1 /* Support for HPPA 64-bit ELF
2    1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3    2010  Free Software Foundation, Inc.
4 
5    This file is part of BFD, the Binary File Descriptor library.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20    MA 02110-1301, USA.  */
21 
22 #include "alloca-conf.h"
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf/hppa.h"
28 #include "libhppa.h"
29 #include "elf64-hppa.h"
30 
31 
32 #define ARCH_SIZE	       64
33 
34 #define PLT_ENTRY_SIZE 0x10
35 #define DLT_ENTRY_SIZE 0x8
36 #define OPD_ENTRY_SIZE 0x20
37 
38 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
39 
40 /* The stub is supposed to load the target address and target's DP
41    value out of the PLT, then do an external branch to the target
42    address.
43 
44    LDD PLTOFF(%r27),%r1
45    BVE (%r1)
46    LDD PLTOFF+8(%r27),%r27
47 
48    Note that we must use the LDD with a 14 bit displacement, not the one
49    with a 5 bit displacement.  */
50 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
51 			  0x53, 0x7b, 0x00, 0x00 };
52 
53 struct elf64_hppa_link_hash_entry
54 {
55   struct elf_link_hash_entry eh;
56 
57   /* Offsets for this symbol in various linker sections.  */
58   bfd_vma dlt_offset;
59   bfd_vma plt_offset;
60   bfd_vma opd_offset;
61   bfd_vma stub_offset;
62 
63   /* The index of the (possibly local) symbol in the input bfd and its
64      associated BFD.  Needed so that we can have relocs against local
65      symbols in shared libraries.  */
66   long sym_indx;
67   bfd *owner;
68 
69   /* Dynamic symbols may need to have two different values.  One for
70      the dynamic symbol table, one for the normal symbol table.
71 
72      In such cases we store the symbol's real value and section
73      index here so we can restore the real value before we write
74      the normal symbol table.  */
75   bfd_vma st_value;
76   int st_shndx;
77 
78   /* Used to count non-got, non-plt relocations for delayed sizing
79      of relocation sections.  */
80   struct elf64_hppa_dyn_reloc_entry
81   {
82     /* Next relocation in the chain.  */
83     struct elf64_hppa_dyn_reloc_entry *next;
84 
85     /* The type of the relocation.  */
86     int type;
87 
88     /* The input section of the relocation.  */
89     asection *sec;
90 
91     /* Number of relocs copied in this section.  */
92     bfd_size_type count;
93 
94     /* The index of the section symbol for the input section of
95        the relocation.  Only needed when building shared libraries.  */
96     int sec_symndx;
97 
98     /* The offset within the input section of the relocation.  */
99     bfd_vma offset;
100 
101     /* The addend for the relocation.  */
102     bfd_vma addend;
103 
104   } *reloc_entries;
105 
106   /* Nonzero if this symbol needs an entry in one of the linker
107      sections.  */
108   unsigned want_dlt;
109   unsigned want_plt;
110   unsigned want_opd;
111   unsigned want_stub;
112 };
113 
114 struct elf64_hppa_link_hash_table
115 {
116   struct elf_link_hash_table root;
117 
118   /* Shortcuts to get to the various linker defined sections.  */
119   asection *dlt_sec;
120   asection *dlt_rel_sec;
121   asection *plt_sec;
122   asection *plt_rel_sec;
123   asection *opd_sec;
124   asection *opd_rel_sec;
125   asection *other_rel_sec;
126 
127   /* Offset of __gp within .plt section.  When the PLT gets large we want
128      to slide __gp into the PLT section so that we can continue to use
129      single DP relative instructions to load values out of the PLT.  */
130   bfd_vma gp_offset;
131 
132   /* Note this is not strictly correct.  We should create a stub section for
133      each input section with calls.  The stub section should be placed before
134      the section with the call.  */
135   asection *stub_sec;
136 
137   bfd_vma text_segment_base;
138   bfd_vma data_segment_base;
139 
140   /* We build tables to map from an input section back to its
141      symbol index.  This is the BFD for which we currently have
142      a map.  */
143   bfd *section_syms_bfd;
144 
145   /* Array of symbol numbers for each input section attached to the
146      current BFD.  */
147   int *section_syms;
148 };
149 
150 #define hppa_link_hash_table(p) \
151   (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
152   == HPPA64_ELF_DATA ? ((struct elf64_hppa_link_hash_table *) ((p)->hash)) : NULL)
153 
154 #define hppa_elf_hash_entry(ent) \
155   ((struct elf64_hppa_link_hash_entry *)(ent))
156 
157 #define eh_name(eh) \
158   (eh ? eh->root.root.string : "<undef>")
159 
160 typedef struct bfd_hash_entry *(*new_hash_entry_func)
161   (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
162 
163 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
164   (bfd *abfd);
165 
166 /* This must follow the definitions of the various derived linker
167    hash tables and shared functions.  */
168 #include "elf-hppa.h"
169 
170 static bfd_boolean elf64_hppa_object_p
171   (bfd *);
172 
173 static void elf64_hppa_post_process_headers
174   (bfd *, struct bfd_link_info *);
175 
176 static bfd_boolean elf64_hppa_create_dynamic_sections
177   (bfd *, struct bfd_link_info *);
178 
179 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
180   (struct bfd_link_info *, struct elf_link_hash_entry *);
181 
182 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
183   (struct elf_link_hash_entry *, void *);
184 
185 static bfd_boolean elf64_hppa_size_dynamic_sections
186   (bfd *, struct bfd_link_info *);
187 
188 static int elf64_hppa_link_output_symbol_hook
189   (struct bfd_link_info *, const char *, Elf_Internal_Sym *,
190    asection *, struct elf_link_hash_entry *);
191 
192 static bfd_boolean elf64_hppa_finish_dynamic_symbol
193   (bfd *, struct bfd_link_info *,
194    struct elf_link_hash_entry *, Elf_Internal_Sym *);
195 
196 static enum elf_reloc_type_class elf64_hppa_reloc_type_class
197   (const Elf_Internal_Rela *);
198 
199 static bfd_boolean elf64_hppa_finish_dynamic_sections
200   (bfd *, struct bfd_link_info *);
201 
202 static bfd_boolean elf64_hppa_check_relocs
203   (bfd *, struct bfd_link_info *,
204    asection *, const Elf_Internal_Rela *);
205 
206 static bfd_boolean elf64_hppa_dynamic_symbol_p
207   (struct elf_link_hash_entry *, struct bfd_link_info *);
208 
209 static bfd_boolean elf64_hppa_mark_exported_functions
210   (struct elf_link_hash_entry *, void *);
211 
212 static bfd_boolean elf64_hppa_finalize_opd
213   (struct elf_link_hash_entry *, void *);
214 
215 static bfd_boolean elf64_hppa_finalize_dlt
216   (struct elf_link_hash_entry *, void *);
217 
218 static bfd_boolean allocate_global_data_dlt
219   (struct elf_link_hash_entry *, void *);
220 
221 static bfd_boolean allocate_global_data_plt
222   (struct elf_link_hash_entry *, void *);
223 
224 static bfd_boolean allocate_global_data_stub
225   (struct elf_link_hash_entry *, void *);
226 
227 static bfd_boolean allocate_global_data_opd
228   (struct elf_link_hash_entry *, void *);
229 
230 static bfd_boolean get_reloc_section
231   (bfd *, struct elf64_hppa_link_hash_table *, asection *);
232 
233 static bfd_boolean count_dyn_reloc
234   (bfd *, struct elf64_hppa_link_hash_entry *,
235    int, asection *, int, bfd_vma, bfd_vma);
236 
237 static bfd_boolean allocate_dynrel_entries
238   (struct elf_link_hash_entry *, void *);
239 
240 static bfd_boolean elf64_hppa_finalize_dynreloc
241   (struct elf_link_hash_entry *, void *);
242 
243 static bfd_boolean get_opd
244   (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
245 
246 static bfd_boolean get_plt
247   (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
248 
249 static bfd_boolean get_dlt
250   (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
251 
252 static bfd_boolean get_stub
253   (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
254 
255 static int elf64_hppa_elf_get_symbol_type
256   (Elf_Internal_Sym *, int);
257 
258 /* Initialize an entry in the link hash table.  */
259 
260 static struct bfd_hash_entry *
hppa64_link_hash_newfunc(struct bfd_hash_entry * entry,struct bfd_hash_table * table,const char * string)261 hppa64_link_hash_newfunc (struct bfd_hash_entry *entry,
262 			  struct bfd_hash_table *table,
263 			  const char *string)
264 {
265   /* Allocate the structure if it has not already been allocated by a
266      subclass.  */
267   if (entry == NULL)
268     {
269       entry = bfd_hash_allocate (table,
270 				 sizeof (struct elf64_hppa_link_hash_entry));
271       if (entry == NULL)
272         return entry;
273     }
274 
275   /* Call the allocation method of the superclass.  */
276   entry = _bfd_elf_link_hash_newfunc (entry, table, string);
277   if (entry != NULL)
278     {
279       struct elf64_hppa_link_hash_entry *hh;
280 
281       /* Initialize our local data.  All zeros.  */
282       hh = hppa_elf_hash_entry (entry);
283       memset (&hh->dlt_offset, 0,
284 	      (sizeof (struct elf64_hppa_link_hash_entry)
285 	       - offsetof (struct elf64_hppa_link_hash_entry, dlt_offset)));
286     }
287 
288   return entry;
289 }
290 
291 /* Create the derived linker hash table.  The PA64 ELF port uses this
292    derived hash table to keep information specific to the PA ElF
293    linker (without using static variables).  */
294 
295 static struct bfd_link_hash_table*
elf64_hppa_hash_table_create(bfd * abfd)296 elf64_hppa_hash_table_create (bfd *abfd)
297 {
298   struct elf64_hppa_link_hash_table *htab;
299   bfd_size_type amt = sizeof (*htab);
300 
301   htab = bfd_zalloc (abfd, amt);
302   if (htab == NULL)
303     return NULL;
304 
305   if (!_bfd_elf_link_hash_table_init (&htab->root, abfd,
306 				      hppa64_link_hash_newfunc,
307 				      sizeof (struct elf64_hppa_link_hash_entry),
308 				      HPPA64_ELF_DATA))
309     {
310       bfd_release (abfd, htab);
311       return NULL;
312     }
313 
314   htab->text_segment_base = (bfd_vma) -1;
315   htab->data_segment_base = (bfd_vma) -1;
316 
317   return &htab->root.root;
318 }
319 
320 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
321 
322    Additionally we set the default architecture and machine.  */
323 static bfd_boolean
elf64_hppa_object_p(bfd * abfd)324 elf64_hppa_object_p (bfd *abfd)
325 {
326   Elf_Internal_Ehdr * i_ehdrp;
327   unsigned int flags;
328 
329   i_ehdrp = elf_elfheader (abfd);
330   if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
331     {
332       /* GCC on hppa-linux produces binaries with OSABI=Linux,
333 	 but the kernel produces corefiles with OSABI=SysV.  */
334       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX
335 	  && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
336 	return FALSE;
337     }
338   else
339     {
340       /* HPUX produces binaries with OSABI=HPUX,
341 	 but the kernel produces corefiles with OSABI=SysV.  */
342       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
343 	  && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
344 	return FALSE;
345     }
346 
347   flags = i_ehdrp->e_flags;
348   switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
349     {
350     case EFA_PARISC_1_0:
351       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
352     case EFA_PARISC_1_1:
353       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
354     case EFA_PARISC_2_0:
355       if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
356         return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
357       else
358         return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
359     case EFA_PARISC_2_0 | EF_PARISC_WIDE:
360       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
361     }
362   /* Don't be fussy.  */
363   return TRUE;
364 }
365 
366 /* Given section type (hdr->sh_type), return a boolean indicating
367    whether or not the section is an elf64-hppa specific section.  */
368 static bfd_boolean
elf64_hppa_section_from_shdr(bfd * abfd,Elf_Internal_Shdr * hdr,const char * name,int shindex)369 elf64_hppa_section_from_shdr (bfd *abfd,
370 			      Elf_Internal_Shdr *hdr,
371 			      const char *name,
372 			      int shindex)
373 {
374   switch (hdr->sh_type)
375     {
376     case SHT_PARISC_EXT:
377       if (strcmp (name, ".PARISC.archext") != 0)
378 	return FALSE;
379       break;
380     case SHT_PARISC_UNWIND:
381       if (strcmp (name, ".PARISC.unwind") != 0)
382 	return FALSE;
383       break;
384     case SHT_PARISC_DOC:
385     case SHT_PARISC_ANNOT:
386     default:
387       return FALSE;
388     }
389 
390   if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
391     return FALSE;
392 
393   return TRUE;
394 }
395 
396 /* SEC is a section containing relocs for an input BFD when linking; return
397    a suitable section for holding relocs in the output BFD for a link.  */
398 
399 static bfd_boolean
get_reloc_section(bfd * abfd,struct elf64_hppa_link_hash_table * hppa_info,asection * sec)400 get_reloc_section (bfd *abfd,
401 		   struct elf64_hppa_link_hash_table *hppa_info,
402 		   asection *sec)
403 {
404   const char *srel_name;
405   asection *srel;
406   bfd *dynobj;
407 
408   srel_name = (bfd_elf_string_from_elf_section
409 	       (abfd, elf_elfheader(abfd)->e_shstrndx,
410 		_bfd_elf_single_rel_hdr(sec)->sh_name));
411   if (srel_name == NULL)
412     return FALSE;
413 
414   dynobj = hppa_info->root.dynobj;
415   if (!dynobj)
416     hppa_info->root.dynobj = dynobj = abfd;
417 
418   srel = bfd_get_section_by_name (dynobj, srel_name);
419   if (srel == NULL)
420     {
421       srel = bfd_make_section_with_flags (dynobj, srel_name,
422 					  (SEC_ALLOC
423 					   | SEC_LOAD
424 					   | SEC_HAS_CONTENTS
425 					   | SEC_IN_MEMORY
426 					   | SEC_LINKER_CREATED
427 					   | SEC_READONLY));
428       if (srel == NULL
429 	  || !bfd_set_section_alignment (dynobj, srel, 3))
430 	return FALSE;
431     }
432 
433   hppa_info->other_rel_sec = srel;
434   return TRUE;
435 }
436 
437 /* Add a new entry to the list of dynamic relocations against DYN_H.
438 
439    We use this to keep a record of all the FPTR relocations against a
440    particular symbol so that we can create FPTR relocations in the
441    output file.  */
442 
443 static bfd_boolean
count_dyn_reloc(bfd * abfd,struct elf64_hppa_link_hash_entry * hh,int type,asection * sec,int sec_symndx,bfd_vma offset,bfd_vma addend)444 count_dyn_reloc (bfd *abfd,
445 		 struct elf64_hppa_link_hash_entry *hh,
446 		 int type,
447 		 asection *sec,
448 	         int sec_symndx,
449 	         bfd_vma offset,
450 		 bfd_vma addend)
451 {
452   struct elf64_hppa_dyn_reloc_entry *rent;
453 
454   rent = (struct elf64_hppa_dyn_reloc_entry *)
455   bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
456   if (!rent)
457     return FALSE;
458 
459   rent->next = hh->reloc_entries;
460   rent->type = type;
461   rent->sec = sec;
462   rent->sec_symndx = sec_symndx;
463   rent->offset = offset;
464   rent->addend = addend;
465   hh->reloc_entries = rent;
466 
467   return TRUE;
468 }
469 
470 /* Return a pointer to the local DLT, PLT and OPD reference counts
471    for ABFD.  Returns NULL if the storage allocation fails.  */
472 
473 static bfd_signed_vma *
hppa64_elf_local_refcounts(bfd * abfd)474 hppa64_elf_local_refcounts (bfd *abfd)
475 {
476   Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
477   bfd_signed_vma *local_refcounts;
478 
479   local_refcounts = elf_local_got_refcounts (abfd);
480   if (local_refcounts == NULL)
481     {
482       bfd_size_type size;
483 
484       /* Allocate space for local DLT, PLT and OPD reference
485 	 counts.  Done this way to save polluting elf_obj_tdata
486 	 with another target specific pointer.  */
487       size = symtab_hdr->sh_info;
488       size *= 3 * sizeof (bfd_signed_vma);
489       local_refcounts = bfd_zalloc (abfd, size);
490       elf_local_got_refcounts (abfd) = local_refcounts;
491     }
492   return local_refcounts;
493 }
494 
495 /* Scan the RELOCS and record the type of dynamic entries that each
496    referenced symbol needs.  */
497 
498 static bfd_boolean
elf64_hppa_check_relocs(bfd * abfd,struct bfd_link_info * info,asection * sec,const Elf_Internal_Rela * relocs)499 elf64_hppa_check_relocs (bfd *abfd,
500 			 struct bfd_link_info *info,
501 			 asection *sec,
502 			 const Elf_Internal_Rela *relocs)
503 {
504   struct elf64_hppa_link_hash_table *hppa_info;
505   const Elf_Internal_Rela *relend;
506   Elf_Internal_Shdr *symtab_hdr;
507   const Elf_Internal_Rela *rel;
508   unsigned int sec_symndx;
509 
510   if (info->relocatable)
511     return TRUE;
512 
513   /* If this is the first dynamic object found in the link, create
514      the special sections required for dynamic linking.  */
515   if (! elf_hash_table (info)->dynamic_sections_created)
516     {
517       if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
518 	return FALSE;
519     }
520 
521   hppa_info = hppa_link_hash_table (info);
522   if (hppa_info == NULL)
523     return FALSE;
524   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
525 
526   /* If necessary, build a new table holding section symbols indices
527      for this BFD.  */
528 
529   if (info->shared && hppa_info->section_syms_bfd != abfd)
530     {
531       unsigned long i;
532       unsigned int highest_shndx;
533       Elf_Internal_Sym *local_syms = NULL;
534       Elf_Internal_Sym *isym, *isymend;
535       bfd_size_type amt;
536 
537       /* We're done with the old cache of section index to section symbol
538 	 index information.  Free it.
