1 /* Shared library support for IRIX.
2    Copyright (C) 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2004,
3    2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 
5    This file was created using portions of irix5-nat.c originally
6    contributed to GDB by Ian Lance Taylor.
7 
8    This file is part of GDB.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation; either version 3 of the License, or
13    (at your option) any later version.
14 
15    This program is distributed in the hope that it will be useful,
16    but WITHOUT ANY WARRANTY; without even the implied warranty of
17    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18    GNU General Public License for more details.
19 
20    You should have received a copy of the GNU General Public License
21    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
22 
23 #include "defs.h"
24 
25 #include "symtab.h"
26 #include "bfd.h"
27 /* FIXME: ezannoni/2004-02-13 Verify that the include below is
28    really needed.  */
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcore.h"
32 #include "target.h"
33 #include "inferior.h"
34 #include "gdbthread.h"
35 
36 #include "solist.h"
37 #include "solib.h"
38 #include "solib-irix.h"
39 
40 
41 /* Link map info to include in an allocate so_list entry.  Unlike some
42    of the other solib backends, this (Irix) backend chooses to decode
43    the link map info obtained from the target and store it as (mostly)
44    CORE_ADDRs which need no further decoding.  This is more convenient
45    because there are three different link map formats to worry about.
46    We use a single routine (fetch_lm_info) to read (and decode) the target
47    specific link map data.  */
48 
49 struct lm_info
50 {
51   CORE_ADDR addr;		/* address of obj_info or obj_list
52 				   struct on target (from which the
53 				   following information is obtained).  */
54   CORE_ADDR next;		/* address of next item in list.  */
55   CORE_ADDR reloc_offset;	/* amount to relocate by  */
56   CORE_ADDR pathname_addr;	/* address of pathname  */
57   int pathname_len;		/* length of pathname */
58 };
59 
60 /* It's not desirable to use the system header files to obtain the
61    structure of the obj_list or obj_info structs.  Therefore, we use a
62    platform neutral representation which has been derived from the IRIX
63    header files.  */
64 
65 typedef struct
66 {
67   gdb_byte b[4];
68 }
69 gdb_int32_bytes;
70 typedef struct
71 {
72   gdb_byte b[8];
73 }
74 gdb_int64_bytes;
75 
76 /* The "old" obj_list struct.  This is used with old (o32) binaries.
77    The ``data'' member points at a much larger and more complicated
78    struct which we will only refer to by offsets.  See
79    fetch_lm_info().  */
80 
81 struct irix_obj_list
82 {
83   gdb_int32_bytes data;
84   gdb_int32_bytes next;
85   gdb_int32_bytes prev;
86 };
87 
88 /* The ELF32 and ELF64 versions of the above struct.  The oi_magic value
89    corresponds to the ``data'' value in the "old" struct.  When this value
90    is 0xffffffff, the data will be in one of the following formats.  The
91    ``oi_size'' field is used to decide which one we actually have.  */
92 
93 struct irix_elf32_obj_info
94 {
95   gdb_int32_bytes oi_magic;
96   gdb_int32_bytes oi_size;
97   gdb_int32_bytes oi_next;
98   gdb_int32_bytes oi_prev;
99   gdb_int32_bytes oi_ehdr;
100   gdb_int32_bytes oi_orig_ehdr;
101   gdb_int32_bytes oi_pathname;
102   gdb_int32_bytes oi_pathname_len;
103 };
104 
105 struct irix_elf64_obj_info
106 {
107   gdb_int32_bytes oi_magic;
108   gdb_int32_bytes oi_size;
109   gdb_int64_bytes oi_next;
110   gdb_int64_bytes oi_prev;
111   gdb_int64_bytes oi_ehdr;
112   gdb_int64_bytes oi_orig_ehdr;
113   gdb_int64_bytes oi_pathname;
114   gdb_int32_bytes oi_pathname_len;
115   gdb_int32_bytes padding;
116 };
117 
118 /* Union of all of the above (plus a split out magic field).  */
119 
120 union irix_obj_info
121 {
122   gdb_int32_bytes magic;
123   struct irix_obj_list ol32;
124   struct irix_elf32_obj_info oi32;
125   struct irix_elf64_obj_info oi64;
126 };
127 
128 /* MIPS sign extends its 32 bit addresses.  We could conceivably use
