_function);
3554 
3555 extern rtx regno_use_in (unsigned int, rtx);
3556 extern int auto_inc_p (const_rtx);
3557 extern bool in_insn_list_p (const rtx_insn_list *, const rtx_insn *);
3558 extern void remove_node_from_expr_list (const_rtx, rtx_expr_list **);
3559 extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
3560 extern int loc_mentioned_in_p (rtx *, const_rtx);
3561 extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
3562 extern bool keep_with_call_p (const rtx_insn *);
3563 extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
3564 extern int pattern_cost (rtx, bool);
3565 extern int insn_cost (rtx_insn *, bool);
3566 extern unsigned seq_cost (const rtx_insn *, bool);
3567 
3568 /* Given an insn and condition, return a canonical description of
3569    the test being made.  */
3570 extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
3571 				   int, int);
3572 
3573 /* Given a JUMP_INSN, return a canonical description of the test
3574    being made.  */
3575 extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
3576 
3577 /* Information about a subreg of a hard register.  */
3578 struct subreg_info
3579 {
3580   /* Offset of first hard register involved in the subreg.  */
3581   int offset;
3582   /* Number of hard registers involved in the subreg.  In the case of
3583      a paradoxical subreg, this is the number of registers that would
3584      be modified by writing to the subreg; some of them may be don't-care
3585      when reading from the subreg.  */
3586   int nregs;
3587   /* Whether this subreg can be represented as a hard reg with the new
3588      mode (by adding OFFSET to the original hard register).  */
3589   bool representable_p;
3590 };
3591 
3592 extern void subreg_get_info (unsigned int, machine_mode,
3593 			     poly_uint64, machine_mode,
3594 			     struct subreg_info *);
3595 
3596 /* lists.c */
3597 
3598 extern void free_EXPR_LIST_list (rtx_expr_list **);
3599 extern void free_INSN_LIST_list (rtx_insn_list **);
3600 extern void free_EXPR_LIST_node (rtx);
3601 extern void free_INSN_LIST_node (rtx);
3602 extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
3603 extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
3604 extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
3605 extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
3606 extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
3607 extern rtx remove_list_elem (rtx, rtx *);
3608 extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
3609 extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
3610 
3611 
3612 /* reginfo.c */
3613 
3614 /* Resize reg info.  */
3615 extern bool resize_reg_info (void);
3616 /* Free up register info memory.  */
3617 extern void free_reg_info (void);
3618 extern void init_subregs_of_mode (void);
3619 extern void finish_subregs_of_mode (void);
3620 
3621 /* recog.c */
3622 extern rtx extract_asm_operands (rtx);
3623 extern int asm_noperands (const_rtx);
3624 extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
3625 					machine_mode *, location_t *);
3626 extern void get_referenced_operands (const char *, bool *, unsigned int);
3627 
3628 extern enum reg_class reg_preferred_class (int);
3629 extern enum reg_class reg_alternate_class (int);
3630 extern enum reg_class reg_allocno_class (int);
3631 extern void setup_reg_classes (int, enum reg_class, enum reg_class,
3632 			       enum reg_class);
3633 
3634 extern void split_all_insns (void);
3635 extern unsigned int split_all_insns_noflow (void);
3636 
3637 #define MAX_SAVED_CONST_INT 64
3638 extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
3639 
3640 #define const0_rtx	(const_int_rtx[MAX_SAVED_CONST_INT])
3641 #define const1_rtx	(const_int_rtx[MAX_SAVED_CONST_INT+1])
3642 #define const2_rtx	(const_int_rtx[MAX_SAVED_CONST_INT+2])
3643 #define constm1_rtx	(const_int_rtx[MAX_SAVED_CONST_INT-1])
3644 extern GTY(()) rtx const_true_rtx;
3645 
3646 extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
3647 
3648 /* Returns a constant 0 rtx in mode MODE.  Integer modes are treated the
3649    same as VOIDmode.  */
3650 
3651 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
3652 
3653 /* Likewise, for the constants 1 and 2 and -1.  */
3654 
3655 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
3656 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
3657 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
3658 
3659 extern GTY(()) rtx pc_rtx;
3660 extern GTY(()) rtx cc0_rtx;
3661 extern GTY(()) rtx ret_rtx;
3662 extern GTY(()) rtx simple_return_rtx;