539 
540 	 ?!? Note we leak the last section_syms array.  Presumably we
541 	 could free it in one of the later routines in this file.  */
542       if (hppa_info->section_syms)
543 	free (hppa_info->section_syms);
544 
545       /* Read this BFD's local symbols.  */
546       if (symtab_hdr->sh_info != 0)
547 	{
548 	  local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
549 	  if (local_syms == NULL)
550 	    local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
551 					       symtab_hdr->sh_info, 0,
552 					       NULL, NULL, NULL);
553 	  if (local_syms == NULL)
554 	    return FALSE;
555 	}
556 
557       /* Record the highest section index referenced by the local symbols.  */
558       highest_shndx = 0;
559       isymend = local_syms + symtab_hdr->sh_info;
560       for (isym = local_syms; isym < isymend; isym++)
561 	{
562 	  if (isym->st_shndx > highest_shndx
563 	      && isym->st_shndx < SHN_LORESERVE)
564 	    highest_shndx = isym->st_shndx;
565 	}
566 
567       /* Allocate an array to hold the section index to section symbol index
568 	 mapping.  Bump by one since we start counting at zero.  */
569       highest_shndx++;
570       amt = highest_shndx;
571       amt *= sizeof (int);
572       hppa_info->section_syms = (int *) bfd_malloc (amt);
573 
574       /* Now walk the local symbols again.  If we find a section symbol,
575 	 record the index of the symbol into the section_syms array.  */
576       for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
577 	{
578 	  if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
579 	    hppa_info->section_syms[isym->st_shndx] = i;
580 	}
581 
582       /* We are finished with the local symbols.  */
583       if (local_syms != NULL
584 	  && symtab_hdr->contents != (unsigned char *) local_syms)
585 	{
586 	  if (! info->keep_memory)
587 	    free (local_syms);
588 	  else
589 	    {
590 	      /* Cache the symbols for elf_link_input_bfd.  */
591 	      symtab_hdr->contents = (unsigned char *) local_syms;
592 	    }
593 	}
594 
595       /* Record which BFD we built the section_syms mapping for.  */
596       hppa_info->section_syms_bfd = abfd;
597     }
598 
599   /* Record the symbol index for this input section.  We may need it for
600      relocations when building shared libraries.  When not building shared
601      libraries this value is never really used, but assign it to zero to
602      prevent out of bounds memory accesses in other routines.  */
603   if (info->shared)
604     {
605       sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
606 
607       /* If we did not find a section symbol for this section, then
608 	 something went terribly wrong above.  */
609       if (sec_symndx == SHN_BAD)
610 	return FALSE;
611 
612       if (sec_symndx < SHN_LORESERVE)
613 	sec_symndx = hppa_info->section_syms[sec_symndx];
614       else
615 	sec_symndx = 0;
616     }
617   else
618     sec_symndx = 0;
619 
620   relend = relocs + sec->reloc_count;
621   for (rel = relocs; rel < relend; ++rel)
622     {
623       enum
624 	{
625 	  NEED_DLT = 1,
626 	  NEED_PLT = 2,
627 	  NEED_STUB = 4,
628 	  NEED_OPD = 8,
629 	  NEED_DYNREL = 16,
630 	};
631 
632       unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
633       struct elf64_hppa_link_hash_entry *hh;
634       int need_entry;
635       bfd_boolean maybe_dynamic;
636       int dynrel_type = R_PARISC_NONE;
637       static reloc_howto_type *howto;
638 
639       if (r_symndx >= symtab_hdr->sh_info)
640 	{
641 	  /* We're dealing with a global symbol -- find its hash entry
642 	     and mark it as being referenced.  */
643 	  long indx = r_symndx - symtab_hdr->sh_info;
644 	  hh = hppa_elf_hash_entry (elf_sym_hashes (abfd)[indx]);
645 	  while (hh->eh.root.type == bfd_link_hash_indirect
646 		 || hh->eh.root.type == bfd_link_hash_warning)
647 	    hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
648 
649 	  hh->eh.ref_regular = 1;
650 	}
651       else
652 	hh = NULL;
653 
654       /* We can only get preliminary data on whether a symbol is
655 	 locally or externally defined, as not all of the input files
656 	 have yet been processed.  Do something with what we know, as
657 	 this may help reduce memory usage and processing time later.  */
658       maybe_dynamic = FALSE;
659       if (hh && ((info->shared
660 		 && (!info->symbolic
661 		     || info->unresolved_syms_in_shared_libs == RM_IGNORE))
662 		|| !hh->eh.def_regular
663 		|| hh->eh.root.type == bfd_link_hash_defweak))
664 	maybe_dynamic = TRUE;
665 
666       howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
667       need_entry = 0;
668       switch (howto->type)
669 	{
670 	/* These are simple indirect references to symbols through the
671 	   DLT.  We need to create a DLT entry for any symbols which
672 	   appears in a DLTIND relocation.  */
673 	case R_PARISC_DLTIND21L:
674 	case R_PARISC_DLTIND14R:
675 	case R_PARISC_DLTIND14F:
676 	case R_PARISC_DLTIND14WR:
677 	case R_PARISC_DLTIND14DR:
678 	  need_entry = NEED_DLT;
679 	  break;
680 
681 	/* ?!?  These need a DLT entry.  But I have no idea what to do with
682 	   the "link time TP value.  */
683 	case R_PARISC_LTOFF_TP21L:
684 	case R_PARISC_LTOFF_TP14R:
685 	case R_PARISC_LTOFF_TP14F:
686 	case R_PARISC_LTOFF_TP64:
687 	case R_PARISC_LTOFF_TP14WR:
688 	case R_PARISC_LTOFF_TP14DR:
689 	case R_PARISC_LTOFF_TP16F:
690 	case R_PARISC_LTOFF_TP16WF:
691 	case R_PARISC_LTOFF_TP16DF:
692 	  need_entry = NEED_DLT;
693 	  break;
694 
695 	/* These are function calls.  Depending on their precise target we
696 	   may need to make a stub for them.  The stub uses the PLT, so we
697 	   need to create PLT entries for these symbols too.  */
698 	case R_PARISC_PCREL12F:
699 	case R_PARISC_PCREL17F:
700 	case R_PARISC_PCREL22F:
701 	case R_PARISC_PCREL32:
702 	case R_PARISC_PCREL64:
703 	case R_PARISC_PCREL21L:
704 	case R_PARISC_PCREL17R:
705 	case R_PARISC_PCREL17C:
706 	case R_PARISC_PCREL14R:
707 	case R_PARISC_PCREL14F:
708 	case R_PARISC_PCREL22C:
709 	case R_PARISC_PCREL14WR:
710 	case R_PARISC_PCREL14DR:
711 	case R_PARISC_PCREL16F:
712 	case R_PARISC_PCREL16WF:
713 	case R_PARISC_PCREL16DF:
714 	  /* Function calls might need to go through the .plt, and
715 	     might need a long branch stub.  */
716 	  if (hh != NULL && hh->eh.type != STT_PARISC_MILLI)
717 	    need_entry = (NEED_PLT | NEED_STUB);
718 	  else
719 	    need_entry = 0;
720 	  break;
721 
722 	case R_PARISC_PLTOFF21L:
723 	case R_PARISC_PLTOFF14R:
724 	case R_PARISC_PLTOFF14F:
725 	case R_PARISC_PLTOFF14WR:
726 	case R_PARISC_PLTOFF14DR:
727 	case R_PARISC_PLTOFF16F:
728 	case R_PARISC_PLTOFF16WF:
729 	case R_PARISC_PLTOFF16DF:
730 	  need_entry = (NEED_PLT);
731 	  break;
732 
733 	case R_PARISC_DIR64:
734 	  if (info->shared || maybe_dynamic)
735 	    need_entry = (NEED_DYNREL);
736 	  dynrel_type = R_PARISC_DIR64;
737 	  break;
738 
739 	/* This is an indirect reference through the DLT to get the address
740 	   of a OPD descriptor.  Thus we need to make a DLT entry that points
741 	   to an OPD entry.  */
742 	case R_PARISC_LTOFF_FPTR21L:
743 	case R_PARISC_LTOFF_FPTR14R:
744 	case R_PARISC_LTOFF_FPTR14WR:
745 	case R_PARISC_LTOFF_FPTR14DR:
746 	case R_PARISC_LTOFF_FPTR32:
747 	case R_PARISC_LTOFF_FPTR64:
748 	case R_PARISC_LTOFF_FPTR16F:
749 	case R_PARISC_LTOFF_FPTR16WF:
750 	case R_PARISC_LTOFF_FPTR16DF:
751 	  if (info->shared || maybe_dynamic)
752 	    need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
753 	  else
754 	    need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
755 	  dynrel_type = R_PARISC_FPTR64;
756 	  break;
757 
758 	/* This is a simple OPD entry.  */
759 	case R_PARISC_FPTR64:
760 	  if (info->shared || maybe_dynamic)
761 	    need_entry = (NEED_OPD | NEED_PLT | NEED_DYNREL);
762 	  else
763 	    need_entry = (NEED_OPD | NEED_PLT);
764 	  dynrel_type = R_PARISC_FPTR64;
765 	  break;
766 
767 	/* Add more cases as needed.  */
768 	}
769 
770       if (!need_entry)
771 	continue;
772 
773       if (hh)
774 	{
775 	  /* Stash away enough information to be able to find this symbol
776 	     regardless of whether or not it is local or global.  */
777 	  hh->owner = abfd;
778 	  hh->sym_indx = r_symndx;
779 	}
780 
781       /* Create what's needed.  */
782       if (need_entry & NEED_DLT)
783 	{
784 	  /* Allocate space for a DLT entry, as well as a dynamic
785 	     relocation for this entry.  */
786 	  if (! hppa_info->dlt_sec
787 	      && ! get_dlt (abfd, info, hppa_info))
788 	    goto err_out;
789 
790 	  if (hh != NULL)
791 	    {
792 	      hh->want_dlt = 1;
793 	      hh->eh.got.refcount += 1;
794 	    }
795 	  else
796 	    {
797 	      bfd_signed_vma *local_dlt_refcounts;
798 
799 	      /* This is a DLT entry for a local symbol.  */
800 	      local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
801 	      if (local_dlt_refcounts == NULL)
802 		return FALSE;
803 	      local_dlt_refcounts[r_symndx] += 1;
804 	    }
805 	}
806 
807       if (need_entry & NEED_PLT)
808 	{
809 	  if (! hppa_info->plt_sec
810 	      && ! get_plt (abfd, info, hppa_info))
811 	    goto err_out;
812 
813 	  if (hh != NULL)
814 	    {
815 	      hh->want_plt = 1;
816 	      hh->eh.needs_plt = 1;
817 	      hh->eh.plt.refcount += 1;
818 	    }
819 	  else
820 	    {
821 	      bfd_signed_vma *local_dlt_refcounts;
822 	      bfd_signed_vma *local_plt_refcounts;
823 
824 	      /* This is a PLT entry for a local symbol.  */
825 	      local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
826 	      if (local_dlt_refcounts == NULL)
827 		return FALSE;
828 	      local_plt_refcounts = local_dlt_refcounts + symtab_hdr->sh_info;
829 	      local_plt_refcounts[r_symndx] += 1;
830 	    }
831 	}
832 
833       if (need_entry & NEED_STUB)
834 	{
835 	  if (! hppa_info->stub_sec
836 	      && ! get_stub (abfd, info, hppa_info))
837 	    goto err_out;
838 	  if (hh)
839 	    hh->want_stub = 1;
840 	}
841 
842       if (need_entry & NEED_OPD)
843 	{
844 	  if (! hppa_info->opd_sec
845 	      && ! get_opd (abfd, info, hppa_info))
846 	    goto err_out;
847 
848 	  /* FPTRs are not allocated by the dynamic linker for PA64,
849 	     though it is possible that will change in the future.  */
850 
851 	  if (hh != NULL)
852 	    hh->want_opd = 1;
853 	  else
854 	    {
855 	      bfd_signed_vma *local_dlt_refcounts;
856 	      bfd_signed_vma *local_opd_refcounts;
857 
858 	      /* This is a OPD for a local symbol.  */
859 	      local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
860 	      if (local_dlt_refcounts == NULL)
861 		return FALSE;
862 	      local_opd_refcounts = (local_dlt_refcounts
863 				     + 2 * symtab_hdr->sh_info);
864 	      local_opd_refcounts[r_symndx] += 1;
865 	    }
866 	}
867 
868       /* Add a new dynamic relocation to the chain of dynamic
869 	 relocations for this symbol.  */
870       if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
871 	{
872 	  if (! hppa_info->other_rel_sec
873 	      && ! get_reloc_section (abfd, hppa_info, sec))
874 	    goto err_out;
875 
876 	  /* Count dynamic relocations against global symbols.  */
877 	  if (hh != NULL
878 	      && !count_dyn_reloc (abfd, hh, dynrel_type, sec,
879 				   sec_symndx, rel->r_offset, rel->r_addend))
880 	    goto err_out;
881 
882 	  /* If we are building a shared library and we just recorded
883 	     a dynamic R_PARISC_FPTR64 relocation, then make sure the
884 	     section symbol for this section ends up in the dynamic
885 	     symbol table.  */
886 	  if (info->shared && dynrel_type == R_PARISC_FPTR64
887 	      && ! (bfd_elf_link_record_local_dynamic_symbol
888 		    (info, abfd, sec_symndx)))
889 	    return FALSE;
890 	}
891     }
892 
893   return TRUE;
894 
895  err_out:
896   return FALSE;
897 }
898 
899 struct elf64_hppa_allocate_data
900 {
901   struct bfd_link_info *info;
902   bfd_size_type ofs;
903 };
904 
905 /* Should we do dynamic things to this symbol?  */
906 
907 static bfd_boolean
elf64_hppa_dynamic_symbol_p(struct elf_link_hash_entry * eh,struct bfd_link_info * info)908 elf64_hppa_dynamic_symbol_p (struct elf_link_hash_entry *eh,
909 			     struct bfd_link_info *info)
910 {
911   /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
912      and relocations that retrieve a function descriptor?  Assume the
913      worst for now.  */
914   if (_bfd_elf_dynamic_symbol_p (eh, info, 1))
915     {
916       /* ??? Why is this here and not elsewhere is_local_label_name.  */
917       if (eh->root.root.string[0] == '$' && eh->root.root.string[1] == '$')
918 	return FALSE;
919 
920       return TRUE;
921     }
922   else
923     return FALSE;
924 }
925 
926 /* Mark all functions exported by this file so that we can later allocate
927    entries in .opd for them.  */
928 
929 static bfd_boolean
elf64_hppa_mark_exported_functions(struct elf_link_hash_entry * eh,void * data)930 elf64_hppa_mark_exported_functions (struct elf_link_hash_entry *eh, void *data)
931 {
932   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
933   struct bfd_link_info *info = (struct bfd_link_info *)data;
934   struct elf64_hppa_link_hash_table *hppa_info;
935 
936   hppa_info = hppa_link_hash_table (info);
937   if (hppa_info == NULL)
938     return FALSE;
939 
940   if (eh->root.type == bfd_link_hash_warning)
941     eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
942 
943   if (eh
944       && (eh->root.type == bfd_link_hash_defined
945 	  || eh->root.type == bfd_link_hash_defweak)
946       && eh->root.u.def.section->output_section != NULL
947       && eh->type == STT_FUNC)
948     {
949       if (! hppa_info->opd_sec
950 	  && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
951 	return FALSE;
952 
953       hh->want_opd = 1;
954 
955       /* Put a flag here for output_symbol_hook.  */
956       hh->st_shndx = -1;
957       eh->needs_plt = 1;
958     }
959 
960   return TRUE;
961 }
962 
963 /* Allocate space for a DLT entry.  */
964 
965 static bfd_boolean
allocate_global_data_dlt(struct elf_link_hash_entry * eh,void * data)966 allocate_global_data_dlt (struct elf_link_hash_entry *eh, void *data)
967 {
968   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
969   struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
970 
971   if (hh->want_dlt)
972     {
973       if (x->info->shared)
974 	{
975 	  /* Possibly add the symbol to the local dynamic symbol
976 	     table since we might need to create a dynamic relocation
977 	     against it.  */
978 	  if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
979 	    {
980 	      bfd *owner = eh->root.u.def.section->owner;
981 
982 	      if (! (bfd_elf_link_record_local_dynamic_symbol
983 		     (x->info, owner, hh->sym_indx)))
984 		return FALSE;
985 	    }
986 	}
987 
988       hh->dlt_offset = x->ofs;
989       x->ofs += DLT_ENTRY_SIZE;
990     }
991   return TRUE;
992 }
993 
994 /* Allocate space for a DLT.PLT entry.  */
995 
996 static bfd_boolean
allocate_global_data_plt(struct elf_link_hash_entry * eh,void * data)997 allocate_global_data_plt (struct elf_link_hash_entry *eh, void *data)
998 {
999   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1000   struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *) data;
1001 
1002   if (hh->want_plt
1003       && elf64_hppa_dynamic_symbol_p (eh, x->info)
1004       && !((eh->root.type == bfd_link_hash_defined
1005 	    || eh->root.type == bfd_link_hash_defweak)
1006 	   && eh->root.u.def.section->output_section != NULL))
1007     {
1008       hh->plt_offset = x->ofs;
1009       x->ofs += PLT_ENTRY_SIZE;
1010       if (hh->plt_offset < 0x2000)
1011 	{
1012 	  struct elf64_hppa_link_hash_table *hppa_info;
1013 
1014 	  hppa_info = hppa_link_hash_table (x->info);
1015 	  if (hppa_info == NULL)
1016 	    return FALSE;
1017 
1018 	  hppa_info->gp_offset = hh->plt_offset;
1019 	}
1020     }
1021   else
1022     hh->want_plt = 0;
1023 
1024   return TRUE;
1025 }
1026 
1027 /* Allocate space for a STUB entry.  */
1028 
1029 static bfd_boolean
allocate_global_data_stub(struct elf_link_hash_entry * eh,void * data)1030 allocate_global_data_stub (struct elf_link_hash_entry *eh, void *data)
1031 {
1032   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1033   struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1034 
1035   if (hh->want_stub
1036       && elf64_hppa_dynamic_symbol_p (eh, x->info)
1037       && !((eh->root.type == bfd_link_hash_defined
1038 	    || eh->root.type == bfd_link_hash_defweak)
1039 	   && eh->root.u.def.section->output_section != NULL))
1040     {
1041       hh->stub_offset = x->ofs;
1042       x->ofs += sizeof (plt_stub);
1043     }
1044   else
1045     hh->want_stub = 0;
1046   return TRUE;
1047 }
1048 
1049 /* Allocate space for a FPTR entry.  */
1050 
1051 static bfd_boolean
allocate_global_data_opd(struct elf_link_hash_entry * eh,void * data)1052 allocate_global_data_opd (struct elf_link_hash_entry *eh, void *data)
1053 {
1054   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1055   struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1056 
1057   if (hh && hh->want_opd)
1058     {
1059       while (hh->eh.root.type == bfd_link_hash_indirect
1060 	     || hh->eh.root.type == bfd_link_hash_warning)
1061 	hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1062 
1063       /* We never need an opd entry for a symbol which is not
1064 	 defined by this output file.  */
1065       if (hh && (hh->eh.root.type == bfd_link_hash_undefined
1066 		 || hh->eh.root.type == bfd_link_hash_undefweak
1067 		 || hh->eh.root.u.def.section->output_section == NULL))
1068 	hh->want_opd = 0;
1069 
1070       /* If we are creating a shared library, took the address of a local
1071 	 function or might export this function from this object file, then
