1 #include "cache.h"
2 #include "config.h"
3 #include "notes.h"
4 #include "object-store.h"
5 #include "blob.h"
6 #include "tree.h"
7 #include "utf8.h"
8 #include "strbuf.h"
9 #include "tree-walk.h"
10 #include "string-list.h"
11 #include "refs.h"
12 
13 /*
14  * Use a non-balancing simple 16-tree structure with struct int_node as
15  * internal nodes, and struct leaf_node as leaf nodes. Each int_node has a
16  * 16-array of pointers to its children.
17  * The bottom 2 bits of each pointer is used to identify the pointer type
18  * - ptr & 3 == 0 - NULL pointer, assert(ptr == NULL)
19  * - ptr & 3 == 1 - pointer to next internal node - cast to struct int_node *
20  * - ptr & 3 == 2 - pointer to note entry - cast to struct leaf_node *
21  * - ptr & 3 == 3 - pointer to subtree entry - cast to struct leaf_node *
22  *
23  * The root node is a statically allocated struct int_node.
24  */
25 struct int_node {
26 	void *a[16];
27 };
28 
29 /*
30  * Leaf nodes come in two variants, note entries and subtree entries,
31  * distinguished by the LSb of the leaf node pointer (see above).
32  * As a note entry, the key is the SHA1 of the referenced object, and the
33  * value is the SHA1 of the note object.
34  * As a subtree entry, the key is the prefix SHA1 (w/trailing NULs) of the
35  * referenced object, using the last byte of the key to store the length of
36  * the prefix. The value is the SHA1 of the tree object containing the notes
37  * subtree.
38  */
39 struct leaf_node {
40 	struct object_id key_oid;
41 	struct object_id val_oid;
42 };
43 
44 /*
45  * A notes tree may contain entries that are not notes, and that do not follow
46  * the naming conventions of notes. There are typically none/few of these, but
47  * we still need to keep track of them. Keep a simple linked list sorted alpha-
48  * betically on the non-note path. The list is populated when parsing tree
49  * objects in load_subtree(), and the non-notes are correctly written back into
50  * the tree objects produced by write_notes_tree().
51  */
52 struct non_note {
53 	struct non_note *next; /* grounded (last->next == NULL) */
54 	char *path;
55 	unsigned int mode;
56 	struct object_id oid;
57 };
58 
59 #define PTR_TYPE_NULL     0
60 #define PTR_TYPE_INTERNAL 1
61 #define PTR_TYPE_NOTE     2
62 #define PTR_TYPE_SUBTREE  3
63 
64 #define GET_PTR_TYPE(ptr)       ((uintptr_t) (ptr) & 3)
65 #define CLR_PTR_TYPE(ptr)       ((void *) ((uintptr_t) (ptr) & ~3))
66 #define SET_PTR_TYPE(ptr, type) ((void *) ((uintptr_t) (ptr) | (type)))
67 
68 #define GET_NIBBLE(n, sha1) ((((sha1)[(n) >> 1]) >> ((~(n) & 0x01) << 2)) & 0x0f)
69 
70 #define KEY_INDEX (the_hash_algo->rawsz - 1)
71 #define FANOUT_PATH_SEPARATORS (the_hash_algo->rawsz - 1)
72 #define FANOUT_PATH_SEPARATORS_MAX ((GIT_MAX_HEXSZ / 2) - 1)
73 #define SUBTREE_SHA1_PREFIXCMP(key_sha1, subtree_sha1) \
74 	(memcmp(key_sha1, subtree_sha1, subtree_sha1[KEY_INDEX]))
75 
76 struct notes_tree default_notes_tree;
77 
78 static struct string_list display_notes_refs = STRING_LIST_INIT_NODUP;
79 static struct notes_tree **display_notes_trees;
80 
81 static void load_subtree(struct notes_tree *t, struct leaf_node *subtree,
82 		struct int_node *node, unsigned int n);
83 
84 /*
85  * Search the tree until the appropriate location for the given key is found:
86  * 1. Start at the root node, with n = 0
87  * 2. If a[0] at the current level is a matching subtree entry, unpack that
88  *    subtree entry and remove it; restart search at the current level.
89  * 3. Use the nth nibble of the key as an index into a:
90  *    - If a[n] is an int_node, recurse from #2 into that node and increment n
91  *    - If a matching subtree entry, unpack that subtree entry (and remove it);
92  *      restart search at the current level.