3663 extern GTY(()) rtx_insn *invalid_insn_rtx;
3664 
3665 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
3666    is used to represent the frame pointer.  This is because the
3667    hard frame pointer and the automatic variables are separated by an amount
3668    that cannot be determined until after register allocation.  We can assume
3669    that in this case ELIMINABLE_REGS will be defined, one action of which
3670    will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM.  */
3671 #ifndef HARD_FRAME_POINTER_REGNUM
3672 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
3673 #endif
3674 
3675 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
3676 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
3677   (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3678 #endif
3679 
3680 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
3681 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
3682   (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3683 #endif
3684 
3685 /* Index labels for global_rtl.  */
3686 enum global_rtl_index
3687 {
3688   GR_STACK_POINTER,
3689   GR_FRAME_POINTER,
3690 /* For register elimination to work properly these hard_frame_pointer_rtx,
3691    frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
3692    the same register.  */
3693 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
3694   GR_ARG_POINTER = GR_FRAME_POINTER,
3695 #endif
3696 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
3697   GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
3698 #else
3699   GR_HARD_FRAME_POINTER,
3700 #endif
3701 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3702 #if HARD_FRAME_POINTER_IS_ARG_POINTER
3703   GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
3704 #else
3705   GR_ARG_POINTER,
3706 #endif
3707 #endif
3708   GR_VIRTUAL_INCOMING_ARGS,
3709   GR_VIRTUAL_STACK_ARGS,
3710   GR_VIRTUAL_STACK_DYNAMIC,
3711   GR_VIRTUAL_OUTGOING_ARGS,
3712   GR_VIRTUAL_CFA,
3713   GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
3714 
3715   GR_MAX
3716 };
3717 
3718 /* Target-dependent globals.  */
3719 struct GTY(()) target_rtl {
3720   /* All references to the hard registers in global_rtl_index go through
3721      these unique rtl objects.  On machines where the frame-pointer and
3722      arg-pointer are the same register, they use the same unique object.
3723 
3724      After register allocation, other rtl objects which used to be pseudo-regs
3725      may be clobbered to refer to the frame-pointer register.
3726      But references that were originally to the frame-pointer can be
3727      distinguished from the others because they contain frame_pointer_rtx.
3728 
3729      When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3730      tricky: until register elimination has taken place hard_frame_pointer_rtx
3731      should be used if it is being set, and frame_pointer_rtx otherwise.  After
3732      register elimination hard_frame_pointer_rtx should always be used.
3733      On machines where the two registers are same (most) then these are the
3734      same.  */
3735   rtx x_global_rtl[GR_MAX];
3736 
3737   /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM).  */
3738   rtx x_pic_offset_table_rtx;
3739 
3740   /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3741      This is used to implement __builtin_return_address for some machines;
3742      see for instance the MIPS port.  */
3743   rtx x_return_address_pointer_rtx;
3744 
3745   /* Commonly used RTL for hard registers.  These objects are not
3746      necessarily unique, so we allocate them separately from global_rtl.
3747      They are initialized once per compilation unit, then copied into
3748      regno_reg_rtx at the beginning of each function.  */
3749   rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3750 
3751   /* A sample (mem:M stack_pointer_rtx) rtx for each mode M.  */
3752   rtx x_top_of_stack[MAX_MACHINE_MODE];
3753 
3754   /* Static hunks of RTL used by the aliasing code; these are treated
3755      as persistent to avoid unnecessary RTL allocations.  */
3756   rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3757 
3758   /* The default memory attributes for each mode.  */
3759   class mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3760 
3761   /* Track if RTL has been initialized.  */
3762   bool target_specific_initialized;
3763 };
3764 
3765 extern GTY(()) struct target_rtl default_target_rtl;
3766 #if SWITCHABLE_TARGET
3767 extern struct target_rtl *this_target_rtl;
3768 #else
3769 #define this_target_rtl (&default_target_rtl)
