1 //  (C) Copyright Nick Thompson 2019.
2 //  Use, modification and distribution are subject to the
3 //  Boost Software License, Version 1.0. (See accompanying file
4 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5 
6 #ifndef BOOST_MATH_DIFFERENTIATION_LANCZOS_SMOOTHING_HPP
7 #define BOOST_MATH_DIFFERENTIATION_LANCZOS_SMOOTHING_HPP
8 #include <cmath> // for std::abs
9 #include <limits> // to nan initialize
10 #include <vector>
11 #include <string>
12 #include <stdexcept>
13 #include <boost/assert.hpp>
14 
15 namespace boost::math::differentiation {
16 
17 namespace detail {
18 template <typename Real>
19 class discrete_legendre {
20   public:
discrete_legendre(std::size_t n,Real x)21     explicit discrete_legendre(std::size_t n, Real x) : m_n{n}, m_r{2}, m_x{x},
22                                                         m_qrm2{1}, m_qrm1{x},
23                                                         m_qrm2p{0}, m_qrm1p{1},
24                                                         m_qrm2pp{0}, m_qrm1pp{0}
25     {
26         using std::abs;
27         BOOST_ASSERT_MSG(abs(m_x) <= 1, "Three term recurrence is stable only for |x| <=1.");
28         // The integer n indexes a family of discrete Legendre polynomials indexed by k <= 2*n
29     }
30 
norm_sq(int r) const31     Real norm_sq(int r) const
32     {
33         Real prod = Real(2) / Real(2 * r + 1);
34         for (int k = -r; k <= r; ++k) {
35             prod *= Real(2 * m_n + 1 + k) / Real(2 * m_n);
36         }
37         return prod;
38     }
39 
next()40     Real next()
41     {
42         Real N = 2 * m_n + 1;
43         Real num = (m_r - 1) * (N * N - (m_r - 1) * (m_r - 1)) * m_qrm2;
44         Real tmp = (2 * m_r - 1) * m_x * m_qrm1 - num / Real(4 * m_n * m_n);
45         m_qrm2 = m_qrm1;
46         m_qrm1 = tmp / m_r;
47         ++m_r;
48         return m_qrm1;
49     }
50 
next_prime()51     Real next_prime()
52     {
53         Real N = 2 * m_n + 1;
54         Real s = (m_r - 1) * (N * N - (m_r - 1) * (m_r - 1)) / Real(4 * m_n * m_n);
55         Real tmp1 = ((2 * m_r - 1) * m_x * m_qrm1 - s * m_qrm2) / m_r;
56         Real tmp2 = ((2 * m_r - 1) * (m_qrm1 + m_x * m_qrm1p) - s * m_qrm2p) / m_r;
57         m_qrm2 = m_qrm1;
58         m_qrm1 = tmp1;
59         m_qrm2p = m_qrm1p;
60         m_qrm1p = tmp2;
61         ++m_r;
62         return m_qrm1p;
63     }
64 
next_dbl_prime()65     Real next_dbl_prime()
66     {
67         Real N = 2*m_n + 1;
68         Real trm1 = 2*m_r - 1;
69         Real s = (m_r - 1) * (N * N - (m_r - 1) * (m_r - 1)) / Real(4 * m_n * m_n);
70         Real rqrpp = 2*trm1*m_qrm1p + trm1*m_x*m_qrm1pp - s*m_qrm2pp;
71         Real tmp1 = ((2 * m_r - 1) * m_x * m_qrm1 - s * m_qrm2) / m_r;
72         Real tmp2 = ((2 * m_r - 1) * (m_qrm1 + m_x * m_qrm1p) - s * m_qrm2p) / m_r;
73         m_qrm2 = m_qrm1;
74         m_qrm1 = tmp1;
75         m_qrm2p = m_qrm1p;
76         m_qrm1p = tmp2;
77         m_qrm2pp = m_qrm1pp;
78         m_qrm1pp = rqrpp/m_r;
79         ++m_r;
80         return m_qrm1pp;
81     }
82 
operator ()(Real x,std::size_t k)83     Real operator()(Real x, std::size_t k)
84     {
85         BOOST_ASSERT_MSG(k <= 2 * m_n, "r <= 2n is required.");
86         if (k == 0)
87         {
88             return 1;
89         }
90         if (k == 1)
91         {
92             return x;
