1 // ----------------------------------------------------------------------
2 // CycleClock
3 //    A CycleClock tells you the current time in Cycles.  The "time"
4 //    is actually time since power-on.  This is like time() but doesn't
5 //    involve a system call and is much more precise.
6 //
7 // NOTE: Not all cpu/platform/kernel combinations guarantee that this
8 // clock increments at a constant rate or is synchronized across all logical
9 // cpus in a system.
10 //
11 // If you need the above guarantees, please consider using a different
12 // API. There are efforts to provide an interface which provides a millisecond
13 // granularity and implemented as a memory read. A memory read is generally
14 // cheaper than the CycleClock for many architectures.
15 //
16 // Also, in some out of order CPU implementations, the CycleClock is not
17 // serializing. So if you're trying to count at cycles granularity, your
18 // data might be inaccurate due to out of order instruction execution.
19 // ----------------------------------------------------------------------
20 
21 #ifndef BENCHMARK_CYCLECLOCK_H_
22 #define BENCHMARK_CYCLECLOCK_H_
23 
24 #include <cstdint>
25 
26 #include "benchmark/benchmark.h"
27 #include "internal_macros.h"
28 
29 #if defined(BENCHMARK_OS_MACOSX)
30 #include <mach/mach_time.h>
31 #endif
32 // For MSVC, we want to use '_asm rdtsc' when possible (since it works
33 // with even ancient MSVC compilers), and when not possible the
34 // __rdtsc intrinsic, declared in <intrin.h>.  Unfortunately, in some
35 // environments, <windows.h> and <intrin.h> have conflicting
36 // declarations of some other intrinsics, breaking compilation.
37 // Therefore, we simply declare __rdtsc ourselves. See also
38 // http://connect.microsoft.com/VisualStudio/feedback/details/262047
39 #if defined(COMPILER_MSVC) && !defined(_M_IX86) && !defined(_M_ARM64)
40 extern "C" uint64_t __rdtsc();
41 #pragma intrinsic(__rdtsc)
42 #endif
43 
44 #if !defined(BENCHMARK_OS_WINDOWS) || defined(BENCHMARK_OS_MINGW)
45 #include <sys/time.h>
46 #include <time.h>
47 #endif
48 
49 #ifdef BENCHMARK_OS_EMSCRIPTEN
50 #include <emscripten.h>
51 #endif
52 
53 namespace benchmark {
54 // NOTE: only i386 and x86_64 have been well tested.
55 // PPC, sparc, alpha, and ia64 are based on
56 //    http://peter.kuscsik.com/wordpress/?p=14
57 // with modifications by m3b.  See also
58 //    https://setisvn.ssl.berkeley.edu/svn/lib/fftw-3.0.1/kernel/cycle.h
59 namespace cycleclock {
60 // This should return the number of cycles since power-on.  Thread-safe.
Now()61 inline BENCHMARK_ALWAYS_INLINE int64_t Now() {
62 #if defined(BENCHMARK_OS_MACOSX)
63   // this goes at the top because we need ALL Macs, regardless of
64   // architecture, to return the number of "mach time units" that
65   // have passed since startup.  See sysinfo.cc where
66   // InitializeSystemInfo() sets the supposed cpu clock frequency of
67   // macs to the number of mach time units per second, not actual
68   // CPU clock frequency (which can change in the face of CPU
69   // frequency scaling).  Also note that when the Mac sleeps, this
70   // counter pauses; it does not continue counting, nor does it
71   // reset to zero.
72   return mach_absolute_time();
73 #elif defined(BENCHMARK_OS_EMSCRIPTEN)
74   // this goes above x86-specific code because old versions of Emscripten
75   // define __x86_64__, although they have nothing to do with it.
