1 /* Generic SSA value propagation engine.
2 Copyright (C) 2004-2020 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "ssa.h"
28 #include "gimple-pretty-print.h"
29 #include "dumpfile.h"
30 #include "gimple-fold.h"
31 #include "tree-eh.h"
32 #include "gimplify.h"
33 #include "gimple-iterator.h"
34 #include "tree-cfg.h"
35 #include "tree-ssa.h"
36 #include "tree-ssa-propagate.h"
37 #include "domwalk.h"
38 #include "cfgloop.h"
39 #include "tree-cfgcleanup.h"
40 #include "cfganal.h"
41
42 /* This file implements a generic value propagation engine based on
43 the same propagation used by the SSA-CCP algorithm [1].
44
45 Propagation is performed by simulating the execution of every
46 statement that produces the value being propagated. Simulation
47 proceeds as follows:
48
49 1- Initially, all edges of the CFG are marked not executable and
50 the CFG worklist is seeded with all the statements in the entry
51 basic block (block 0).
52
53 2- Every statement S is simulated with a call to the call-back
54 function SSA_PROP_VISIT_STMT. This evaluation may produce 3
55 results:
56
57 SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
58 interest and does not affect any of the work lists.
59 The statement may be simulated again if any of its input
60 operands change in future iterations of the simulator.
61
62 SSA_PROP_VARYING: The value produced by S cannot be determined
63 at compile time. Further simulation of S is not required.
64 If S is a conditional jump, all the outgoing edges for the
65 block are considered executable and added to the work
66 list.
67
68 SSA_PROP_INTERESTING: S produces a value that can be computed
69 at compile time. Its result can be propagated into the
70 statements that feed from S. Furthermore, if S is a
71 conditional jump, only the edge known to be taken is added
72 to the work list. Edges that are known not to execute are
73 never simulated.
74
75 3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The
76 return value from SSA_PROP_VISIT_PHI has the same semantics as
77 described in #2.
78
79 4- Three work lists are kept. Statements are only added to these
80 lists if they produce one of SSA_PROP_INTERESTING or
81 SSA_PROP_VARYING.
82
83 CFG_BLOCKS contains the list of blocks to be simulated.
84 Blocks are added to this list if their incoming edges are
85 found executable.
86
87 SSA_EDGE_WORKLIST contains the list of statements that we
88 need to revisit.
89
90 5- Simulation terminates when all three work lists are drained.
91
92 Before calling ssa_propagate, it is important to clear
93 prop_simulate_again_p for all the statements in the program that
94 should be simulated. This initialization allows an implementation
95 to specify which statements should never be simulated.
96
97 It is also important to compute def-use information before calling
98 ssa_propagate.
99
100 References:
101
102 [1] Constant propagation with conditional branches,
103 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
104
105 [2] Building an Optimizing Compiler,
106 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
107
108 [3] Advanced Compiler Design and Implementation,
109 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
110
111 /* Worklists of control flow edge destinations. This contains
112 the CFG order number of the blocks so we can iterate in CFG
113 order by visiting in bit-order. We use two worklists to
114 first make forward progress before iterating. */
115 static bitmap cfg_blocks;
116 static bitmap cfg_blocks_back;
117 static int *bb_to_cfg_order;
118 static int *cfg_order_to_bb;
119
120 /* Worklists of SSA edges which will need reexamination as their
121 definition has changed. SSA edges are def-use edges in the SSA
122 web. For each D-U edge, we store the target statement or PHI node
123 UID in a bitmap. UIDs order stmts in execution order. We use
124 two worklists to first make forward progress before iterating. */
125 static bitmap ssa_edge_worklist;
126 static bitmap ssa_edge_worklist_back;
127 static vec<gimple *> uid_to_stmt;
128
129 /* Current RPO index in the iteration. */
130 static int curr_order;
131
132
133 /* We have just defined a new value for VAR. If IS_VARYING is true,
134 add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
135 them to INTERESTING_SSA_EDGES. */
136
137 static void
add_ssa_edge(tree var)138 add_ssa_edge (tree var)
139 {
140 imm_use_iterator iter;
141 use_operand_p use_p;
142
143 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
144 {
145 gimple *use_stmt = USE_STMT (use_p);
146 if (!prop_simulate_again_p (use_stmt))
147 continue;
148
149 /* If we did not yet simulate the block wait for this to happen
150 and do not add the stmt to the SSA edge worklist. */
151 basic_block use_bb = gimple_bb (use_stmt);
152 if (! (use_bb->flags & BB_VISITED))
153 continue;
154
155 /* If this is a use on a not yet executable edge do not bother to
156 queue it. */
157 if (gimple_code (use_stmt) == GIMPLE_PHI
158 && !(EDGE_PRED (use_bb, PHI_ARG_INDEX_FROM_USE (use_p))->flags
159 & EDGE_EXECUTABLE))
160 continue;
161
162 bitmap worklist;
163 if (bb_to_cfg_order[gimple_bb (use_stmt)->index] < curr_order)
164 worklist = ssa_edge_worklist_back;
165 else
166 worklist = ssa_edge_worklist;
167 if (bitmap_set_bit (worklist, gimple_uid (use_stmt)))
168 {
169 uid_to_stmt[gimple_uid (use_stmt)] = use_stmt;
170 if (dump_file && (dump_flags & TDF_DETAILS))
171 {
172 fprintf (dump_file, "ssa_edge_worklist: adding SSA use in ");
173 print_gimple_stmt (dump_file, use_stmt, 0, TDF_SLIM);
174 }
175 }
176 }
177 }
178
179
180 /* Add edge E to the control flow worklist. */
181
182 static void
add_control_edge(edge e)183 add_control_edge (edge e)
184 {
185 basic_block bb = e->dest;
186 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
187 return;
188
189 /* If the edge had already been executed, skip it. */
190 if (e->flags & EDGE_EXECUTABLE)
191 return;
192
193 e->flags |= EDGE_EXECUTABLE;
194
195 int bb_order = bb_to_cfg_order[bb->index];
196 if (bb_order < curr_order)
197 bitmap_set_bit (cfg_blocks_back, bb_order);