1072 	 we have to create an opd descriptor.  */
1073       else if (x->info->shared
1074 	       || hh == NULL
1075 	       || (hh->eh.dynindx == -1 && hh->eh.type != STT_PARISC_MILLI)
1076 	       || (hh->eh.root.type == bfd_link_hash_defined
1077 		   || hh->eh.root.type == bfd_link_hash_defweak))
1078 	{
1079 	  /* If we are creating a shared library, then we will have to
1080 	     create a runtime relocation for the symbol to properly
1081 	     initialize the .opd entry.  Make sure the symbol gets
1082 	     added to the dynamic symbol table.  */
1083 	  if (x->info->shared
1084 	      && (hh == NULL || (hh->eh.dynindx == -1)))
1085 	    {
1086 	      bfd *owner;
1087 	      /* PR 6511: Default to using the dynamic symbol table.  */
1088 	      owner = (hh->owner ? hh->owner: eh->root.u.def.section->owner);
1089 
1090 	      if (!bfd_elf_link_record_local_dynamic_symbol
1091 		    (x->info, owner, hh->sym_indx))
1092 		return FALSE;
1093 	    }
1094 
1095 	  /* This may not be necessary or desirable anymore now that
1096 	     we have some support for dealing with section symbols
1097 	     in dynamic relocs.  But name munging does make the result
1098 	     much easier to debug.  ie, the EPLT reloc will reference
1099 	     a symbol like .foobar, instead of .text + offset.  */
1100 	  if (x->info->shared && eh)
1101 	    {
1102 	      char *new_name;
1103 	      struct elf_link_hash_entry *nh;
1104 
1105 	      new_name = alloca (strlen (eh->root.root.string) + 2);
1106 	      new_name[0] = '.';
1107 	      strcpy (new_name + 1, eh->root.root.string);
1108 
1109 	      nh = elf_link_hash_lookup (elf_hash_table (x->info),
1110 					 new_name, TRUE, TRUE, TRUE);
1111 
1112 	      nh->root.type = eh->root.type;
1113 	      nh->root.u.def.value = eh->root.u.def.value;
1114 	      nh->root.u.def.section = eh->root.u.def.section;
1115 
1116 	      if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
1117 		return FALSE;
1118 
1119 	     }
1120 	  hh->opd_offset = x->ofs;
1121 	  x->ofs += OPD_ENTRY_SIZE;
1122 	}
1123 
1124       /* Otherwise we do not need an opd entry.  */
1125       else
1126 	hh->want_opd = 0;
1127     }
1128   return TRUE;
1129 }
1130 
1131 /* HP requires the EI_OSABI field to be filled in.  The assignment to
1132    EI_ABIVERSION may not be strictly necessary.  */
1133 
1134 static void
elf64_hppa_post_process_headers(bfd * abfd,struct bfd_link_info * link_info ATTRIBUTE_UNUSED)1135 elf64_hppa_post_process_headers (bfd *abfd,
1136 			 struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
1137 {
1138   Elf_Internal_Ehdr * i_ehdrp;
1139 
1140   i_ehdrp = elf_elfheader (abfd);
1141 
1142   i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
1143   i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1144 }
1145 
1146 /* Create function descriptor section (.opd).  This section is called .opd
1147    because it contains "official procedure descriptors".  The "official"
1148    refers to the fact that these descriptors are used when taking the address
1149    of a procedure, thus ensuring a unique address for each procedure.  */
1150 
1151 static bfd_boolean
get_opd(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED,struct elf64_hppa_link_hash_table * hppa_info)1152 get_opd (bfd *abfd,
1153 	 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1154 	 struct elf64_hppa_link_hash_table *hppa_info)
1155 {
1156   asection *opd;
1157   bfd *dynobj;
1158 
1159   opd = hppa_info->opd_sec;
1160   if (!opd)
1161     {
1162       dynobj = hppa_info->root.dynobj;
1163       if (!dynobj)
1164 	hppa_info->root.dynobj = dynobj = abfd;
1165 
1166       opd = bfd_make_section_with_flags (dynobj, ".opd",
1167 					 (SEC_ALLOC
1168 					  | SEC_LOAD
1169 					  | SEC_HAS_CONTENTS
1170 					  | SEC_IN_MEMORY
1171 					  | SEC_LINKER_CREATED));
1172       if (!opd
1173 	  || !bfd_set_section_alignment (abfd, opd, 3))
1174 	{
1175 	  BFD_ASSERT (0);
1176 	  return FALSE;
1177 	}
1178 
1179       hppa_info->opd_sec = opd;
1180     }
1181 
1182   return TRUE;
1183 }
1184 
1185 /* Create the PLT section.  */
1186 
1187 static bfd_boolean
get_plt(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED,struct elf64_hppa_link_hash_table * hppa_info)1188 get_plt (bfd *abfd,
1189 	 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1190 	 struct elf64_hppa_link_hash_table *hppa_info)
1191 {
1192   asection *plt;
1193   bfd *dynobj;
1194 
1195   plt = hppa_info->plt_sec;
1196   if (!plt)
1197     {
1198       dynobj = hppa_info->root.dynobj;
1199       if (!dynobj)
1200 	hppa_info->root.dynobj = dynobj = abfd;
1201 
1202       plt = bfd_make_section_with_flags (dynobj, ".plt",
1203 					 (SEC_ALLOC
1204 					  | SEC_LOAD
1205 					  | SEC_HAS_CONTENTS
1206 					  | SEC_IN_MEMORY
1207 					  | SEC_LINKER_CREATED));
1208       if (!plt
1209 	  || !bfd_set_section_alignment (abfd, plt, 3))
1210 	{
1211 	  BFD_ASSERT (0);
1212 	  return FALSE;
1213 	}
1214 
1215       hppa_info->plt_sec = plt;
1216     }
1217 
1218   return TRUE;
1219 }
1220 
1221 /* Create the DLT section.  */
1222 
1223 static bfd_boolean
get_dlt(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED,struct elf64_hppa_link_hash_table * hppa_info)1224 get_dlt (bfd *abfd,
1225 	 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1226 	 struct elf64_hppa_link_hash_table *hppa_info)
1227 {
1228   asection *dlt;
1229   bfd *dynobj;
1230 
1231   dlt = hppa_info->dlt_sec;
1232   if (!dlt)
1233     {
1234       dynobj = hppa_info->root.dynobj;
1235       if (!dynobj)
1236 	hppa_info->root.dynobj = dynobj = abfd;
1237 
1238       dlt = bfd_make_section_with_flags (dynobj, ".dlt",
1239 					 (SEC_ALLOC
1240 					  | SEC_LOAD
1241 					  | SEC_HAS_CONTENTS
1242 					  | SEC_IN_MEMORY
1243 					  | SEC_LINKER_CREATED));
1244       if (!dlt
1245 	  || !bfd_set_section_alignment (abfd, dlt, 3))
1246 	{
1247 	  BFD_ASSERT (0);
1248 	  return FALSE;
1249 	}
1250 
1251       hppa_info->dlt_sec = dlt;
1252     }
1253 
1254   return TRUE;
1255 }
1256 
1257 /* Create the stubs section.  */
1258 
1259 static bfd_boolean
get_stub(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED,struct elf64_hppa_link_hash_table * hppa_info)1260 get_stub (bfd *abfd,
1261 	  struct bfd_link_info *info ATTRIBUTE_UNUSED,
1262 	  struct elf64_hppa_link_hash_table *hppa_info)
1263 {
1264   asection *stub;
1265   bfd *dynobj;
1266 
1267   stub = hppa_info->stub_sec;
1268   if (!stub)
1269     {
1270       dynobj = hppa_info->root.dynobj;
1271       if (!dynobj)
1272 	hppa_info->root.dynobj = dynobj = abfd;
1273 
1274       stub = bfd_make_section_with_flags (dynobj, ".stub",
1275 					  (SEC_ALLOC | SEC_LOAD
1276 					   | SEC_HAS_CONTENTS
1277 					   | SEC_IN_MEMORY
1278 					   | SEC_READONLY
1279 					   | SEC_LINKER_CREATED));
1280       if (!stub
1281 	  || !bfd_set_section_alignment (abfd, stub, 3))
1282 	{
1283 	  BFD_ASSERT (0);
1284 	  return FALSE;
1285 	}
1286 
1287       hppa_info->stub_sec = stub;
1288     }
1289 
1290   return TRUE;
1291 }
1292 
1293 /* Create sections necessary for dynamic linking.  This is only a rough
1294    cut and will likely change as we learn more about the somewhat
1295    unusual dynamic linking scheme HP uses.
1296 
1297    .stub:
1298 	Contains code to implement cross-space calls.  The first time one
1299 	of the stubs is used it will call into the dynamic linker, later
1300 	calls will go straight to the target.
1301 
1302 	The only stub we support right now looks like
1303 
1304 	ldd OFFSET(%dp),%r1
1305 	bve %r0(%r1)
1306 	ldd OFFSET+8(%dp),%dp
1307 
1308 	Other stubs may be needed in the future.  We may want the remove
1309 	the break/nop instruction.  It is only used right now to keep the
1310 	offset of a .plt entry and a .stub entry in sync.
1311 
1312    .dlt:
1313 	This is what most people call the .got.  HP used a different name.
1314 	Losers.
1315 
1316    .rela.dlt:
1317 	Relocations for the DLT.
1318 
1319    .plt:
1320 	Function pointers as address,gp pairs.
1321 
1322    .rela.plt:
1323 	Should contain dynamic IPLT (and EPLT?) relocations.
1324 
1325    .opd:
1326 	FPTRS
1327 
1328    .rela.opd:
1329 	EPLT relocations for symbols exported from shared libraries.  */
1330 
1331 static bfd_boolean
elf64_hppa_create_dynamic_sections(bfd * abfd,struct bfd_link_info * info)1332 elf64_hppa_create_dynamic_sections (bfd *abfd,
1333 				    struct bfd_link_info *info)
1334 {
1335   asection *s;
1336   struct elf64_hppa_link_hash_table *hppa_info;
1337 
1338   hppa_info = hppa_link_hash_table (info);
1339   if (hppa_info == NULL)
1340     return FALSE;
1341 
1342   if (! get_stub (abfd, info, hppa_info))
1343     return FALSE;
1344 
1345   if (! get_dlt (abfd, info, hppa_info))
1346     return FALSE;
1347 
1348   if (! get_plt (abfd, info, hppa_info))
1349     return FALSE;
1350 
1351   if (! get_opd (abfd, info, hppa_info))
1352     return FALSE;
1353 
1354   s = bfd_make_section_with_flags (abfd, ".rela.dlt",
1355 				   (SEC_ALLOC | SEC_LOAD
1356 				    | SEC_HAS_CONTENTS
1357 				    | SEC_IN_MEMORY
1358 				    | SEC_READONLY
1359 				    | SEC_LINKER_CREATED));
1360   if (s == NULL
1361       || !bfd_set_section_alignment (abfd, s, 3))
1362     return FALSE;
1363   hppa_info->dlt_rel_sec = s;
1364 
1365   s = bfd_make_section_with_flags (abfd, ".rela.plt",
1366 				   (SEC_ALLOC | SEC_LOAD
1367 				    | SEC_HAS_CONTENTS
1368 				    | SEC_IN_MEMORY
1369 				    | SEC_READONLY
1370 				    | SEC_LINKER_CREATED));
1371   if (s == NULL
1372       || !bfd_set_section_alignment (abfd, s, 3))
1373     return FALSE;
1374   hppa_info->plt_rel_sec = s;
1375 
1376   s = bfd_make_section_with_flags (abfd, ".rela.data",
1377 				   (SEC_ALLOC | SEC_LOAD
1378 				    | SEC_HAS_CONTENTS
1379 				    | SEC_IN_MEMORY
1380 				    | SEC_READONLY
1381 				    | SEC_LINKER_CREATED));
1382   if (s == NULL
1383       || !bfd_set_section_alignment (abfd, s, 3))
1384     return FALSE;
1385   hppa_info->other_rel_sec = s;
1386 
1387   s = bfd_make_section_with_flags (abfd, ".rela.opd",
1388 				   (SEC_ALLOC | SEC_LOAD
1389 				    | SEC_HAS_CONTENTS
1390 				    | SEC_IN_MEMORY
1391 				    | SEC_READONLY
1392 				    | SEC_LINKER_CREATED));
1393   if (s == NULL
1394       || !bfd_set_section_alignment (abfd, s, 3))
1395     return FALSE;
1396   hppa_info->opd_rel_sec = s;
1397 
1398   return TRUE;
1399 }
1400 
1401 /* Allocate dynamic relocations for those symbols that turned out
1402    to be dynamic.  */
1403 
1404 static bfd_boolean
allocate_dynrel_entries(struct elf_link_hash_entry * eh,void * data)1405 allocate_dynrel_entries (struct elf_link_hash_entry *eh, void *data)
1406 {
1407   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1408   struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1409   struct elf64_hppa_link_hash_table *hppa_info;
1410   struct elf64_hppa_dyn_reloc_entry *rent;
1411   bfd_boolean dynamic_symbol, shared;
1412 
1413   hppa_info = hppa_link_hash_table (x->info);
1414   if (hppa_info == NULL)
1415     return FALSE;
1416 
1417   dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, x->info);
1418   shared = x->info->shared;
1419 
1420   /* We may need to allocate relocations for a non-dynamic symbol
1421      when creating a shared library.  */
1422   if (!dynamic_symbol && !shared)
1423     return TRUE;
1424 
1425   /* Take care of the normal data relocations.  */
1426 
1427   for (rent = hh->reloc_entries; rent; rent = rent->next)
1428     {
1429       /* Allocate one iff we are building a shared library, the relocation
1430 	 isn't a R_PARISC_FPTR64, or we don't want an opd entry.  */
1431       if (!shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
1432 	continue;
1433 
1434       hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
1435 
1436       /* Make sure this symbol gets into the dynamic symbol table if it is
1437 	 not already recorded.  ?!? This should not be in the loop since
1438 	 the symbol need only be added once.  */
1439       if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
1440 	if (!bfd_elf_link_record_local_dynamic_symbol
1441 	    (x->info, rent->sec->owner, hh->sym_indx))
1442 	  return FALSE;
1443     }
1444 
1445   /* Take care of the GOT and PLT relocations.  */
1446 
1447   if ((dynamic_symbol || shared) && hh->want_dlt)
1448     hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
1449 
1450   /* If we are building a shared library, then every symbol that has an
1451      opd entry will need an EPLT relocation to relocate the symbol's address
1452      and __gp value based on the runtime load address.  */
1453   if (shared && hh->want_opd)
1454     hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
1455 
1456   if (hh->want_plt && dynamic_symbol)
1457     {
1458       bfd_size_type t = 0;
1459 
1460       /* Dynamic symbols get one IPLT relocation.  Local symbols in
1461 	 shared libraries get two REL relocations.  Local symbols in
1462 	 main applications get nothing.  */
1463       if (dynamic_symbol)
1464 	t = sizeof (Elf64_External_Rela);
1465       else if (shared)
1466 	t = 2 * sizeof (Elf64_External_Rela);
1467 
1468       hppa_info->plt_rel_sec->size += t;
1469     }
1470 
1471   return TRUE;
1472 }
1473 
1474 /* Adjust a symbol defined by a dynamic object and referenced by a
1475    regular object.  */
1476 
1477 static bfd_boolean
elf64_hppa_adjust_dynamic_symbol(struct bfd_link_info * info ATTRIBUTE_UNUSED,struct elf_link_hash_entry * eh)1478 elf64_hppa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1479 				  struct elf_link_hash_entry *eh)
1480 {
1481   /* ??? Undefined symbols with PLT entries should be re-defined
1482      to be the PLT entry.  */
1483 
1484   /* If this is a weak symbol, and there is a real definition, the
1485      processor independent code will have arranged for us to see the
1486      real definition first, and we can just use the same value.  */
1487   if (eh->u.weakdef != NULL)
1488     {
1489       BFD_ASSERT (eh->u.weakdef->root.type == bfd_link_hash_defined
1490 		  || eh->u.weakdef->root.type == bfd_link_hash_defweak);
1491       eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1492       eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1493       return TRUE;
1494     }
1495 
1496   /* If this is a reference to a symbol defined by a dynamic object which
1497      is not a function, we might allocate the symbol in our .dynbss section
1498      and allocate a COPY dynamic relocation.
1499 
1500      But PA64 code is canonically PIC, so as a rule we can avoid this sort
1501      of hackery.  */
1502 
1503   return TRUE;
1504 }
1505 
1506 /* This function is called via elf_link_hash_traverse to mark millicode
1507    symbols with a dynindx of -1 and to remove the string table reference
1508    from the dynamic symbol table.  If the symbol is not a millicode symbol,
1509    elf64_hppa_mark_exported_functions is called.  */
1510 
1511 static bfd_boolean
elf64_hppa_mark_milli_and_exported_functions(struct elf_link_hash_entry * eh,void * data)1512 elf64_hppa_mark_milli_and_exported_functions (struct elf_link_hash_entry *eh,
1513 					      void *data)
1514 {
1515   struct elf_link_hash_entry *elf = eh;
1516   struct bfd_link_info *info = (struct bfd_link_info *)data;
1517 
1518   if (elf->root.type == bfd_link_hash_warning)
1519     elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
1520 
1521   if (elf->type == STT_PARISC_MILLI)
1522     {
1523       if (elf->dynindx != -1)
1524 	{
1525 	  elf->dynindx = -1;
1526 	  _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1527 				  elf->dynstr_index);
1528 	}
1529       return TRUE;
1530     }
1531 
1532   return elf64_hppa_mark_exported_functions (eh, data);
1533 }
1534 
1535 /* Set the final sizes of the dynamic sections and allocate memory for
1536    the contents of our special sections.  */
1537 
1538 static bfd_boolean
elf64_hppa_size_dynamic_sections(bfd * output_bfd,struct bfd_link_info * info)1539 elf64_hppa_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1540 {
1541   struct elf64_hppa_link_hash_table *hppa_info;
1542   struct elf64_hppa_allocate_data data;
1543   bfd *dynobj;
1544   bfd *ibfd;
1545   asection *sec;
1546   bfd_boolean plt;
1547   bfd_boolean relocs;
1548   bfd_boolean reltext;
1549 
1550   hppa_info = hppa_link_hash_table (info);
1551   if (hppa_info == NULL)
1552     return FALSE;
1553 
1554   dynobj = elf_hash_table (info)->dynobj;
1555   BFD_ASSERT (dynobj != NULL);
1556 
1557   /* Mark each function this program exports so that we will allocate
1558      space in the .opd section for each function's FPTR.  If we are
1559      creating dynamic sections, change the dynamic index of millicode
1560      symbols to -1 and remove them from the string table for .dynstr.
1561 
1562      We have to traverse the main linker hash table since we have to
1563      find functions which may not have been mentioned in any relocs.  */
1564   elf_link_hash_traverse (elf_hash_table (info),
1565 			  (elf_hash_table (info)->dynamic_sections_created
1566 			   ? elf64_hppa_mark_milli_and_exported_functions
1567 			   : elf64_hppa_mark_exported_functions),
1568 			  info);
1569 
1570   if (elf_hash_table (info)->dynamic_sections_created)
1571     {
1572       /* Set the contents of the .interp section to the interpreter.  */
1573       if (info->executable)
1574 	{
1575 	  sec = bfd_get_section_by_name (dynobj, ".interp");
1576 	  BFD_ASSERT (sec != NULL);
1577 	  sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
1578 	  sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1579 	}
1580     }
1581   else
1582     {
1583       /* We may have created entries in the .rela.got section.