93         }
94         Real qrm2 = 1;
95         Real qrm1 = x;
96         Real N = 2 * m_n + 1;
97         for (std::size_t r = 2; r <= k; ++r) {
98             Real num = (r - 1) * (N * N - (r - 1) * (r - 1)) * qrm2;
99             Real tmp = (2 * r - 1) * x * qrm1 - num / Real(4 * m_n * m_n);
100             qrm2 = qrm1;
101             qrm1 = tmp / r;
102         }
103         return qrm1;
104     }
105 
prime(Real x,std::size_t k)106     Real prime(Real x, std::size_t k) {
107         BOOST_ASSERT_MSG(k <= 2 * m_n, "r <= 2n is required.");
108         if (k == 0) {
109             return 0;
110         }
111         if (k == 1) {
112             return 1;
113         }
114         Real qrm2 = 1;
115         Real qrm1 = x;
116         Real qrm2p = 0;
117         Real qrm1p = 1;
118         Real N = 2 * m_n + 1;
119         for (std::size_t r = 2; r <= k; ++r) {
120             Real s =
121                 (r - 1) * (N * N - (r - 1) * (r - 1)) / Real(4 * m_n * m_n);
122             Real tmp1 = ((2 * r - 1) * x * qrm1 - s * qrm2) / r;
123             Real tmp2 = ((2 * r - 1) * (qrm1 + x * qrm1p) - s * qrm2p) / r;
124             qrm2 = qrm1;
125             qrm1 = tmp1;
126             qrm2p = qrm1p;
127             qrm1p = tmp2;
128         }
129         return qrm1p;
130     }
131 
132   private:
133     std::size_t m_n;
134     std::size_t m_r;
135     Real m_x;
136     Real m_qrm2;
137     Real m_qrm1;
138     Real m_qrm2p;
139     Real m_qrm1p;
140     Real m_qrm2pp;
141     Real m_qrm1pp;
142 };
143 
144 template <class Real>
interior_velocity_filter(std::size_t n,std::size_t p)145 std::vector<Real> interior_velocity_filter(std::size_t n, std::size_t p) {
146     auto dlp = discrete_legendre<Real>(n, 0);
147     std::vector<Real> coeffs(p+1);
148     coeffs[1] = 1/dlp.norm_sq(1);
149     for (std::size_t l = 3; l < p + 1; l += 2)
150     {
151         dlp.next_prime();
152         coeffs[l] = dlp.next_prime()/ dlp.norm_sq(l);
153     }
154 
155     // We could make the filter length n, as f[0] = 0,
156     // but that'd make the indexing awkward when applying the filter.
157     std::vector<Real> f(n + 1);
158     // This value should never be read, but this is the correct value *if it is read*.
159     // Hmm, should it be a nan then? I'm not gonna agonize.
160     f[0] = 0;
161     for (std::size_t j = 1; j < f.size(); ++j)
162     {
163         Real arg = Real(j) / Real(n);
164         dlp = discrete_legendre<Real>(n, arg);
165         f[j] = coeffs[1]*arg;
166         for (std::size_t l = 3; l <= p; l += 2)
167         {
168             dlp.next();
169             f[j] += coeffs[l]*dlp.next();
170         }
171         f[j] /= (n * n);
172     }
173     return f;
174 }
175 
176 template <class Real>
boundary_velocity_filter(std::size_t n,std::size_t p,int64_t s)177 std::vector<Real> boundary_velocity_filter(std::size_t n, std::size_t p, int64_t s)
178 {
179     std::vector<Real> coeffs(p+1, std::numeric_limits<Real>::quiet_NaN());
180     Real sn = Real(s) / Real(n);
181     auto dlp = discrete_legendre<Real>(n, sn);
182     coeffs[0] = 0;
183     coeffs[1] = 1/dlp.norm_sq(1);
184     for (std::size_t l = 2; l < p + 1; ++l)
185     {
186         // Calculation of the norms is common to all filters,
187         // so it seems like an obvious optimization target.
