1 ///////////////////////////////////////////////////////////////////////////////
2 // weighted_p_square_quantile.hpp
3 //
4 //  Copyright 2005 Daniel Egloff. Distributed under the Boost
5 //  Software License, Version 1.0. (See accompanying file
6 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
7 
8 #ifndef BOOST_ACCUMULATORS_STATISTICS_WEIGHTED_P_SQUARE_QUANTILE_HPP_DE_01_01_2006
9 #define BOOST_ACCUMULATORS_STATISTICS_WEIGHTED_P_SQUARE_QUANTILE_HPP_DE_01_01_2006
10 
11 #include <cmath>
12 #include <functional>
13 #include <boost/array.hpp>
14 #include <boost/parameter/keyword.hpp>
15 #include <boost/mpl/placeholders.hpp>
16 #include <boost/type_traits/is_same.hpp>
17 #include <boost/accumulators/framework/accumulator_base.hpp>
18 #include <boost/accumulators/framework/extractor.hpp>
19 #include <boost/accumulators/numeric/functional.hpp>
20 #include <boost/accumulators/framework/parameters/sample.hpp>
21 #include <boost/accumulators/statistics_fwd.hpp>
22 #include <boost/accumulators/statistics/count.hpp>
23 #include <boost/accumulators/statistics/sum.hpp>
24 #include <boost/accumulators/statistics/parameters/quantile_probability.hpp>
25 
26 namespace boost { namespace accumulators
27 {
28 
29 namespace impl {
30     ///////////////////////////////////////////////////////////////////////////////
31     // weighted_p_square_quantile_impl
32     //  single quantile estimation with weighted samples
33     /**
34         @brief Single quantile estimation with the \f$P^2\f$ algorithm for weighted samples
35 
36         This version of the \f$P^2\f$ algorithm extends the \f$P^2\f$ algorithm to support weighted samples.
37         The \f$P^2\f$ algorithm estimates a quantile dynamically without storing samples. Instead of
38         storing the whole sample cumulative distribution, only five points (markers) are stored. The heights
39         of these markers are the minimum and the maximum of the samples and the current estimates of the
40         \f$(p/2)\f$-, \f$p\f$ - and \f$(1+p)/2\f$ -quantiles. Their positions are equal to the number
41         of samples that are smaller or equal to the markers. Each time a new sample is added, the
42         positions of the markers are updated and if necessary their heights are adjusted using a piecewise-
43         parabolic formula.
44 
45         For further details, see
46 
47         R. Jain and I. Chlamtac, The P^2 algorithm for dynamic calculation of quantiles and
48         histograms without storing observations, Communications of the ACM,
49         Volume 28 (October), Number 10, 1985, p. 1076-1085.
50 
51         @param quantile_probability
52     */
53     template<typename Sample, typename Weight, typename Impl>
54     struct weighted_p_square_quantile_impl
55       : accumulator_base
56     {
57         typedef typename numeric::functional::multiplies<Sample, Weight>::result_type weighted_sample;
58         typedef typename numeric::functional::fdiv<weighted_sample, std::size_t>::result_type float_type;
59         typedef array<float_type, 5> array_type;
60         // for boost::result_of
61         typedef float_type result_type;
62 
63         template<typename Args>
weighted_p_square_quantile_implboost::accumulators::impl::weighted_p_square_quantile_impl64         weighted_p_square_quantile_impl(Args const &args)
65           : p(is_same<Impl, for_median>::value ? 0.5 : args[quantile_probability | 0.5])
66           , heights()
67           , actual_positions()
68           , desired_positions()
69         {
70         }
71 
72         template<typename Args>
operator ()boost::accumulators::impl::weighted_p_square_quantile_impl73         void operator ()(Args const &args)
74         {
75             std::size_t cnt = count(args);
76 
77             // accumulate 5 first samples
78             if (cnt <= 5)
79             {
80                 this->heights[cnt - 1] = args[sample];
81 
82                 // In this initialization phase, actual_positions stores the weights of the
83                 // initial samples that are needed at the end of the initialization phase to
84                 // compute the correct initial positions of the markers.
85                 this->actual_positions[cnt - 1] = args[weight];
86 
87                 // complete the initialization of heights and actual_positions by sorting
88                 if (cnt == 5)
89                 {
90                     // TODO: we need to sort the initial samples (in heights) in ascending order and
91                     // sort their weights (in actual_positions) the same way. The following lines do
92                     // it, but there must be a better and more efficient way of doing this.