198 else
199 bitmap_set_bit (cfg_blocks, bb_order);
200
201 if (dump_file && (dump_flags & TDF_DETAILS))
202 fprintf (dump_file, "Adding destination of edge (%d -> %d) to worklist\n",
203 e->src->index, e->dest->index);
204 }
205
206
207 /* Simulate the execution of STMT and update the work lists accordingly. */
208
209 void
simulate_stmt(gimple * stmt)210 ssa_propagation_engine::simulate_stmt (gimple *stmt)
211 {
212 enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
213 edge taken_edge = NULL;
214 tree output_name = NULL_TREE;
215
216 /* Pull the stmt off the SSA edge worklist. */
217 bitmap_clear_bit (ssa_edge_worklist, gimple_uid (stmt));
218
219 /* Don't bother visiting statements that are already
220 considered varying by the propagator. */
221 if (!prop_simulate_again_p (stmt))
222 return;
223
224 if (gimple_code (stmt) == GIMPLE_PHI)
225 {
226 val = visit_phi (as_a <gphi *> (stmt));
227 output_name = gimple_phi_result (stmt);
228 }
229 else
230 val = visit_stmt (stmt, &taken_edge, &output_name);
231
232 if (val == SSA_PROP_VARYING)
233 {
234 prop_set_simulate_again (stmt, false);
235
236 /* If the statement produced a new varying value, add the SSA
237 edges coming out of OUTPUT_NAME. */
238 if (output_name)
239 add_ssa_edge (output_name);
240
241 /* If STMT transfers control out of its basic block, add
242 all outgoing edges to the work list. */
243 if (stmt_ends_bb_p (stmt))
244 {
245 edge e;
246 edge_iterator ei;
247 basic_block bb = gimple_bb (stmt);
248 FOR_EACH_EDGE (e, ei, bb->succs)
249 add_control_edge (e);
250 }
251 return;
252 }
253 else if (val == SSA_PROP_INTERESTING)
254 {
255 /* If the statement produced new value, add the SSA edges coming
256 out of OUTPUT_NAME. */
257 if (output_name)
258 add_ssa_edge (output_name);
259
260 /* If we know which edge is going to be taken out of this block,
261 add it to the CFG work list. */
262 if (taken_edge)
263 add_control_edge (taken_edge);
264 }
265
266 /* If there are no SSA uses on the stmt whose defs are simulated
267 again then this stmt will be never visited again. */
268 bool has_simulate_again_uses = false;
269 use_operand_p use_p;
270 ssa_op_iter iter;
271 if (gimple_code (stmt) == GIMPLE_PHI)
272 {
273 edge_iterator ei;
274 edge e;
275 tree arg;
276 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->preds)
277 if (!(e->flags & EDGE_EXECUTABLE)
278 || ((arg = PHI_ARG_DEF_FROM_EDGE (stmt, e))
279 && TREE_CODE (arg) == SSA_NAME
280 && !SSA_NAME_IS_DEFAULT_DEF (arg)
281 && prop_simulate_again_p (SSA_NAME_DEF_STMT (arg))))
282 {
283 has_simulate_again_uses = true;
284 break;
285 }
286 }
287 else
288 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
289 {
290 gimple *def_stmt = SSA_NAME_DEF_STMT (USE_FROM_PTR (use_p));
291 if (!gimple_nop_p (def_stmt)
292 && prop_simulate_again_p (def_stmt))
293 {
294 has_simulate_again_uses = true;
295 break;
296 }
297 }
298 if (!has_simulate_again_uses)
299 {
300 if (dump_file && (dump_flags & TDF_DETAILS))
301 fprintf (dump_file, "marking stmt to be not simulated again\n");
302 prop_set_simulate_again (stmt, false);
303 }
304 }
305
306
307 /* Simulate the execution of BLOCK. Evaluate the statement associated
308 with each variable reference inside the block. */
309
310 void
simulate_block(basic_block block)311 ssa_propagation_engine::simulate_block (basic_block block)
312 {
313 gimple_stmt_iterator gsi;
314
315 /* There is nothing to do for the exit block. */
316 if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
317 return;
318
319 if (dump_file && (dump_flags & TDF_DETAILS))
320 fprintf (dump_file, "\nSimulating block %d\n", block->index);
321
322 /* Always simulate PHI nodes, even if we have simulated this block
323 before. */
324 for (gsi = gsi_start_phis (block); !gsi_end_p (gsi); gsi_next (&gsi))
325 simulate_stmt (gsi_stmt (gsi));
326
327 /* If this is the first time we've simulated this block, then we
328 must simulate each of its statements. */
329 if (! (block->flags & BB_VISITED))
330 {
331 gimple_stmt_iterator j;
332 unsigned int normal_edge_count;
333 edge e, normal_edge;
334 edge_iterator ei;
335
336 for (j = gsi_start_bb (block); !gsi_end_p (j); gsi_next (&j))
337 simulate_stmt (gsi_stmt (j));
338
339 /* Note that we have simulated this block. */
340 block->flags |= BB_VISITED;
341
342 /* We cannot predict when abnormal and EH edges will be executed, so
343 once a block is considered executable, we consider any
344 outgoing abnormal edges as executable.
345
346 TODO: This is not exactly true. Simplifying statement might
347 prove it non-throwing and also computed goto can be handled
348 when destination is known.
349
350 At the same time, if this block has only one successor that is
351 reached by non-abnormal edges, then add that successor to the
352 worklist. */
353 normal_edge_count = 0;
354 normal_edge = NULL;
355 FOR_EACH_EDGE (e, ei, block->succs)
356 {
357 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
358 add_control_edge (e);
359 else
360 {
361 normal_edge_count++;
362 normal_edge = e;
363 }
364 }
365
366 if (normal_edge_count == 1)
367 add_control_edge (normal_edge);
368 }
369 }
370
371
372 /* Initialize local data structures and work lists. */
373
374 static void
ssa_prop_init(void)375 ssa_prop_init (void)
376 {
377 edge e;
378 edge_iterator ei;
379 basic_block bb;
380
381 /* Worklists of SSA edges. */
382 ssa_edge_worklist = BITMAP_ALLOC (NULL);
383 ssa_edge_worklist_back = BITMAP_ALLOC (NULL);
384 bitmap_tree_view (ssa_edge_worklist);
385 bitmap_tree_view (ssa_edge_worklist_back);
386
387 /* Worklist of basic-blocks. */
388 bb_to_cfg_order = XNEWVEC (int, last_basic_block_for_fn (cfun) + 1);
389 cfg_order_to_bb = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
390 int n = pre_and_rev_post_order_compute_fn (cfun, NULL,
391 cfg_order_to_bb, false);
392 for (int i = 0; i < n; ++i)
393 bb_to_cfg_order[cfg_order_to_bb[i]] = i;
394 cfg_blocks = BITMAP_ALLOC (NULL);
395 cfg_blocks_back = BITMAP_ALLOC (NULL);
396
397 /* Initially assume that every edge in the CFG is not executable.