188         // I tried this: The spent in computing the norms time is not negligible,
189         // but still a small fraction of the total compute time.
190         // Hence I'm not refactoring out these norm calculations.
191         coeffs[l] = dlp.next_prime()/ dlp.norm_sq(l);
192     }
193 
194     std::vector<Real> f(2*n + 1);
195     for (std::size_t k = 0; k < f.size(); ++k)
196     {
197         Real j = Real(k) - Real(n);
198         Real arg = j/Real(n);
199         dlp = discrete_legendre<Real>(n, arg);
200         f[k] = coeffs[1]*arg;
201         for (std::size_t l = 2; l <= p; ++l)
202         {
203             f[k] += coeffs[l]*dlp.next();
204         }
205         f[k] /= (n * n);
206     }
207     return f;
208 }
209 
210 template <class Real>
acceleration_filter(std::size_t n,std::size_t p,int64_t s)211 std::vector<Real> acceleration_filter(std::size_t n, std::size_t p, int64_t s)
212 {
213     BOOST_ASSERT_MSG(p <= 2*n, "Approximation order must be <= 2*n");
214     BOOST_ASSERT_MSG(p > 2, "Approximation order must be > 2");
215 
216     std::vector<Real> coeffs(p+1, std::numeric_limits<Real>::quiet_NaN());
217     Real sn = Real(s) / Real(n);
218     auto dlp = discrete_legendre<Real>(n, sn);
219     coeffs[0] = 0;
220     coeffs[1] = 0;
221     for (std::size_t l = 2; l < p + 1; ++l)
222     {
223         coeffs[l] = dlp.next_dbl_prime()/ dlp.norm_sq(l);
224     }
225 
226     std::vector<Real> f(2*n + 1, 0);
227     for (std::size_t k = 0; k < f.size(); ++k)
228     {
229         Real j = Real(k) - Real(n);
230         Real arg = j/Real(n);
231         dlp = discrete_legendre<Real>(n, arg);
232         for (std::size_t l = 2; l <= p; ++l)
233         {
234             f[k] += coeffs[l]*dlp.next();
235         }
236         f[k] /= (n * n * n);
237     }
238     return f;
239 }
240 
241 
242 } // namespace detail
243 
244 template <typename Real, std::size_t order = 1>
245 class discrete_lanczos_derivative {
246 public:
discrete_lanczos_derivative(Real const & spacing,std::size_t n=18,std::size_t approximation_order=3)247     discrete_lanczos_derivative(Real const & spacing,
248                                 std::size_t n = 18,
249                                 std::size_t approximation_order = 3)
250         : m_dt{spacing}
251     {
252         static_assert(!std::is_integral_v<Real>,
253                       "Spacing must be a floating point type.");
254         BOOST_ASSERT_MSG(spacing > 0,
255                          "Spacing between samples must be > 0.");
256 
257         if constexpr (order == 1)
258         {
259             BOOST_ASSERT_MSG(approximation_order <= 2 * n,
260                              "The approximation order must be <= 2n");
261             BOOST_ASSERT_MSG(approximation_order >= 2,
262                              "The approximation order must be >= 2");
263 
264             if constexpr (std::is_same_v<Real, float> || std::is_same_v<Real, double>)
265             {
266                 auto interior = detail::interior_velocity_filter<long double>(n, approximation_order);
267                 m_f.resize(interior.size());
268                 for (std::size_t j = 0; j < interior.size(); ++j)
269                 {
270                     m_f[j] = static_cast<Real>(interior[j])/m_dt;
271                 }
272             }
273             else
274             {
275                 m_f = detail::interior_velocity_filter<Real>(n, approximation_order);
276                 for (auto & x : m_f)
277                 {
278                     x /= m_dt;
279                 }
280             }
281 
282             m_boundary_filters.resize(n);
283             // This for loop is a natural candidate for parallelization.