3770 #endif
3771 
3772 #define global_rtl				\
3773   (this_target_rtl->x_global_rtl)
3774 #define pic_offset_table_rtx \
3775   (this_target_rtl->x_pic_offset_table_rtx)
3776 #define return_address_pointer_rtx \
3777   (this_target_rtl->x_return_address_pointer_rtx)
3778 #define top_of_stack \
3779   (this_target_rtl->x_top_of_stack)
3780 #define mode_mem_attrs \
3781   (this_target_rtl->x_mode_mem_attrs)
3782 
3783 /* All references to certain hard regs, except those created
3784    by allocating pseudo regs into them (when that's possible),
3785    go through these unique rtx objects.  */
3786 #define stack_pointer_rtx       (global_rtl[GR_STACK_POINTER])
3787 #define frame_pointer_rtx       (global_rtl[GR_FRAME_POINTER])
3788 #define hard_frame_pointer_rtx	(global_rtl[GR_HARD_FRAME_POINTER])
3789 #define arg_pointer_rtx		(global_rtl[GR_ARG_POINTER])
3790 
3791 #ifndef GENERATOR_FILE
3792 /* Return the attributes of a MEM rtx.  */
3793 static inline const class mem_attrs *
3794 get_mem_attrs (const_rtx x)
3795 {
3796   class mem_attrs *attrs;
3797 
3798   attrs = MEM_ATTRS (x);
3799   if (!attrs)
3800     attrs = mode_mem_attrs[(int) GET_MODE (x)];
3801   return attrs;
3802 }
3803 #endif
3804 
3805 /* Include the RTL generation functions.  */
3806 
3807 #ifndef GENERATOR_FILE
3808 #include "genrtl.h"
3809 #undef gen_rtx_ASM_INPUT
3810 #define gen_rtx_ASM_INPUT(MODE, ARG0)				\
3811   gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3812 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC)			\
3813   gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3814 #endif
3815 
3816 /* There are some RTL codes that require special attention; the
3817    generation functions included above do the raw handling.  If you
3818    add to this list, modify special_rtx in gengenrtl.c as well.  */
3819 
3820 extern rtx_expr_list *gen_rtx_EXPR_LIST (machine_mode, rtx, rtx);
3821 extern rtx_insn_list *gen_rtx_INSN_LIST (machine_mode, rtx, rtx);
3822 extern rtx_insn *
3823 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
3824 	      basic_block bb, rtx pattern, int location, int code,
3825 	      rtx reg_notes);
3826 extern rtx gen_rtx_CONST_INT (machine_mode, HOST_WIDE_INT);
3827 extern rtx gen_rtx_CONST_VECTOR (machine_mode, rtvec);
3828 extern void set_mode_and_regno (rtx, machine_mode, unsigned int);
3829 extern rtx init_raw_REG (rtx, machine_mode, unsigned int);
3830 extern rtx gen_raw_REG (machine_mode, unsigned int);
3831 #define alloca_raw_REG(mode, regno) \
3832   init_raw_REG (rtx_alloca (REG), (mode), (regno))
3833 extern rtx gen_rtx_REG (machine_mode, unsigned int);
3834 extern rtx gen_rtx_SUBREG (machine_mode, rtx, poly_uint64);
3835 extern rtx gen_rtx_MEM (machine_mode, rtx);
3836 extern rtx gen_rtx_VAR_LOCATION (machine_mode, tree, rtx,
3837 				 enum var_init_status);
3838 
3839 #ifdef GENERATOR_FILE
3840 #define PUT_MODE(RTX, MODE) PUT_MODE_RAW (RTX, MODE)
3841 #else
3842 static inline void
3843 PUT_MODE (rtx x, machine_mode mode)
3844 {
3845   if (REG_P (x))
3846     set_mode_and_regno (x, mode, REGNO (x));
3847   else
3848     PUT_MODE_RAW (x, mode);
3849 }
3850 #endif
3851 
3852 #define GEN_INT(N)  gen_rtx_CONST_INT (VOIDmode, (N))
3853 
3854 /* Virtual registers are used during RTL generation to refer to locations into
3855    the stack frame when the actual location isn't known until RTL generation
3856    is complete.  The routine instantiate_virtual_regs replaces these with
3857    the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
3858    a constant.  */
3859 
3860 #define FIRST_VIRTUAL_REGISTER	(FIRST_PSEUDO_REGISTER)
3861 
3862 /* This points to the first word of the incoming arguments passed on the stack,
3863    either by the caller or by the callee when pretending it was passed by the
3864    caller.  */
3865 
3866 #define virtual_incoming_args_rtx       (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
3867 
3868 #define VIRTUAL_INCOMING_ARGS_REGNUM	(FIRST_VIRTUAL_REGISTER)
3869 
3870 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
3871    variable on the stack.  Otherwise, it points to the first variable on
3872    the stack.  */
3873 
3874 #define virtual_stack_vars_rtx	        (global_rtl[GR_VIRTUAL_STACK_ARGS])
3875 
3876 #define VIRTUAL_STACK_VARS_REGNUM	((FIRST_VIRTUAL_REGISTER) + 1)
3877 
3878 /* This points to the location of dynamically-allocated memory on the stack
3879    immediately after the stack pointer has been adjusted by the amount
3880    desired.  */
3881 
3882 #define virtual_stack_dynamic_rtx	(global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