398 (including the edges coming out of the entry block). Mark blocks
399 as not visited, blocks not yet visited will have all their statements
400 simulated once an incoming edge gets executable. */
401 set_gimple_stmt_max_uid (cfun, 0);
402 for (int i = 0; i < n; ++i)
403 {
404 gimple_stmt_iterator si;
405 bb = BASIC_BLOCK_FOR_FN (cfun, cfg_order_to_bb[i]);
406
407 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
408 {
409 gimple *stmt = gsi_stmt (si);
410 gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun));
411 }
412
413 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
414 {
415 gimple *stmt = gsi_stmt (si);
416 gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun));
417 }
418
419 bb->flags &= ~BB_VISITED;
420 FOR_EACH_EDGE (e, ei, bb->succs)
421 e->flags &= ~EDGE_EXECUTABLE;
422 }
423 uid_to_stmt.safe_grow (gimple_stmt_max_uid (cfun));
424 }
425
426
427 /* Free allocated storage. */
428
429 static void
ssa_prop_fini(void)430 ssa_prop_fini (void)
431 {
432 BITMAP_FREE (cfg_blocks);
433 BITMAP_FREE (cfg_blocks_back);
434 free (bb_to_cfg_order);
435 free (cfg_order_to_bb);
436 BITMAP_FREE (ssa_edge_worklist);
437 BITMAP_FREE (ssa_edge_worklist_back);
438 uid_to_stmt.release ();
439 }
440
441
442 /* Return true if EXPR is an acceptable right-hand-side for a
443 GIMPLE assignment. We validate the entire tree, not just
444 the root node, thus catching expressions that embed complex
445 operands that are not permitted in GIMPLE. This function
446 is needed because the folding routines in fold-const.c
447 may return such expressions in some cases, e.g., an array
448 access with an embedded index addition. It may make more
449 sense to have folding routines that are sensitive to the
450 constraints on GIMPLE operands, rather than abandoning any
451 any attempt to fold if the usual folding turns out to be too
452 aggressive. */
453
454 bool
valid_gimple_rhs_p(tree expr)455 valid_gimple_rhs_p (tree expr)
456 {
457 enum tree_code code = TREE_CODE (expr);
458
459 switch (TREE_CODE_CLASS (code))
460 {
461 case tcc_declaration:
462 if (!is_gimple_variable (expr))
463 return false;
464 break;
465
466 case tcc_constant:
467 /* All constants are ok. */
468 break;
469
470 case tcc_comparison:
471 /* GENERIC allows comparisons with non-boolean types, reject
472 those for GIMPLE. Let vector-typed comparisons pass - rules
473 for GENERIC and GIMPLE are the same here. */
474 if (!(INTEGRAL_TYPE_P (TREE_TYPE (expr))
475 && (TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE
476 || TYPE_PRECISION (TREE_TYPE (expr)) == 1))
477 && ! VECTOR_TYPE_P (TREE_TYPE (expr)))
478 return false;
479
480 /* Fallthru. */
481 case tcc_binary:
482 if (!is_gimple_val (TREE_OPERAND (expr, 0))
483 || !is_gimple_val (TREE_OPERAND (expr, 1)))
484 return false;
485 break;
486
487 case tcc_unary:
488 if (!is_gimple_val (TREE_OPERAND (expr, 0)))
489 return false;
490 break;
491
492 case tcc_expression:
493 switch (code)
494 {
495 case ADDR_EXPR:
496 {
497 tree t;
498 if (is_gimple_min_invariant (expr))
499 return true;
500 t = TREE_OPERAND (expr, 0);
501 while (handled_component_p (t))
502 {
503 /* ??? More checks needed, see the GIMPLE verifier. */
504 if ((TREE_CODE (t) == ARRAY_REF
505 || TREE_CODE (t) == ARRAY_RANGE_REF)
506 && !is_gimple_val (TREE_OPERAND (t, 1)))
507 return false;
508 t = TREE_OPERAND (t, 0);
509 }
510 if (!is_gimple_id (t))
511 return false;
512 }
513 break;
514
515 default:
516 if (get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS)
517 {
518 if (((code == VEC_COND_EXPR || code == COND_EXPR)
519 ? !is_gimple_condexpr (TREE_OPERAND (expr, 0))
520 : !is_gimple_val (TREE_OPERAND (expr, 0)))
521 || !is_gimple_val (TREE_OPERAND (expr, 1))
522 || !is_gimple_val (TREE_OPERAND (expr, 2)))
523 return false;
524 break;
525 }
526 return false;
527 }
528 break;
529
530 case tcc_vl_exp:
531 return false;
532
533 case tcc_exceptional:
534 if (code == CONSTRUCTOR)
535 {
536 unsigned i;
537 tree elt;
538 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (expr), i, elt)
539 if (!is_gimple_val (elt))
540 return false;
541 return true;
542 }
543 if (code != SSA_NAME)
544 return false;
545 break;
546
547 case tcc_reference:
548 if (code == BIT_FIELD_REF)
549 return is_gimple_val (TREE_OPERAND (expr, 0));
550 return false;
551
552 default:
553 return false;
554 }
555
556 return true;
557 }
558
559
560 /* Return true if EXPR is a CALL_EXPR suitable for representation
561 as a single GIMPLE_CALL statement. If the arguments require
562 further gimplification, return false. */
563
564 static bool
valid_gimple_call_p(tree expr)565 valid_gimple_call_p (tree expr)
566 {
567 unsigned i, nargs;
568
569 if (TREE_CODE (expr) != CALL_EXPR)
570 return false;
571
572 nargs = call_expr_nargs (expr);
573 for (i = 0; i < nargs; i++)
574 {
575 tree arg = CALL_EXPR_ARG (expr, i);
576 if (is_gimple_reg_type (TREE_TYPE (arg)))
577 {
578 if (!is_gimple_val (arg))
579 return false;
580 }
581 else
582 if (!is_gimple_lvalue (arg))
583 return false;
584 }
585
586 return true;
587 }
588
589
590 /* Make SSA names defined by OLD_STMT point to NEW_STMT
591 as their defining statement. */
592
593 void
move_ssa_defining_stmt_for_defs(gimple * new_stmt,gimple * old_stmt)594 move_ssa_defining_stmt_for_defs (gimple *new_stmt, gimple *old_stmt)
595 {
596 tree var;
597 ssa_op_iter iter;
598
599 if (gimple_in_ssa_p (cfun))
600 {
601 /* Make defined SSA_NAMEs point to the new
602 statement as their definition. */
603 FOR_EACH_SSA_TREE_OPERAND (var, old_stmt, iter, SSA_OP_ALL_DEFS)
604 {
605 if (TREE_CODE (var) == SSA_NAME)
606 SSA_NAME_DEF_STMT (var) = new_stmt;
607 }
608 }
609 }
610
611 /* Helper function for update_gimple_call and update_call_from_tree.