93  *    - Otherwise, we have found one of the following:
94  *      - a subtree entry which does not match the key
95  *      - a note entry which may or may not match the key
96  *      - an unused leaf node (NULL)
97  *      In any case, set *tree and *n, and return pointer to the tree location.
98  */
note_tree_search(struct notes_tree * t,struct int_node ** tree,unsigned char * n,const unsigned char * key_sha1)99 static void **note_tree_search(struct notes_tree *t, struct int_node **tree,
100 		unsigned char *n, const unsigned char *key_sha1)
101 {
102 	struct leaf_node *l;
103 	unsigned char i;
104 	void *p = (*tree)->a[0];
105 
106 	if (GET_PTR_TYPE(p) == PTR_TYPE_SUBTREE) {
107 		l = (struct leaf_node *) CLR_PTR_TYPE(p);
108 		if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_oid.hash)) {
109 			/* unpack tree and resume search */
110 			(*tree)->a[0] = NULL;
111 			load_subtree(t, l, *tree, *n);
112 			free(l);
113 			return note_tree_search(t, tree, n, key_sha1);
114 		}
115 	}
116 
117 	i = GET_NIBBLE(*n, key_sha1);
118 	p = (*tree)->a[i];
119 	switch (GET_PTR_TYPE(p)) {
120 	case PTR_TYPE_INTERNAL:
121 		*tree = CLR_PTR_TYPE(p);
122 		(*n)++;
123 		return note_tree_search(t, tree, n, key_sha1);
124 	case PTR_TYPE_SUBTREE:
125 		l = (struct leaf_node *) CLR_PTR_TYPE(p);
126 		if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_oid.hash)) {
127 			/* unpack tree and resume search */
128 			(*tree)->a[i] = NULL;
129 			load_subtree(t, l, *tree, *n);
130 			free(l);
131 			return note_tree_search(t, tree, n, key_sha1);
132 		}
133 		/* fall through */
134 	default:
135 		return &((*tree)->a[i]);
136 	}
137 }
138 
139 /*
140  * To find a leaf_node:
141  * Search to the tree location appropriate for the given key:
142  * If a note entry with matching key, return the note entry, else return NULL.
143  */
note_tree_find(struct notes_tree * t,struct int_node * tree,unsigned char n,const unsigned char * key_sha1)144 static struct leaf_node *note_tree_find(struct notes_tree *t,
145 		struct int_node *tree, unsigned char n,
146 		const unsigned char *key_sha1)
147 {
148 	void **p = note_tree_search(t, &tree, &n, key_sha1);
149 	if (GET_PTR_TYPE(*p) == PTR_TYPE_NOTE) {
150 		struct leaf_node *l = (struct leaf_node *) CLR_PTR_TYPE(*p);
151 		if (hasheq(key_sha1, l->key_oid.hash))
152 			return l;
153 	}
154 	return NULL;
155 }
156 
157 /*
158  * How to consolidate an int_node:
159  * If there are > 1 non-NULL entries, give up and return non-zero.
160  * Otherwise replace the int_node at the given index in the given parent node
161  * with the only NOTE entry (or a NULL entry if no entries) from the given
162  * tree, and return 0.
163  */
note_tree_consolidate(struct int_node * tree,struct int_node * parent,unsigned char index)164 static int note_tree_consolidate(struct int_node *tree,
165 	struct int_node *parent, unsigned char index)
166 {
167 	unsigned int i;
168 	void *p = NULL;
169 
170 	assert(tree && parent);
171 	assert(CLR_PTR_TYPE(parent->a[index]) == tree);
172 
173 	for (i = 0; i < 16; i++) {
174 		if (GET_PTR_TYPE(tree->a[i]) != PTR_TYPE_NULL) {
175 			if (p) /* more than one entry */
176 				return -2;
177 			p = tree->a[i];
178 		}
179 	}
180 
181 	if (p && (GET_PTR_TYPE(p) != PTR_TYPE_NOTE))
182 		return -2;
183 	/* replace tree with p in parent[index] */
184 	parent->a[index] = p;
185 	free(tree);
186 	return 0;
187 }
188 
189 /*
190  * To remove a leaf_node:
191  * Search to the tree location appropriate for the given leaf_node's key:
192  * - If location does not hold a matching entry, abort and do nothing.
193  * - Copy the matching entry's value into the given entry.