129    extract_typed_address here, but to do so, we'd have to construct an
130    appropriate type.  Calling extract_signed_integer seems simpler.  */
131 
132 static CORE_ADDR
extract_mips_address(void * addr,int len,enum bfd_endian byte_order)133 extract_mips_address (void *addr, int len, enum bfd_endian byte_order)
134 {
135   return extract_signed_integer (addr, len, byte_order);
136 }
137 
138 /* Fetch and return the link map data associated with ADDR.  Note that
139    this routine automatically determines which (of three) link map
140    formats is in use by the target.  */
141 
142 static struct lm_info
fetch_lm_info(CORE_ADDR addr)143 fetch_lm_info (CORE_ADDR addr)
144 {
145   enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
146   struct lm_info li;
147   union irix_obj_info buf;
148 
149   li.addr = addr;
150 
151   /* The smallest region that we'll need is for buf.ol32.  We'll read
152      that first.  We'll read more of the buffer later if we have to deal
153      with one of the other cases.  (We don't want to incur a memory error
154      if we were to read a larger region that generates an error due to
155      being at the end of a page or the like.)  */
156   read_memory (addr, (char *) &buf, sizeof (buf.ol32));
157 
158   if (extract_unsigned_integer (buf.magic.b, sizeof (buf.magic), byte_order)
159       != 0xffffffff)
160     {
161       /* Use buf.ol32...  */
162       char obj_buf[432];
163       CORE_ADDR obj_addr = extract_mips_address (&buf.ol32.data,
164 						 sizeof (buf.ol32.data),
165 						 byte_order);
166 
167       li.next = extract_mips_address (&buf.ol32.next,
168 				      sizeof (buf.ol32.next), byte_order);
169 
170       read_memory (obj_addr, obj_buf, sizeof (obj_buf));
171 
172       li.pathname_addr = extract_mips_address (&obj_buf[236], 4, byte_order);
173       li.pathname_len = 0;	/* unknown */
174       li.reloc_offset = extract_mips_address (&obj_buf[196], 4, byte_order)
175 	- extract_mips_address (&obj_buf[248], 4, byte_order);
176 
177     }
178   else if (extract_unsigned_integer (buf.oi32.oi_size.b,
179 				     sizeof (buf.oi32.oi_size), byte_order)
180 	   == sizeof (buf.oi32))
181     {
182       /* Use buf.oi32...  */
183 
184       /* Read rest of buffer.  */
185       read_memory (addr + sizeof (buf.ol32),
186 		   ((char *) &buf) + sizeof (buf.ol32),
187 		   sizeof (buf.oi32) - sizeof (buf.ol32));
188 
189       /* Fill in fields using buffer contents.  */
190       li.next = extract_mips_address (&buf.oi32.oi_next,
191 				      sizeof (buf.oi32.oi_next), byte_order);
192       li.reloc_offset = extract_mips_address (&buf.oi32.oi_ehdr,
193 					      sizeof (buf.oi32.oi_ehdr),
194 					      byte_order)
195 	- extract_mips_address (&buf.oi32.oi_orig_ehdr,
196 				sizeof (buf.oi32.oi_orig_ehdr), byte_order);
197       li.pathname_addr = extract_mips_address (&buf.oi32.oi_pathname,
198 					       sizeof (buf.oi32.oi_pathname),
199 					       byte_order);
200       li.pathname_len = extract_unsigned_integer (buf.oi32.oi_pathname_len.b,
201 						  sizeof (buf.oi32.
202 							  oi_pathname_len),
203 						  byte_order);
204     }
205   else if (extract_unsigned_integer (buf.oi64.oi_size.b,
206 				     sizeof (buf.oi64.oi_size), byte_order)
207 	   == sizeof (buf.oi64))
208     {
209       /* Use buf.oi64...  */
210 
211       /* Read rest of buffer.  */
212       read_memory (addr + sizeof (buf.ol32),
213 		   ((char *) &buf) + sizeof (buf.ol32),
214 		   sizeof (buf.oi64) - sizeof (buf.ol32));
215 
216       /* Fill in fields using buffer contents.  */
217       li.next = extract_mips_address (&buf.oi64.oi_next,
218 				      sizeof (buf.oi64.oi_next), byte_order);
219       li.reloc_offset = extract_mips_address (&buf.oi64.oi_ehdr,
220 					      sizeof (buf.oi64.oi_ehdr),
221 					      byte_order)
222 	- extract_mips_address (&buf.oi64.oi_orig_ehdr,
223 				sizeof (buf.oi64.oi_orig_ehdr), byte_order);
224       li.pathname_addr = extract_mips_address (&buf.oi64.oi_pathname,
225 					       sizeof (buf.oi64.oi_pathname),
226 					       byte_order);
227       li.pathname_len = extract_unsigned_integer (buf.oi64.oi_pathname_len.b,
228 						  sizeof (buf.oi64.