612 A GIMPLE_CALL STMT is being replaced with GIMPLE_CALL NEW_STMT. */
613
614 static void
finish_update_gimple_call(gimple_stmt_iterator * si_p,gimple * new_stmt,gimple * stmt)615 finish_update_gimple_call (gimple_stmt_iterator *si_p, gimple *new_stmt,
616 gimple *stmt)
617 {
618 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
619 move_ssa_defining_stmt_for_defs (new_stmt, stmt);
620 gimple_move_vops (new_stmt, stmt);
621 gimple_set_location (new_stmt, gimple_location (stmt));
622 if (gimple_block (new_stmt) == NULL_TREE)
623 gimple_set_block (new_stmt, gimple_block (stmt));
624 gsi_replace (si_p, new_stmt, false);
625 }
626
627 /* Update a GIMPLE_CALL statement at iterator *SI_P to call to FN
628 with number of arguments NARGS, where the arguments in GIMPLE form
629 follow NARGS argument. */
630
631 bool
update_gimple_call(gimple_stmt_iterator * si_p,tree fn,int nargs,...)632 update_gimple_call (gimple_stmt_iterator *si_p, tree fn, int nargs, ...)
633 {
634 va_list ap;
635 gcall *new_stmt, *stmt = as_a <gcall *> (gsi_stmt (*si_p));
636
637 gcc_assert (is_gimple_call (stmt));
638 va_start (ap, nargs);
639 new_stmt = gimple_build_call_valist (fn, nargs, ap);
640 finish_update_gimple_call (si_p, new_stmt, stmt);
641 va_end (ap);
642 return true;
643 }
644
645 /* Update a GIMPLE_CALL statement at iterator *SI_P to reflect the
646 value of EXPR, which is expected to be the result of folding the
647 call. This can only be done if EXPR is a CALL_EXPR with valid
648 GIMPLE operands as arguments, or if it is a suitable RHS expression
649 for a GIMPLE_ASSIGN. More complex expressions will require
650 gimplification, which will introduce additional statements. In this
651 event, no update is performed, and the function returns false.
652 Note that we cannot mutate a GIMPLE_CALL in-place, so we always
653 replace the statement at *SI_P with an entirely new statement.
654 The new statement need not be a call, e.g., if the original call
655 folded to a constant. */
656
657 bool
update_call_from_tree(gimple_stmt_iterator * si_p,tree expr)658 update_call_from_tree (gimple_stmt_iterator *si_p, tree expr)
659 {
660 gimple *stmt = gsi_stmt (*si_p);
661
662 if (valid_gimple_call_p (expr))
663 {
664 /* The call has simplified to another call. */
665 tree fn = CALL_EXPR_FN (expr);
666 unsigned i;
667 unsigned nargs = call_expr_nargs (expr);
668 vec<tree> args = vNULL;
669 gcall *new_stmt;
670
671 if (nargs > 0)
672 {
673 args.create (nargs);
674 args.safe_grow_cleared (nargs);
675
676 for (i = 0; i < nargs; i++)
677 args[i] = CALL_EXPR_ARG (expr, i);
678 }
679
680 new_stmt = gimple_build_call_vec (fn, args);
681 finish_update_gimple_call (si_p, new_stmt, stmt);
682 args.release ();
683
684 return true;
685 }
686 else if (valid_gimple_rhs_p (expr))
687 {
688 tree lhs = gimple_call_lhs (stmt);
689 gimple *new_stmt;
690
691 /* The call has simplified to an expression
692 that cannot be represented as a GIMPLE_CALL. */
693 if (lhs)
694 {
695 /* A value is expected.
696 Introduce a new GIMPLE_ASSIGN statement. */
697 STRIP_USELESS_TYPE_CONVERSION (expr);
698 new_stmt = gimple_build_assign (lhs, expr);
699 move_ssa_defining_stmt_for_defs (new_stmt, stmt);
700 gimple_move_vops (new_stmt, stmt);
701 }
702 else if (!TREE_SIDE_EFFECTS (expr))
703 {
704 /* No value is expected, and EXPR has no effect.
705 Replace it with an empty statement. */
706 new_stmt = gimple_build_nop ();
707 if (gimple_in_ssa_p (cfun))
708 {
709 unlink_stmt_vdef (stmt);
710 release_defs (stmt);
711 }
712 }
713 else
714 {
715 /* No value is expected, but EXPR has an effect,
716 e.g., it could be a reference to a volatile
717 variable. Create an assignment statement
718 with a dummy (unused) lhs variable. */
719 STRIP_USELESS_TYPE_CONVERSION (expr);
720 if (gimple_in_ssa_p (cfun))
721 lhs = make_ssa_name (TREE_TYPE (expr));
722 else
723 lhs = create_tmp_var (TREE_TYPE (expr));
724 new_stmt = gimple_build_assign (lhs, expr);
725 gimple_move_vops (new_stmt, stmt);
726 move_ssa_defining_stmt_for_defs (new_stmt, stmt);
727 }
728 gimple_set_location (new_stmt, gimple_location (stmt));
729 gsi_replace (si_p, new_stmt, false);
730 return true;
731 }
732 else
733 /* The call simplified to an expression that is
734 not a valid GIMPLE RHS. */
735 return false;
736 }
737
738 /* Entry point to the propagation engine.
739
740 The VISIT_STMT virtual function is called for every statement
741 visited and the VISIT_PHI virtual function is called for every PHI
742 node visited. */
743
744 void
ssa_propagate(void)745 ssa_propagation_engine::ssa_propagate (void)
746 {
747 ssa_prop_init ();
748
749 curr_order = 0;
750
751 /* Iterate until the worklists are empty. We iterate both blocks
752 and stmts in RPO order, using sets of two worklists to first
753 complete the current iteration before iterating over backedges.