194  * - Replace the matching leaf_node with a NULL entry (and free the leaf_node).
195  * - Consolidate int_nodes repeatedly, while walking up the tree towards root.
196  */
note_tree_remove(struct notes_tree * t,struct int_node * tree,unsigned char n,struct leaf_node * entry)197 static void note_tree_remove(struct notes_tree *t,
198 		struct int_node *tree, unsigned char n,
199 		struct leaf_node *entry)
200 {
201 	struct leaf_node *l;
202 	struct int_node *parent_stack[GIT_MAX_RAWSZ];
203 	unsigned char i, j;
204 	void **p = note_tree_search(t, &tree, &n, entry->key_oid.hash);
205 
206 	assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
207 	if (GET_PTR_TYPE(*p) != PTR_TYPE_NOTE)
208 		return; /* type mismatch, nothing to remove */
209 	l = (struct leaf_node *) CLR_PTR_TYPE(*p);
210 	if (!oideq(&l->key_oid, &entry->key_oid))
211 		return; /* key mismatch, nothing to remove */
212 
213 	/* we have found a matching entry */
214 	oidcpy(&entry->val_oid, &l->val_oid);
215 	free(l);
216 	*p = SET_PTR_TYPE(NULL, PTR_TYPE_NULL);
217 
218 	/* consolidate this tree level, and parent levels, if possible */
219 	if (!n)
220 		return; /* cannot consolidate top level */
221 	/* first, build stack of ancestors between root and current node */
222 	parent_stack[0] = t->root;
223 	for (i = 0; i < n; i++) {
224 		j = GET_NIBBLE(i, entry->key_oid.hash);
225 		parent_stack[i + 1] = CLR_PTR_TYPE(parent_stack[i]->a[j]);
226 	}
227 	assert(i == n && parent_stack[i] == tree);
228 	/* next, unwind stack until note_tree_consolidate() is done */
229 	while (i > 0 &&
230 	       !note_tree_consolidate(parent_stack[i], parent_stack[i - 1],
231 				      GET_NIBBLE(i - 1, entry->key_oid.hash)))
232 		i--;
233 }
234 
235 /*
236  * To insert a leaf_node:
237  * Search to the tree location appropriate for the given leaf_node's key:
238  * - If location is unused (NULL), store the tweaked pointer directly there
239  * - If location holds a note entry that matches the note-to-be-inserted, then
240  *   combine the two notes (by calling the given combine_notes function).
241  * - If location holds a note entry that matches the subtree-to-be-inserted,
242  *   then unpack the subtree-to-be-inserted into the location.
243  * - If location holds a matching subtree entry, unpack the subtree at that
244  *   location, and restart the insert operation from that level.
245  * - Else, create a new int_node, holding both the node-at-location and the
246  *   node-to-be-inserted, and store the new int_node into the location.
247  */
note_tree_insert(struct notes_tree * t,struct int_node * tree,unsigned char n,struct leaf_node * entry,unsigned char type,combine_notes_fn combine_notes)248 static int note_tree_insert(struct notes_tree *t, struct int_node *tree,
249 		unsigned char n, struct leaf_node *entry, unsigned char type,
250 		combine_notes_fn combine_notes)
251 {
252 	struct int_node *new_node;
253 	struct leaf_node *l;
254 	void **p = note_tree_search(t, &tree, &n, entry->key_oid.hash);
255 	int ret = 0;
256 
257 	assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
258 	l = (struct leaf_node *) CLR_PTR_TYPE(*p);
259 	switch (GET_PTR_TYPE(*p)) {
260 	case PTR_TYPE_NULL:
261 		assert(!*p);
262 		if (is_null_oid(&entry->val_oid))
263 			free(entry);
264 		else
265 			*p = SET_PTR_TYPE(entry, type);
266 		return 0;
267 	case PTR_TYPE_NOTE:
268 		switch (type) {
269 		case PTR_TYPE_NOTE:
270 			if (oideq(&l->key_oid, &entry->key_oid)) {
271 				/* skip concatenation if l == entry */
272 				if (oideq(&l->val_oid, &entry->val_oid)) {
273 					free(entry);
274 					return 0;
275 				}
276 