229 							  oi_pathname_len),
230 						  byte_order);
231     }
232   else
233     {
234       error (_("Unable to fetch shared library obj_info or obj_list info."));
235     }
236 
237   return li;
238 }
239 
240 /* The symbol which starts off the list of shared libraries.  */
241 #define DEBUG_BASE "__rld_obj_head"
242 
243 static void *base_breakpoint;
244 
245 static CORE_ADDR debug_base;	/* Base of dynamic linker structures.  */
246 
247 /*
248 
249    LOCAL FUNCTION
250 
251    locate_base -- locate the base address of dynamic linker structs
252 
253    SYNOPSIS
254 
255    CORE_ADDR locate_base (void)
256 
257    DESCRIPTION
258 
259    For both the SunOS and SVR4 shared library implementations, if the
260    inferior executable has been linked dynamically, there is a single
261    address somewhere in the inferior's data space which is the key to
262    locating all of the dynamic linker's runtime structures.  This
263    address is the value of the symbol defined by the macro DEBUG_BASE.
264    The job of this function is to find and return that address, or to
265    return 0 if there is no such address (the executable is statically
266    linked for example).
267 
268    For SunOS, the job is almost trivial, since the dynamic linker and
269    all of it's structures are statically linked to the executable at
270    link time.  Thus the symbol for the address we are looking for has
271    already been added to the minimal symbol table for the executable's
272    objfile at the time the symbol file's symbols were read, and all we
273    have to do is look it up there.  Note that we explicitly do NOT want
274    to find the copies in the shared library.
275 
276    The SVR4 version is much more complicated because the dynamic linker
277    and it's structures are located in the shared C library, which gets
278    run as the executable's "interpreter" by the kernel.  We have to go
279    to a lot more work to discover the address of DEBUG_BASE.  Because
280    of this complexity, we cache the value we find and return that value
281    on subsequent invocations.  Note there is no copy in the executable
282    symbol tables.
283 
284    Irix 5 is basically like SunOS.
285 
286    Note that we can assume nothing about the process state at the time
287    we need to find this address.  We may be stopped on the first instruc-
288    tion of the interpreter (C shared library), the first instruction of
289    the executable itself, or somewhere else entirely (if we attached
290    to the process for example).
291 
292  */
293 
294 static CORE_ADDR
locate_base(void)295 locate_base (void)
296 {
297   struct minimal_symbol *msymbol;
298   CORE_ADDR address = 0;
299 
300   msymbol = lookup_minimal_symbol (DEBUG_BASE, NULL, symfile_objfile);
301   if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
302     {
303       address = SYMBOL_VALUE_ADDRESS (msymbol);
304     }
305   return (address);
306 }
307 
308 /*
309 
310    LOCAL FUNCTION
311 
312    disable_break -- remove the "mapping changed" breakpoint
313 
314    SYNOPSIS
315 
316    static int disable_break ()
317 
318    DESCRIPTION
319 
320    Removes the breakpoint that gets hit when the dynamic linker
321    completes a mapping change.
322 
323  */
324 
325 static int
disable_break(void)326 disable_break (void)
327 {
328   int status = 1;
329 
330   /* Note that breakpoint address and original contents are in our address
331      space, so we just need to write the original contents back.  */
332 
333   if (deprecated_remove_raw_breakpoint (target_gdbarch, base_breakpoint) != 0)
334     {
335       status = 0;
336     }
337 
338   base_breakpoint = NULL;
339 
340   /* Note that it is possible that we have stopped at a location that
341      is different from the location where we inserted our breakpoint.
342      On mips-irix, we can actually land in __dbx_init(), so we should
343      not check the PC against our breakpoint address here.  See procfs.c
344      for more details.  */
345 
346   return (status);
347 }
348 
349 /*
350 
351    LOCAL FUNCTION
352 
353    enable_break -- arrange for dynamic linker to hit breakpoint
354 
355    SYNOPSIS
356 
357    int enable_break (void)
358 
359    DESCRIPTION
360 
361    This functions inserts a breakpoint at the entry point of the
362    main executable, where all shared libraries are mapped in.