284             // But does it matter? Probably not.
285             for (std::size_t i = 0; i < n; ++i)
286             {
287                 if constexpr (std::is_same_v<Real, float> || std::is_same_v<Real, double>)
288                 {
289                     int64_t s = static_cast<int64_t>(i) - static_cast<int64_t>(n);
290                     auto bf = detail::boundary_velocity_filter<long double>(n, approximation_order, s);
291                     m_boundary_filters[i].resize(bf.size());
292                     for (std::size_t j = 0; j < bf.size(); ++j)
293                     {
294                         m_boundary_filters[i][j] = static_cast<Real>(bf[j])/m_dt;
295                     }
296                 }
297                 else
298                 {
299                     int64_t s = static_cast<int64_t>(i) - static_cast<int64_t>(n);
300                     m_boundary_filters[i] = detail::boundary_velocity_filter<Real>(n, approximation_order, s);
301                     for (auto & bf : m_boundary_filters[i])
302                     {
303                         bf /= m_dt;
304                     }
305                 }
306             }
307         }
308         else if constexpr (order == 2)
309         {
310             // High precision isn't warranted for small p; only for large p.
311             // (The computation appears stable for large n.)
312             // But given that the filters are reusable for many vectors,
313             // it's better to do a high precision computation and then cast back,
314             // since the resulting cost is a factor of 2, and the cost of the filters not working is hours of debugging.
315             if constexpr (std::is_same_v<Real, double> || std::is_same_v<Real, float>)
316             {
317                 auto f = detail::acceleration_filter<long double>(n, approximation_order, 0);
318                 m_f.resize(n+1);
319                 for (std::size_t i = 0; i < m_f.size(); ++i)
320                 {
321                     m_f[i] = static_cast<Real>(f[i+n])/(m_dt*m_dt);
322                 }
323                 m_boundary_filters.resize(n);
324                 for (std::size_t i = 0; i < n; ++i)
325                 {
326                     int64_t s = static_cast<int64_t>(i) - static_cast<int64_t>(n);
327                     auto bf = detail::acceleration_filter<long double>(n, approximation_order, s);
328                     m_boundary_filters[i].resize(bf.size());
329                     for (std::size_t j = 0; j < bf.size(); ++j)
330                     {
331                         m_boundary_filters[i][j] = static_cast<Real>(bf[j])/(m_dt*m_dt);
332                     }
333                 }
334             }
335             else
336             {
337                 // Given that the purpose is denoising, for higher precision calculations,
338                 // the default precision should be fine.
339                 auto f = detail::acceleration_filter<Real>(n, approximation_order, 0);
340                 m_f.resize(n+1);
341                 for (std::size_t i = 0; i < m_f.size(); ++i)
342                 {
343                     m_f[i] = f[i+n]/(m_dt*m_dt);
344                 }
345                 m_boundary_filters.resize(n);
346                 for (std::size_t i = 0; i < n; ++i)
347                 {
348                     int64_t s = static_cast<int64_t>(i) - static_cast<int64_t>(n);
349                     m_boundary_filters[i] = detail::acceleration_filter<Real>(n, approximation_order, s);
350                     for (auto & bf : m_boundary_filters[i])
351                     {
352                         bf /= (m_dt*m_dt);
353                     }
354                 }
355             }
356         }
357         else
358         {
359             BOOST_ASSERT_MSG(false, "Derivatives of order 3 and higher are not implemented.");
360         }
361     }
362 
get_spacing() const363     Real get_spacing() const
364     {
365         return m_dt;
366     }
367 
368     template<class RandomAccessContainer>
operator ()(RandomAccessContainer const & v,std::size_t i) const369     Real operator()(RandomAccessContainer const & v, std::size_t i) const
370     {