277 				ret = combine_notes(&l->val_oid,
278 						    &entry->val_oid);
279 				if (!ret && is_null_oid(&l->val_oid))
280 					note_tree_remove(t, tree, n, entry);
281 				free(entry);
282 				return ret;
283 			}
284 			break;
285 		case PTR_TYPE_SUBTREE:
286 			if (!SUBTREE_SHA1_PREFIXCMP(l->key_oid.hash,
287 						    entry->key_oid.hash)) {
288 				/* unpack 'entry' */
289 				load_subtree(t, entry, tree, n);
290 				free(entry);
291 				return 0;
292 			}
293 			break;
294 		}
295 		break;
296 	case PTR_TYPE_SUBTREE:
297 		if (!SUBTREE_SHA1_PREFIXCMP(entry->key_oid.hash, l->key_oid.hash)) {
298 			/* unpack 'l' and restart insert */
299 			*p = NULL;
300 			load_subtree(t, l, tree, n);
301 			free(l);
302 			return note_tree_insert(t, tree, n, entry, type,
303 						combine_notes);
304 		}
305 		break;
306 	}
307 
308 	/* non-matching leaf_node */
309 	assert(GET_PTR_TYPE(*p) == PTR_TYPE_NOTE ||
310 	       GET_PTR_TYPE(*p) == PTR_TYPE_SUBTREE);
311 	if (is_null_oid(&entry->val_oid)) { /* skip insertion of empty note */
312 		free(entry);
313 		return 0;
314 	}
315 	new_node = (struct int_node *) xcalloc(1, sizeof(struct int_node));
316 	ret = note_tree_insert(t, new_node, n + 1, l, GET_PTR_TYPE(*p),
317 			       combine_notes);
318 	if (ret)
319 		return ret;
320 	*p = SET_PTR_TYPE(new_node, PTR_TYPE_INTERNAL);
321 	return note_tree_insert(t, new_node, n + 1, entry, type, combine_notes);
322 }
323 
324 /* Free the entire notes data contained in the given tree */
note_tree_free(struct int_node * tree)325 static void note_tree_free(struct int_node *tree)
326 {
327 	unsigned int i;
328 	for (i = 0; i < 16; i++) {
329 		void *p = tree->a[i];
330 		switch (GET_PTR_TYPE(p)) {
331 		case PTR_TYPE_INTERNAL:
332 			note_tree_free(CLR_PTR_TYPE(p));
333 			/* fall through */
334 		case PTR_TYPE_NOTE:
335 		case PTR_TYPE_SUBTREE:
336 			free(CLR_PTR_TYPE(p));
337 		}
338 	}
339 }
340 
non_note_cmp(const struct non_note * a,const struct non_note * b)341 static int non_note_cmp(const struct non_note *a, const struct non_note *b)
342 {
343 	return strcmp(a->path, b->path);
344 }
345 
346 /* note: takes ownership of path string */
add_non_note(struct notes_tree * t,char * path,unsigned int mode,const unsigned char * sha1)347 static void add_non_note(struct notes_tree *t, char *path,
348 		unsigned int mode, const unsigned char *sha1)
349 {
350 	struct non_note *p = t->prev_non_note, *n;
351 	n = (struct non_note *) xmalloc(sizeof(struct non_note));
352 	n->next = NULL;
353 	n->path = path;
354 	n->mode = mode;
355 	hashcpy(n->oid.hash, sha1);
356 	t->prev_non_note = n;
357 
358 	if (!t->first_non_note) {
359 		t->first_non_note = n;
360 		return;
361 	}
362 
363 	if (non_note_cmp(p, n) < 0)
364 		; /* do nothing  */
365 	else if (non_note_cmp(t->first_non_note, n) <= 0)
366 		p = t->first_non_note;
367 	else {
368 		/* n sorts before t->first_non_note */
369 		n->next = t->first_non_note;
370 		t->first_non_note = n;
371 		return;
372 	}
373 
374 	/* n sorts equal or after p */
375 	while (p->next && non_note_cmp(p->next, n) <= 0)
376 		p = p->next;
377 
378 	if (non_note_cmp(p, n) == 0) { /* n ~= p; overwrite p with n */
379 		assert(strcmp(p->path, n->path) == 0);
380 		p->mode = n->mode;
381 		oidcpy(&p->oid, &n->oid);
382 		free(n);
383 		t->prev_non_note = p;
384 		return;
385 	}
386 
387 	/* n sorts between p and p->next */
388 	n->next = p->next;
389 	p->next = n;
390 }
391 
load_subtree(struct notes_tree * t,struct leaf_node * subtree,struct int_node * node,unsigned int n)392 static void load_subtree(struct notes_tree *t, struct leaf_node *subtree,
393 		struct int_node *node, unsigned int n)