3883 
3884 #define VIRTUAL_STACK_DYNAMIC_REGNUM	((FIRST_VIRTUAL_REGISTER) + 2)
3885 
3886 /* This points to the location in the stack at which outgoing arguments should
3887    be written when the stack is pre-pushed (arguments pushed using push
3888    insns always use sp).  */
3889 
3890 #define virtual_outgoing_args_rtx	(global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
3891 
3892 #define VIRTUAL_OUTGOING_ARGS_REGNUM	((FIRST_VIRTUAL_REGISTER) + 3)
3893 
3894 /* This points to the Canonical Frame Address of the function.  This
3895    should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
3896    but is calculated relative to the arg pointer for simplicity; the
3897    frame pointer nor stack pointer are necessarily fixed relative to
3898    the CFA until after reload.  */
3899 
3900 #define virtual_cfa_rtx			(global_rtl[GR_VIRTUAL_CFA])
3901 
3902 #define VIRTUAL_CFA_REGNUM		((FIRST_VIRTUAL_REGISTER) + 4)
3903 
3904 #define LAST_VIRTUAL_POINTER_REGISTER	((FIRST_VIRTUAL_REGISTER) + 4)
3905 
3906 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
3907    when finalized.  */
3908 
3909 #define virtual_preferred_stack_boundary_rtx \
3910 	(global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
3911 
3912 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
3913 					((FIRST_VIRTUAL_REGISTER) + 5)
3914 
3915 #define LAST_VIRTUAL_REGISTER		((FIRST_VIRTUAL_REGISTER) + 5)
3916 
3917 /* Nonzero if REGNUM is a pointer into the stack frame.  */
3918 #define REGNO_PTR_FRAME_P(REGNUM)		\
3919   ((REGNUM) == STACK_POINTER_REGNUM		\
3920    || (REGNUM) == FRAME_POINTER_REGNUM		\
3921    || (REGNUM) == HARD_FRAME_POINTER_REGNUM	\
3922    || (REGNUM) == ARG_POINTER_REGNUM		\
3923    || ((REGNUM) >= FIRST_VIRTUAL_REGISTER	\
3924        && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
3925 
3926 /* REGNUM never really appearing in the INSN stream.  */
3927 #define INVALID_REGNUM			(~(unsigned int) 0)
3928 
3929 /* REGNUM for which no debug information can be generated.  */
3930 #define IGNORED_DWARF_REGNUM            (INVALID_REGNUM - 1)
3931 
3932 extern rtx output_constant_def (tree, int);
3933 extern rtx lookup_constant_def (tree);
3934 
3935 /* Nonzero after end of reload pass.
3936    Set to 1 or 0 by reload1.c.  */
3937 
3938 extern int reload_completed;
3939 
3940 /* Nonzero after thread_prologue_and_epilogue_insns has run.  */
3941 extern int epilogue_completed;
3942 
3943 /* Set to 1 while reload_as_needed is operating.
3944    Required by some machines to handle any generated moves differently.  */
3945 
3946 extern int reload_in_progress;
3947 
3948 /* Set to 1 while in lra.  */
3949 extern int lra_in_progress;
3950 
3951 /* This macro indicates whether you may create a new
3952    pseudo-register.  */
3953 
3954 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
3955 
3956 #ifdef STACK_REGS
3957 /* Nonzero after end of regstack pass.
3958    Set to 1 or 0 by reg-stack.c.  */
3959 extern int regstack_completed;
3960 #endif
3961 
3962 /* If this is nonzero, we do not bother generating VOLATILE
3963    around volatile memory references, and we are willing to
3964    output indirect addresses.  If cse is to follow, we reject
3965    indirect addresses so a useful potential cse is generated;
3966    if it is used only once, instruction combination will produce
3967    the same indirect address eventually.  */
3968 extern int cse_not_expected;
3969 
3970 /* Translates rtx code to tree code, for those codes needed by
3971    real_arithmetic.  The function returns an int because the caller may not
3972    know what `enum tree_code' means.  */
3973 
3974 extern int rtx_to_tree_code (enum rtx_code);
3975 
3976 /* In cse.c */
3977 extern int delete_trivially_dead_insns (rtx_insn *, int);
3978 extern int exp_equiv_p (const_rtx, const_rtx, int, bool);
3979 extern unsigned hash_rtx (const_rtx x, machine_mode, int *, int *, bool);
3980 
3981 /* In dse.c */
3982 extern bool check_for_inc_dec (rtx_insn *insn);
3983 
3984 /* In jump.c */
3985 extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
3986 extern bool jump_to_label_p (const rtx_insn *);
3987 extern int condjump_p (const rtx_insn *);
3988 extern int any_condjump_p (const rtx_insn *);
3989 extern int any_uncondjump_p (const rtx_insn *);
3990 extern rtx pc_set (const rtx_insn *);
3991 extern rtx condjump_label (const rtx_insn *);
3992 extern int simplejump_p (const rtx_insn *);
3993 extern int returnjump_p (const rtx_insn *);
3994 extern int eh_returnjump_p (rtx_insn *);