76   return static_cast<int64_t>(emscripten_get_now() * 1e+6);
77 #elif defined(__i386__)
78   int64_t ret;
79   __asm__ volatile("rdtsc" : "=A"(ret));
80   return ret;
81 #elif defined(__x86_64__) || defined(__amd64__)
82   uint64_t low, high;
83   __asm__ volatile("rdtsc" : "=a"(low), "=d"(high));
84   return (high << 32) | low;
85 #elif defined(__powerpc__) || defined(__ppc__)
86   // This returns a time-base, which is not always precisely a cycle-count.
87 #if defined(__powerpc64__) || defined(__ppc64__)
88   int64_t tb;
89   asm volatile("mfspr %0, 268" : "=r"(tb));
90   return tb;
91 #else
92   uint32_t tbl, tbu0, tbu1;
93   asm volatile(
94       "mftbu %0\n"
95       "mftb %1\n"
96       "mftbu %2"
97       : "=r"(tbu0), "=r"(tbl), "=r"(tbu1));
98   tbl &= -static_cast<int32_t>(tbu0 == tbu1);
99   // high 32 bits in tbu1; low 32 bits in tbl  (tbu0 is no longer needed)
100   return (static_cast<uint64_t>(tbu1) << 32) | tbl;
101 #endif
102 #elif defined(__sparc__)
103   int64_t tick;
104   asm(".byte 0x83, 0x41, 0x00, 0x00");
105   asm("mov   %%g1, %0" : "=r"(tick));
106   return tick;
107 #elif defined(__ia64__)
108   int64_t itc;
109   asm("mov %0 = ar.itc" : "=r"(itc));
110   return itc;
111 #elif defined(COMPILER_MSVC) && defined(_M_IX86)
112   // Older MSVC compilers (like 7.x) don't seem to support the
113   // __rdtsc intrinsic properly, so I prefer to use _asm instead
114   // when I know it will work.  Otherwise, I'll use __rdtsc and hope
115   // the code is being compiled with a non-ancient compiler.
116   _asm rdtsc
117 #elif defined(COMPILER_MSVC) && defined(_M_ARM64)
118   // See https://docs.microsoft.com/en-us/cpp/intrinsics/arm64-intrinsics?view=vs-2019
119   // and https://reviews.llvm.org/D53115
120   int64_t virtual_timer_value;
121   virtual_timer_value = _ReadStatusReg(ARM64_CNTVCT);
122   return virtual_timer_value;
123 #elif defined(COMPILER_MSVC)
124   return __rdtsc();
125 #elif defined(BENCHMARK_OS_NACL)
126   // Native Client validator on x86/x86-64 allows RDTSC instructions,
127   // and this case is handled above. Native Client validator on ARM
128   // rejects MRC instructions (used in the ARM-specific sequence below),
129   // so we handle it here. Portable Native Client compiles to
130   // architecture-agnostic bytecode, which doesn't provide any
131   // cycle counter access mnemonics.
132 
133   // Native Client does not provide any API to access cycle counter.
134   // Use clock_gettime(CLOCK_MONOTONIC, ...) instead of gettimeofday
135   // because is provides nanosecond resolution (which is noticable at
136   // least for PNaCl modules running on x86 Mac & Linux).
137   // Initialize to always return 0 if clock_gettime fails.
138   struct timespec ts = {0, 0};
139   clock_gettime(CLOCK_MONOTONIC, &ts);
140   return static_cast<int64_t>(ts.tv_sec) * 1000000000 + ts.tv_nsec;
141 #elif defined(__aarch64__)
142   // System timer of ARMv8 runs at a different frequency than the CPU's.
143   // The frequency is fixed, typically in the range 1-50MHz.  It can be
144   // read at CNTFRQ special register.  We assume the OS has set up
145   // the virtual timer properly.
146   int64_t virtual_timer_value;
147   asm volatile("mrs %0, cntvct_el0" : "=r"(virtual_timer_value));
148   return virtual_timer_value;
149 #elif defined(__ARM_ARCH)
150   // V6 is the earliest arch that has a standard cyclecount
151   // Native Client validator doesn't allow MRC instructions.