394 {
395 	struct object_id object_oid;
396 	size_t prefix_len;
397 	void *buf;
398 	struct tree_desc desc;
399 	struct name_entry entry;
400 	const unsigned hashsz = the_hash_algo->rawsz;
401 
402 	buf = fill_tree_descriptor(the_repository, &desc, &subtree->val_oid);
403 	if (!buf)
404 		die("Could not read %s for notes-index",
405 		     oid_to_hex(&subtree->val_oid));
406 
407 	prefix_len = subtree->key_oid.hash[KEY_INDEX];
408 	if (prefix_len >= hashsz)
409 		BUG("prefix_len (%"PRIuMAX") is out of range", (uintmax_t)prefix_len);
410 	if (prefix_len * 2 < n)
411 		BUG("prefix_len (%"PRIuMAX") is too small", (uintmax_t)prefix_len);
412 	memcpy(object_oid.hash, subtree->key_oid.hash, prefix_len);
413 	while (tree_entry(&desc, &entry)) {
414 		unsigned char type;
415 		struct leaf_node *l;
416 		size_t path_len = strlen(entry.path);
417 
418 		if (path_len == 2 * (hashsz - prefix_len)) {
419 			/* This is potentially the remainder of the SHA-1 */
420 
421 			if (!S_ISREG(entry.mode))
422 				/* notes must be blobs */
423 				goto handle_non_note;
424 
425 			if (hex_to_bytes(object_oid.hash + prefix_len, entry.path,
426 					 hashsz - prefix_len))
427 				goto handle_non_note; /* entry.path is not a SHA1 */
428 
429 			type = PTR_TYPE_NOTE;
430 		} else if (path_len == 2) {
431 			/* This is potentially an internal node */
432 			size_t len = prefix_len;
433 
434 			if (!S_ISDIR(entry.mode))
435 				/* internal nodes must be trees */
436 				goto handle_non_note;
437 
438 			if (hex_to_bytes(object_oid.hash + len++, entry.path, 1))
439 				goto handle_non_note; /* entry.path is not a SHA1 */
440 
441 			/*
442 			 * Pad the rest of the SHA-1 with zeros,
443 			 * except for the last byte, where we write
444 			 * the length:
445 			 */
446 			memset(object_oid.hash + len, 0, hashsz - len - 1);
447 			object_oid.hash[KEY_INDEX] = (unsigned char)len;
448 
449 			type = PTR_TYPE_SUBTREE;
450 		} else {
451 			/* This can't be part of a note */
452 			goto handle_non_note;
453 		}
454 
455 		l = xcalloc(1, sizeof(*l));
456 		oidcpy(&l->key_oid, &object_oid);
457 		oidcpy(&l->val_oid, &entry.oid);
458 		if (note_tree_insert(t, node, n, l, type,
459 				     combine_notes_concatenate))
460 			die("Failed to load %s %s into notes tree "
461 			    "from %s",
462 			    type == PTR_TYPE_NOTE ? "note" : "subtree",
463 			    oid_to_hex(&object_oid), t->ref);
464 
465 		continue;
466 
467 handle_non_note:
468 		/*
469 		 * Determine full path for this non-note entry. The
470 		 * filename is already found in entry.path, but the
471 		 * directory part of the path must be deduced from the
472 		 * subtree containing this entry based on our
473 		 * knowledge that the overall notes tree follows a
474 		 * strict byte-based progressive fanout structure
475 		 * (i.e. using 2/38, 2/2/36, etc. fanouts).
476 		 */
477 		{
478 			struct strbuf non_note_path = STRBUF_INIT;
479 			const char *q = oid_to_hex(&subtree->key_oid);
480 			size_t i;
481 			for (i = 0; i < prefix_len; i++) {
482 				strbuf_addch(&non_note_path, *q++);
483 				strbuf_addch(&non_note_path, *q++);
484 				strbuf_addch(&non_note_path, '/');
485 			}
486 			strbuf_addstr(&non_note_path, entry.path);
487 			add_non_note(t, strbuf_detach(&non_note_path, NULL),
488 				     entry.mode, entry.oid.hash);
489 		}
490 	}
491 	free(buf);
492 }
493 
494 /*
495  * Determine optimal on-disk fanout for this part of the notes tree
496  *
497  * Given a (sub)tree and the level in the internal tree structure, determine
498  * whether or not the given existing fanout should be expanded for this
499  * (sub)tree.
