1 /*
2 Bullet Continuous Collision Detection and Physics Library
3 Copyright (c) 2003-2006 Erwin Coumans  https://bulletphysics.org
4 
5 This software is provided 'as-is', without any express or implied warranty.
6 In no event will the authors be held liable for any damages arising from the use of this software.
7 Permission is granted to anyone to use this software for any purpose,
8 including commercial applications, and to alter it and redistribute it freely,
9 subject to the following restrictions:
10 
11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13 3. This notice may not be removed or altered from any source distribution.
14 */
15 
16 #include "btGjkConvexCast.h"
17 #include "BulletCollision/CollisionShapes/btSphereShape.h"
18 #include "btGjkPairDetector.h"
19 #include "btPointCollector.h"
20 #include "LinearMath/btTransformUtil.h"
21 
22 #ifdef BT_USE_DOUBLE_PRECISION
23 #define MAX_ITERATIONS 64
24 #else
25 #define MAX_ITERATIONS 32
26 #endif
27 
btGjkConvexCast(const btConvexShape * convexA,const btConvexShape * convexB,btSimplexSolverInterface * simplexSolver)28 btGjkConvexCast::btGjkConvexCast(const btConvexShape* convexA, const btConvexShape* convexB, btSimplexSolverInterface* simplexSolver)
29 	: m_simplexSolver(simplexSolver),
30 	  m_convexA(convexA),
31 	  m_convexB(convexB)
32 {
33 }
34 
calcTimeOfImpact(const btTransform & fromA,const btTransform & toA,const btTransform & fromB,const btTransform & toB,CastResult & result)35 bool btGjkConvexCast::calcTimeOfImpact(
36 	const btTransform& fromA,
37 	const btTransform& toA,
38 	const btTransform& fromB,
39 	const btTransform& toB,
40 	CastResult& result)
41 {
42 	m_simplexSolver->reset();
43 
44 	/// compute linear velocity for this interval, to interpolate
45 	//assume no rotation/angular velocity, assert here?
46 	btVector3 linVelA, linVelB;
47 	linVelA = toA.getOrigin() - fromA.getOrigin();
48 	linVelB = toB.getOrigin() - fromB.getOrigin();
49 
50 	btScalar radius = btScalar(0.001);
51 	btScalar lambda = btScalar(0.);
52 	btVector3 v(1, 0, 0);
53 
54 	int maxIter = MAX_ITERATIONS;
55 
56 	btVector3 n;
57 	n.setValue(btScalar(0.), btScalar(0.), btScalar(0.));
58 	bool hasResult = false;
59 	btVector3 c;
60 	btVector3 r = (linVelA - linVelB);
61 
62 	btScalar lastLambda = lambda;
63 	//btScalar epsilon = btScalar(0.001);
64 
65 	int numIter = 0;
66 	//first solution, using GJK
67 
68 	btTransform identityTrans;
69 	identityTrans.setIdentity();
70 
71 	//	result.drawCoordSystem(sphereTr);
72 
73 	btPointCollector pointCollector;
74 
75 	btGjkPairDetector gjk(m_convexA, m_convexB, m_simplexSolver, 0);  //m_penetrationDepthSolver);
76 	btGjkPairDetector::ClosestPointInput input;
77 
78 	//we don't use margins during CCD
79 	//	gjk.setIgnoreMargin(true);
80 
81 	input.m_transformA = fromA;
82 	input.m_transformB = fromB;
83 	gjk.getClosestPoints(input, pointCollector, 0);
84 
85 	hasResult = pointCollector.m_hasResult;
86 	c = pointCollector.m_pointInWorld;
87 
88 	if (hasResult)
89 	{
90 		btScalar dist;
91 		dist = pointCollector.m_distance;
92 		n = pointCollector.m_normalOnBInWorld;
93 
94 		//not close enough
95 		while (dist > radius)
96 		{
97 			numIter++;
98 			if (numIter > maxIter)
99 			{
100 				return false;  //todo: report a failure
101 			}
102 			btScalar dLambda = btScalar(0.);
103 
104 			btScalar projectedLinearVelocity = r.dot(n);
105 
106 			dLambda = dist / (projectedLinearVelocity);
107 
108 			lambda = lambda - dLambda;
109 
110 			if (lambda > btScalar(1.))
111 				return false;
112 
113 			if (lambda < btScalar(0.))
114 				return false;
115 
116 			//todo: next check with relative epsilon
117 			if (lambda <= lastLambda)
118 			{
119 				return false;
120 				//n.setValue(0,0,0);
121 				break;
122 			}
123 			lastLambda = lambda;
124 
125 			//interpolate to next lambda
126 			result.DebugDraw(lambda);
127 			input.m_transformA.getOrigin().setInterpolate3(fromA.getOrigin(), toA.getOrigin(), lambda);
128 			input.m_transformB.getOrigin().setInterpolate3(fromB.getOrigin(), toB.getOrigin(), lambda);
129 
130 			gjk.getClosestPoints(input, pointCollector, 0);
131 			if (pointCollector.m_hasResult)
132 			{
133 				if (pointCollector.m_distance < btScalar(0.))
134 				{
135 					result.m_fraction = lastLambda;
136 					n = pointCollector.m_normalOnBInWorld;
137 					result.m_normal = n;
138 					result.m_hitPoint = pointCollector.m_pointInWorld;
139 					return true;
140 				}
141 				c = pointCollector.m_pointInWorld;
142 				n = pointCollector.m_normalOnBInWorld;
143 				dist = pointCollector.m_distance;
144 			}
145 			else
146 			{
147 				//??
148 				return false;
149 			}
150 		}
151 
152 		//is n normalized?
153 		//don't report time of impact for motion away from the contact normal (or causes minor penetration)
154 		if (n.dot(r) >= -result.m_allowedPenetration)
155 			return false;
156 
157 		result.m_fraction = lambda;
158 		result.m_normal = n;
159 		result.m_hitPoint = c;
160 		return true;
161 	}
162 
163 	return false;
164 }
165