1 /* Complex cosine hyperbolic function for float types.
2    Copyright (C) 1997-2018 Free Software Foundation, Inc.
3    This file is part of the GNU C Library.
4    Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
5 
6    The GNU C Library is free software; you can redistribute it and/or
7    modify it under the terms of the GNU Lesser General Public
8    License as published by the Free Software Foundation; either
9    version 2.1 of the License, or (at your option) any later version.
10 
11    The GNU C Library is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14    Lesser General Public License for more details.
15 
16    You should have received a copy of the GNU Lesser General Public
17    License along with the GNU C Library; if not, see
18    <http://www.gnu.org/licenses/>.  */
19 
20 #include "quadmath-imp.h"
21 
22 __complex128
ccoshq(__complex128 x)23 ccoshq (__complex128 x)
24 {
25   __complex128 retval;
26   int rcls = fpclassifyq (__real__ x);
27   int icls = fpclassifyq (__imag__ x);
28 
29   if (__glibc_likely (rcls >= QUADFP_ZERO))
30     {
31       /* Real part is finite.  */
32       if (__glibc_likely (icls >= QUADFP_ZERO))
33 	{
34 	  /* Imaginary part is finite.  */
35 	  const int t = (int) ((FLT128_MAX_EXP - 1) * M_LN2q);
36 	  __float128 sinix, cosix;
37 
38 	  if (__glibc_likely (fabsq (__imag__ x) > FLT128_MIN))
39 	    {
40 	      sincosq (__imag__ x, &sinix, &cosix);
41 	    }
42 	  else
43 	    {
44 	      sinix = __imag__ x;
45 	      cosix = 1;
46 	    }
47 
48 	  if (fabsq (__real__ x) > t)
49 	    {
50 	      __float128 exp_t = expq (t);
51 	      __float128 rx = fabsq (__real__ x);
52 	      if (signbitq (__real__ x))
53 		sinix = -sinix;
54 	      rx -= t;
55 	      sinix *= exp_t / 2;
56 	      cosix *= exp_t / 2;
57 	      if (rx > t)
58 		{
59 		  rx -= t;
60 		  sinix *= exp_t;
61 		  cosix *= exp_t;
62 		}
63 	      if (rx > t)
64 		{
65 		  /* Overflow (original real part of x > 3t).  */
66 		  __real__ retval = FLT128_MAX * cosix;
67 		  __imag__ retval = FLT128_MAX * sinix;
68 		}
69 	      else
70 		{
71 		  __float128 exp_val = expq (rx);
72 		  __real__ retval = exp_val * cosix;
73 		  __imag__ retval = exp_val * sinix;
74 		}
75 	    }
76 	  else
77 	    {
78 	      __real__ retval = coshq (__real__ x) * cosix;
79 	      __imag__ retval = sinhq (__real__ x) * sinix;
80 	    }
81 
82 	  math_check_force_underflow_complex (retval);
83 	}
84       else
85 	{
86 	  __imag__ retval = __real__ x == 0 ? 0 : nanq ("");
87 	  __real__ retval = __imag__ x - __imag__ x;
88 	}
89     }
90   else if (rcls == QUADFP_INFINITE)
91     {
92       /* Real part is infinite.  */
93       if (__glibc_likely (icls > QUADFP_ZERO))
94 	{
95 	  /* Imaginary part is finite.  */
96 	  __float128 sinix, cosix;
97 
98 	  if (__glibc_likely (fabsq (__imag__ x) > FLT128_MIN))
99 	    {
100 	      sincosq (__imag__ x, &sinix, &cosix);
101 	    }
102 	  else
103 	    {
104 	      sinix = __imag__ x;
105 	      cosix = 1;
106 	    }
107 
108 	  __real__ retval = copysignq (HUGE_VALQ, cosix);
109 	  __imag__ retval = (copysignq (HUGE_VALQ, sinix)
110 			     * copysignq (1, __real__ x));
111 	}
112       else if (icls == QUADFP_ZERO)
113 	{
114 	  /* Imaginary part is 0.0.  */
115 	  __real__ retval = HUGE_VALQ;
116 	  __imag__ retval = __imag__ x * copysignq (1, __real__ x);
117 	}
118       else
119 	{
120 	  __real__ retval = HUGE_VALQ;
121 	  __imag__ retval = __imag__ x - __imag__ x;
122 	}
123     }
124   else
125     {
126       __real__ retval = nanq ("");
127       __imag__ retval = __imag__ x == 0 ? __imag__ x : nanq ("");
128     }
129 
130   return retval;
131 }
132