500  *
501  * Values of the 'fanout' variable:
502  * - 0: No fanout (all notes are stored directly in the root notes tree)
503  * - 1: 2/38 fanout
504  * - 2: 2/2/36 fanout
505  * - 3: 2/2/2/34 fanout
506  * etc.
507  */
determine_fanout(struct int_node * tree,unsigned char n,unsigned char fanout)508 static unsigned char determine_fanout(struct int_node *tree, unsigned char n,
509 		unsigned char fanout)
510 {
511 	/*
512 	 * The following is a simple heuristic that works well in practice:
513 	 * For each even-numbered 16-tree level (remember that each on-disk
514 	 * fanout level corresponds to _two_ 16-tree levels), peek at all 16
515 	 * entries at that tree level. If all of them are either int_nodes or
516 	 * subtree entries, then there are likely plenty of notes below this
517 	 * level, so we return an incremented fanout.
518 	 */
519 	unsigned int i;
520 	if ((n % 2) || (n > 2 * fanout))
521 		return fanout;
522 	for (i = 0; i < 16; i++) {
523 		switch (GET_PTR_TYPE(tree->a[i])) {
524 		case PTR_TYPE_SUBTREE:
525 		case PTR_TYPE_INTERNAL:
526 			continue;
527 		default:
528 			return fanout;
529 		}
530 	}
531 	return fanout + 1;
532 }
533 
534 /* hex oid + '/' between each pair of hex digits + NUL */
535 #define FANOUT_PATH_MAX GIT_MAX_HEXSZ + FANOUT_PATH_SEPARATORS_MAX + 1
536 
construct_path_with_fanout(const unsigned char * hash,unsigned char fanout,char * path)537 static void construct_path_with_fanout(const unsigned char *hash,
538 		unsigned char fanout, char *path)
539 {
540 	unsigned int i = 0, j = 0;
541 	const char *hex_hash = hash_to_hex(hash);
542 	assert(fanout < the_hash_algo->rawsz);
543 	while (fanout) {
544 		path[i++] = hex_hash[j++];
545 		path[i++] = hex_hash[j++];
546 		path[i++] = '/';
547 		fanout--;
548 	}
549 	xsnprintf(path + i, FANOUT_PATH_MAX - i, "%s", hex_hash + j);
550 }
551 
for_each_note_helper(struct notes_tree * t,struct int_node * tree,unsigned char n,unsigned char fanout,int flags,each_note_fn fn,void * cb_data)552 static int for_each_note_helper(struct notes_tree *t, struct int_node *tree,
553 		unsigned char n, unsigned char fanout, int flags,
554 		each_note_fn fn, void *cb_data)
555 {
556 	unsigned int i;
557 	void *p;
558 	int ret = 0;
559 	struct leaf_node *l;
560 	static char path[FANOUT_PATH_MAX];
561 
562 	fanout = determine_fanout(tree, n, fanout);
563 	for (i = 0; i < 16; i++) {
564 redo:
565 		p = tree->a[i];
566 		switch (GET_PTR_TYPE(p)) {
567 		case PTR_TYPE_INTERNAL:
568 			/* recurse into int_node */
569 			ret = for_each_note_helper(t, CLR_PTR_TYPE(p), n + 1,
570 				fanout, flags, fn, cb_data);
571 			break;
572 		case PTR_TYPE_SUBTREE:
573 			l = (struct leaf_node *) CLR_PTR_TYPE(p);
574 			/*
575 			 * Subtree entries in the note tree represent parts of
576 			 * the note tree that have not yet been explored. There
577 			 * is a direct relationship between subtree entries at
578 			 * level 'n' in the tree, and the 'fanout' variable:
579 			 * Subtree entries at level 'n <= 2 * fanout' should be
580 			 * preserved, since they correspond exactly to a fanout
581 			 * directory in the on-disk structure. However, subtree
582 			 * entries at level 'n > 2 * fanout' should NOT be
583 			 * preserved, but rather consolidated into the above
584 			 * notes tree level. We achieve this by unconditionally
585 			 * unpacking subtree entries that exist below the
586 			 * threshold level at 'n = 2 * fanout'.