363  */
364 
365 static int
enable_break(void)366 enable_break (void)
367 {
368   if (symfile_objfile != NULL && has_stack_frames ())
369     {
370       struct frame_info *frame = get_current_frame ();
371       struct address_space *aspace = get_frame_address_space (frame);
372       CORE_ADDR entry_point;
373 
374       if (!entry_point_address_query (&entry_point))
375 	return 0;
376 
377       base_breakpoint = deprecated_insert_raw_breakpoint (target_gdbarch,
378 							  aspace, entry_point);
379 
380       if (base_breakpoint != NULL)
381 	return 1;
382     }
383 
384   return 0;
385 }
386 
387 /*
388 
389    LOCAL FUNCTION
390 
391    irix_solib_create_inferior_hook -- shared library startup support
392 
393    SYNOPSIS
394 
395    void solib_create_inferior_hook (int from_tty)
396 
397    DESCRIPTION
398 
399    When gdb starts up the inferior, it nurses it along (through the
400    shell) until it is ready to execute it's first instruction.  At this
401    point, this function gets called via expansion of the macro
402    SOLIB_CREATE_INFERIOR_HOOK.
403 
404    For SunOS executables, this first instruction is typically the
405    one at "_start", or a similar text label, regardless of whether
406    the executable is statically or dynamically linked.  The runtime
407    startup code takes care of dynamically linking in any shared
408    libraries, once gdb allows the inferior to continue.
409 
410    For SVR4 executables, this first instruction is either the first
411    instruction in the dynamic linker (for dynamically linked
412    executables) or the instruction at "start" for statically linked
413    executables.  For dynamically linked executables, the system
414    first exec's /lib/libc.so.N, which contains the dynamic linker,
415    and starts it running.  The dynamic linker maps in any needed
416    shared libraries, maps in the actual user executable, and then
417    jumps to "start" in the user executable.
418 
419    For both SunOS shared libraries, and SVR4 shared libraries, we
420    can arrange to cooperate with the dynamic linker to discover the
421    names of shared libraries that are dynamically linked, and the
422    base addresses to which they are linked.
423 
424    This function is responsible for discovering those names and
425    addresses, and saving sufficient information about them to allow
426    their symbols to be read at a later time.
427 
428    FIXME
429 
430    Between enable_break() and disable_break(), this code does not
431    properly handle hitting breakpoints which the user might have
432    set in the startup code or in the dynamic linker itself.  Proper
433    handling will probably have to wait until the implementation is
434    changed to use the "breakpoint handler function" method.
435 
436    Also, what if child has exit()ed?  Must exit loop somehow.
437  */
438 
439 static void
irix_solib_create_inferior_hook(int from_tty)440 irix_solib_create_inferior_hook (int from_tty)
441 {
442   struct inferior *inf;
443   struct thread_info *tp;
444 
445   inf = current_inferior ();
446 
447   /* If we are attaching to the inferior, the shared libraries
448      have already been mapped, so nothing more to do.  */
449   if (inf->attach_flag)
450     return;
451 
452   /* Likewise when debugging from a core file, the shared libraries
453      have already been mapped, so nothing more to do.  */
454   if (!target_can_run (&current_target))
455     return;
456 
457   if (!enable_break ())
458     {
459       warning (_("shared library handler failed to enable breakpoint"));
460       return;
461     }
462 
463   /* Now run the target.  It will eventually hit the breakpoint, at
464      which point all of the libraries will have been mapped in and we
465      can go groveling around in the dynamic linker structures to find
466      out what we need to know about them.  */
467 
468   tp = inferior_thread ();
469 
470   clear_proceed_status ();
471 
472   inf->control.stop_soon = STOP_QUIETLY;
473   tp->suspend.stop_signal = TARGET_SIGNAL_0;
474 
475   do
476     {
477       target_resume (pid_to_ptid (-1), 0, tp->suspend.stop_signal);
478       wait_for_inferior (0);
479     }
480   while (tp->suspend.stop_signal != TARGET_SIGNAL_TRAP);
481 
482   /* We are now either at the "mapping complete" breakpoint (or somewhere
483      else, a condition we aren't prepared to deal with anyway), so adjust
484      the PC as necessary after a breakpoint, disable the breakpoint, and
485      add any shared libraries that were mapped in.  */
486 
487   if (!disable_break ())
488     {
489       warning (_("shared library handler failed to disable breakpoint"));
490     }
491 
492   /* solib_add will call reinit_frame_cache.
493      But we are stopped in the startup code and we might not have symbols
494      for the startup code, so heuristic_proc_start could be called
495      and will put out an annoying warning.