3995 extern int onlyjump_p (const rtx_insn *);
3996 extern int only_sets_cc0_p (const_rtx);
3997 extern int sets_cc0_p (const_rtx);
3998 extern int invert_jump_1 (rtx_jump_insn *, rtx);
3999 extern int invert_jump (rtx_jump_insn *, rtx, int);
4000 extern int rtx_renumbered_equal_p (const_rtx, const_rtx);
4001 extern int true_regnum (const_rtx);
4002 extern unsigned int reg_or_subregno (const_rtx);
4003 extern int redirect_jump_1 (rtx_insn *, rtx);
4004 extern void redirect_jump_2 (rtx_jump_insn *, rtx, rtx, int, int);
4005 extern int redirect_jump (rtx_jump_insn *, rtx, int);
4006 extern void rebuild_jump_labels (rtx_insn *);
4007 extern void rebuild_jump_labels_chain (rtx_insn *);
4008 extern rtx reversed_comparison (const_rtx, machine_mode);
4009 extern enum rtx_code reversed_comparison_code (const_rtx, const rtx_insn *);
4010 extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
4011 						     const_rtx, const rtx_insn *);
4012 extern void delete_for_peephole (rtx_insn *, rtx_insn *);
4013 extern int condjump_in_parallel_p (const rtx_insn *);
4014 
4015 /* In emit-rtl.c.  */
4016 extern int max_reg_num (void);
4017 extern int max_label_num (void);
4018 extern int get_first_label_num (void);
4019 extern void maybe_set_first_label_num (rtx_code_label *);
4020 extern void delete_insns_since (rtx_insn *);
4021 extern void mark_reg_pointer (rtx, int);
4022 extern void mark_user_reg (rtx);
4023 extern void reset_used_flags (rtx);
4024 extern void set_used_flags (rtx);
4025 extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
4026 extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
4027 extern int get_max_insn_count (void);
4028 extern int in_sequence_p (void);
4029 extern void init_emit (void);
4030 extern void init_emit_regs (void);
4031 extern void init_derived_machine_modes (void);
4032 extern void init_emit_once (void);
4033 extern void push_topmost_sequence (void);
4034 extern void pop_topmost_sequence (void);
4035 extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
4036 extern unsigned int unshare_all_rtl (void);
4037 extern void unshare_all_rtl_again (rtx_insn *);
4038 extern void unshare_all_rtl_in_chain (rtx_insn *);
4039 extern void verify_rtl_sharing (void);
4040 extern void add_insn (rtx_insn *);
4041 extern void add_insn_before (rtx_insn *, rtx_insn *, basic_block);
4042 extern void add_insn_after (rtx_insn *, rtx_insn *, basic_block);
4043 extern void remove_insn (rtx_insn *);
4044 extern rtx_insn *emit (rtx, bool = true);
4045 extern void emit_insn_at_entry (rtx);
4046 extern rtx gen_lowpart_SUBREG (machine_mode, rtx);
4047 extern rtx gen_const_mem (machine_mode, rtx);
4048 extern rtx gen_frame_mem (machine_mode, rtx);
4049 extern rtx gen_tmp_stack_mem (machine_mode, rtx);
4050 extern bool validate_subreg (machine_mode, machine_mode,
4051 			     const_rtx, poly_uint64);
4052 
4053 /* In combine.c  */
4054 extern unsigned int extended_count (const_rtx, machine_mode, int);
4055 extern rtx remove_death (unsigned int, rtx_insn *);
4056 extern void dump_combine_stats (FILE *);
4057 extern void dump_combine_total_stats (FILE *);
4058 extern rtx make_compound_operation (rtx, enum rtx_code);
4059 
4060 /* In sched-rgn.c.  */
4061 extern void schedule_insns (void);
4062 
4063 /* In sched-ebb.c.  */
4064 extern void schedule_ebbs (void);
4065 
4066 /* In sel-sched-dump.c.  */
4067 extern void sel_sched_fix_param (const char *param, const char *val);
4068 
4069 /* In print-rtl.c */
4070 extern const char *print_rtx_head;
4071 extern void debug (const rtx_def &ref);
4072 extern void debug (const rtx_def *ptr);
4073 extern void debug_rtx (const_rtx);
4074 extern void debug_rtx_list (const rtx_insn *, int);
4075 extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
4076 extern const rtx_insn *debug_rtx_find (const rtx_insn *, int);
4077 extern void print_mem_expr (FILE *, const_tree);
4078 extern void print_rtl (FILE *, const_rtx);
4079 extern void print_simple_rtl (FILE *, const_rtx);
4080 extern int print_rtl_single (FILE *, const_rtx);
4081 extern int print_rtl_single_with_indent (FILE *, const_rtx, int);
4082 extern void print_inline_rtx (FILE *, const_rtx, int);
4083 
4084 /* In stmt.c */
4085 extern void expand_null_return (void);
4086 extern void expand_naked_return (void);
4087 extern void emit_jump (rtx);
4088 
4089 /* Memory operation built-ins differ by return value.  Mapping
4090    of the enum values is following:
4091    - RETURN_BEGIN - return destination, e.g. memcpy
4092    - RETURN_END - return destination + n, e.g. mempcpy
4093    - RETURN_END_MINUS_ONE - return a pointer to the terminating