371         static_assert(std::is_same_v<typename RandomAccessContainer::value_type, Real>,
372                       "The type of the values in the vector provided does not match the type in the filters.");
373 
374         BOOST_ASSERT_MSG(std::size(v) >= m_boundary_filters[0].size(),
375             "Vector must be at least as long as the filter length");
376 
377         if constexpr (order==1)
378         {
379             if (i >= m_f.size() - 1 && i <= std::size(v) - m_f.size())
380             {
381                 // The filter has length >= 1:
382                 Real dvdt = m_f[1] * (v[i + 1] - v[i - 1]);
383                 for (std::size_t j = 2; j < m_f.size(); ++j)
384                 {
385                     dvdt += m_f[j] * (v[i + j] - v[i - j]);
386                 }
387                 return dvdt;
388             }
389 
390             // m_f.size() = N+1
391             if (i < m_f.size() - 1)
392             {
393                 auto &bf = m_boundary_filters[i];
394                 Real dvdt = bf[0]*v[0];
395                 for (std::size_t j = 1; j < bf.size(); ++j)
396                 {
397                     dvdt += bf[j] * v[j];
398                 }
399                 return dvdt;
400             }
401 
402             if (i > std::size(v) - m_f.size() && i < std::size(v))
403             {
404                 int k = std::size(v) - 1 - i;
405                 auto &bf = m_boundary_filters[k];
406                 Real dvdt = bf[0]*v[std::size(v)-1];
407                 for (std::size_t j = 1; j < bf.size(); ++j)
408                 {
409                     dvdt += bf[j] * v[std::size(v) - 1 - j];
410                 }
411                 return -dvdt;
412             }
413         }
414         else if constexpr (order==2)
415         {
416             if (i >= m_f.size() - 1 && i <= std::size(v) - m_f.size())
417             {
418                 Real d2vdt2 = m_f[0]*v[i];
419                 for (std::size_t j = 1; j < m_f.size(); ++j)
420                 {
421                     d2vdt2 += m_f[j] * (v[i + j] + v[i - j]);
422                 }
423                 return d2vdt2;
424             }
425 
426             // m_f.size() = N+1
427             if (i < m_f.size() - 1)
428             {
429                 auto &bf = m_boundary_filters[i];
430                 Real d2vdt2 = bf[0]*v[0];
431                 for (std::size_t j = 1; j < bf.size(); ++j)
432                 {
433                     d2vdt2 += bf[j] * v[j];
434                 }
435                 return d2vdt2;
436             }
437 
438             if (i > std::size(v) - m_f.size() && i < std::size(v))
439             {
440                 int k = std::size(v) - 1 - i;
441                 auto &bf = m_boundary_filters[k];
442                 Real d2vdt2 = bf[0] * v[std::size(v) - 1];
443                 for (std::size_t j = 1; j < bf.size(); ++j)
444                 {
445                     d2vdt2 += bf[j] * v[std::size(v) - 1 - j];
446                 }
447                 return d2vdt2;
448             }
449         }
450 
451         // OOB access:
452         std::string msg = "Out of bounds access in Lanczos derivative.";
453         msg += "Input vector has length " + std::to_string(std::size(v)) + ", but user requested access at index " + std::to_string(i) + ".";
454         throw std::out_of_range(msg);
455         return std::numeric_limits<Real>::quiet_NaN();
456     }
457 
458     template<class RandomAccessContainer>
operator ()(RandomAccessContainer const & v,RandomAccessContainer & w) const459     void operator()(RandomAccessContainer const & v, RandomAccessContainer & w) const
460     {
461         static_assert(std::is_same_v<typename RandomAccessContainer::value_type, Real>,
462                       "The type of the values in the vector provided does not match the type in the filters.");
463         if (&w[0] == &v[0])
464         {
465             throw std::logic_error("This transform cannot be performed in-place.");
466         }
467 
468         if (std::size(v) < m_boundary_filters[0].size())
469         {
470             std::string msg = "The input vector must be at least as long as the filter length. ";