152 #if (__ARM_ARCH >= 6)
153   uint32_t pmccntr;
154   uint32_t pmuseren;
155   uint32_t pmcntenset;
156   // Read the user mode perf monitor counter access permissions.
157   asm volatile("mrc p15, 0, %0, c9, c14, 0" : "=r"(pmuseren));
158   if (pmuseren & 1) {  // Allows reading perfmon counters for user mode code.
159     asm volatile("mrc p15, 0, %0, c9, c12, 1" : "=r"(pmcntenset));
160     if (pmcntenset & 0x80000000ul) {  // Is it counting?
161       asm volatile("mrc p15, 0, %0, c9, c13, 0" : "=r"(pmccntr));
162       // The counter is set up to count every 64th cycle
163       return static_cast<int64_t>(pmccntr) * 64;  // Should optimize to << 6
164     }
165   }
166 #endif
167   struct timeval tv;
168   gettimeofday(&tv, nullptr);
169   return static_cast<int64_t>(tv.tv_sec) * 1000000 + tv.tv_usec;
170 #elif defined(__mips__) || defined(__m68k__)
171   // mips apparently only allows rdtsc for superusers, so we fall
172   // back to gettimeofday.  It's possible clock_gettime would be better.
173   struct timeval tv;
174   gettimeofday(&tv, nullptr);
175   return static_cast<int64_t>(tv.tv_sec) * 1000000 + tv.tv_usec;
176 #elif defined(__loongarch__)
177   struct timeval tv;
178   gettimeofday(&tv, nullptr);
179   return static_cast<int64_t>(tv.tv_sec) * 1000000 + tv.tv_usec;
180 #elif defined(__s390__)  // Covers both s390 and s390x.
181   // Return the CPU clock.
182   uint64_t tsc;
183 #if defined(BENCHMARK_OS_ZOS) && defined(COMPILER_IBMXL)
184   // z/OS XL compiler HLASM syntax.
185   asm(" stck %0" : "=m"(tsc) : : "cc");
186 #else
187   asm("stck %0" : "=Q"(tsc) : : "cc");
188 #endif
189   return tsc;
190 #elif defined(__riscv) // RISC-V
191   // Use RDCYCLE (and RDCYCLEH on riscv32)
192 #if __riscv_xlen == 32
193   uint32_t cycles_lo, cycles_hi0, cycles_hi1;
194   // This asm also includes the PowerPC overflow handling strategy, as above.
195   // Implemented in assembly because Clang insisted on branching.
196   asm volatile(
197       "rdcycleh %0\n"
198       "rdcycle %1\n"
199       "rdcycleh %2\n"
200       "sub %0, %0, %2\n"
201       "seqz %0, %0\n"
202       "sub %0, zero, %0\n"
203       "and %1, %1, %0\n"
204       : "=r"(cycles_hi0), "=r"(cycles_lo), "=r"(cycles_hi1));
205   return (static_cast<uint64_t>(cycles_hi1) << 32) | cycles_lo;
206 #else
207   uint64_t cycles;
208   asm volatile("rdcycle %0" : "=r"(cycles));
209   return cycles;
210 #endif
211 #elif defined(__e2k__) || defined(__elbrus__)
212   struct timeval tv;
213   gettimeofday(&tv, nullptr);
214   return static_cast<int64_t>(tv.tv_sec) * 1000000 + tv.tv_usec;
215 #else
216 // The soft failover to a generic implementation is automatic only for ARM.
217 // For other platforms the developer is expected to make an attempt to create
218 // a fast implementation and use generic version if nothing better is available.
219 #error You need to define CycleTimer for your OS and CPU
220 #endif
221 }
222 }  // end namespace cycleclock
223 }  // end namespace benchmark
224 
225 #endif  // BENCHMARK_CYCLECLOCK_H_
226