754 Seed the algorithm by adding the successors of the entry block to the
755 edge worklist. */
756 edge e;
757 edge_iterator ei;
758 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
759 {
760 e->flags &= ~EDGE_EXECUTABLE;
761 add_control_edge (e);
762 }
763 while (1)
764 {
765 int next_block_order = (bitmap_empty_p (cfg_blocks)
766 ? -1 : bitmap_first_set_bit (cfg_blocks));
767 int next_stmt_uid = (bitmap_empty_p (ssa_edge_worklist)
768 ? -1 : bitmap_first_set_bit (ssa_edge_worklist));
769 if (next_block_order == -1 && next_stmt_uid == -1)
770 {
771 if (bitmap_empty_p (cfg_blocks_back)
772 && bitmap_empty_p (ssa_edge_worklist_back))
773 break;
774
775 if (dump_file && (dump_flags & TDF_DETAILS))
776 fprintf (dump_file, "Regular worklists empty, now processing "
777 "backedge destinations\n");
778 std::swap (cfg_blocks, cfg_blocks_back);
779 std::swap (ssa_edge_worklist, ssa_edge_worklist_back);
780 continue;
781 }
782
783 int next_stmt_bb_order = -1;
784 gimple *next_stmt = NULL;
785 if (next_stmt_uid != -1)
786 {
787 next_stmt = uid_to_stmt[next_stmt_uid];
788 next_stmt_bb_order = bb_to_cfg_order[gimple_bb (next_stmt)->index];
789 }
790
791 /* Pull the next block to simulate off the worklist if it comes first. */
792 if (next_block_order != -1
793 && (next_stmt_bb_order == -1
794 || next_block_order <= next_stmt_bb_order))
795 {
796 curr_order = next_block_order;
797 bitmap_clear_bit (cfg_blocks, next_block_order);
798 basic_block bb
799 = BASIC_BLOCK_FOR_FN (cfun, cfg_order_to_bb [next_block_order]);
800 simulate_block (bb);
801 }
802 /* Else simulate from the SSA edge worklist. */
803 else
804 {
805 curr_order = next_stmt_bb_order;
806 if (dump_file && (dump_flags & TDF_DETAILS))
807 {
808 fprintf (dump_file, "\nSimulating statement: ");
809 print_gimple_stmt (dump_file, next_stmt, 0, dump_flags);
810 }
811 simulate_stmt (next_stmt);
812 }
813 }
814
815 ssa_prop_fini ();
816 }
817
818 /* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
819 is a non-volatile pointer dereference, a structure reference or a
820 reference to a single _DECL. Ignore volatile memory references
821 because they are not interesting for the optimizers. */
822
823 bool
stmt_makes_single_store(gimple * stmt)824 stmt_makes_single_store (gimple *stmt)
825 {
826 tree lhs;
827
828 if (gimple_code (stmt) != GIMPLE_ASSIGN
829 && gimple_code (stmt) != GIMPLE_CALL)
830 return false;
831
832 if (!gimple_vdef (stmt))
833 return false;
834
835 lhs = gimple_get_lhs (stmt);
836
837 /* A call statement may have a null LHS. */
838 if (!lhs)
839 return false;
840
841 return (!TREE_THIS_VOLATILE (lhs)
842 && (DECL_P (lhs)
843 || REFERENCE_CLASS_P (lhs)));
844 }
845
846
847 /* Propagation statistics. */
848 struct prop_stats_d
849 {
850 long num_const_prop;
851 long num_copy_prop;
852 long num_stmts_folded;
853 long num_dce;
854 };
855
856 static struct prop_stats_d prop_stats;
857
858 /* Replace USE references in statement STMT with the values stored in
859 PROP_VALUE. Return true if at least one reference was replaced. */
860
861 bool
replace_uses_in(gimple * stmt)862 substitute_and_fold_engine::replace_uses_in (gimple *stmt)
863 {
864 bool replaced = false;
865 use_operand_p use;
866 ssa_op_iter iter;
867
868 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
869 {
870 tree tuse = USE_FROM_PTR (use);
871 tree val = get_value (tuse);
872
873 if (val == tuse || val == NULL_TREE)
874 continue;
875
876 if (gimple_code (stmt) == GIMPLE_ASM
877 && !may_propagate_copy_into_asm (tuse))
878 continue;
879
880 if (!may_propagate_copy (tuse, val))
881 continue;
882
883 if (TREE_CODE (val) != SSA_NAME)
884 prop_stats.num_const_prop++;
885 else
886 prop_stats.num_copy_prop++;
887
888 propagate_value (use, val);
889
890 replaced = true;
891 }
892
893 return replaced;
894 }
895
896
897 /* Replace propagated values into all the arguments for PHI using the
898 values from PROP_VALUE. */
899
900 bool
replace_phi_args_in(gphi * phi)901 substitute_and_fold_engine::replace_phi_args_in (gphi *phi)
902 {
903 size_t i;
904 bool replaced = false;
905
906 if (dump_file && (dump_flags & TDF_DETAILS))
907 {
908 fprintf (dump_file, "Folding PHI node: ");
909 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
910 }
911
912 for (i = 0; i < gimple_phi_num_args (phi); i++)
913 {
914 tree arg = gimple_phi_arg_def (phi, i);
915
916 if (TREE_CODE (arg) == SSA_NAME)
917 {
918 tree val = get_value (arg);
919
920 if (val && val != arg && may_propagate_copy (arg, val))
921 {
922 edge e = gimple_phi_arg_edge (phi, i);
923
924 if (TREE_CODE (val) != SSA_NAME)
925 prop_stats.num_const_prop++;
926 else
927 prop_stats.num_copy_prop++;
928
929 propagate_value (PHI_ARG_DEF_PTR (phi, i), val);
930 replaced = true;
931
932 /* If we propagated a copy and this argument flows
933 through an abnormal edge, update the replacement
934 accordingly. */
935 if (TREE_CODE (val) == SSA_NAME
936 && e->flags & EDGE_ABNORMAL
937 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val))
938 {
939 /* This can only occur for virtual operands, since
940 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val))
941 would prevent replacement. */
942 gcc_checking_assert (virtual_operand_p (val));
943 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
944 }
945 }
946 }
947 }
948
949 if (dump_file && (dump_flags & TDF_DETAILS))
950 {
951 if (!replaced)
952 fprintf (dump_file, "No folding possible\n");
953 else
954 {
955 fprintf (dump_file, "Folded into: ");
956 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
957 fprintf (dump_file, "\n");
958 }
959 }
960
961 return replaced;
962 }
963
964
965 class substitute_and_fold_dom_walker : public dom_walker
966 {
967 public:
substitute_and_fold_dom_walker(cdi_direction direction,class substitute_and_fold_engine * engine)968 substitute_and_fold_dom_walker (cdi_direction direction,
969 class substitute_and_fold_engine *engine)
970 : dom_walker (direction),