1584 	 However, if we are not creating the dynamic sections, we will
1585 	 not actually use these entries.  Reset the size of .rela.dlt,
1586 	 which will cause it to get stripped from the output file
1587 	 below.  */
1588       sec = bfd_get_section_by_name (dynobj, ".rela.dlt");
1589       if (sec != NULL)
1590 	sec->size = 0;
1591     }
1592 
1593   /* Set up DLT, PLT and OPD offsets for local syms, and space for local
1594      dynamic relocs.  */
1595   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1596     {
1597       bfd_signed_vma *local_dlt;
1598       bfd_signed_vma *end_local_dlt;
1599       bfd_signed_vma *local_plt;
1600       bfd_signed_vma *end_local_plt;
1601       bfd_signed_vma *local_opd;
1602       bfd_signed_vma *end_local_opd;
1603       bfd_size_type locsymcount;
1604       Elf_Internal_Shdr *symtab_hdr;
1605       asection *srel;
1606 
1607       if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1608 	continue;
1609 
1610       for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1611 	{
1612 	  struct elf64_hppa_dyn_reloc_entry *hdh_p;
1613 
1614 	  for (hdh_p = ((struct elf64_hppa_dyn_reloc_entry *)
1615 		    elf_section_data (sec)->local_dynrel);
1616 	       hdh_p != NULL;
1617 	       hdh_p = hdh_p->next)
1618 	    {
1619 	      if (!bfd_is_abs_section (hdh_p->sec)
1620 		  && bfd_is_abs_section (hdh_p->sec->output_section))
1621 		{
1622 		  /* Input section has been discarded, either because
1623 		     it is a copy of a linkonce section or due to
1624 		     linker script /DISCARD/, so we'll be discarding
1625 		     the relocs too.  */
1626 		}
1627 	      else if (hdh_p->count != 0)
1628 		{
1629 		  srel = elf_section_data (hdh_p->sec)->sreloc;
1630 		  srel->size += hdh_p->count * sizeof (Elf64_External_Rela);
1631 		  if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
1632 		    info->flags |= DF_TEXTREL;
1633 		}
1634 	    }
1635 	}
1636 
1637       local_dlt = elf_local_got_refcounts (ibfd);
1638       if (!local_dlt)
1639 	continue;
1640 
1641       symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1642       locsymcount = symtab_hdr->sh_info;
1643       end_local_dlt = local_dlt + locsymcount;
1644       sec = hppa_info->dlt_sec;
1645       srel = hppa_info->dlt_rel_sec;
1646       for (; local_dlt < end_local_dlt; ++local_dlt)
1647 	{
1648 	  if (*local_dlt > 0)
1649 	    {
1650 	      *local_dlt = sec->size;
1651 	      sec->size += DLT_ENTRY_SIZE;
1652 	      if (info->shared)
1653 	        {
1654 		  srel->size += sizeof (Elf64_External_Rela);
1655 	        }
1656 	    }
1657 	  else
1658 	    *local_dlt = (bfd_vma) -1;
1659 	}
1660 
1661       local_plt = end_local_dlt;
1662       end_local_plt = local_plt + locsymcount;
1663       if (! hppa_info->root.dynamic_sections_created)
1664 	{
1665 	  /* Won't be used, but be safe.  */
1666 	  for (; local_plt < end_local_plt; ++local_plt)
1667 	    *local_plt = (bfd_vma) -1;
1668 	}
1669       else
1670 	{
1671 	  sec = hppa_info->plt_sec;
1672 	  srel = hppa_info->plt_rel_sec;
1673 	  for (; local_plt < end_local_plt; ++local_plt)
1674 	    {
1675 	      if (*local_plt > 0)
1676 		{
1677 		  *local_plt = sec->size;
1678 		  sec->size += PLT_ENTRY_SIZE;
1679 		  if (info->shared)
1680 		    srel->size += sizeof (Elf64_External_Rela);
1681 		}
1682 	      else
1683 		*local_plt = (bfd_vma) -1;
1684 	    }
1685 	}
1686 
1687       local_opd = end_local_plt;
1688       end_local_opd = local_opd + locsymcount;
1689       if (! hppa_info->root.dynamic_sections_created)
1690 	{
1691 	  /* Won't be used, but be safe.  */
1692 	  for (; local_opd < end_local_opd; ++local_opd)
1693 	    *local_opd = (bfd_vma) -1;
1694 	}
1695       else
1696 	{
1697 	  sec = hppa_info->opd_sec;
1698 	  srel = hppa_info->opd_rel_sec;
1699 	  for (; local_opd < end_local_opd; ++local_opd)
1700 	    {
1701 	      if (*local_opd > 0)
1702 		{
1703 		  *local_opd = sec->size;
1704 		  sec->size += OPD_ENTRY_SIZE;
1705 		  if (info->shared)
1706 		    srel->size += sizeof (Elf64_External_Rela);
1707 		}
1708 	      else
1709 		*local_opd = (bfd_vma) -1;
1710 	    }
1711 	}
1712     }
1713 
1714   /* Allocate the GOT entries.  */
1715 
1716   data.info = info;
1717   if (hppa_info->dlt_sec)
1718     {
1719       data.ofs = hppa_info->dlt_sec->size;
1720       elf_link_hash_traverse (elf_hash_table (info),
1721 			      allocate_global_data_dlt, &data);
1722       hppa_info->dlt_sec->size = data.ofs;
1723     }
1724 
1725   if (hppa_info->plt_sec)
1726     {
1727       data.ofs = hppa_info->plt_sec->size;
1728       elf_link_hash_traverse (elf_hash_table (info),
1729 		              allocate_global_data_plt, &data);
1730       hppa_info->plt_sec->size = data.ofs;
1731     }
1732 
1733   if (hppa_info->stub_sec)
1734     {
1735       data.ofs = 0x0;
1736       elf_link_hash_traverse (elf_hash_table (info),
1737 			      allocate_global_data_stub, &data);
1738       hppa_info->stub_sec->size = data.ofs;
1739     }
1740 
1741   /* Allocate space for entries in the .opd section.  */
1742   if (hppa_info->opd_sec)
1743     {
1744       data.ofs = hppa_info->opd_sec->size;
1745       elf_link_hash_traverse (elf_hash_table (info),
1746 			      allocate_global_data_opd, &data);
1747       hppa_info->opd_sec->size = data.ofs;
1748     }
1749 
1750   /* Now allocate space for dynamic relocations, if necessary.  */
1751   if (hppa_info->root.dynamic_sections_created)
1752     elf_link_hash_traverse (elf_hash_table (info),
1753 			    allocate_dynrel_entries, &data);
1754 
1755   /* The sizes of all the sections are set.  Allocate memory for them.  */
1756   plt = FALSE;
1757   relocs = FALSE;
1758   reltext = FALSE;
1759   for (sec = dynobj->sections; sec != NULL; sec = sec->next)
1760     {
1761       const char *name;
1762 
1763       if ((sec->flags & SEC_LINKER_CREATED) == 0)
1764 	continue;
1765 
1766       /* It's OK to base decisions on the section name, because none
1767 	 of the dynobj section names depend upon the input files.  */
1768       name = bfd_get_section_name (dynobj, sec);
1769 
1770       if (strcmp (name, ".plt") == 0)
1771 	{
1772 	  /* Remember whether there is a PLT.  */
1773 	  plt = sec->size != 0;
1774 	}
1775       else if (strcmp (name, ".opd") == 0
1776 	       || CONST_STRNEQ (name, ".dlt")
1777 	       || strcmp (name, ".stub") == 0
1778 	       || strcmp (name, ".got") == 0)
1779 	{
1780 	  /* Strip this section if we don't need it; see the comment below.  */
1781 	}
1782       else if (CONST_STRNEQ (name, ".rela"))
1783 	{
1784 	  if (sec->size != 0)
1785 	    {
1786 	      asection *target;
1787 
1788 	      /* Remember whether there are any reloc sections other
1789 		 than .rela.plt.  */
1790 	      if (strcmp (name, ".rela.plt") != 0)
1791 		{
1792 		  const char *outname;
1793 
1794 		  relocs = TRUE;
1795 
1796 		  /* If this relocation section applies to a read only
1797 		     section, then we probably need a DT_TEXTREL
1798 		     entry.  The entries in the .rela.plt section
1799 		     really apply to the .got section, which we
1800 		     created ourselves and so know is not readonly.  */
1801 		  outname = bfd_get_section_name (output_bfd,
1802 						  sec->output_section);
1803 		  target = bfd_get_section_by_name (output_bfd, outname + 4);
1804 		  if (target != NULL
1805 		      && (target->flags & SEC_READONLY) != 0
1806 		      && (target->flags & SEC_ALLOC) != 0)
1807 		    reltext = TRUE;
1808 		}
1809 
1810 	      /* We use the reloc_count field as a counter if we need
1811 		 to copy relocs into the output file.  */
1812 	      sec->reloc_count = 0;
1813 	    }
1814 	}
1815       else
1816 	{
1817 	  /* It's not one of our sections, so don't allocate space.  */
1818 	  continue;
1819 	}
1820 
1821       if (sec->size == 0)
1822 	{
1823 	  /* If we don't need this section, strip it from the
1824 	     output file.  This is mostly to handle .rela.bss and
1825 	     .rela.plt.  We must create both sections in
1826 	     create_dynamic_sections, because they must be created
1827 	     before the linker maps input sections to output
1828 	     sections.  The linker does that before
1829 	     adjust_dynamic_symbol is called, and it is that
1830 	     function which decides whether anything needs to go
1831 	     into these sections.  */
1832 	  sec->flags |= SEC_EXCLUDE;
1833 	  continue;
1834 	}
1835 
1836       if ((sec->flags & SEC_HAS_CONTENTS) == 0)
1837 	continue;
1838 
1839       /* Allocate memory for the section contents if it has not
1840 	 been allocated already.  We use bfd_zalloc here in case
1841 	 unused entries are not reclaimed before the section's
1842 	 contents are written out.  This should not happen, but this
1843 	 way if it does, we get a R_PARISC_NONE reloc instead of
1844 	 garbage.  */
1845       if (sec->contents == NULL)
1846 	{
1847 	  sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
1848 	  if (sec->contents == NULL)
1849 	    return FALSE;
1850 	}
1851     }
1852 
1853   if (elf_hash_table (info)->dynamic_sections_created)
1854     {
1855       /* Always create a DT_PLTGOT.  It actually has nothing to do with
1856 	 the PLT, it is how we communicate the __gp value of a load
1857 	 module to the dynamic linker.  */
1858 #define add_dynamic_entry(TAG, VAL) \
1859   _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1860 
1861       if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1862 	  || !add_dynamic_entry (DT_PLTGOT, 0))
1863 	return FALSE;
1864 
1865       /* Add some entries to the .dynamic section.  We fill in the
1866 	 values later, in elf64_hppa_finish_dynamic_sections, but we
1867 	 must add the entries now so that we get the correct size for
1868 	 the .dynamic section.  The DT_DEBUG entry is filled in by the
1869 	 dynamic linker and used by the debugger.  */
1870       if (! info->shared)
1871 	{
1872 	  if (!add_dynamic_entry (DT_DEBUG, 0)
1873 	      || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1874 	      || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1875 	    return FALSE;
1876 	}
1877 
1878       /* Force DT_FLAGS to always be set.
1879 	 Required by HPUX 11.00 patch PHSS_26559.  */
1880       if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1881 	return FALSE;
1882 
1883       if (plt)
1884 	{
1885 	  if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1886 	      || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1887 	      || !add_dynamic_entry (DT_JMPREL, 0))
1888 	    return FALSE;
1889 	}
1890 
1891       if (relocs)
1892 	{
1893 	  if (!add_dynamic_entry (DT_RELA, 0)
1894 	      || !add_dynamic_entry (DT_RELASZ, 0)
1895 	      || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1896 	    return FALSE;
1897 	}
1898 
1899       if (reltext)
1900 	{
1901 	  if (!add_dynamic_entry (DT_TEXTREL, 0))
1902 	    return FALSE;
1903 	  info->flags |= DF_TEXTREL;
1904 	}
1905     }
1906 #undef add_dynamic_entry
1907 
1908   return TRUE;
1909 }
1910 
1911 /* Called after we have output the symbol into the dynamic symbol
1912    table, but before we output the symbol into the normal symbol
1913    table.
1914 
1915    For some symbols we had to change their address when outputting
1916    the dynamic symbol table.  We undo that change here so that
1917    the symbols have their expected value in the normal symbol
1918    table.  Ick.  */
1919 
1920 static int
elf64_hppa_link_output_symbol_hook(struct bfd_link_info * info ATTRIBUTE_UNUSED,const char * name,Elf_Internal_Sym * sym,asection * input_sec ATTRIBUTE_UNUSED,struct elf_link_hash_entry * eh)1921 elf64_hppa_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1922 				    const char *name,
1923 				    Elf_Internal_Sym *sym,
1924 				    asection *input_sec ATTRIBUTE_UNUSED,
1925 				    struct elf_link_hash_entry *eh)
1926 {
1927   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1928 
1929   /* We may be called with the file symbol or section symbols.
1930      They never need munging, so it is safe to ignore them.  */
1931   if (!name || !eh)
1932     return 1;
1933 
1934   /* Function symbols for which we created .opd entries *may* have been
1935      munged by finish_dynamic_symbol and have to be un-munged here.
1936 
1937      Note that finish_dynamic_symbol sometimes turns dynamic symbols
1938      into non-dynamic ones, so we initialize st_shndx to -1 in
1939      mark_exported_functions and check to see if it was overwritten
1940      here instead of just checking eh->dynindx.  */
1941   if (hh->want_opd && hh->st_shndx != -1)
1942     {
1943       /* Restore the saved value and section index.  */
1944       sym->st_value = hh->st_value;
1945       sym->st_shndx = hh->st_shndx;
1946     }
1947 
1948   return 1;
1949 }
1950 
1951 /* Finish up dynamic symbol handling.  We set the contents of various
1952    dynamic sections here.  */
1953 
1954 static bfd_boolean
elf64_hppa_finish_dynamic_symbol(bfd * output_bfd,struct bfd_link_info * info,struct elf_link_hash_entry * eh,Elf_Internal_Sym * sym)1955 elf64_hppa_finish_dynamic_symbol (bfd *output_bfd,
1956 				  struct bfd_link_info *info,
1957 				  struct elf_link_hash_entry *eh,
1958 				  Elf_Internal_Sym *sym)
1959 {
1960   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1961   asection *stub, *splt, *sopd, *spltrel;
1962   struct elf64_hppa_link_hash_table *hppa_info;
1963 
1964   hppa_info = hppa_link_hash_table (info);
1965   if (hppa_info == NULL)
1966     return FALSE;
1967 
1968   stub = hppa_info->stub_sec;
1969   splt = hppa_info->plt_sec;
1970   sopd = hppa_info->opd_sec;
1971   spltrel = hppa_info->plt_rel_sec;
1972 
1973   /* Incredible.  It is actually necessary to NOT use the symbol's real
1974      value when building the dynamic symbol table for a shared library.
1975      At least for symbols that refer to functions.
1976 
1977      We will store a new value and section index into the symbol long
1978      enough to output it into the dynamic symbol table, then we restore
1979      the original values (in elf64_hppa_link_output_symbol_hook).  */
1980   if (hh->want_opd)
1981     {
1982       BFD_ASSERT (sopd != NULL);
1983 
1984       /* Save away the original value and section index so that we
1985 	 can restore them later.  */
1986       hh->st_value = sym->st_value;
1987       hh->st_shndx = sym->st_shndx;
1988 
1989       /* For the dynamic symbol table entry, we want the value to be
1990 	 address of this symbol's entry within the .opd section.  */
1991       sym->st_value = (hh->opd_offset
1992 		       + sopd->output_offset
1993 		       + sopd->output_section->vma);
1994       sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1995 							 sopd->output_section);
1996     }
1997 
1998   /* Initialize a .plt entry if requested.  */
1999   if (hh->want_plt
2000       && elf64_hppa_dynamic_symbol_p (eh, info))
2001     {
2002       bfd_vma value;
2003       Elf_Internal_Rela rel;
2004       bfd_byte *loc;
2005 
2006       BFD_ASSERT (splt != NULL && spltrel != NULL);
2007 
2008       /* We do not actually care about the value in the PLT entry
2009 	 if we are creating a shared library and the symbol is
2010 	 still undefined, we create a dynamic relocation to fill
2011 	 in the correct value.  */
2012       if (info->shared && eh->root.type == bfd_link_hash_undefined)
2013 	value = 0;
2014       else
2015 	value = (eh->root.u.def.value + eh->root.u.def.section->vma);
2016 
2017       /* Fill in the entry in the procedure linkage table.
2018 
2019 	 The format of a plt entry is
2020 	 <funcaddr> <__gp>.
2021 
2022 	 plt_offset is the offset within the PLT section at which to
2023 	 install the PLT entry.
2024 
2025 	 We are modifying the in-memory PLT contents here, so we do not add
2026 	 in the output_offset of the PLT section.  */
2027 
2028       bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset);
2029       value = _bfd_get_gp_value (splt->output_section->owner);
2030       bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset + 0x8);
2031 
2032       /* Create a dynamic IPLT relocation for this entry.
2033 
2034 	 We are creating a relocation in the output file's PLT section,
2035 	 which is included within the DLT secton.  So we do need to include
2036 	 the PLT's output_offset in the computation of the relocation's
2037 	 address.  */
2038       rel.r_offset = (hh->plt_offset + splt->output_offset
2039 		      + splt->output_section->vma);
2040       rel.r_info = ELF64_R_INFO (hh->eh.dynindx, R_PARISC_IPLT);
2041       rel.r_addend = 0;
2042 
2043       loc = spltrel->contents;
2044       loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2045       bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
2046     }
2047 
2048   /* Initialize an external call stub entry if requested.  */
2049   if (hh->want_stub
2050       && elf64_hppa_dynamic_symbol_p (eh, info))
2051     {
2052       bfd_vma value;
2053       int insn;
2054       unsigned int max_offset;
2055 
2056       BFD_ASSERT (stub != NULL);
2057 
2058       /* Install the generic stub template.
2059 
2060 	 We are modifying the contents of the stub section, so we do not
2061 	 need to include the stub section's output_offset here.  */
2062       memcpy (stub->contents + hh->stub_offset, plt_stub, sizeof (plt_stub));
2063 
2064       /* Fix up the first ldd instruction.
2065 
2066 	 We are modifying the contents of the STUB section in memory,
2067 	 so we do not need to include its output offset in this computation.
2068 
2069 	 Note the plt_offset value is the value of the PLT entry relative to
2070 	 the start of the PLT section.  These instructions will reference
2071 	 data relative to the value of __gp, which may not necessarily have
2072 	 the same address as the start of the PLT section.
2073 
2074 	 gp_offset contains the offset of __gp within the PLT section.  */
2075       value = hh->plt_offset - hppa_info->gp_offset;
2076 
2077       insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset);
2078       if (output_bfd->arch_info->mach >= 25)
2079 	{
2080 	  /* Wide mode allows 16 bit offsets.  */
2081 	  max_offset = 32768;
2082 	  insn &= ~ 0xfff1;
2083 	  insn |= re_assemble_16 ((int) value);
2084 	}
2085       else
2086 	{
2087 	  max_offset = 8192;
2088 	  insn &= ~ 0x3ff1;
2089 	  insn |= re_assemble_14 ((int) value);
2090 	}
2091 
2092       if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2093 	{
2094 	  (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2095 				 hh->eh.root.root.string,
2096 				 (long) value);
2097 	  return FALSE;
2098 	}
2099 
2100       bfd_put_32 (stub->owner, (bfd_vma) insn,
2101 		  stub->contents + hh->stub_offset);
2102 
2103       /* Fix up the second ldd instruction.  */
2104       value += 8;
2105       insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset + 8);
2106       if (output_bfd->arch_info->mach >= 25)
2107 	{
2108 	  insn &= ~ 0xfff1;
2109 	  insn |= re_assemble_16 ((int) value);
2110 	}
2111       else
2112 	{
2113 	  insn &= ~ 0x3ff1;
2114 	  insn |= re_assemble_14 ((int) value);
2115 	}
2116       bfd_put_32 (stub->owner, (bfd_vma) insn,
2117 		  stub->contents + hh->stub_offset + 8);
2118     }
2119 
2120   return TRUE;
2121 }
2122 
2123 /* The .opd section contains FPTRs for each function this file
2124    exports.  Initialize the FPTR entries.  */
2125 
2126 static bfd_boolean
elf64_hppa_finalize_opd(struct elf_link_hash_entry * eh,void * data)2127 elf64_hppa_finalize_opd (struct elf_link_hash_entry *eh, void *data)
2128 {
2129   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2130   struct bfd_link_info *info = (struct bfd_link_info *)data;
2131   struct elf64_hppa_link_hash_table *hppa_info;
2132   asection *sopd;
2133   asection *sopdrel;
2134 
2135   hppa_info = hppa_link_hash_table (info);
2136   if (hppa_info == NULL)
2137     return FALSE;
2138 
2139   sopd = hppa_info->opd_sec;
2140   sopdrel = hppa_info->opd_rel_sec;
2141 
2142   if (hh->want_opd)
2143     {
2144       bfd_vma value;
2145 
2146       /* The first two words of an .opd entry are zero.