471             msg += "The input vector has length = " + std::to_string(std::size(v)) + ", the filter has length " + std::to_string(m_boundary_filters[0].size());
472             throw std::length_error(msg);
473         }
474 
475         if (std::size(w) < std::size(v))
476         {
477             std::string msg = "The output vector (containing the derivative) must be at least as long as the input vector.";
478             msg += "The output vector has length = " + std::to_string(std::size(w)) + ", the input vector has length " + std::to_string(std::size(v));
479             throw std::length_error(msg);
480         }
481 
482         if constexpr (order==1)
483         {
484             for (std::size_t i = 0; i < m_f.size() - 1; ++i)
485             {
486                 auto &bf = m_boundary_filters[i];
487                 Real dvdt = bf[0] * v[0];
488                 for (std::size_t j = 1; j < bf.size(); ++j)
489                 {
490                     dvdt += bf[j] * v[j];
491                 }
492                 w[i] = dvdt;
493             }
494 
495             for(std::size_t i = m_f.size() - 1; i <= std::size(v) - m_f.size(); ++i)
496             {
497                 Real dvdt = m_f[1] * (v[i + 1] - v[i - 1]);
498                 for (std::size_t j = 2; j < m_f.size(); ++j)
499                 {
500                     dvdt += m_f[j] *(v[i + j] - v[i - j]);
501                 }
502                 w[i] = dvdt;
503             }
504 
505 
506             for(std::size_t i = std::size(v) - m_f.size() + 1; i < std::size(v); ++i)
507             {
508                 int k = std::size(v) - 1 - i;
509                 auto &f = m_boundary_filters[k];
510                 Real dvdt = f[0] * v[std::size(v) - 1];;
511                 for (std::size_t j = 1; j < f.size(); ++j)
512                 {
513                     dvdt += f[j] * v[std::size(v) - 1 - j];
514                 }
515                 w[i] = -dvdt;
516             }
517         }
518         else if constexpr (order==2)
519         {
520             // m_f.size() = N+1
521             for (std::size_t i = 0; i < m_f.size() - 1; ++i)
522             {
523                 auto &bf = m_boundary_filters[i];
524                 Real d2vdt2 = 0;
525                 for (std::size_t j = 0; j < bf.size(); ++j)
526                 {
527                     d2vdt2 += bf[j] * v[j];
528                 }
529                 w[i] = d2vdt2;
530             }
531 
532             for (std::size_t i = m_f.size() - 1; i <= std::size(v) - m_f.size(); ++i)
533             {
534                 Real d2vdt2 = m_f[0]*v[i];
535                 for (std::size_t j = 1; j < m_f.size(); ++j)
536                 {
537                     d2vdt2 += m_f[j] * (v[i + j] + v[i - j]);
538                 }
539                 w[i] = d2vdt2;
540             }
541 
542             for (std::size_t i = std::size(v) - m_f.size() + 1; i < std::size(v); ++i)
543             {
544                 int k = std::size(v) - 1 - i;
545                 auto &bf = m_boundary_filters[k];
546                 Real d2vdt2 = bf[0] * v[std::size(v) - 1];
547                 for (std::size_t j = 1; j < bf.size(); ++j)
548                 {
549                     d2vdt2 += bf[j] * v[std::size(v) - 1 - j];
550                 }
551                 w[i] = d2vdt2;
552             }
553         }
554     }
555 
556     template<class RandomAccessContainer>
operator ()(RandomAccessContainer const & v) const557     RandomAccessContainer operator()(RandomAccessContainer const & v) const
558     {
559         RandomAccessContainer w(std::size(v));
560         this->operator()(v, w);
561         return w;
562     }
563 
564 
565     // Don't copy; too big.
566     discrete_lanczos_derivative( const discrete_lanczos_derivative & ) = delete;
567     discrete_lanczos_derivative& operator=(const discrete_lanczos_derivative&) = delete;
568 
569     // Allow moves:
570     discrete_lanczos_derivative(discrete_lanczos_derivative&&) = default;
571     discrete_lanczos_derivative& operator=(discrete_lanczos_derivative&&) = default;
572 
573 private:
574     std::vector<Real> m_f;
575     std::vector<std::vector<Real>> m_boundary_filters;
576     Real m_dt;
577 };
578 
579 } // namespaces
580 #endif
581