587 			 */
588 			if (n <= 2 * fanout &&
589 			    flags & FOR_EACH_NOTE_YIELD_SUBTREES) {
590 				/* invoke callback with subtree */
591 				unsigned int path_len =
592 					l->key_oid.hash[KEY_INDEX] * 2 + fanout;
593 				assert(path_len < FANOUT_PATH_MAX - 1);
594 				construct_path_with_fanout(l->key_oid.hash,
595 							   fanout,
596 							   path);
597 				/* Create trailing slash, if needed */
598 				if (path[path_len - 1] != '/')
599 					path[path_len++] = '/';
600 				path[path_len] = '\0';
601 				ret = fn(&l->key_oid, &l->val_oid,
602 					 path,
603 					 cb_data);
604 			}
605 			if (n > fanout * 2 ||
606 			    !(flags & FOR_EACH_NOTE_DONT_UNPACK_SUBTREES)) {
607 				/* unpack subtree and resume traversal */
608 				tree->a[i] = NULL;
609 				load_subtree(t, l, tree, n);
610 				free(l);
611 				goto redo;
612 			}
613 			break;
614 		case PTR_TYPE_NOTE:
615 			l = (struct leaf_node *) CLR_PTR_TYPE(p);
616 			construct_path_with_fanout(l->key_oid.hash, fanout,
617 						   path);
618 			ret = fn(&l->key_oid, &l->val_oid, path,
619 				 cb_data);
620 			break;
621 		}
622 		if (ret)
623 			return ret;
624 	}
625 	return 0;
626 }
627 
628 struct tree_write_stack {
629 	struct tree_write_stack *next;
630 	struct strbuf buf;
631 	char path[2]; /* path to subtree in next, if any */
632 };
633 
matches_tree_write_stack(struct tree_write_stack * tws,const char * full_path)634 static inline int matches_tree_write_stack(struct tree_write_stack *tws,
635 		const char *full_path)
636 {
637 	return  full_path[0] == tws->path[0] &&
638 		full_path[1] == tws->path[1] &&
639 		full_path[2] == '/';
640 }
641 
write_tree_entry(struct strbuf * buf,unsigned int mode,const char * path,unsigned int path_len,const unsigned char * hash)642 static void write_tree_entry(struct strbuf *buf, unsigned int mode,
643 		const char *path, unsigned int path_len, const
644 		unsigned char *hash)
645 {
646 	strbuf_addf(buf, "%o %.*s%c", mode, path_len, path, '\0');
647 	strbuf_add(buf, hash, the_hash_algo->rawsz);
648 }
649 
tree_write_stack_init_subtree(struct tree_write_stack * tws,const char * path)650 static void tree_write_stack_init_subtree(struct tree_write_stack *tws,
651 		const char *path)
652 {
653 	struct tree_write_stack *n;
654 	assert(!tws->next);
655 	assert(tws->path[0] == '\0' && tws->path[1] == '\0');
656 	n = (struct tree_write_stack *)
657 		xmalloc(sizeof(struct tree_write_stack));
658 	n->next = NULL;
659 	strbuf_init(&n->buf, 256 * (32 + the_hash_algo->hexsz)); /* assume 256 entries per tree */
660 	n->path[0] = n->path[1] = '\0';
661 	tws->next = n;
662 	tws->path[0] = path[0];
663 	tws->path[1] = path[1];
664 }
665 
tree_write_stack_finish_subtree(struct tree_write_stack * tws)666 static int tree_write_stack_finish_subtree(struct tree_write_stack *tws)
667 {
668 	int ret;
669 	struct tree_write_stack *n = tws->next;
670 	struct object_id s;
671 	if (n) {
672 		ret = tree_write_stack_finish_subtree(n);
673 		if (ret)
674 			return ret;
675 		ret = write_object_file(n->buf.buf, n->buf.len, tree_type, &s);
676 		if (ret)
677 			return ret;
678 		strbuf_release(&n->buf);
679 		free(n);
680 		tws->next = NULL;
681 		write_tree_entry(&tws->buf, 040000, tws->path, 2, s.hash);
682 		tws->path[0] = tws->path[1] = '\0';
683 	}
684 	return 0;
685 }
686 
write_each_note_helper(struct tree_write_stack * tws,const char * path,unsigned int mode,const struct object_id * oid)687 static int write_each_note_helper(struct tree_write_stack *tws,
688 		const char *path, unsigned int mode,
689 		const struct object_id *oid)
690 {
691 	size_t path_len = strlen(path);
692 	unsigned int n = 0;
693 	int ret;
694 
695 	/* Determine common part of tree write stack */