2147 
2148 	 We are modifying the contents of the OPD section in memory, so we
2149 	 do not need to include its output offset in this computation.  */
2150       memset (sopd->contents + hh->opd_offset, 0, 16);
2151 
2152       value = (eh->root.u.def.value
2153 	       + eh->root.u.def.section->output_section->vma
2154 	       + eh->root.u.def.section->output_offset);
2155 
2156       /* The next word is the address of the function.  */
2157       bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 16);
2158 
2159       /* The last word is our local __gp value.  */
2160       value = _bfd_get_gp_value (sopd->output_section->owner);
2161       bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 24);
2162     }
2163 
2164   /* If we are generating a shared library, we must generate EPLT relocations
2165      for each entry in the .opd, even for static functions (they may have
2166      had their address taken).  */
2167   if (info->shared && hh->want_opd)
2168     {
2169       Elf_Internal_Rela rel;
2170       bfd_byte *loc;
2171       int dynindx;
2172 
2173       /* We may need to do a relocation against a local symbol, in
2174 	 which case we have to look up it's dynamic symbol index off
2175 	 the local symbol hash table.  */
2176       if (eh->dynindx != -1)
2177 	dynindx = eh->dynindx;
2178       else
2179 	dynindx
2180 	  = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2181 						hh->sym_indx);
2182 
2183       /* The offset of this relocation is the absolute address of the
2184 	 .opd entry for this symbol.  */
2185       rel.r_offset = (hh->opd_offset + sopd->output_offset
2186 		      + sopd->output_section->vma);
2187 
2188       /* If H is non-null, then we have an external symbol.
2189 
2190 	 It is imperative that we use a different dynamic symbol for the
2191 	 EPLT relocation if the symbol has global scope.
2192 
2193 	 In the dynamic symbol table, the function symbol will have a value
2194 	 which is address of the function's .opd entry.
2195 
2196 	 Thus, we can not use that dynamic symbol for the EPLT relocation
2197 	 (if we did, the data in the .opd would reference itself rather
2198 	 than the actual address of the function).  Instead we have to use
2199 	 a new dynamic symbol which has the same value as the original global
2200 	 function symbol.
2201 
2202 	 We prefix the original symbol with a "." and use the new symbol in
2203 	 the EPLT relocation.  This new symbol has already been recorded in
2204 	 the symbol table, we just have to look it up and use it.
2205 
2206 	 We do not have such problems with static functions because we do
2207 	 not make their addresses in the dynamic symbol table point to
2208 	 the .opd entry.  Ultimately this should be safe since a static
2209 	 function can not be directly referenced outside of its shared
2210 	 library.
2211 
2212 	 We do have to play similar games for FPTR relocations in shared
2213 	 libraries, including those for static symbols.  See the FPTR
2214 	 handling in elf64_hppa_finalize_dynreloc.  */
2215       if (eh)
2216 	{
2217 	  char *new_name;
2218 	  struct elf_link_hash_entry *nh;
2219 
2220 	  new_name = alloca (strlen (eh->root.root.string) + 2);
2221 	  new_name[0] = '.';
2222 	  strcpy (new_name + 1, eh->root.root.string);
2223 
2224 	  nh = elf_link_hash_lookup (elf_hash_table (info),
2225 				     new_name, TRUE, TRUE, FALSE);
2226 
2227 	  /* All we really want from the new symbol is its dynamic
2228 	     symbol index.  */
2229 	  if (nh)
2230 	    dynindx = nh->dynindx;
2231 	}
2232 
2233       rel.r_addend = 0;
2234       rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2235 
2236       loc = sopdrel->contents;
2237       loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2238       bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
2239     }
2240   return TRUE;
2241 }
2242 
2243 /* The .dlt section contains addresses for items referenced through the
2244    dlt.  Note that we can have a DLTIND relocation for a local symbol, thus
2245    we can not depend on finish_dynamic_symbol to initialize the .dlt.  */
2246 
2247 static bfd_boolean
elf64_hppa_finalize_dlt(struct elf_link_hash_entry * eh,void * data)2248 elf64_hppa_finalize_dlt (struct elf_link_hash_entry *eh, void *data)
2249 {
2250   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2251   struct bfd_link_info *info = (struct bfd_link_info *)data;
2252   struct elf64_hppa_link_hash_table *hppa_info;
2253   asection *sdlt, *sdltrel;
2254 
2255   hppa_info = hppa_link_hash_table (info);
2256   if (hppa_info == NULL)
2257     return FALSE;
2258 
2259   sdlt = hppa_info->dlt_sec;
2260   sdltrel = hppa_info->dlt_rel_sec;
2261 
2262   /* H/DYN_H may refer to a local variable and we know it's
2263      address, so there is no need to create a relocation.  Just install
2264      the proper value into the DLT, note this shortcut can not be
2265      skipped when building a shared library.  */
2266   if (! info->shared && hh && hh->want_dlt)
2267     {
2268       bfd_vma value;
2269 
2270       /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2271 	 to point to the FPTR entry in the .opd section.
2272 
2273 	 We include the OPD's output offset in this computation as
2274 	 we are referring to an absolute address in the resulting
2275 	 object file.  */
2276       if (hh->want_opd)
2277 	{
2278 	  value = (hh->opd_offset
2279 		   + hppa_info->opd_sec->output_offset
2280 		   + hppa_info->opd_sec->output_section->vma);
2281 	}
2282       else if ((eh->root.type == bfd_link_hash_defined
2283 		|| eh->root.type == bfd_link_hash_defweak)
2284 	       && eh->root.u.def.section)
2285 	{
2286 	  value = eh->root.u.def.value + eh->root.u.def.section->output_offset;
2287 	  if (eh->root.u.def.section->output_section)
2288 	    value += eh->root.u.def.section->output_section->vma;
2289 	  else
2290 	    value += eh->root.u.def.section->vma;
2291 	}
2292       else
2293 	/* We have an undefined function reference.  */
2294 	value = 0;
2295 
2296       /* We do not need to include the output offset of the DLT section
2297 	 here because we are modifying the in-memory contents.  */
2298       bfd_put_64 (sdlt->owner, value, sdlt->contents + hh->dlt_offset);
2299     }
2300 
2301   /* Create a relocation for the DLT entry associated with this symbol.
2302      When building a shared library the symbol does not have to be dynamic.  */
2303   if (hh->want_dlt
2304       && (elf64_hppa_dynamic_symbol_p (eh, info) || info->shared))
2305     {
2306       Elf_Internal_Rela rel;
2307       bfd_byte *loc;
2308       int dynindx;
2309 
2310       /* We may need to do a relocation against a local symbol, in
2311 	 which case we have to look up it's dynamic symbol index off
2312 	 the local symbol hash table.  */
2313       if (eh && eh->dynindx != -1)
2314 	dynindx = eh->dynindx;
2315       else
2316 	dynindx
2317 	  = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2318 						hh->sym_indx);
2319 
2320       /* Create a dynamic relocation for this entry.  Do include the output
2321 	 offset of the DLT entry since we need an absolute address in the
2322 	 resulting object file.  */
2323       rel.r_offset = (hh->dlt_offset + sdlt->output_offset
2324 		      + sdlt->output_section->vma);
2325       if (eh && eh->type == STT_FUNC)
2326 	  rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2327       else
2328 	  rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2329       rel.r_addend = 0;
2330 
2331       loc = sdltrel->contents;
2332       loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2333       bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
2334     }
2335   return TRUE;
2336 }
2337 
2338 /* Finalize the dynamic relocations.  Specifically the FPTR relocations
2339    for dynamic functions used to initialize static data.  */
2340 
2341 static bfd_boolean
elf64_hppa_finalize_dynreloc(struct elf_link_hash_entry * eh,void * data)2342 elf64_hppa_finalize_dynreloc (struct elf_link_hash_entry *eh,
2343 			      void *data)
2344 {
2345   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2346   struct bfd_link_info *info = (struct bfd_link_info *)data;
2347   struct elf64_hppa_link_hash_table *hppa_info;
2348   int dynamic_symbol;
2349 
2350   dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, info);
2351 
2352   if (!dynamic_symbol && !info->shared)
2353     return TRUE;
2354 
2355   if (hh->reloc_entries)
2356     {
2357       struct elf64_hppa_dyn_reloc_entry *rent;
2358       int dynindx;
2359 
2360       hppa_info = hppa_link_hash_table (info);
2361       if (hppa_info == NULL)
2362 	return FALSE;
2363 
2364       /* We may need to do a relocation against a local symbol, in
2365 	 which case we have to look up it's dynamic symbol index off
2366 	 the local symbol hash table.  */
2367       if (eh->dynindx != -1)
2368 	dynindx = eh->dynindx;
2369       else
2370 	dynindx
2371 	  = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2372 						hh->sym_indx);
2373 
2374       for (rent = hh->reloc_entries; rent; rent = rent->next)
2375 	{
2376 	  Elf_Internal_Rela rel;
2377 	  bfd_byte *loc;
2378 
2379 	  /* Allocate one iff we are building a shared library, the relocation
2380 	     isn't a R_PARISC_FPTR64, or we don't want an opd entry.  */
2381 	  if (!info->shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2382 	    continue;
2383 
2384 	  /* Create a dynamic relocation for this entry.
2385 
2386 	     We need the output offset for the reloc's section because
2387 	     we are creating an absolute address in the resulting object
2388 	     file.  */
2389 	  rel.r_offset = (rent->offset + rent->sec->output_offset
2390 			  + rent->sec->output_section->vma);
2391 
2392 	  /* An FPTR64 relocation implies that we took the address of
2393 	     a function and that the function has an entry in the .opd
2394 	     section.  We want the FPTR64 relocation to reference the
2395 	     entry in .opd.
2396 
2397 	     We could munge the symbol value in the dynamic symbol table
2398 	     (in fact we already do for functions with global scope) to point
2399 	     to the .opd entry.  Then we could use that dynamic symbol in
2400 	     this relocation.
2401 
2402 	     Or we could do something sensible, not munge the symbol's
2403 	     address and instead just use a different symbol to reference
2404 	     the .opd entry.  At least that seems sensible until you
2405 	     realize there's no local dynamic symbols we can use for that
2406 	     purpose.  Thus the hair in the check_relocs routine.
2407 
2408 	     We use a section symbol recorded by check_relocs as the
2409 	     base symbol for the relocation.  The addend is the difference
2410 	     between the section symbol and the address of the .opd entry.  */
2411 	  if (info->shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2412 	    {
2413 	      bfd_vma value, value2;
2414 
2415 	      /* First compute the address of the opd entry for this symbol.  */
2416 	      value = (hh->opd_offset
2417 		       + hppa_info->opd_sec->output_section->vma
2418 		       + hppa_info->opd_sec->output_offset);
2419 
2420 	      /* Compute the value of the start of the section with
2421 		 the relocation.  */
2422 	      value2 = (rent->sec->output_section->vma
2423 			+ rent->sec->output_offset);
2424 
2425 	      /* Compute the difference between the start of the section
2426 		 with the relocation and the opd entry.  */
2427 	      value -= value2;
2428 
2429 	      /* The result becomes the addend of the relocation.  */
2430 	      rel.r_addend = value;
2431 
2432 	      /* The section symbol becomes the symbol for the dynamic
2433 		 relocation.  */
2434 	      dynindx
2435 		= _bfd_elf_link_lookup_local_dynindx (info,
2436 						      rent->sec->owner,
2437 						      rent->sec_symndx);
2438 	    }
2439 	  else
2440 	    rel.r_addend = rent->addend;
2441 
2442 	  rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2443 
2444 	  loc = hppa_info->other_rel_sec->contents;
2445 	  loc += (hppa_info->other_rel_sec->reloc_count++
2446 		  * sizeof (Elf64_External_Rela));
2447 	  bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2448 				     &rel, loc);
2449 	}
2450     }
2451 
2452   return TRUE;
2453 }
2454 
2455 /* Used to decide how to sort relocs in an optimal manner for the
2456    dynamic linker, before writing them out.  */
2457 
2458 static enum elf_reloc_type_class
elf64_hppa_reloc_type_class(const Elf_Internal_Rela * rela)2459 elf64_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
2460 {
2461   if (ELF64_R_SYM (rela->r_info) == STN_UNDEF)
2462     return reloc_class_relative;
2463 
2464   switch ((int) ELF64_R_TYPE (rela->r_info))
2465     {
2466     case R_PARISC_IPLT:
2467       return reloc_class_plt;
2468     case R_PARISC_COPY:
2469       return reloc_class_copy;
2470     default:
2471       return reloc_class_normal;
2472     }
2473 }
2474 
2475 /* Finish up the dynamic sections.  */
2476 
2477 static bfd_boolean
elf64_hppa_finish_dynamic_sections(bfd * output_bfd,struct bfd_link_info * info)2478 elf64_hppa_finish_dynamic_sections (bfd *output_bfd,
2479 				    struct bfd_link_info *info)
2480 {
2481   bfd *dynobj;
2482   asection *sdyn;
2483   struct elf64_hppa_link_hash_table *hppa_info;
2484 
2485   hppa_info = hppa_link_hash_table (info);
2486   if (hppa_info == NULL)
2487     return FALSE;
2488 
2489   /* Finalize the contents of the .opd section.  */
2490   elf_link_hash_traverse (elf_hash_table (info),
2491 			  elf64_hppa_finalize_opd,
2492 			  info);
2493 
2494   elf_link_hash_traverse (elf_hash_table (info),
2495 			  elf64_hppa_finalize_dynreloc,
2496 			  info);
2497 
2498   /* Finalize the contents of the .dlt section.  */
2499   dynobj = elf_hash_table (info)->dynobj;
2500   /* Finalize the contents of the .dlt section.  */
2501   elf_link_hash_traverse (elf_hash_table (info),
2502 			  elf64_hppa_finalize_dlt,
2503 			  info);
2504 
2505   sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2506 
2507   if (elf_hash_table (info)->dynamic_sections_created)
2508     {
2509       Elf64_External_Dyn *dyncon, *dynconend;
2510 
2511       BFD_ASSERT (sdyn != NULL);
2512 
2513       dyncon = (Elf64_External_Dyn *) sdyn->contents;
2514       dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2515       for (; dyncon < dynconend; dyncon++)
2516 	{
2517 	  Elf_Internal_Dyn dyn;
2518 	  asection *s;
2519 
2520 	  bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2521 
2522 	  switch (dyn.d_tag)
2523 	    {
2524 	    default:
2525 	      break;
2526 
2527 	    case DT_HP_LOAD_MAP:
2528 	      /* Compute the absolute address of 16byte scratchpad area
2529 		 for the dynamic linker.
2530 
2531 		 By convention the linker script will allocate the scratchpad
2532 		 area at the start of the .data section.  So all we have to
2533 		 to is find the start of the .data section.  */
2534 	      s = bfd_get_section_by_name (output_bfd, ".data");
2535 	      dyn.d_un.d_ptr = s->vma;
2536 	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2537 	      break;
2538 
2539 	    case DT_PLTGOT:
2540 	      /* HP's use PLTGOT to set the GOT register.  */
2541 	      dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2542 	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2543 	      break;
2544 
2545 	    case DT_JMPREL:
2546 	      s = hppa_info->plt_rel_sec;
2547 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2548 	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2549 	      break;
2550 
2551 	    case DT_PLTRELSZ:
2552 	      s = hppa_info->plt_rel_sec;
2553 	      dyn.d_un.d_val = s->size;
2554 	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2555 	      break;
2556 
2557 	    case DT_RELA:
2558 	      s = hppa_info->other_rel_sec;
2559 	      if (! s || ! s->size)
2560 		s = hppa_info->dlt_rel_sec;
2561 	      if (! s || ! s->size)
2562 		s = hppa_info->opd_rel_sec;
2563 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2564 	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2565 	      break;
2566 
2567 	    case DT_RELASZ:
2568 	      s = hppa_info->other_rel_sec;
2569 	      dyn.d_un.d_val = s->size;
2570 	      s = hppa_info->dlt_rel_sec;
2571 	      dyn.d_un.d_val += s->size;
2572 	      s = hppa_info->opd_rel_sec;
2573 	      dyn.d_un.d_val += s->size;
2574 	      /* There is some question about whether or not the size of
2575 		 the PLT relocs should be included here.  HP's tools do
2576 		 it, so we'll emulate them.  */
2577 	      s = hppa_info->plt_rel_sec;
2578 	      dyn.d_un.d_val += s->size;
2579 	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2580 	      break;
2581 
2582 	    }
2583 	}
2584     }
2585 
2586   return TRUE;
2587 }
2588 
2589 /* Support for core dump NOTE sections.  */
2590 
2591 static bfd_boolean
elf64_hppa_grok_prstatus(bfd * abfd,Elf_Internal_Note * note)2592 elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2593 {
2594   int offset;
2595   size_t size;
2596 
2597   switch (note->descsz)
2598     {
2599       default:
2600 	return FALSE;
2601 
2602       case 760:		/* Linux/hppa */
2603 	/* pr_cursig */
2604 	elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2605 
2606 	/* pr_pid */
2607 	elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 32);
2608 
2609 	/* pr_reg */
2610 	offset = 112;
2611 	size = 640;
2612 
2613 	break;
2614     }
2615 
2616   /* Make a ".reg/999" section.  */
2617   return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2618 					  size, note->descpos + offset);
2619 }
2620 
2621 static bfd_boolean
elf64_hppa_grok_psinfo(bfd * abfd,Elf_Internal_Note * note)2622 elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2623 {
2624   char * command;
2625   int n;
2626 
2627   switch (note->descsz)
2628     {
2629     default:
2630       return FALSE;
2631 
2632     case 136:		/* Linux/hppa elf_prpsinfo.  */
2633       elf_tdata (abfd)->core_program
2634 	= _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2635       elf_tdata (abfd)->core_command
2636 	= _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2637     }
2638 
2639   /* Note that for some reason, a spurious space is tacked
2640      onto the end of the args in some (at least one anyway)
2641      implementations, so strip it off if it exists.  */
2642   command = elf_tdata (abfd)->core_command;
2643   n = strlen (command);
2644 
2645   if (0 < n && command[n - 1] == ' ')
2646     command[n - 1] = '\0';
2647 
2648   return TRUE;
2649 }
2650 
2651 /* Return the number of additional phdrs we will need.
2652 
2653    The generic ELF code only creates PT_PHDRs for executables.  The HP
2654    dynamic linker requires PT_PHDRs for dynamic libraries too.
2655 
2656    This routine indicates that the backend needs one additional program
2657    header for that case.
2658 
2659    Note we do not have access to the link info structure here, so we have
2660    to guess whether or not we are building a shared library based on the
2661    existence of a .interp section.  */
2662 
2663 static int
elf64_hppa_additional_program_headers(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED)2664 elf64_hppa_additional_program_headers (bfd *abfd,
2665 				struct bfd_link_info *info ATTRIBUTE_UNUSED)
2666 {
2667   asection *s;
2668 
2669   /* If we are creating a shared library, then we have to create a
2670      PT_PHDR segment.  HP's dynamic linker chokes without it.  */
2671   s = bfd_get_section_by_name (abfd, ".interp");
2672   if (! s)
2673     return 1;
2674   return 0;
2675 }
2676 
2677 /* Allocate and initialize any program headers required by this
2678    specific backend.
2679 
2680    The generic ELF code only creates PT_PHDRs for executables.  The HP
2681    dynamic linker requires PT_PHDRs for dynamic libraries too.
2682 
2683    This allocates the PT_PHDR and initializes it in a manner suitable
2684    for the HP linker.