93                     typename array_type::iterator it_begin, it_end, it_min;
94 
95                     it_begin = this->heights.begin();
96                     it_end   = this->heights.end();
97 
98                     std::size_t pos = 0;
99 
100                     while (it_begin != it_end)
101                     {
102                         it_min = std::min_element(it_begin, it_end);
103                         std::size_t d = std::distance(it_begin, it_min);
104                         std::swap(*it_begin, *it_min);
105                         std::swap(this->actual_positions[pos], this->actual_positions[pos + d]);
106                         ++it_begin;
107                         ++pos;
108                     }
109 
110                     // calculate correct initial actual positions
111                     for (std::size_t i = 1; i < 5; ++i)
112                     {
113                         this->actual_positions[i] += this->actual_positions[i - 1];
114                     }
115                 }
116             }
117             else
118             {
119                 std::size_t sample_cell = 1; // k
120 
121                 // find cell k such that heights[k-1] <= args[sample] < heights[k] and adjust extreme values
122                 if (args[sample] < this->heights[0])
123                 {
124                     this->heights[0] = args[sample];
125                     this->actual_positions[0] = args[weight];
126                     sample_cell = 1;
127                 }
128                 else if (this->heights[4] <= args[sample])
129                 {
130                     this->heights[4] = args[sample];
131                     sample_cell = 4;
132                 }
133                 else
134                 {
135                     typedef typename array_type::iterator iterator;
136                     iterator it = std::upper_bound(
137                         this->heights.begin()
138                       , this->heights.end()
139                       , args[sample]
140                     );
141 
142                     sample_cell = std::distance(this->heights.begin(), it);
143                 }
144 
145                 // increment positions of markers above sample_cell
146                 for (std::size_t i = sample_cell; i < 5; ++i)
147                 {
148                     this->actual_positions[i] += args[weight];
149                 }
150 
151                 // update desired positions for all markers
152                 this->desired_positions[0] = this->actual_positions[0];
153                 this->desired_positions[1] = (sum_of_weights(args) - this->actual_positions[0])
154                                            * this->p/2. + this->actual_positions[0];
155                 this->desired_positions[2] = (sum_of_weights(args) - this->actual_positions[0])
156                                            * this->p + this->actual_positions[0];
157                 this->desired_positions[3] = (sum_of_weights(args) - this->actual_positions[0])
158                                            * (1. + this->p)/2. + this->actual_positions[0];
159                 this->desired_positions[4] = sum_of_weights(args);
160 
161                 // adjust height and actual positions of markers 1 to 3 if necessary
162                 for (std::size_t i = 1; i <= 3; ++i)
163                 {
164                     // offset to desired positions
165                     float_type d = this->desired_positions[i] - this->actual_positions[i];
166 
167                     // offset to next position
168                     float_type dp = this->actual_positions[i + 1] - this->actual_positions[i];
169 
170                     // offset to previous position
171                     float_type dm = this->actual_positions[i - 1] - this->actual_positions[i];
172 
173                     // height ds
174                     float_type hp = (this->heights[i + 1] - this->heights[i]) / dp;
175                     float_type hm = (this->heights[i - 1] - this->heights[i]) / dm;
176 
177                     if ( ( d >= 1. && dp > 1. ) || ( d <= -1. && dm < -1. ) )
178                     {
179                         short sign_d = static_cast<short>(d / std::abs(d));
180 
181                         // try adjusting heights[i] using p-squared formula
182                         float_type h = this->heights[i] + sign_d / (dp - dm) * ( (sign_d - dm) * hp + (dp - sign_d) * hm );
183 
184                         if ( this->heights[i - 1] < h && h < this->heights[i + 1] )
185                         {
186                             this->heights[i] = h;
187                         }
188                         else
189                         {
190                             // use linear formula
191                             if (d>0)
192                             {
193                                 this->heights[i] += hp;
194                             }
195                             if (d<0)
196                             {
197                                 this->heights[i] -= hm;
198                             }
199                         }
200                         this->actual_positions[i] += sign_d;
201                     }
202                 }
203             }
204         }
205 
resultboost::accumulators::impl::weighted_p_square_quantile_impl206         result_type result(dont_care) const
207         {
208             return this->heights[2];
209         }
210 
211         // make this accumulator serializeable
212         // TODO split to save/load and check on parameters provided in ctor
213         template<class Archive>
serializeboost::accumulators::impl::weighted_p_square_quantile_impl214         void serialize(Archive & ar, const unsigned int file_version)
215         {
216             ar & p;
217             ar & heights;
218             ar & actual_positions;
219             ar & desired_positions;
220         }
221 
222     private:
223         float_type p;                    // the quantile probability p
224         array_type heights;              // q_i
225         array_type actual_positions;     // n_i
226         array_type desired_positions;    // n'_i
227     };
228 
229 } // namespace impl
230 
231 ///////////////////////////////////////////////////////////////////////////////
232 // tag::weighted_p_square_quantile
233 //
234 namespace tag
235 {
236     struct weighted_p_square_quantile
237       : depends_on<count, sum_of_weights>
238     {
239         typedef accumulators::impl::weighted_p_square_quantile_impl<mpl::_1, mpl::_2, regular> impl;
240     };
241     struct weighted_p_square_quantile_for_median
242       : depends_on<count, sum_of_weights>
243     {
244         typedef accumulators::impl::weighted_p_square_quantile_impl<mpl::_1, mpl::_2, for_median> impl;
245     };
246 }
247 
248 ///////////////////////////////////////////////////////////////////////////////
249 // extract::weighted_p_square_quantile
250 // extract::weighted_p_square_quantile_for_median
251 //
252 namespace extract
253 {
254     extractor<tag::weighted_p_square_quantile> const weighted_p_square_quantile = {};
255     extractor<tag::weighted_p_square_quantile_for_median> const weighted_p_square_quantile_for_median = {};
256 
257     BOOST_ACCUMULATORS_IGNORE_GLOBAL(weighted_p_square_quantile)
258     BOOST_ACCUMULATORS_IGNORE_GLOBAL(weighted_p_square_quantile_for_median)
259 }
260 
261 using extract::weighted_p_square_quantile;
262 using extract::weighted_p_square_quantile_for_median;
263 
264 }} // namespace boost::accumulators
265 
266 #endif
267