4094     null byte of the string, e.g. strcpy
4095 */
4096 
4097 enum memop_ret
4098 {
4099   RETURN_BEGIN,
4100   RETURN_END,
4101   RETURN_END_MINUS_ONE
4102 };
4103 
4104 /* In expr.c */
4105 extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
4106 			   unsigned int, memop_ret);
4107 extern poly_int64 find_args_size_adjust (rtx_insn *);
4108 extern poly_int64 fixup_args_size_notes (rtx_insn *, rtx_insn *, poly_int64);
4109 
4110 /* In expmed.c */
4111 extern void init_expmed (void);
4112 extern void expand_inc (rtx, rtx);
4113 extern void expand_dec (rtx, rtx);
4114 
4115 /* In lower-subreg.c */
4116 extern void init_lower_subreg (void);
4117 
4118 /* In gcse.c */
4119 extern bool can_copy_p (machine_mode);
4120 extern bool can_assign_to_reg_without_clobbers_p (rtx, machine_mode);
4121 extern rtx_insn *prepare_copy_insn (rtx, rtx);
4122 
4123 /* In cprop.c */
4124 extern rtx fis_get_condition (rtx_insn *);
4125 
4126 /* In ira.c */
4127 extern HARD_REG_SET eliminable_regset;
4128 extern void mark_elimination (int, int);
4129 
4130 /* In reginfo.c */
4131 extern int reg_classes_intersect_p (reg_class_t, reg_class_t);
4132 extern int reg_class_subset_p (reg_class_t, reg_class_t);
4133 extern void globalize_reg (tree, int);
4134 extern void init_reg_modes_target (void);
4135 extern void init_regs (void);
4136 extern void reinit_regs (void);
4137 extern void init_fake_stack_mems (void);
4138 extern void save_register_info (void);
4139 extern void init_reg_sets (void);
4140 extern void regclass (rtx, int);
4141 extern void reg_scan (rtx_insn *, unsigned int);
4142 extern void fix_register (const char *, int, int);
4143 extern const HARD_REG_SET *valid_mode_changes_for_regno (unsigned int);
4144 
4145 /* In reload1.c */
4146 extern int function_invariant_p (const_rtx);
4147 
4148 /* In calls.c */
4149 enum libcall_type
4150 {
4151   LCT_NORMAL = 0,
4152   LCT_CONST = 1,
4153   LCT_PURE = 2,
4154   LCT_NORETURN = 3,
4155   LCT_THROW = 4,
4156   LCT_RETURNS_TWICE = 5
4157 };
4158 
4159 extern rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
4160 				      machine_mode, int, rtx_mode_t *);
4161 
4162 /* Output a library call and discard the returned value.  FUN is the
4163    address of the function, as a SYMBOL_REF rtx, and OUTMODE is the mode
4164    of the (discarded) return value.  FN_TYPE is LCT_NORMAL for `normal'
4165    calls, LCT_CONST for `const' calls, LCT_PURE for `pure' calls, or
4166    another LCT_ value for other types of library calls.
4167 
4168    There are different overloads of this function for different numbers
4169    of arguments.  In each case the argument value is followed by its mode.  */
4170 
4171 inline void
4172 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode)
4173 {
4174   emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 0, NULL);
4175 }
4176 
4177 inline void
4178 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4179 		   rtx arg1, machine_mode arg1_mode)
4180 {
4181   rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
4182   emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 1, args);
4183 }
4184 
4185 inline void
4186 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4187 		   rtx arg1, machine_mode arg1_mode,
4188 		   rtx arg2, machine_mode arg2_mode)
4189 {
4190   rtx_mode_t args[] = {
4191     rtx_mode_t (arg1, arg1_mode),
4192     rtx_mode_t (arg2, arg2_mode)
4193   };
4194   emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 2, args);
4195 }
4196 
4197 inline void
4198 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4199 		   rtx arg1, machine_mode arg1_mode,
4200 		   rtx arg2, machine_mode arg2_mode,
4201 		   rtx arg3, machine_mode arg3_mode)
4202 {
4203   rtx_mode_t args[] = {
4204     rtx_mode_t (arg1, arg1_mode),
4205     rtx_mode_t (arg2, arg2_mode),
4206     rtx_mode_t (arg3, arg3_mode)
4207   };
4208   emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 3, args);
4209 }
4210 
4211 inline void
4212 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4213 		   rtx arg1, machine_mode arg1_mode,
4214 		   rtx arg2, machine_mode arg2_mode,
4215 		   rtx arg3, machine_mode arg3_mode,
4216 		   rtx arg4, machine_mode arg4_mode)
4217 {
4218   rtx_mode_t args[] = {
4219     rtx_mode_t (arg1, arg1_mode),
4220     rtx_mode_t (arg2, arg2_mode),
4221     rtx_mode_t (arg3, arg3_mode),
4222     rtx_mode_t (arg4, arg4_mode)
4223   };
4224   emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 4, args);
4225 }
4226 
4227 /* Like emit_library_call, but return the value produced by the call.