2685 
2686    Note we do not have access to the link info structure here, so we have
2687    to guess whether or not we are building a shared library based on the
2688    existence of a .interp section.  */
2689 
2690 static bfd_boolean
elf64_hppa_modify_segment_map(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED)2691 elf64_hppa_modify_segment_map (bfd *abfd,
2692 			       struct bfd_link_info *info ATTRIBUTE_UNUSED)
2693 {
2694   struct elf_segment_map *m;
2695   asection *s;
2696 
2697   s = bfd_get_section_by_name (abfd, ".interp");
2698   if (! s)
2699     {
2700       for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2701 	if (m->p_type == PT_PHDR)
2702 	  break;
2703       if (m == NULL)
2704 	{
2705 	  m = ((struct elf_segment_map *)
2706 	       bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2707 	  if (m == NULL)
2708 	    return FALSE;
2709 
2710 	  m->p_type = PT_PHDR;
2711 	  m->p_flags = PF_R | PF_X;
2712 	  m->p_flags_valid = 1;
2713 	  m->p_paddr_valid = 1;
2714 	  m->includes_phdrs = 1;
2715 
2716 	  m->next = elf_tdata (abfd)->segment_map;
2717 	  elf_tdata (abfd)->segment_map = m;
2718 	}
2719     }
2720 
2721   for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2722     if (m->p_type == PT_LOAD)
2723       {
2724 	unsigned int i;
2725 
2726 	for (i = 0; i < m->count; i++)
2727 	  {
2728 	    /* The code "hint" is not really a hint.  It is a requirement
2729 	       for certain versions of the HP dynamic linker.  Worse yet,
2730 	       it must be set even if the shared library does not have
2731 	       any code in its "text" segment (thus the check for .hash
2732 	       to catch this situation).  */
2733 	    if (m->sections[i]->flags & SEC_CODE
2734 		|| (strcmp (m->sections[i]->name, ".hash") == 0))
2735 	      m->p_flags |= (PF_X | PF_HP_CODE);
2736 	  }
2737       }
2738 
2739   return TRUE;
2740 }
2741 
2742 /* Called when writing out an object file to decide the type of a
2743    symbol.  */
2744 static int
elf64_hppa_elf_get_symbol_type(Elf_Internal_Sym * elf_sym,int type)2745 elf64_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym,
2746 				int type)
2747 {
2748   if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2749     return STT_PARISC_MILLI;
2750   else
2751     return type;
2752 }
2753 
2754 /* Support HP specific sections for core files.  */
2755 
2756 static bfd_boolean
elf64_hppa_section_from_phdr(bfd * abfd,Elf_Internal_Phdr * hdr,int sec_index,const char * typename)2757 elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int sec_index,
2758 			      const char *typename)
2759 {
2760   if (hdr->p_type == PT_HP_CORE_KERNEL)
2761     {
2762       asection *sect;
2763 
2764       if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
2765 	return FALSE;
2766 
2767       sect = bfd_make_section_anyway (abfd, ".kernel");
2768       if (sect == NULL)
2769 	return FALSE;
2770       sect->size = hdr->p_filesz;
2771       sect->filepos = hdr->p_offset;
2772       sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
2773       return TRUE;
2774     }
2775 
2776   if (hdr->p_type == PT_HP_CORE_PROC)
2777     {
2778       int sig;
2779 
2780       if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
2781 	return FALSE;
2782       if (bfd_bread (&sig, 4, abfd) != 4)
2783 	return FALSE;
2784 
2785       elf_tdata (abfd)->core_signal = sig;
2786 
2787       if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
2788 	return FALSE;
2789 
2790       /* GDB uses the ".reg" section to read register contents.  */
2791       return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
2792 					      hdr->p_offset);
2793     }
2794 
2795   if (hdr->p_type == PT_HP_CORE_LOADABLE
2796       || hdr->p_type == PT_HP_CORE_STACK
2797       || hdr->p_type == PT_HP_CORE_MMF)
2798     hdr->p_type = PT_LOAD;
2799 
2800   return _bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename);
2801 }
2802 
2803 /* Hook called by the linker routine which adds symbols from an object
2804    file.  HP's libraries define symbols with HP specific section
2805    indices, which we have to handle.  */
2806 
2807 static bfd_boolean
elf_hppa_add_symbol_hook(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED,Elf_Internal_Sym * sym,const char ** namep ATTRIBUTE_UNUSED,flagword * flagsp ATTRIBUTE_UNUSED,asection ** secp,bfd_vma * valp)2808 elf_hppa_add_symbol_hook (bfd *abfd,
2809 			  struct bfd_link_info *info ATTRIBUTE_UNUSED,
2810 			  Elf_Internal_Sym *sym,
2811 			  const char **namep ATTRIBUTE_UNUSED,
2812 			  flagword *flagsp ATTRIBUTE_UNUSED,
2813 			  asection **secp,
2814 			  bfd_vma *valp)
2815 {
2816   unsigned int sec_index = sym->st_shndx;
2817 
2818   switch (sec_index)
2819     {
2820     case SHN_PARISC_ANSI_COMMON:
2821       *secp = bfd_make_section_old_way (abfd, ".PARISC.ansi.common");
2822       (*secp)->flags |= SEC_IS_COMMON;
2823       *valp = sym->st_size;
2824       break;
2825 
2826     case SHN_PARISC_HUGE_COMMON:
2827       *secp = bfd_make_section_old_way (abfd, ".PARISC.huge.common");
2828       (*secp)->flags |= SEC_IS_COMMON;
2829       *valp = sym->st_size;
2830       break;
2831     }
2832 
2833   return TRUE;
2834 }
2835 
2836 static bfd_boolean
elf_hppa_unmark_useless_dynamic_symbols(struct elf_link_hash_entry * h,void * data)2837 elf_hppa_unmark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2838 					 void *data)
2839 {
2840   struct bfd_link_info *info = data;
2841 
2842   if (h->root.type == bfd_link_hash_warning)
2843     h = (struct elf_link_hash_entry *) h->root.u.i.link;
2844 
2845   /* If we are not creating a shared library, and this symbol is
2846      referenced by a shared library but is not defined anywhere, then
2847      the generic code will warn that it is undefined.
2848 
2849      This behavior is undesirable on HPs since the standard shared
2850      libraries contain references to undefined symbols.
2851 
2852      So we twiddle the flags associated with such symbols so that they
2853      will not trigger the warning.  ?!? FIXME.  This is horribly fragile.
2854 
2855      Ultimately we should have better controls over the generic ELF BFD
2856      linker code.  */
2857   if (! info->relocatable
2858       && info->unresolved_syms_in_shared_libs != RM_IGNORE
2859       && h->root.type == bfd_link_hash_undefined
2860       && h->ref_dynamic
2861       && !h->ref_regular)
2862     {
2863       h->ref_dynamic = 0;
2864       h->pointer_equality_needed = 1;
2865     }
2866 
2867   return TRUE;
2868 }
2869 
2870 static bfd_boolean
elf_hppa_remark_useless_dynamic_symbols(struct elf_link_hash_entry * h,void * data)2871 elf_hppa_remark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2872 					 void *data)
2873 {
2874   struct bfd_link_info *info = data;
2875 
2876   if (h->root.type == bfd_link_hash_warning)
2877     h = (struct elf_link_hash_entry *) h->root.u.i.link;
2878 
2879   /* If we are not creating a shared library, and this symbol is
2880      referenced by a shared library but is not defined anywhere, then
2881      the generic code will warn that it is undefined.
2882 
2883      This behavior is undesirable on HPs since the standard shared
2884      libraries contain references to undefined symbols.
2885 
2886      So we twiddle the flags associated with such symbols so that they
2887      will not trigger the warning.  ?!? FIXME.  This is horribly fragile.
2888 
2889      Ultimately we should have better controls over the generic ELF BFD
2890      linker code.  */
2891   if (! info->relocatable
2892       && info->unresolved_syms_in_shared_libs != RM_IGNORE
2893       && h->root.type == bfd_link_hash_undefined
2894       && !h->ref_dynamic
2895       && !h->ref_regular
2896       && h->pointer_equality_needed)
2897     {
2898       h->ref_dynamic = 1;
2899       h->pointer_equality_needed = 0;
2900     }
2901 
2902   return TRUE;
2903 }
2904 
2905 static bfd_boolean
elf_hppa_is_dynamic_loader_symbol(const char * name)2906 elf_hppa_is_dynamic_loader_symbol (const char *name)
2907 {
2908   return (! strcmp (name, "__CPU_REVISION")
2909 	  || ! strcmp (name, "__CPU_KEYBITS_1")
2910 	  || ! strcmp (name, "__SYSTEM_ID_D")
2911 	  || ! strcmp (name, "__FPU_MODEL")
2912 	  || ! strcmp (name, "__FPU_REVISION")
2913 	  || ! strcmp (name, "__ARGC")
2914 	  || ! strcmp (name, "__ARGV")
2915 	  || ! strcmp (name, "__ENVP")
2916 	  || ! strcmp (name, "__TLS_SIZE_D")
2917 	  || ! strcmp (name, "__LOAD_INFO")
2918 	  || ! strcmp (name, "__systab"));
2919 }
2920 
2921 /* Record the lowest address for the data and text segments.  */
2922 static void
elf_hppa_record_segment_addrs(bfd * abfd,asection * section,void * data)2923 elf_hppa_record_segment_addrs (bfd *abfd,
2924 			       asection *section,
2925 			       void *data)
2926 {
2927   struct elf64_hppa_link_hash_table *hppa_info = data;
2928 
2929   if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
2930     {
2931       bfd_vma value;
2932       Elf_Internal_Phdr *p;
2933 
2934       p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
2935       BFD_ASSERT (p != NULL);
2936       value = p->p_vaddr;
2937 
2938       if (section->flags & SEC_READONLY)
2939 	{
2940 	  if (value < hppa_info->text_segment_base)
2941 	    hppa_info->text_segment_base = value;
2942 	}
2943       else
2944 	{
2945 	  if (value < hppa_info->data_segment_base)
2946 	    hppa_info->data_segment_base = value;
2947 	}
2948     }
2949 }
2950 
2951 /* Called after we have seen all the input files/sections, but before
2952    final symbol resolution and section placement has been determined.
2953 
2954    We use this hook to (possibly) provide a value for __gp, then we
2955    fall back to the generic ELF final link routine.  */
2956 
2957 static bfd_boolean
elf_hppa_final_link(bfd * abfd,struct bfd_link_info * info)2958 elf_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
2959 {
2960   bfd_boolean retval;
2961   struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
2962 
2963   if (hppa_info == NULL)
2964     return FALSE;
2965 
2966   if (! info->relocatable)
2967     {
2968       struct elf_link_hash_entry *gp;
2969       bfd_vma gp_val;
2970 
2971       /* The linker script defines a value for __gp iff it was referenced
2972 	 by one of the objects being linked.  First try to find the symbol
2973 	 in the hash table.  If that fails, just compute the value __gp
2974 	 should have had.  */
2975       gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
2976 				 FALSE, FALSE);
2977 
2978       if (gp)
2979 	{
2980 
2981 	  /* Adjust the value of __gp as we may want to slide it into the
2982 	     .plt section so that the stubs can access PLT entries without
2983 	     using an addil sequence.  */
2984 	  gp->root.u.def.value += hppa_info->gp_offset;
2985 
2986 	  gp_val = (gp->root.u.def.section->output_section->vma
2987 		    + gp->root.u.def.section->output_offset
2988 		    + gp->root.u.def.value);
2989 	}
2990       else
2991 	{
2992 	  asection *sec;
2993 
2994 	  /* First look for a .plt section.  If found, then __gp is the
2995 	     address of the .plt + gp_offset.
2996 
2997 	     If no .plt is found, then look for .dlt, .opd and .data (in
2998 	     that order) and set __gp to the base address of whichever
2999 	     section is found first.  */
3000 
3001 	  sec = hppa_info->plt_sec;
3002 	  if (sec && ! (sec->flags & SEC_EXCLUDE))
3003 	    gp_val = (sec->output_offset
3004 		      + sec->output_section->vma
3005 		      + hppa_info->gp_offset);
3006 	  else
3007 	    {
3008 	      sec = hppa_info->dlt_sec;
3009 	      if (!sec || (sec->flags & SEC_EXCLUDE))
3010 		sec = hppa_info->opd_sec;
3011 	      if (!sec || (sec->flags & SEC_EXCLUDE))
3012 		sec = bfd_get_section_by_name (abfd, ".data");
3013 	      if (!sec || (sec->flags & SEC_EXCLUDE))
3014 		gp_val = 0;
3015 	      else
3016 		gp_val = sec->output_offset + sec->output_section->vma;
3017 	    }
3018 	}
3019 
3020       /* Install whatever value we found/computed for __gp.  */
3021       _bfd_set_gp_value (abfd, gp_val);
3022     }
3023 
3024   /* We need to know the base of the text and data segments so that we
3025      can perform SEGREL relocations.  We will record the base addresses
3026      when we encounter the first SEGREL relocation.  */
3027   hppa_info->text_segment_base = (bfd_vma)-1;
3028   hppa_info->data_segment_base = (bfd_vma)-1;
3029 
3030   /* HP's shared libraries have references to symbols that are not
3031      defined anywhere.  The generic ELF BFD linker code will complain
3032      about such symbols.
3033 
3034      So we detect the losing case and arrange for the flags on the symbol
3035      to indicate that it was never referenced.  This keeps the generic
3036      ELF BFD link code happy and appears to not create any secondary
3037      problems.  Ultimately we need a way to control the behavior of the
3038      generic ELF BFD link code better.  */
3039   elf_link_hash_traverse (elf_hash_table (info),
3040 			  elf_hppa_unmark_useless_dynamic_symbols,
3041 			  info);
3042 
3043   /* Invoke the regular ELF backend linker to do all the work.  */
3044   retval = bfd_elf_final_link (abfd, info);
3045 
3046   elf_link_hash_traverse (elf_hash_table (info),
3047 			  elf_hppa_remark_useless_dynamic_symbols,
3048 			  info);
3049 
3050   /* If we're producing a final executable, sort the contents of the
3051      unwind section. */
3052   if (retval && !info->relocatable)
3053     retval = elf_hppa_sort_unwind (abfd);
3054 
3055   return retval;
3056 }
3057 
3058 /* Relocate the given INSN.  VALUE should be the actual value we want
3059    to insert into the instruction, ie by this point we should not be
3060    concerned with computing an offset relative to the DLT, PC, etc.
3061    Instead this routine is meant to handle the bit manipulations needed
3062    to insert the relocation into the given instruction.  */
3063 
3064 static int
elf_hppa_relocate_insn(int insn,int sym_value,unsigned int r_type)3065 elf_hppa_relocate_insn (int insn, int sym_value, unsigned int r_type)
3066 {
3067   switch (r_type)
3068     {
3069     /* This is any 22 bit branch.  In PA2.0 syntax it corresponds to
3070        the "B" instruction.  */
3071     case R_PARISC_PCREL22F:
3072     case R_PARISC_PCREL22C:
3073       return (insn & ~0x3ff1ffd) | re_assemble_22 (sym_value);
3074 
3075       /* This is any 12 bit branch.  */
3076     case R_PARISC_PCREL12F:
3077       return (insn & ~0x1ffd) | re_assemble_12 (sym_value);
3078 
3079     /* This is any 17 bit branch.  In PA2.0 syntax it also corresponds
3080        to the "B" instruction as well as BE.  */
3081     case R_PARISC_PCREL17F:
3082     case R_PARISC_DIR17F:
3083     case R_PARISC_DIR17R:
3084     case R_PARISC_PCREL17C:
3085     case R_PARISC_PCREL17R:
3086       return (insn & ~0x1f1ffd) | re_assemble_17 (sym_value);
3087 
3088     /* ADDIL or LDIL instructions.  */
3089     case R_PARISC_DLTREL21L:
3090     case R_PARISC_DLTIND21L:
3091     case R_PARISC_LTOFF_FPTR21L:
3092     case R_PARISC_PCREL21L:
3093     case R_PARISC_LTOFF_TP21L:
3094     case R_PARISC_DPREL21L:
3095     case R_PARISC_PLTOFF21L:
3096     case R_PARISC_DIR21L:
3097       return (insn & ~0x1fffff) | re_assemble_21 (sym_value);
3098 
3099     /* LDO and integer loads/stores with 14 bit displacements.  */
3100     case R_PARISC_DLTREL14R:
3101     case R_PARISC_DLTREL14F:
3102     case R_PARISC_DLTIND14R:
3103     case R_PARISC_DLTIND14F:
3104     case R_PARISC_LTOFF_FPTR14R:
3105     case R_PARISC_PCREL14R:
3106     case R_PARISC_PCREL14F:
3107     case R_PARISC_LTOFF_TP14R:
3108     case R_PARISC_LTOFF_TP14F:
3109     case R_PARISC_DPREL14R:
3110     case R_PARISC_DPREL14F:
3111     case R_PARISC_PLTOFF14R:
3112     case R_PARISC_PLTOFF14F:
3113     case R_PARISC_DIR14R:
3114     case R_PARISC_DIR14F:
3115       return (insn & ~0x3fff) | low_sign_unext (sym_value, 14);
3116 
3117     /* PA2.0W LDO and integer loads/stores with 16 bit displacements.  */
3118     case R_PARISC_LTOFF_FPTR16F:
3119     case R_PARISC_PCREL16F:
3120     case R_PARISC_LTOFF_TP16F:
3121     case R_PARISC_GPREL16F:
3122     case R_PARISC_PLTOFF16F:
3123     case R_PARISC_DIR16F:
3124     case R_PARISC_LTOFF16F:
3125       return (insn & ~0xffff) | re_assemble_16 (sym_value);
3126 
3127     /* Doubleword loads and stores with a 14 bit displacement.  */
3128     case R_PARISC_DLTREL14DR:
3129     case R_PARISC_DLTIND14DR:
3130     case R_PARISC_LTOFF_FPTR14DR:
3131     case R_PARISC_LTOFF_FPTR16DF:
3132     case R_PARISC_PCREL14DR:
3133     case R_PARISC_PCREL16DF:
3134     case R_PARISC_LTOFF_TP14DR:
3135     case R_PARISC_LTOFF_TP16DF:
3136     case R_PARISC_DPREL14DR:
3137     case R_PARISC_GPREL16DF:
3138     case R_PARISC_PLTOFF14DR:
3139     case R_PARISC_PLTOFF16DF:
3140     case R_PARISC_DIR14DR:
3141     case R_PARISC_DIR16DF:
3142     case R_PARISC_LTOFF16DF:
3143       return (insn & ~0x3ff1) | (((sym_value & 0x2000) >> 13)
3144 				 | ((sym_value & 0x1ff8) << 1));
3145 
3146     /* Floating point single word load/store instructions.  */
3147     case R_PARISC_DLTREL14WR:
3148     case R_PARISC_DLTIND14WR:
3149     case R_PARISC_LTOFF_FPTR14WR:
3150     case R_PARISC_LTOFF_FPTR16WF:
3151     case R_PARISC_PCREL14WR:
3152     case R_PARISC_PCREL16WF:
3153     case R_PARISC_LTOFF_TP14WR:
3154     case R_PARISC_LTOFF_TP16WF:
3155     case R_PARISC_DPREL14WR:
3156     case R_PARISC_GPREL16WF:
3157     case R_PARISC_PLTOFF14WR:
3158     case R_PARISC_PLTOFF16WF:
3159     case R_PARISC_DIR16WF:
3160     case R_PARISC_DIR14WR:
3161     case R_PARISC_LTOFF16WF:
3162       return (insn & ~0x3ff9) | (((sym_value & 0x2000) >> 13)
3163 				 | ((sym_value & 0x1ffc) << 1));
3164 
3165     default:
3166       return insn;
3167     }
3168 }
3169 
3170 /* Compute the value for a relocation (REL) during a final link stage,
3171    then insert the value into the proper location in CONTENTS.
3172 
3173    VALUE is a tentative value for the relocation and may be overridden
3174    and modified here based on the specific relocation to be performed.
3175 
3176    For example we do conversions for PC-relative branches in this routine
3177    or redirection of calls to external routines to stubs.