971 something_changed (false),
972 substitute_and_fold_engine (engine)
973 {
974 stmts_to_remove.create (0);
975 stmts_to_fixup.create (0);
976 need_eh_cleanup = BITMAP_ALLOC (NULL);
977 }
~substitute_and_fold_dom_walker()978 ~substitute_and_fold_dom_walker ()
979 {
980 stmts_to_remove.release ();
981 stmts_to_fixup.release ();
982 BITMAP_FREE (need_eh_cleanup);
983 }
984
985 virtual edge before_dom_children (basic_block);
after_dom_children(basic_block)986 virtual void after_dom_children (basic_block) {}
987
988 bool something_changed;
989 vec<gimple *> stmts_to_remove;
990 vec<gimple *> stmts_to_fixup;
991 bitmap need_eh_cleanup;
992
993 class substitute_and_fold_engine *substitute_and_fold_engine;
994 };
995
996 edge
before_dom_children(basic_block bb)997 substitute_and_fold_dom_walker::before_dom_children (basic_block bb)
998 {
999 /* Propagate known values into PHI nodes. */
1000 for (gphi_iterator i = gsi_start_phis (bb);
1001 !gsi_end_p (i);
1002 gsi_next (&i))
1003 {
1004 gphi *phi = i.phi ();
1005 tree res = gimple_phi_result (phi);
1006 if (virtual_operand_p (res))
1007 continue;
1008 if (res && TREE_CODE (res) == SSA_NAME)
1009 {
1010 tree sprime = substitute_and_fold_engine->get_value (res);
1011 if (sprime
1012 && sprime != res
1013 && may_propagate_copy (res, sprime))
1014 {
1015 stmts_to_remove.safe_push (phi);
1016 continue;
1017 }
1018 }
1019 something_changed |= substitute_and_fold_engine->replace_phi_args_in (phi);
1020 }
1021
1022 /* Propagate known values into stmts. In some case it exposes
1023 more trivially deletable stmts to walk backward. */
1024 for (gimple_stmt_iterator i = gsi_start_bb (bb);
1025 !gsi_end_p (i);
1026 gsi_next (&i))
1027 {
1028 bool did_replace;
1029 gimple *stmt = gsi_stmt (i);
1030
1031 /* No point propagating into a stmt we have a value for we
1032 can propagate into all uses. Mark it for removal instead. */
1033 tree lhs = gimple_get_lhs (stmt);
1034 if (lhs && TREE_CODE (lhs) == SSA_NAME)
1035 {
1036 tree sprime = substitute_and_fold_engine->get_value (lhs);
1037 if (sprime
1038 && sprime != lhs
1039 && may_propagate_copy (lhs, sprime)
1040 && !stmt_could_throw_p (cfun, stmt)
1041 && !gimple_has_side_effects (stmt)
1042 /* We have to leave ASSERT_EXPRs around for jump-threading. */
1043 && (!is_gimple_assign (stmt)
1044 || gimple_assign_rhs_code (stmt) != ASSERT_EXPR))
1045 {
1046 stmts_to_remove.safe_push (stmt);
1047 continue;
1048 }
1049 }
1050
1051 /* Replace the statement with its folded version and mark it
1052 folded. */
1053 did_replace = false;
1054 if (dump_file && (dump_flags & TDF_DETAILS))
1055 {
1056 fprintf (dump_file, "Folding statement: ");
1057 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1058 }
1059
1060 gimple *old_stmt = stmt;
1061 bool was_noreturn = (is_gimple_call (stmt)
1062 && gimple_call_noreturn_p (stmt));
1063
1064 /* Replace real uses in the statement. */
1065 did_replace |= substitute_and_fold_engine->replace_uses_in (stmt);
1066
1067 /* If we made a replacement, fold the statement. */
1068 if (did_replace)
1069 {
1070 fold_stmt (&i, follow_single_use_edges);
1071 stmt = gsi_stmt (i);
1072 gimple_set_modified (stmt, true);
1073 }
1074 /* Also fold if we want to fold all statements. */
1075 else if (substitute_and_fold_engine->fold_all_stmts
1076 && fold_stmt (&i, follow_single_use_edges))
1077 {
1078 did_replace = true;
1079 stmt = gsi_stmt (i);
1080 gimple_set_modified (stmt, true);
1081 }
1082
1083 /* Some statements may be simplified using propagator
1084 specific information. Do this before propagating
1085 into the stmt to not disturb pass specific information. */
1086 update_stmt_if_modified (stmt);
1087 if (substitute_and_fold_engine->fold_stmt(&i))
1088 {
1089 did_replace = true;
1090 prop_stats.num_stmts_folded++;
1091 stmt = gsi_stmt (i);
1092 gimple_set_modified (stmt, true);
1093 }
1094
1095 /* If this is a control statement the propagator left edges
1096 unexecuted on force the condition in a way consistent with
1097 that. See PR66945 for cases where the propagator can end
1098 up with a different idea of a taken edge than folding
1099 (once undefined behavior is involved). */
1100 if (gimple_code (stmt) == GIMPLE_COND)
1101 {
1102 if ((EDGE_SUCC (bb, 0)->flags & EDGE_EXECUTABLE)
1103 ^ (EDGE_SUCC (bb, 1)->flags & EDGE_EXECUTABLE))
1104 {
1105 if (((EDGE_SUCC (bb, 0)->flags & EDGE_TRUE_VALUE) != 0)
1106 == ((EDGE_SUCC (bb, 0)->flags & EDGE_EXECUTABLE) != 0))
1107 gimple_cond_make_true (as_a <gcond *> (stmt));
1108 else
1109 gimple_cond_make_false (as_a <gcond *> (stmt));
1110 gimple_set_modified (stmt, true);
1111 did_replace = true;
1112 }
1113 }
1114
1115 /* Now cleanup. */
1116 if (did_replace)
1117 {
1118 /* If we cleaned up EH information from the statement,
1119 remove EH edges. */
1120 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
1121 bitmap_set_bit (need_eh_cleanup, bb->index);
1122
1123 /* If we turned a not noreturn call into a noreturn one
1124 schedule it for fixup. */
1125 if (!was_noreturn
1126 && is_gimple_call (stmt)
1127 && gimple_call_noreturn_p (stmt))
1128 stmts_to_fixup.safe_push (stmt);
1129
1130 if (gimple_assign_single_p (stmt))
1131 {
1132 tree rhs = gimple_assign_rhs1 (stmt);
1133
1134 if (TREE_CODE (rhs) == ADDR_EXPR)
1135 recompute_tree_invariant_for_addr_expr (rhs);
1136 }
1137
1138 /* Determine what needs to be done to update the SSA form. */
1139 update_stmt_if_modified (stmt);
1140 if (!is_gimple_debug (stmt))
1141 something_changed = true;
1142 }
1143
1144 if (dump_file && (dump_flags & TDF_DETAILS))
1145 {
1146 if (did_replace)
1147 {
1148 fprintf (dump_file, "Folded into: ");
1149 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1150 fprintf (dump_file, "\n");
1151 }
1152 else
1153 fprintf (dump_file, "Not folded\n");
1154 }
1155 }
1156 return NULL;
1157 }
1158
1159
1160
1161 /* Perform final substitution and folding of propagated values.