4228    Use VALUE to store the result if it is nonnull, otherwise pick a
4229    convenient location.  */
4230 
4231 inline rtx
4232 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4233 			 machine_mode outmode)
4234 {
4235   return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 0, NULL);
4236 }
4237 
4238 inline rtx
4239 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4240 			 machine_mode outmode,
4241 			 rtx arg1, machine_mode arg1_mode)
4242 {
4243   rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
4244   return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 1, args);
4245 }
4246 
4247 inline rtx
4248 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4249 			 machine_mode outmode,
4250 			 rtx arg1, machine_mode arg1_mode,
4251 			 rtx arg2, machine_mode arg2_mode)
4252 {
4253   rtx_mode_t args[] = {
4254     rtx_mode_t (arg1, arg1_mode),
4255     rtx_mode_t (arg2, arg2_mode)
4256   };
4257   return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 2, args);
4258 }
4259 
4260 inline rtx
4261 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4262 			 machine_mode outmode,
4263 			 rtx arg1, machine_mode arg1_mode,
4264 			 rtx arg2, machine_mode arg2_mode,
4265 			 rtx arg3, machine_mode arg3_mode)
4266 {
4267   rtx_mode_t args[] = {
4268     rtx_mode_t (arg1, arg1_mode),
4269     rtx_mode_t (arg2, arg2_mode),
4270     rtx_mode_t (arg3, arg3_mode)
4271   };
4272   return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 3, args);
4273 }
4274 
4275 inline rtx
4276 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4277 			 machine_mode outmode,
4278 			 rtx arg1, machine_mode arg1_mode,
4279 			 rtx arg2, machine_mode arg2_mode,
4280 			 rtx arg3, machine_mode arg3_mode,
4281 			 rtx arg4, machine_mode arg4_mode)
4282 {
4283   rtx_mode_t args[] = {
4284     rtx_mode_t (arg1, arg1_mode),
4285     rtx_mode_t (arg2, arg2_mode),
4286     rtx_mode_t (arg3, arg3_mode),
4287     rtx_mode_t (arg4, arg4_mode)
4288   };
4289   return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 4, args);
4290 }
4291 
4292 /* In varasm.c */
4293 extern void init_varasm_once (void);
4294 
4295 extern rtx make_debug_expr_from_rtl (const_rtx);
4296 
4297 /* In read-rtl.c */
4298 #ifdef GENERATOR_FILE
4299 extern bool read_rtx (const char *, vec<rtx> *);
4300 #endif
4301 
4302 /* In alias.c */
4303 extern rtx canon_rtx (rtx);
4304 extern int true_dependence (const_rtx, machine_mode, const_rtx);
4305 extern rtx get_addr (rtx);
4306 extern int canon_true_dependence (const_rtx, machine_mode, rtx,
4307 				  const_rtx, rtx);
4308 extern int read_dependence (const_rtx, const_rtx);
4309 extern int anti_dependence (const_rtx, const_rtx);
4310 extern int canon_anti_dependence (const_rtx, bool,
4311 				  const_rtx, machine_mode, rtx);
4312 extern int output_dependence (const_rtx, const_rtx);
4313 extern int canon_output_dependence (const_rtx, bool,
4314 				    const_rtx, machine_mode, rtx);
4315 extern int may_alias_p (const_rtx, const_rtx);
4316 extern void init_alias_target (void);
4317 extern void init_alias_analysis (void);
4318 extern void end_alias_analysis (void);
4319 extern void vt_equate_reg_base_value (const_rtx, const_rtx);
4320 extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
4321 extern bool may_be_sp_based_p (rtx);
4322 extern rtx gen_hard_reg_clobber (machine_mode, unsigned int);
4323 extern rtx get_reg_known_value (unsigned int);
4324 extern bool get_reg_known_equiv_p (unsigned int);
4325 extern rtx get_reg_base_value (unsigned int);
4326 
4327 #ifdef STACK_REGS
4328 extern int stack_regs_mentioned (const_rtx insn);
4329 #endif
4330 
4331 /* In toplev.c */
4332 extern GTY(()) rtx stack_limit_rtx;
4333 
4334 /* In var-tracking.c */
4335 extern unsigned int variable_tracking_main (void);
4336 extern void delete_vta_debug_insns (bool);
4337 
4338 /* In stor-layout.c.  */
4339 extern void get_mode_bounds (scalar_int_mode, int,
4340 			     scalar_int_mode, rtx *, rtx *);
4341 