3178 
3179    The work of actually applying the relocation is left to a helper
3180    routine in an attempt to reduce the complexity and size of this
3181    function.  */
3182 
3183 static bfd_reloc_status_type
elf_hppa_final_link_relocate(Elf_Internal_Rela * rel,bfd * input_bfd,bfd * output_bfd,asection * input_section,bfd_byte * contents,bfd_vma value,struct bfd_link_info * info,asection * sym_sec,struct elf_link_hash_entry * eh)3184 elf_hppa_final_link_relocate (Elf_Internal_Rela *rel,
3185 			      bfd *input_bfd,
3186 			      bfd *output_bfd,
3187 			      asection *input_section,
3188 			      bfd_byte *contents,
3189 			      bfd_vma value,
3190 			      struct bfd_link_info *info,
3191 			      asection *sym_sec,
3192 			      struct elf_link_hash_entry *eh)
3193 {
3194   struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
3195   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
3196   bfd_vma *local_offsets;
3197   Elf_Internal_Shdr *symtab_hdr;
3198   int insn;
3199   bfd_vma max_branch_offset = 0;
3200   bfd_vma offset = rel->r_offset;
3201   bfd_signed_vma addend = rel->r_addend;
3202   reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3203   unsigned int r_symndx = ELF_R_SYM (rel->r_info);
3204   unsigned int r_type = howto->type;
3205   bfd_byte *hit_data = contents + offset;
3206 
3207   if (hppa_info == NULL)
3208     return bfd_reloc_notsupported;
3209 
3210   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3211   local_offsets = elf_local_got_offsets (input_bfd);
3212   insn = bfd_get_32 (input_bfd, hit_data);
3213 
3214   switch (r_type)
3215     {
3216     case R_PARISC_NONE:
3217       break;
3218 
3219     /* Basic function call support.
3220 
3221        Note for a call to a function defined in another dynamic library
3222        we want to redirect the call to a stub.  */
3223 
3224     /* PC relative relocs without an implicit offset.  */
3225     case R_PARISC_PCREL21L:
3226     case R_PARISC_PCREL14R:
3227     case R_PARISC_PCREL14F:
3228     case R_PARISC_PCREL14WR:
3229     case R_PARISC_PCREL14DR:
3230     case R_PARISC_PCREL16F:
3231     case R_PARISC_PCREL16WF:
3232     case R_PARISC_PCREL16DF:
3233       {
3234 	/* If this is a call to a function defined in another dynamic
3235 	   library, then redirect the call to the local stub for this
3236 	   function.  */
3237 	if (sym_sec == NULL || sym_sec->output_section == NULL)
3238 	  value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3239 		   + hppa_info->stub_sec->output_section->vma);
3240 
3241 	/* Turn VALUE into a proper PC relative address.  */
3242 	value -= (offset + input_section->output_offset
3243 		  + input_section->output_section->vma);
3244 
3245 	/* Adjust for any field selectors.  */
3246 	if (r_type == R_PARISC_PCREL21L)
3247 	  value = hppa_field_adjust (value, -8 + addend, e_lsel);
3248 	else if (r_type == R_PARISC_PCREL14F
3249 		 || r_type == R_PARISC_PCREL16F
3250 		 || r_type == R_PARISC_PCREL16WF
3251 		 || r_type == R_PARISC_PCREL16DF)
3252 	  value = hppa_field_adjust (value, -8 + addend, e_fsel);
3253 	else
3254 	  value = hppa_field_adjust (value, -8 + addend, e_rsel);
3255 
3256 	/* Apply the relocation to the given instruction.  */
3257 	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3258 	break;
3259       }
3260 
3261     case R_PARISC_PCREL12F:
3262     case R_PARISC_PCREL22F:
3263     case R_PARISC_PCREL17F:
3264     case R_PARISC_PCREL22C:
3265     case R_PARISC_PCREL17C:
3266     case R_PARISC_PCREL17R:
3267       {
3268 	/* If this is a call to a function defined in another dynamic
3269 	   library, then redirect the call to the local stub for this
3270 	   function.  */
3271 	if (sym_sec == NULL || sym_sec->output_section == NULL)
3272 	  value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3273 		   + hppa_info->stub_sec->output_section->vma);
3274 
3275 	/* Turn VALUE into a proper PC relative address.  */
3276 	value -= (offset + input_section->output_offset
3277 		  + input_section->output_section->vma);
3278 	addend -= 8;
3279 
3280 	if (r_type == (unsigned int) R_PARISC_PCREL22F)
3281 	  max_branch_offset = (1 << (22-1)) << 2;
3282 	else if (r_type == (unsigned int) R_PARISC_PCREL17F)
3283 	  max_branch_offset = (1 << (17-1)) << 2;
3284 	else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3285 	  max_branch_offset = (1 << (12-1)) << 2;
3286 
3287 	/* Make sure we can reach the branch target.  */
3288 	if (max_branch_offset != 0
3289 	    && value + addend + max_branch_offset >= 2*max_branch_offset)
3290 	  {
3291 	    (*_bfd_error_handler)
3292 	      (_("%B(%A+0x%lx): cannot reach %s"),
3293 	      input_bfd,
3294 	      input_section,
3295 	      offset,
3296 	      eh->root.root.string);
3297 	    bfd_set_error (bfd_error_bad_value);
3298 	    return bfd_reloc_notsupported;
3299 	  }
3300 
3301 	/* Adjust for any field selectors.  */
3302 	if (r_type == R_PARISC_PCREL17R)
3303 	  value = hppa_field_adjust (value, addend, e_rsel);
3304 	else
3305 	  value = hppa_field_adjust (value, addend, e_fsel);
3306 
3307 	/* All branches are implicitly shifted by 2 places.  */
3308 	value >>= 2;
3309 
3310 	/* Apply the relocation to the given instruction.  */
3311 	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3312 	break;
3313       }
3314 
3315     /* Indirect references to data through the DLT.  */
3316     case R_PARISC_DLTIND14R:
3317     case R_PARISC_DLTIND14F:
3318     case R_PARISC_DLTIND14DR:
3319     case R_PARISC_DLTIND14WR:
3320     case R_PARISC_DLTIND21L:
3321     case R_PARISC_LTOFF_FPTR14R:
3322     case R_PARISC_LTOFF_FPTR14DR:
3323     case R_PARISC_LTOFF_FPTR14WR:
3324     case R_PARISC_LTOFF_FPTR21L:
3325     case R_PARISC_LTOFF_FPTR16F:
3326     case R_PARISC_LTOFF_FPTR16WF:
3327     case R_PARISC_LTOFF_FPTR16DF:
3328     case R_PARISC_LTOFF_TP21L:
3329     case R_PARISC_LTOFF_TP14R:
3330     case R_PARISC_LTOFF_TP14F:
3331     case R_PARISC_LTOFF_TP14WR:
3332     case R_PARISC_LTOFF_TP14DR:
3333     case R_PARISC_LTOFF_TP16F:
3334     case R_PARISC_LTOFF_TP16WF:
3335     case R_PARISC_LTOFF_TP16DF:
3336     case R_PARISC_LTOFF16F:
3337     case R_PARISC_LTOFF16WF:
3338     case R_PARISC_LTOFF16DF:
3339       {
3340 	bfd_vma off;
3341 
3342 	/* If this relocation was against a local symbol, then we still
3343 	   have not set up the DLT entry (it's not convenient to do so
3344 	   in the "finalize_dlt" routine because it is difficult to get
3345 	   to the local symbol's value).
3346 
3347 	   So, if this is a local symbol (h == NULL), then we need to
3348 	   fill in its DLT entry.
3349 
3350 	   Similarly we may still need to set up an entry in .opd for
3351 	   a local function which had its address taken.  */
3352 	if (hh == NULL)
3353 	  {
3354 	    bfd_vma *local_opd_offsets, *local_dlt_offsets;
3355 
3356             if (local_offsets == NULL)
3357               abort ();
3358 
3359 	    /* Now do .opd creation if needed.  */
3360 	    if (r_type == R_PARISC_LTOFF_FPTR14R
3361 		|| r_type == R_PARISC_LTOFF_FPTR14DR
3362 		|| r_type == R_PARISC_LTOFF_FPTR14WR
3363 		|| r_type == R_PARISC_LTOFF_FPTR21L
3364 		|| r_type == R_PARISC_LTOFF_FPTR16F
3365 		|| r_type == R_PARISC_LTOFF_FPTR16WF
3366 		|| r_type == R_PARISC_LTOFF_FPTR16DF)
3367 	      {
3368 		local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3369 		off = local_opd_offsets[r_symndx];
3370 
3371 		/* The last bit records whether we've already initialised
3372 		   this local .opd entry.  */
3373 		if ((off & 1) != 0)
3374 		  {
3375 		    BFD_ASSERT (off != (bfd_vma) -1);
3376 		    off &= ~1;
3377 		  }
3378 		else
3379 		  {
3380 		    local_opd_offsets[r_symndx] |= 1;
3381 
3382 		    /* The first two words of an .opd entry are zero.  */
3383 		    memset (hppa_info->opd_sec->contents + off, 0, 16);
3384 
3385 		    /* The next word is the address of the function.  */
3386 		    bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3387 				(hppa_info->opd_sec->contents + off + 16));
3388 
3389 		    /* The last word is our local __gp value.  */
3390 		    value = _bfd_get_gp_value
3391 			      (hppa_info->opd_sec->output_section->owner);
3392 		    bfd_put_64 (hppa_info->opd_sec->owner, value,
3393 				(hppa_info->opd_sec->contents + off + 24));
3394 		  }
3395 
3396 		/* The DLT value is the address of the .opd entry.  */
3397 		value = (off
3398 			 + hppa_info->opd_sec->output_offset
3399 			 + hppa_info->opd_sec->output_section->vma);
3400 		addend = 0;
3401 	      }
3402 
3403 	    local_dlt_offsets = local_offsets;
3404 	    off = local_dlt_offsets[r_symndx];
3405 
3406 	    if ((off & 1) != 0)
3407 	      {
3408 		BFD_ASSERT (off != (bfd_vma) -1);
3409 		off &= ~1;
3410 	      }
3411 	    else
3412 	      {
3413 		local_dlt_offsets[r_symndx] |= 1;
3414 		bfd_put_64 (hppa_info->dlt_sec->owner,
3415 			    value + addend,
3416 			    hppa_info->dlt_sec->contents + off);
3417 	      }
3418 	  }
3419 	else
3420 	  off = hh->dlt_offset;
3421 
3422 	/* We want the value of the DLT offset for this symbol, not
3423 	   the symbol's actual address.  Note that __gp may not point
3424 	   to the start of the DLT, so we have to compute the absolute
3425 	   address, then subtract out the value of __gp.  */
3426 	value = (off
3427 		 + hppa_info->dlt_sec->output_offset
3428 		 + hppa_info->dlt_sec->output_section->vma);
3429 	value -= _bfd_get_gp_value (output_bfd);
3430 
3431 	/* All DLTIND relocations are basically the same at this point,
3432 	   except that we need different field selectors for the 21bit
3433 	   version vs the 14bit versions.  */
3434 	if (r_type == R_PARISC_DLTIND21L
3435 	    || r_type == R_PARISC_LTOFF_FPTR21L
3436 	    || r_type == R_PARISC_LTOFF_TP21L)
3437 	  value = hppa_field_adjust (value, 0, e_lsel);
3438 	else if (r_type == R_PARISC_DLTIND14F
3439 		 || r_type == R_PARISC_LTOFF_FPTR16F
3440 		 || r_type == R_PARISC_LTOFF_FPTR16WF
3441 		 || r_type == R_PARISC_LTOFF_FPTR16DF
3442 		 || r_type == R_PARISC_LTOFF16F
3443 		 || r_type == R_PARISC_LTOFF16DF
3444 		 || r_type == R_PARISC_LTOFF16WF
3445 		 || r_type == R_PARISC_LTOFF_TP16F
3446 		 || r_type == R_PARISC_LTOFF_TP16WF
3447 		 || r_type == R_PARISC_LTOFF_TP16DF)
3448 	  value = hppa_field_adjust (value, 0, e_fsel);
3449 	else
3450 	  value = hppa_field_adjust (value, 0, e_rsel);
3451 
3452 	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3453 	break;
3454       }
3455 
3456     case R_PARISC_DLTREL14R:
3457     case R_PARISC_DLTREL14F:
3458     case R_PARISC_DLTREL14DR:
3459     case R_PARISC_DLTREL14WR:
3460     case R_PARISC_DLTREL21L:
3461     case R_PARISC_DPREL21L:
3462     case R_PARISC_DPREL14WR:
3463     case R_PARISC_DPREL14DR:
3464     case R_PARISC_DPREL14R:
3465     case R_PARISC_DPREL14F:
3466     case R_PARISC_GPREL16F:
3467     case R_PARISC_GPREL16WF:
3468     case R_PARISC_GPREL16DF:
3469       {
3470 	/* Subtract out the global pointer value to make value a DLT
3471 	   relative address.  */
3472 	value -= _bfd_get_gp_value (output_bfd);
3473 
3474 	/* All DLTREL relocations are basically the same at this point,
3475 	   except that we need different field selectors for the 21bit
3476 	   version vs the 14bit versions.  */
3477 	if (r_type == R_PARISC_DLTREL21L
3478 	    || r_type == R_PARISC_DPREL21L)
3479 	  value = hppa_field_adjust (value, addend, e_lrsel);
3480 	else if (r_type == R_PARISC_DLTREL14F
3481 		 || r_type == R_PARISC_DPREL14F
3482 		 || r_type == R_PARISC_GPREL16F
3483 		 || r_type == R_PARISC_GPREL16WF
3484 		 || r_type == R_PARISC_GPREL16DF)
3485 	  value = hppa_field_adjust (value, addend, e_fsel);
3486 	else
3487 	  value = hppa_field_adjust (value, addend, e_rrsel);
3488 
3489 	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3490 	break;
3491       }
3492 
3493     case R_PARISC_DIR21L:
3494     case R_PARISC_DIR17R:
3495     case R_PARISC_DIR17F:
3496     case R_PARISC_DIR14R:
3497     case R_PARISC_DIR14F:
3498     case R_PARISC_DIR14WR:
3499     case R_PARISC_DIR14DR:
3500     case R_PARISC_DIR16F:
3501     case R_PARISC_DIR16WF:
3502     case R_PARISC_DIR16DF:
3503       {
3504 	/* All DIR relocations are basically the same at this point,
3505 	   except that branch offsets need to be divided by four, and
3506 	   we need different field selectors.  Note that we don't
3507 	   redirect absolute calls to local stubs.  */
3508 
3509 	if (r_type == R_PARISC_DIR21L)
3510 	  value = hppa_field_adjust (value, addend, e_lrsel);
3511 	else if (r_type == R_PARISC_DIR17F
3512 		 || r_type == R_PARISC_DIR16F
3513 		 || r_type == R_PARISC_DIR16WF
3514 		 || r_type == R_PARISC_DIR16DF
3515 		 || r_type == R_PARISC_DIR14F)
3516 	  value = hppa_field_adjust (value, addend, e_fsel);
3517 	else
3518 	  value = hppa_field_adjust (value, addend, e_rrsel);
3519 
3520 	if (r_type == R_PARISC_DIR17R || r_type == R_PARISC_DIR17F)
3521 	  /* All branches are implicitly shifted by 2 places.  */
3522 	  value >>= 2;
3523 
3524 	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3525 	break;
3526       }
3527 
3528     case R_PARISC_PLTOFF21L:
3529     case R_PARISC_PLTOFF14R:
3530     case R_PARISC_PLTOFF14F:
3531     case R_PARISC_PLTOFF14WR:
3532     case R_PARISC_PLTOFF14DR:
3533     case R_PARISC_PLTOFF16F:
3534     case R_PARISC_PLTOFF16WF:
3535     case R_PARISC_PLTOFF16DF:
3536       {
3537 	/* We want the value of the PLT offset for this symbol, not
3538 	   the symbol's actual address.  Note that __gp may not point
3539 	   to the start of the DLT, so we have to compute the absolute
3540 	   address, then subtract out the value of __gp.  */
3541 	value = (hh->plt_offset
3542 		 + hppa_info->plt_sec->output_offset
3543 		 + hppa_info->plt_sec->output_section->vma);
3544 	value -= _bfd_get_gp_value (output_bfd);
3545 
3546 	/* All PLTOFF relocations are basically the same at this point,
3547 	   except that we need different field selectors for the 21bit
3548 	   version vs the 14bit versions.  */
3549 	if (r_type == R_PARISC_PLTOFF21L)
3550 	  value = hppa_field_adjust (value, addend, e_lrsel);
3551 	else if (r_type == R_PARISC_PLTOFF14F
3552 		 || r_type == R_PARISC_PLTOFF16F
3553 		 || r_type == R_PARISC_PLTOFF16WF
3554 		 || r_type == R_PARISC_PLTOFF16DF)
3555 	  value = hppa_field_adjust (value, addend, e_fsel);
3556 	else
3557 	  value = hppa_field_adjust (value, addend, e_rrsel);
3558 
3559 	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3560 	break;
3561       }
3562 
3563     case R_PARISC_LTOFF_FPTR32:
3564       {
3565 	/* We may still need to create the FPTR itself if it was for
3566 	   a local symbol.  */
3567 	if (hh == NULL)
3568 	  {
3569 	    /* The first two words of an .opd entry are zero.  */
3570 	    memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
3571 
3572 	    /* The next word is the address of the function.  */
3573 	    bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3574 			(hppa_info->opd_sec->contents
3575 			 + hh->opd_offset + 16));
3576 
3577 	    /* The last word is our local __gp value.  */
3578 	    value = _bfd_get_gp_value
3579 		      (hppa_info->opd_sec->output_section->owner);
3580 	    bfd_put_64 (hppa_info->opd_sec->owner, value,
3581 			hppa_info->opd_sec->contents + hh->opd_offset + 24);
3582 
3583 	    /* The DLT value is the address of the .opd entry.  */
3584 	    value = (hh->opd_offset
3585 		     + hppa_info->opd_sec->output_offset
3586 		     + hppa_info->opd_sec->output_section->vma);
3587 
3588 	    bfd_put_64 (hppa_info->dlt_sec->owner,
3589 			value,
3590 			hppa_info->dlt_sec->contents + hh->dlt_offset);
3591 	  }
3592 
3593 	/* We want the value of the DLT offset for this symbol, not
3594 	   the symbol's actual address.  Note that __gp may not point
3595 	   to the start of the DLT, so we have to compute the absolute
3596 	   address, then subtract out the value of __gp.  */
3597 	value = (hh->dlt_offset
3598 		 + hppa_info->dlt_sec->output_offset
3599 		 + hppa_info->dlt_sec->output_section->vma);
3600 	value -= _bfd_get_gp_value (output_bfd);
3601 	bfd_put_32 (input_bfd, value, hit_data);
3602 	return bfd_reloc_ok;
3603       }
3604 
3605     case R_PARISC_LTOFF_FPTR64:
3606     case R_PARISC_LTOFF_TP64:
3607       {
3608 	/* We may still need to create the FPTR itself if it was for
3609 	   a local symbol.  */
3610 	if (eh == NULL && r_type == R_PARISC_LTOFF_FPTR64)
3611 	  {
3612 	    /* The first two words of an .opd entry are zero.  */
3613 	    memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
3614 
3615 	    /* The next word is the address of the function.  */
3616 	    bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3617 			(hppa_info->opd_sec->contents
3618 			 + hh->opd_offset + 16));
3619 
3620 	    /* The last word is our local __gp value.  */
3621 	    value = _bfd_get_gp_value
3622 		      (hppa_info->opd_sec->output_section->owner);
3623 	    bfd_put_64 (hppa_info->opd_sec->owner, value,
3624 			hppa_info->opd_sec->contents + hh->opd_offset + 24);
3625 
3626 	    /* The DLT value is the address of the .opd entry.  */
3627 	    value = (hh->opd_offset
3628 		     + hppa_info->opd_sec->output_offset
3629 		     + hppa_info->opd_sec->output_section->vma);
3630 
3631 	    bfd_put_64 (hppa_info->dlt_sec->owner,
3632 			value,
3633 			hppa_info->dlt_sec->contents + hh->dlt_offset);
3634 	  }
3635 
3636 	/* We want the value of the DLT offset for this symbol, not
3637 	   the symbol's actual address.  Note that __gp may not point
3638 	   to the start of the DLT, so we have to compute the absolute
3639 	   address, then subtract out the value of __gp.  */