1162 Process the whole function if BLOCK is null, otherwise only
1163 process the blocks that BLOCK dominates. In the latter case,
1164 it is the caller's responsibility to ensure that dominator
1165 information is available and up-to-date.
1166
1167 PROP_VALUE[I] contains the single value that should be substituted
1168 at every use of SSA name N_I. If PROP_VALUE is NULL, no values are
1169 substituted.
1170
1171 If FOLD_FN is non-NULL the function will be invoked on all statements
1172 before propagating values for pass specific simplification.
1173
1174 DO_DCE is true if trivially dead stmts can be removed.
1175
1176 If DO_DCE is true, the statements within a BB are walked from
1177 last to first element. Otherwise we scan from first to last element.
1178
1179 Return TRUE when something changed. */
1180
1181 bool
substitute_and_fold(basic_block block)1182 substitute_and_fold_engine::substitute_and_fold (basic_block block)
1183 {
1184 if (dump_file && (dump_flags & TDF_DETAILS))
1185 fprintf (dump_file, "\nSubstituting values and folding statements\n\n");
1186
1187 memset (&prop_stats, 0, sizeof (prop_stats));
1188
1189 /* Don't call calculate_dominance_info when iterating over a subgraph.
1190 Callers that are using the interface this way are likely to want to
1191 iterate over several disjoint subgraphs, and it would be expensive
1192 in enable-checking builds to revalidate the whole dominance tree
1193 each time. */
1194 if (block)
1195 gcc_assert (dom_info_state (CDI_DOMINATORS));
1196 else
1197 calculate_dominance_info (CDI_DOMINATORS);
1198 substitute_and_fold_dom_walker walker (CDI_DOMINATORS, this);
1199 walker.walk (block ? block : ENTRY_BLOCK_PTR_FOR_FN (cfun));
1200
1201 /* We cannot remove stmts during the BB walk, especially not release
1202 SSA names there as that destroys the lattice of our callers.
1203 Remove stmts in reverse order to make debug stmt creation possible. */
1204 while (!walker.stmts_to_remove.is_empty ())
1205 {
1206 gimple *stmt = walker.stmts_to_remove.pop ();
1207 if (dump_file && dump_flags & TDF_DETAILS)
1208 {
1209 fprintf (dump_file, "Removing dead stmt ");
1210 print_gimple_stmt (dump_file, stmt, 0);
1211 fprintf (dump_file, "\n");
1212 }
1213 prop_stats.num_dce++;
1214 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1215 if (gimple_code (stmt) == GIMPLE_PHI)
1216 remove_phi_node (&gsi, true);
1217 else
1218 {
1219 unlink_stmt_vdef (stmt);
1220 gsi_remove (&gsi, true);
1221 release_defs (stmt);
1222 }
1223 }
1224
1225 if (!bitmap_empty_p (walker.need_eh_cleanup))
1226 gimple_purge_all_dead_eh_edges (walker.need_eh_cleanup);
1227
1228 /* Fixup stmts that became noreturn calls. This may require splitting
1229 blocks and thus isn't possible during the dominator walk. Do this
1230 in reverse order so we don't inadvertedly remove a stmt we want to
1231 fixup by visiting a dominating now noreturn call first. */
1232 while (!walker.stmts_to_fixup.is_empty ())
1233 {
1234 gimple *stmt = walker.stmts_to_fixup.pop ();
1235 if (dump_file && dump_flags & TDF_DETAILS)
1236 {
1237 fprintf (dump_file, "Fixing up noreturn call ");
1238 print_gimple_stmt (dump_file, stmt, 0);
1239 fprintf (dump_file, "\n");
1240 }
1241 fixup_noreturn_call (stmt);
1242 }
1243
1244 statistics_counter_event (cfun, "Constants propagated",
1245 prop_stats.num_const_prop);
1246 statistics_counter_event (cfun, "Copies propagated",
1247 prop_stats.num_copy_prop);
1248 statistics_counter_event (cfun, "Statements folded",
1249 prop_stats.num_stmts_folded);
1250 statistics_counter_event (cfun, "Statements deleted",
1251 prop_stats.num_dce);
1252
1253 return walker.something_changed;
1254 }
1255
1256
1257 /* Return true if we may propagate ORIG into DEST, false otherwise. */
1258
1259 bool
may_propagate_copy(tree dest,tree orig)1260 may_propagate_copy (tree dest, tree orig)
1261 {
1262 tree type_d = TREE_TYPE (dest);
1263 tree type_o = TREE_TYPE (orig);
1264
1265 /* If ORIG is a default definition which flows in from an abnormal edge
1266 then the copy can be propagated. It is important that we do so to avoid
1267 uninitialized copies. */
1268 if (TREE_CODE (orig) == SSA_NAME
1269 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig)
1270 && SSA_NAME_IS_DEFAULT_DEF (orig)
1271 && (SSA_NAME_VAR (orig) == NULL_TREE
1272 || TREE_CODE (SSA_NAME_VAR (orig)) == VAR_DECL))
1273 ;
1274 /* Otherwise if ORIG just flows in from an abnormal edge then the copy cannot
1275 be propagated. */
1276 else if (TREE_CODE (orig) == SSA_NAME
1277 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig))
1278 return false;
1279 /* Similarly if DEST flows in from an abnormal edge then the copy cannot be
1280 propagated. */
1281 else if (TREE_CODE (dest) == SSA_NAME
1282 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (dest))
1283 return false;
1284
1285 /* Do not copy between types for which we *do* need a conversion. */
1286 if (!useless_type_conversion_p (type_d, type_o))
1287 return false;
1288
1289 /* Generally propagating virtual operands is not ok as that may
1290 create overlapping life-ranges. */
1291 if (TREE_CODE (dest) == SSA_NAME && virtual_operand_p (dest))
1292 return false;
1293
1294 /* Anything else is OK. */
1295 return true;
1296 }
1297
1298 /* Like may_propagate_copy, but use as the destination expression
1299 the principal expression (typically, the RHS) contained in
1300 statement DEST. This is more efficient when working with the
1301 gimple tuples representation. */
1302
1303 bool
may_propagate_copy_into_stmt(gimple * dest,tree orig)1304 may_propagate_copy_into_stmt (gimple *dest, tree orig)