4342 /* In loop-iv.c  */
4343 extern rtx canon_condition (rtx);
4344 extern void simplify_using_condition (rtx, rtx *, bitmap);
4345 
4346 /* In final.c  */
4347 extern unsigned int compute_alignments (void);
4348 extern void update_alignments (vec<rtx> &);
4349 extern int asm_str_count (const char *templ);
4350 
4351 struct rtl_hooks
4352 {
4353   rtx (*gen_lowpart) (machine_mode, rtx);
4354   rtx (*gen_lowpart_no_emit) (machine_mode, rtx);
4355   rtx (*reg_nonzero_bits) (const_rtx, scalar_int_mode, scalar_int_mode,
4356 			   unsigned HOST_WIDE_INT *);
4357   rtx (*reg_num_sign_bit_copies) (const_rtx, scalar_int_mode, scalar_int_mode,
4358 				  unsigned int *);
4359   bool (*reg_truncated_to_mode) (machine_mode, const_rtx);
4360 
4361   /* Whenever you add entries here, make sure you adjust rtlhooks-def.h.  */
4362 };
4363 
4364 /* Each pass can provide its own.  */
4365 extern struct rtl_hooks rtl_hooks;
4366 
4367 /* ... but then it has to restore these.  */
4368 extern const struct rtl_hooks general_rtl_hooks;
4369 
4370 /* Keep this for the nonce.  */
4371 #define gen_lowpart rtl_hooks.gen_lowpart
4372 
4373 extern void insn_locations_init (void);
4374 extern void insn_locations_finalize (void);
4375 extern void set_curr_insn_location (location_t);
4376 extern location_t curr_insn_location (void);
4377 extern void set_insn_locations (rtx_insn *, location_t);
4378 
4379 /* rtl-error.c */
4380 extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
4381      ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
4382 extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
4383      ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
4384 
4385 #define fatal_insn(msgid, insn) \
4386 	_fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
4387 #define fatal_insn_not_found(insn) \
4388 	_fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
4389 
4390 /* reginfo.c */
4391 extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
4392 
4393 /* Information about the function that is propagated by the RTL backend.
4394    Available only for functions that has been already assembled.  */
4395 
4396 struct GTY(()) cgraph_rtl_info {
4397   unsigned int preferred_incoming_stack_boundary;
4398 
4399   /* Which registers the function clobbers, either directly or by
4400      calling another function.  */
4401   HARD_REG_SET function_used_regs;
4402 };
4403 
4404 /* If loads from memories of mode MODE always sign or zero extend,
4405    return SIGN_EXTEND or ZERO_EXTEND as appropriate.  Return UNKNOWN
4406    otherwise.  */
4407 
4408 inline rtx_code
4409 load_extend_op (machine_mode mode)
4410 {
4411   scalar_int_mode int_mode;
4412   if (is_a <scalar_int_mode> (mode, &int_mode)
4413       && GET_MODE_PRECISION (int_mode) < BITS_PER_WORD)
4414     return LOAD_EXTEND_OP (int_mode);
4415   return UNKNOWN;
4416 }
4417 
4418 /* If X is a PLUS of a base and a constant offset, add the constant to *OFFSET
4419    and return the base.  Return X otherwise.  */
4420 
4421 inline rtx
4422 strip_offset_and_add (rtx x, poly_int64_pod *offset)
4423 {
4424   if (GET_CODE (x) == PLUS)
4425     {
4426       poly_int64 suboffset;
4427       x = strip_offset (x, &suboffset);
4428       *offset = poly_uint64 (*offset) + suboffset;
4429     }
4430   return x;
4431 }
4432 
4433 /* Return true if X is an operation that always operates on the full
4434    registers for WORD_REGISTER_OPERATIONS architectures.  */
4435 
4436 inline bool
4437 word_register_operation_p (const_rtx x)
4438 {
4439   switch (GET_CODE (x))
4440     {
4441     case CONST_INT:
4442     case ROTATE:
4443     case ROTATERT:
4444     case SIGN_EXTRACT:
4445     case ZERO_EXTRACT:
4446       return false;
4447 
4448     default:
4449       return true;
4450     }
4451 }
4452 
4453 /* gtype-desc.c.  */
4454 extern void gt_ggc_mx (rtx &);
4455 extern void gt_pch_nx (rtx &);
4456 extern void gt_pch_nx (rtx &, gt_pointer_operator, void *);
4457 
4458 #endif /* ! GCC_RTL_H */
4459