3640 	value = (hh->dlt_offset
3641 		 + hppa_info->dlt_sec->output_offset
3642 		 + hppa_info->dlt_sec->output_section->vma);
3643 	value -= _bfd_get_gp_value (output_bfd);
3644 	bfd_put_64 (input_bfd, value, hit_data);
3645 	return bfd_reloc_ok;
3646       }
3647 
3648     case R_PARISC_DIR32:
3649       bfd_put_32 (input_bfd, value + addend, hit_data);
3650       return bfd_reloc_ok;
3651 
3652     case R_PARISC_DIR64:
3653       bfd_put_64 (input_bfd, value + addend, hit_data);
3654       return bfd_reloc_ok;
3655 
3656     case R_PARISC_GPREL64:
3657       /* Subtract out the global pointer value to make value a DLT
3658 	 relative address.  */
3659       value -= _bfd_get_gp_value (output_bfd);
3660 
3661       bfd_put_64 (input_bfd, value + addend, hit_data);
3662       return bfd_reloc_ok;
3663 
3664     case R_PARISC_LTOFF64:
3665 	/* We want the value of the DLT offset for this symbol, not
3666 	   the symbol's actual address.  Note that __gp may not point
3667 	   to the start of the DLT, so we have to compute the absolute
3668 	   address, then subtract out the value of __gp.  */
3669       value = (hh->dlt_offset
3670 	       + hppa_info->dlt_sec->output_offset
3671 	       + hppa_info->dlt_sec->output_section->vma);
3672       value -= _bfd_get_gp_value (output_bfd);
3673 
3674       bfd_put_64 (input_bfd, value + addend, hit_data);
3675       return bfd_reloc_ok;
3676 
3677     case R_PARISC_PCREL32:
3678       {
3679 	/* If this is a call to a function defined in another dynamic
3680 	   library, then redirect the call to the local stub for this
3681 	   function.  */
3682 	if (sym_sec == NULL || sym_sec->output_section == NULL)
3683 	  value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3684 		   + hppa_info->stub_sec->output_section->vma);
3685 
3686 	/* Turn VALUE into a proper PC relative address.  */
3687 	value -= (offset + input_section->output_offset
3688 		  + input_section->output_section->vma);
3689 
3690 	value += addend;
3691 	value -= 8;
3692 	bfd_put_32 (input_bfd, value, hit_data);
3693 	return bfd_reloc_ok;
3694       }
3695 
3696     case R_PARISC_PCREL64:
3697       {
3698 	/* If this is a call to a function defined in another dynamic
3699 	   library, then redirect the call to the local stub for this
3700 	   function.  */
3701 	if (sym_sec == NULL || sym_sec->output_section == NULL)
3702 	  value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3703 		   + hppa_info->stub_sec->output_section->vma);
3704 
3705 	/* Turn VALUE into a proper PC relative address.  */
3706 	value -= (offset + input_section->output_offset
3707 		  + input_section->output_section->vma);
3708 
3709 	value += addend;
3710 	value -= 8;
3711 	bfd_put_64 (input_bfd, value, hit_data);
3712 	return bfd_reloc_ok;
3713       }
3714 
3715     case R_PARISC_FPTR64:
3716       {
3717 	bfd_vma off;
3718 
3719 	/* We may still need to create the FPTR itself if it was for
3720 	   a local symbol.  */
3721 	if (hh == NULL)
3722 	  {
3723 	    bfd_vma *local_opd_offsets;
3724 
3725             if (local_offsets == NULL)
3726               abort ();
3727 
3728 	    local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3729 	    off = local_opd_offsets[r_symndx];
3730 
3731 	    /* The last bit records whether we've already initialised
3732 	       this local .opd entry.  */
3733 	    if ((off & 1) != 0)
3734 	      {
3735 		BFD_ASSERT (off != (bfd_vma) -1);
3736 	        off &= ~1;
3737 	      }
3738 	    else
3739 	      {
3740 		/* The first two words of an .opd entry are zero.  */
3741 		memset (hppa_info->opd_sec->contents + off, 0, 16);
3742 
3743 		/* The next word is the address of the function.  */
3744 		bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3745 			    (hppa_info->opd_sec->contents + off + 16));
3746 
3747 		/* The last word is our local __gp value.  */
3748 		value = _bfd_get_gp_value
3749 			  (hppa_info->opd_sec->output_section->owner);
3750 		bfd_put_64 (hppa_info->opd_sec->owner, value,
3751 			    hppa_info->opd_sec->contents + off + 24);
3752 	      }
3753 	  }
3754 	else
3755 	  off = hh->opd_offset;
3756 
3757 	if (hh == NULL || hh->want_opd)
3758 	  /* We want the value of the OPD offset for this symbol.  */
3759 	  value = (off
3760 		   + hppa_info->opd_sec->output_offset
3761 		   + hppa_info->opd_sec->output_section->vma);
3762 	else
3763 	  /* We want the address of the symbol.  */
3764 	  value += addend;
3765 
3766 	bfd_put_64 (input_bfd, value, hit_data);
3767 	return bfd_reloc_ok;
3768       }
3769 
3770     case R_PARISC_SECREL32:
3771       if (sym_sec)
3772 	value -= sym_sec->output_section->vma;
3773       bfd_put_32 (input_bfd, value + addend, hit_data);
3774       return bfd_reloc_ok;
3775 
3776     case R_PARISC_SEGREL32:
3777     case R_PARISC_SEGREL64:
3778       {
3779 	/* If this is the first SEGREL relocation, then initialize
3780 	   the segment base values.  */
3781 	if (hppa_info->text_segment_base == (bfd_vma) -1)
3782 	  bfd_map_over_sections (output_bfd, elf_hppa_record_segment_addrs,
3783 				 hppa_info);
3784 
3785 	/* VALUE holds the absolute address.  We want to include the
3786 	   addend, then turn it into a segment relative address.
3787 
3788 	   The segment is derived from SYM_SEC.  We assume that there are
3789 	   only two segments of note in the resulting executable/shlib.
3790 	   A readonly segment (.text) and a readwrite segment (.data).  */
3791 	value += addend;
3792 
3793 	if (sym_sec->flags & SEC_CODE)
3794 	  value -= hppa_info->text_segment_base;
3795 	else
3796 	  value -= hppa_info->data_segment_base;
3797 
3798 	if (r_type == R_PARISC_SEGREL32)
3799 	  bfd_put_32 (input_bfd, value, hit_data);
3800 	else
3801 	  bfd_put_64 (input_bfd, value, hit_data);
3802 	return bfd_reloc_ok;
3803       }
3804 
3805     /* Something we don't know how to handle.  */
3806     default:
3807       return bfd_reloc_notsupported;
3808     }
3809 
3810   /* Update the instruction word.  */
3811   bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3812   return bfd_reloc_ok;
3813 }
3814 
3815 /* Relocate an HPPA ELF section.  */
3816 
3817 static bfd_boolean
elf64_hppa_relocate_section(bfd * output_bfd,struct bfd_link_info * info,bfd * input_bfd,asection * input_section,bfd_byte * contents,Elf_Internal_Rela * relocs,Elf_Internal_Sym * local_syms,asection ** local_sections)3818 elf64_hppa_relocate_section (bfd *output_bfd,
3819 			   struct bfd_link_info *info,
3820 			   bfd *input_bfd,
3821 			   asection *input_section,
3822 			   bfd_byte *contents,
3823 			   Elf_Internal_Rela *relocs,
3824 			   Elf_Internal_Sym *local_syms,
3825 			   asection **local_sections)
3826 {
3827   Elf_Internal_Shdr *symtab_hdr;
3828   Elf_Internal_Rela *rel;
3829   Elf_Internal_Rela *relend;
3830   struct elf64_hppa_link_hash_table *hppa_info;
3831 
3832   hppa_info = hppa_link_hash_table (info);
3833   if (hppa_info == NULL)
3834     return FALSE;
3835 
3836   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3837 
3838   rel = relocs;
3839   relend = relocs + input_section->reloc_count;
3840   for (; rel < relend; rel++)
3841     {
3842       int r_type;
3843       reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3844       unsigned long r_symndx;
3845       struct elf_link_hash_entry *eh;
3846       Elf_Internal_Sym *sym;
3847       asection *sym_sec;
3848       bfd_vma relocation;
3849       bfd_reloc_status_type r;
3850 
3851       r_type = ELF_R_TYPE (rel->r_info);
3852       if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED)
3853 	{
3854 	  bfd_set_error (bfd_error_bad_value);
3855 	  return FALSE;
3856 	}
3857       if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3858 	  || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3859 	continue;
3860 
3861       /* This is a final link.  */
3862       r_symndx = ELF_R_SYM (rel->r_info);
3863       eh = NULL;
3864       sym = NULL;
3865       sym_sec = NULL;
3866       if (r_symndx < symtab_hdr->sh_info)
3867 	{
3868 	  /* This is a local symbol, hh defaults to NULL.  */
3869 	  sym = local_syms + r_symndx;
3870 	  sym_sec = local_sections[r_symndx];
3871 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
3872 	}
3873       else
3874 	{
3875 	  /* This is not a local symbol.  */
3876 	  struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3877 
3878 	  /* It seems this can happen with erroneous or unsupported
3879 	     input (mixing a.out and elf in an archive, for example.)  */
3880 	  if (sym_hashes == NULL)
3881 	    return FALSE;
3882 
3883 	  eh = sym_hashes[r_symndx - symtab_hdr->sh_info];
3884 
3885 	  while (eh->root.type == bfd_link_hash_indirect
3886 		 || eh->root.type == bfd_link_hash_warning)
3887 	    eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
3888 
3889 	  relocation = 0;
3890 	  if (eh->root.type == bfd_link_hash_defined
3891 	      || eh->root.type == bfd_link_hash_defweak)
3892 	    {
3893 	      sym_sec = eh->root.u.def.section;
3894 	      if (sym_sec != NULL
3895 		  && sym_sec->output_section != NULL)
3896 		relocation = (eh->root.u.def.value
3897 			      + sym_sec->output_section->vma
3898 			      + sym_sec->output_offset);
3899 	    }
3900 	  else if (eh->root.type == bfd_link_hash_undefweak)
3901 	    ;
3902 	  else if (info->unresolved_syms_in_objects == RM_IGNORE
3903 		   && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
3904 	    ;
3905 	  else if (!info->relocatable
3906 		   && elf_hppa_is_dynamic_loader_symbol (eh->root.root.string))
3907 	    continue;
3908 	  else if (!info->relocatable)
3909 	    {
3910 	      bfd_boolean err;
3911 	      err = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
3912 		     || ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT);
3913 	      if (!info->callbacks->undefined_symbol (info,
3914 						      eh->root.root.string,
3915 						      input_bfd,
3916 						      input_section,
3917 						      rel->r_offset, err))
3918 		return FALSE;
3919 	    }
3920 
3921           if (!info->relocatable
3922               && relocation == 0
3923               && eh->root.type != bfd_link_hash_defined
3924               && eh->root.type != bfd_link_hash_defweak
3925               && eh->root.type != bfd_link_hash_undefweak)
3926             {
3927               if (info->unresolved_syms_in_objects == RM_IGNORE
3928                   && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3929                   && eh->type == STT_PARISC_MILLI)
3930                 {
3931                   if (! info->callbacks->undefined_symbol
3932                       (info, eh_name (eh), input_bfd,
3933                        input_section, rel->r_offset, FALSE))
3934                     return FALSE;
3935                 }
3936             }
3937 	}
3938 
3939       if (sym_sec != NULL && elf_discarded_section (sym_sec))
3940 	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3941 					 rel, relend, howto, contents);
3942 
3943       if (info->relocatable)
3944 	continue;
3945 
3946       r = elf_hppa_final_link_relocate (rel, input_bfd, output_bfd,
3947 					input_section, contents,
3948 					relocation, info, sym_sec,
3949 					eh);
3950 
3951       if (r != bfd_reloc_ok)
3952 	{
3953 	  switch (r)
3954 	    {
3955 	    default:
3956 	      abort ();
3957 	    case bfd_reloc_overflow:
3958 	      {
3959 		const char *sym_name;
3960 
3961 		if (eh != NULL)
3962 		  sym_name = NULL;
3963 		else
3964 		  {
3965 		    sym_name = bfd_elf_string_from_elf_section (input_bfd,
3966 								symtab_hdr->sh_link,
3967 								sym->st_name);
3968 		    if (sym_name == NULL)
3969 		      return FALSE;
3970 		    if (*sym_name == '\0')
3971 		      sym_name = bfd_section_name (input_bfd, sym_sec);
3972 		  }
3973 
3974 		if (!((*info->callbacks->reloc_overflow)
3975 		      (info, (eh ? &eh->root : NULL), sym_name,
3976 		       howto->name, (bfd_vma) 0, input_bfd,
3977 		       input_section, rel->r_offset)))
3978 		  return FALSE;
3979 	      }
3980 	      break;
3981 	    }
3982 	}
3983     }
3984   return TRUE;
3985 }
3986 
3987 static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
3988 {
3989   { STRING_COMMA_LEN (".fini"),  0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3990   { STRING_COMMA_LEN (".init"),  0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3991   { STRING_COMMA_LEN (".plt"),   0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3992   { STRING_COMMA_LEN (".dlt"),   0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3993   { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3994   { STRING_COMMA_LEN (".sbss"),  0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3995   { STRING_COMMA_LEN (".tbss"),  0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
3996   { NULL,                    0,  0, 0,            0 }
3997 };
3998 
3999 /* The hash bucket size is the standard one, namely 4.  */
4000 
4001 const struct elf_size_info hppa64_elf_size_info =
4002 {
4003   sizeof (Elf64_External_Ehdr),
4004   sizeof (Elf64_External_Phdr),
4005   sizeof (Elf64_External_Shdr),
4006   sizeof (Elf64_External_Rel),
4007   sizeof (Elf64_External_Rela),
4008   sizeof (Elf64_External_Sym),
4009   sizeof (Elf64_External_Dyn),
4010   sizeof (Elf_External_Note),
4011   4,
4012   1,
4013   64, 3,
4014   ELFCLASS64, EV_CURRENT,
4015   bfd_elf64_write_out_phdrs,
4016   bfd_elf64_write_shdrs_and_ehdr,
4017   bfd_elf64_checksum_contents,
4018   bfd_elf64_write_relocs,
4019   bfd_elf64_swap_symbol_in,
4020   bfd_elf64_swap_symbol_out,
4021   bfd_elf64_slurp_reloc_table,
4022   bfd_elf64_slurp_symbol_table,
4023   bfd_elf64_swap_dyn_in,
4024   bfd_elf64_swap_dyn_out,
4025   bfd_elf64_swap_reloc_in,
4026   bfd_elf64_swap_reloc_out,
4027   bfd_elf64_swap_reloca_in,
4028   bfd_elf64_swap_reloca_out
4029 };
4030 
4031 #define TARGET_BIG_SYM			bfd_elf64_hppa_vec
4032 #define TARGET_BIG_NAME			"elf64-hppa"
4033 #define ELF_ARCH			bfd_arch_hppa
4034 #define ELF_TARGET_ID			HPPA64_ELF_DATA
4035 #define ELF_MACHINE_CODE		EM_PARISC
4036 /* This is not strictly correct.  The maximum page size for PA2.0 is
4037    64M.  But everything still uses 4k.  */
4038 #define ELF_MAXPAGESIZE			0x1000
4039 #define ELF_OSABI			ELFOSABI_HPUX
4040 
4041 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4042 #define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4043 #define bfd_elf64_bfd_is_local_label_name       elf_hppa_is_local_label_name
4044 #define elf_info_to_howto		elf_hppa_info_to_howto
4045 #define elf_info_to_howto_rel		elf_hppa_info_to_howto_rel
4046 
4047 #define elf_backend_section_from_shdr	elf64_hppa_section_from_shdr
4048 #define elf_backend_object_p		elf64_hppa_object_p
4049 #define elf_backend_final_write_processing \
4050 					elf_hppa_final_write_processing
4051 #define elf_backend_fake_sections	elf_hppa_fake_sections
4052 #define elf_backend_add_symbol_hook	elf_hppa_add_symbol_hook
4053 
4054 #define elf_backend_relocate_section	elf_hppa_relocate_section
4055 
4056 #define bfd_elf64_bfd_final_link	elf_hppa_final_link
4057 
4058 #define elf_backend_create_dynamic_sections \
4059 					elf64_hppa_create_dynamic_sections
4060 #define elf_backend_post_process_headers	elf64_hppa_post_process_headers
4061 
4062 #define elf_backend_omit_section_dynsym \
4063   ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
4064 #define elf_backend_adjust_dynamic_symbol \
4065 					elf64_hppa_adjust_dynamic_symbol
4066 
4067 #define elf_backend_size_dynamic_sections \
4068 					elf64_hppa_size_dynamic_sections
4069 
4070 #define elf_backend_finish_dynamic_symbol \
4071 					elf64_hppa_finish_dynamic_symbol
4072 #define elf_backend_finish_dynamic_sections \
4073 					elf64_hppa_finish_dynamic_sections
4074 #define elf_backend_grok_prstatus	elf64_hppa_grok_prstatus
4075 #define elf_backend_grok_psinfo		elf64_hppa_grok_psinfo
4076 
4077 /* Stuff for the BFD linker: */
4078 #define bfd_elf64_bfd_link_hash_table_create \
4079 	elf64_hppa_hash_table_create
4080 
4081 #define elf_backend_check_relocs \
4082 	elf64_hppa_check_relocs
4083 
4084 #define elf_backend_size_info \
4085   hppa64_elf_size_info
4086 
4087 #define elf_backend_additional_program_headers \
4088 	elf64_hppa_additional_program_headers
4089 
4090 #define elf_backend_modify_segment_map \
4091 	elf64_hppa_modify_segment_map
4092 
4093 #define elf_backend_link_output_symbol_hook \
4094 	elf64_hppa_link_output_symbol_hook
4095 
4096 #define elf_backend_want_got_plt	0
4097 #define elf_backend_plt_readonly	0
4098 #define elf_backend_want_plt_sym	0
4099 #define elf_backend_got_header_size     0
4100 #define elf_backend_type_change_ok	TRUE
4101 #define elf_backend_get_symbol_type	elf64_hppa_elf_get_symbol_type
4102 #define elf_backend_reloc_type_class	elf64_hppa_reloc_type_class
4103 #define elf_backend_rela_normal		1
4104 #define elf_backend_special_sections	elf64_hppa_special_sections
4105 #define elf_backend_action_discarded	elf_hppa_action_discarded
4106 #define elf_backend_section_from_phdr   elf64_hppa_section_from_phdr
4107 
4108 #define elf64_bed			elf64_hppa_hpux_bed
4109 
4110 #include "elf64-target.h"
4111 
4112 #undef TARGET_BIG_SYM
4113 #define TARGET_BIG_SYM			bfd_elf64_hppa_linux_vec
4114 #undef TARGET_BIG_NAME
4115 #define TARGET_BIG_NAME			"elf64-hppa-linux"
4116 #undef ELF_OSABI
4117 #define ELF_OSABI			ELFOSABI_LINUX
4118 #undef elf_backend_post_process_headers
4119 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4120 #undef elf64_bed
4121 #define elf64_bed			elf64_hppa_linux_bed
4122 
4123 #include "elf64-target.h"
4124