1305 {
1306 tree type_d;
1307 tree type_o;
1308
1309 /* If the statement is a switch or a single-rhs assignment,
1310 then the expression to be replaced by the propagation may
1311 be an SSA_NAME. Fortunately, there is an explicit tree
1312 for the expression, so we delegate to may_propagate_copy. */
1313
1314 if (gimple_assign_single_p (dest))
1315 return may_propagate_copy (gimple_assign_rhs1 (dest), orig);
1316 else if (gswitch *dest_swtch = dyn_cast <gswitch *> (dest))
1317 return may_propagate_copy (gimple_switch_index (dest_swtch), orig);
1318
1319 /* In other cases, the expression is not materialized, so there
1320 is no destination to pass to may_propagate_copy. On the other
1321 hand, the expression cannot be an SSA_NAME, so the analysis
1322 is much simpler. */
1323
1324 if (TREE_CODE (orig) == SSA_NAME
1325 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig))
1326 return false;
1327
1328 if (is_gimple_assign (dest))
1329 type_d = TREE_TYPE (gimple_assign_lhs (dest));
1330 else if (gimple_code (dest) == GIMPLE_COND)
1331 type_d = boolean_type_node;
1332 else if (is_gimple_call (dest)
1333 && gimple_call_lhs (dest) != NULL_TREE)
1334 type_d = TREE_TYPE (gimple_call_lhs (dest));
1335 else
1336 gcc_unreachable ();
1337
1338 type_o = TREE_TYPE (orig);
1339
1340 if (!useless_type_conversion_p (type_d, type_o))
1341 return false;
1342
1343 return true;
1344 }
1345
1346 /* Similarly, but we know that we're propagating into an ASM_EXPR. */
1347
1348 bool
may_propagate_copy_into_asm(tree dest ATTRIBUTE_UNUSED)1349 may_propagate_copy_into_asm (tree dest ATTRIBUTE_UNUSED)
1350 {
1351 return true;
1352 }
1353
1354
1355 /* Common code for propagate_value and replace_exp.
1356
1357 Replace use operand OP_P with VAL. FOR_PROPAGATION indicates if the
1358 replacement is done to propagate a value or not. */
1359
1360 static void
replace_exp_1(use_operand_p op_p,tree val,bool for_propagation ATTRIBUTE_UNUSED)1361 replace_exp_1 (use_operand_p op_p, tree val,
1362 bool for_propagation ATTRIBUTE_UNUSED)
1363 {
1364 if (flag_checking)
1365 {
1366 tree op = USE_FROM_PTR (op_p);
1367 gcc_assert (!(for_propagation
1368 && TREE_CODE (op) == SSA_NAME
1369 && TREE_CODE (val) == SSA_NAME
1370 && !may_propagate_copy (op, val)));
1371 }
1372
1373 if (TREE_CODE (val) == SSA_NAME)
1374 SET_USE (op_p, val);
1375 else
1376 SET_USE (op_p, unshare_expr (val));
1377 }
1378
1379
1380 /* Propagate the value VAL (assumed to be a constant or another SSA_NAME)
1381 into the operand pointed to by OP_P.
1382
1383 Use this version for const/copy propagation as it will perform additional
1384 checks to ensure validity of the const/copy propagation. */
1385
1386 void
propagate_value(use_operand_p op_p,tree val)1387 propagate_value (use_operand_p op_p, tree val)
1388 {
1389 replace_exp_1 (op_p, val, true);
1390 }
1391
1392 /* Replace *OP_P with value VAL (assumed to be a constant or another SSA_NAME).
1393
1394 Use this version when not const/copy propagating values. For example,
1395 PRE uses this version when building expressions as they would appear
1396 in specific blocks taking into account actions of PHI nodes.
1397
1398 The statement in which an expression has been replaced should be
1399 folded using fold_stmt_inplace. */
1400
1401 void
replace_exp(use_operand_p op_p,tree val)1402 replace_exp (use_operand_p op_p, tree val)
1403 {
1404 replace_exp_1 (op_p, val, false);
1405 }
1406
1407
1408 /* Propagate the value VAL (assumed to be a constant or another SSA_NAME)
1409 into the tree pointed to by OP_P.
1410
1411 Use this version for const/copy propagation when SSA operands are not
1412 available. It will perform the additional checks to ensure validity of
1413 the const/copy propagation, but will not update any operand information.
1414 Be sure to mark the stmt as modified. */
1415
1416 void
propagate_tree_value(tree * op_p,tree val)1417 propagate_tree_value (tree *op_p, tree val)
1418 {
1419 if (TREE_CODE (val) == SSA_NAME)
1420 *op_p = val;
1421 else
1422 *op_p = unshare_expr (val);
1423 }
1424
1425
1426 /* Like propagate_tree_value, but use as the operand to replace
1427 the principal expression (typically, the RHS) contained in the
1428 statement referenced by iterator GSI. Note that it is not
1429 always possible to update the statement in-place, so a new
1430 statement may be created to replace the original. */
1431
1432 void
propagate_tree_value_into_stmt(gimple_stmt_iterator * gsi,tree val)1433 propagate_tree_value_into_stmt (gimple_stmt_iterator *gsi, tree val)
1434 {
1435 gimple *stmt = gsi_stmt (*gsi);
1436
1437 if (is_gimple_assign (stmt))
1438 {
1439 tree expr = NULL_TREE;
1440 if (gimple_assign_single_p (stmt))
1441 expr = gimple_assign_rhs1 (stmt);
1442 propagate_tree_value (&expr, val);
1443 gimple_assign_set_rhs_from_tree (gsi, expr);
1444 }
1445 else if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
1446 {
1447 tree lhs = NULL_TREE;
1448 tree rhs = build_zero_cst (TREE_TYPE (val));
1449 propagate_tree_value (&lhs, val);
1450 gimple_cond_set_code (cond_stmt, NE_EXPR);
1451 gimple_cond_set_lhs (cond_stmt, lhs);
1452 gimple_cond_set_rhs (cond_stmt, rhs);
1453 }
1454 else if (is_gimple_call (stmt)
1455 && gimple_call_lhs (stmt) != NULL_TREE)
1456 {
1457 tree expr = NULL_TREE;
1458 bool res;
1459 propagate_tree_value (&expr, val);
1460 res = update_call_from_tree (gsi, expr);
1461 gcc_assert (res);
1462 }
1463 else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
1464 propagate_tree_value (gimple_switch_index_ptr (swtch_stmt), val);
1465 else
1466 gcc_unreachable ();
1467 }
1468