496      Delaying the resetting of stop_soon until after symbol loading
497      suppresses the warning.  */
498   solib_add ((char *) 0, 0, (struct target_ops *) 0, auto_solib_add);
499   inf->control.stop_soon = NO_STOP_QUIETLY;
500 }
501 
502 /* LOCAL FUNCTION
503 
504    current_sos -- build a list of currently loaded shared objects
505 
506    SYNOPSIS
507 
508    struct so_list *current_sos ()
509 
510    DESCRIPTION
511 
512    Build a list of `struct so_list' objects describing the shared
513    objects currently loaded in the inferior.  This list does not
514    include an entry for the main executable file.
515 
516    Note that we only gather information directly available from the
517    inferior --- we don't examine any of the shared library files
518    themselves.  The declaration of `struct so_list' says which fields
519    we provide values for.  */
520 
521 static struct so_list *
irix_current_sos(void)522 irix_current_sos (void)
523 {
524   enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
525   int addr_size = gdbarch_addr_bit (target_gdbarch) / TARGET_CHAR_BIT;
526   CORE_ADDR lma;
527   char addr_buf[8];
528   struct so_list *head = 0;
529   struct so_list **link_ptr = &head;
530   int is_first = 1;
531   struct lm_info lm;
532 
533   /* Make sure we've looked up the inferior's dynamic linker's base
534      structure.  */
535   if (!debug_base)
536     {
537       debug_base = locate_base ();
538 
539       /* If we can't find the dynamic linker's base structure, this
540          must not be a dynamically linked executable.  Hmm.  */
541       if (!debug_base)
542 	return 0;
543     }
544 
545   read_memory (debug_base, addr_buf, addr_size);
546   lma = extract_mips_address (addr_buf, addr_size, byte_order);
547 
548   while (lma)
549     {
550       lm = fetch_lm_info (lma);
551       if (!is_first)
552 	{
553 	  int errcode;
554 	  char *name_buf;
555 	  int name_size;
556 	  struct so_list *new
557 	    = (struct so_list *) xmalloc (sizeof (struct so_list));
558 	  struct cleanup *old_chain = make_cleanup (xfree, new);
559 
560 	  memset (new, 0, sizeof (*new));
561 
562 	  new->lm_info = xmalloc (sizeof (struct lm_info));
563 	  make_cleanup (xfree, new->lm_info);
564 
565 	  *new->lm_info = lm;
566 
567 	  /* Extract this shared object's name.  */
568 	  name_size = lm.pathname_len;
569 	  if (name_size == 0)
570 	    name_size = SO_NAME_MAX_PATH_SIZE - 1;
571 
572 	  if (name_size >= SO_NAME_MAX_PATH_SIZE)
573 	    {
574 	      name_size = SO_NAME_MAX_PATH_SIZE - 1;
575 	      warning (_("current_sos: truncating name of "
576 		         "%d characters to only %d characters"),
577 		       lm.pathname_len, name_size);
578 	    }
579 
580 	  target_read_string (lm.pathname_addr, &name_buf,
581 			      name_size, &errcode);
582 	  if (errcode != 0)
583 	    warning (_("Can't read pathname for load map: %s."),
584 		       safe_strerror (errcode));
585 	  else
586 	    {
587 	      strncpy (new->so_name, name_buf, name_size);
588 	      new->so_name[name_size] = '\0';
589 	      xfree (name_buf);
590 	      strcpy (new->so_original_name, new->so_name);
591 	    }
592 
593 	  new->next = 0;
594 	  *link_ptr = new;
595 	  link_ptr = &new->next;
596 
597 	  discard_cleanups (old_chain);
598 	}
599       is_first = 0;
600       lma = lm.next;
601     }
602 
603   return head;
604 }
605 
606 /*
607 
608   LOCAL FUNCTION
609 
610   irix_open_symbol_file_object
611 
612   SYNOPSIS
613 
614   void irix_open_symbol_file_object (void *from_tty)
615 
616   DESCRIPTION
617 
618   If no open symbol file, attempt to locate and open the main symbol
619   file.  On IRIX, this is the first link map entry.  If its name is
620   here, we can open it.  Useful when attaching to a process without
621   first loading its symbol file.
622 
623   If FROM_TTYP dereferences to a non-zero integer, allow messages to
624   be printed.  This parameter is a pointer rather than an int because
625   open_symbol_file_object() is called via catch_errors() and
626   catch_errors() requires a pointer argument.  */
627 
628 static int
irix_open_symbol_file_object(void * from_ttyp)629 irix_open_symbol_file_object (void *from_ttyp)
630 {
631   enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
632   int addr_size = gdbarch_addr_bit (target_gdbarch) / TARGET_CHAR_BIT;
633   CORE_ADDR lma;
634   char addr_buf[8];
635   struct lm_info lm;
636   struct cleanup *cleanups;
637   int errcode;
638   int from_tty = *(int *) from_ttyp;
639   char *filename;
640 
641   if (symfile_objfile)
642     if (!query (_("Attempt to reload symbols from process? ")))
643       return 0;
644 
645   if ((debug_base = locate_base ()) == 0)
646     return 0;			/* failed somehow...  */
647 
648   /* First link map member should be the executable.  */
649   read_memory (debug_base, addr_buf, addr_size);
650   lma = extract_mips_address (addr_buf, addr_size, byte_order);
651   if (lma == 0)
652     return 0;			/* failed somehow...  */
653 
654   lm = fetch_lm_info (lma);
655 
656   if (lm.pathname_addr == 0)
657     return 0;			/* No filename.  */
658 
659   /* Now fetch the filename from target memory.  */
660   target_read_string (lm.pathname_addr, &filename, SO_NAME_MAX_PATH_SIZE - 1,
661 		      &errcode);
662 
663   if (errcode)
664     {
665       warning (_("failed to read exec filename from attached file: %s"),
666 	       safe_strerror (errcode));
667       return 0;
668     }
669 
670   cleanups = make_cleanup (xfree, filename);
671   /* Have a pathname: read the symbol file.  */
672   symbol_file_add_main (filename, from_tty);
673 
674   do_cleanups (cleanups);
675 
676   return 1;
677 }
678 
679 
680 /*
681 
682    LOCAL FUNCTION
683 
684    irix_special_symbol_handling -- additional shared library symbol handling
685 
686    SYNOPSIS
687 
688    void irix_special_symbol_handling ()
689 
690    DESCRIPTION
691 
692    Once the symbols from a shared object have been loaded in the usual
693    way, we are called to do any system specific symbol handling that
694    is needed.
695 
696    For SunOS4, this consisted of grunging around in the dynamic
697    linkers structures to find symbol definitions for "common" symbols
698    and adding them to the minimal symbol table for the runtime common
699    objfile.
700 
701    However, for IRIX, there's nothing to do.
702 
703  */
704 
705 static void
irix_special_symbol_handling(void)706 irix_special_symbol_handling (void)
707 {
708 }
709 
710 /* Using the solist entry SO, relocate the addresses in SEC.  */
711 
712 static void
irix_relocate_section_addresses(struct so_list * so,struct target_section * sec)713 irix_relocate_section_addresses (struct so_list *so,
714 				 struct target_section *sec)
715 {
716   sec->addr += so->lm_info->reloc_offset;
717   sec->endaddr += so->lm_info->reloc_offset;
718 }
719 
720 /* Free the lm_info struct.  */
721 
722 static void
irix_free_so(struct so_list * so)723 irix_free_so (struct so_list *so)
724 {
725   xfree (so->lm_info);
726 }
727 
728 /* Clear backend specific state.  */
729 
730 static void
irix_clear_solib(void)731 irix_clear_solib (void)
732 {
733   debug_base = 0;
734 }
735 
736 /* Return 1 if PC lies in the dynamic symbol resolution code of the
737    run time loader.  */
738 static int
irix_in_dynsym_resolve_code(CORE_ADDR pc)739 irix_in_dynsym_resolve_code (CORE_ADDR pc)
740 {
741   return 0;
742 }
743 
744 struct target_so_ops irix_so_ops;
745 
746 /* Provide a prototype to silence -Wmissing-prototypes.  */
747 extern initialize_file_ftype _initialize_irix_solib;
748 
749 void
_initialize_irix_solib(void)750 _initialize_irix_solib (void)
751 {
752   irix_so_ops.relocate_section_addresses = irix_relocate_section_addresses;
753   irix_so_ops.free_so = irix_free_so;
754   irix_so_ops.clear_solib = irix_clear_solib;
755   irix_so_ops.solib_create_inferior_hook = irix_solib_create_inferior_hook;
756   irix_so_ops.special_symbol_handling = irix_special_symbol_handling;
757   irix_so_ops.current_sos = irix_current_sos;
758   irix_so_ops.open_symbol_file_object = irix_open_symbol_file_object;
759   irix_so_ops.in_dynsym_resolve_code = irix_in_dynsym_resolve_code;
760   irix_so_ops.bfd_open = solib_bfd_open;
761 }
762