696 	while (tws && 3 * n < path_len &&
697 	       matches_tree_write_stack(tws, path + 3 * n)) {
698 		n++;
699 		tws = tws->next;
700 	}
701 
702 	/* tws point to last matching tree_write_stack entry */
703 	ret = tree_write_stack_finish_subtree(tws);
704 	if (ret)
705 		return ret;
706 
707 	/* Start subtrees needed to satisfy path */
708 	while (3 * n + 2 < path_len && path[3 * n + 2] == '/') {
709 		tree_write_stack_init_subtree(tws, path + 3 * n);
710 		n++;
711 		tws = tws->next;
712 	}
713 
714 	/* There should be no more directory components in the given path */
715 	assert(memchr(path + 3 * n, '/', path_len - (3 * n)) == NULL);
716 
717 	/* Finally add given entry to the current tree object */
718 	write_tree_entry(&tws->buf, mode, path + 3 * n, path_len - (3 * n),
719 			 oid->hash);
720 
721 	return 0;
722 }
723 
724 struct write_each_note_data {
725 	struct tree_write_stack *root;
726 	struct non_note *next_non_note;
727 };
728 
write_each_non_note_until(const char * note_path,struct write_each_note_data * d)729 static int write_each_non_note_until(const char *note_path,
730 		struct write_each_note_data *d)
731 {
732 	struct non_note *n = d->next_non_note;
733 	int cmp = 0, ret;
734 	while (n && (!note_path || (cmp = strcmp(n->path, note_path)) <= 0)) {
735 		if (note_path && cmp == 0)
736 			; /* do nothing, prefer note to non-note */
737 		else {
738 			ret = write_each_note_helper(d->root, n->path, n->mode,
739 						     &n->oid);
740 			if (ret)
741 				return ret;
742 		}
743 		n = n->next;
744 	}
745 	d->next_non_note = n;
746 	return 0;
747 }
748 
write_each_note(const struct object_id * object_oid,const struct object_id * note_oid,char * note_path,void * cb_data)749 static int write_each_note(const struct object_id *object_oid,
750 		const struct object_id *note_oid, char *note_path,
751 		void *cb_data)
752 {
753 	struct write_each_note_data *d =
754 		(struct write_each_note_data *) cb_data;
755 	size_t note_path_len = strlen(note_path);
756 	unsigned int mode = 0100644;
757 
758 	if (note_path[note_path_len - 1] == '/') {
759 		/* subtree entry */
760 		note_path_len--;
761 		note_path[note_path_len] = '\0';
762 		mode = 040000;
763 	}
764 	assert(note_path_len <= GIT_MAX_HEXSZ + FANOUT_PATH_SEPARATORS);
765 
766 	/* Weave non-note entries into note entries */
767 	return  write_each_non_note_until(note_path, d) ||
768 		write_each_note_helper(d->root, note_path, mode, note_oid);
769 }
770 
771 struct note_delete_list {
772 	struct note_delete_list *next;
773 	const unsigned char *sha1;
774 };
775 
prune_notes_helper(const struct object_id * object_oid,const struct object_id * note_oid,char * note_path,void * cb_data)776 static int prune_notes_helper(const struct object_id *object_oid,
777 		const struct object_id *note_oid, char *note_path,
778 		void *cb_data)
779 {
780 	struct note_delete_list **l = (struct note_delete_list **) cb_data;
781 	struct note_delete_list *n;
782 
783 	if (has_object_file(object_oid))
784 		return 0; /* nothing to do for this note */
785 
786 	/* failed to find object => prune this note */
787 	n = (struct note_delete_list *) xmalloc(sizeof(*n));
788 	n->next = *l;
789 	n->sha1 = object_oid->hash;
790 	*l = n;
791 	return 0;
792 }
793 
combine_notes_concatenate(struct object_id * cur_oid,const struct object_id * new_oid)794 int combine_notes_concatenate(struct object_id *cur_oid,
795 			      const struct object_id *new_oid)
796 {
797 	char *cur_msg = NULL, *new_msg = NULL, *buf;
798 	unsigned long cur_len, new_len, buf_len;
799 	enum object_type cur_type, new_type;
800 	int ret;
801 
802 	/* read in both note blob objects */
803 	if (!is_null_oid(new_oid))
804 		new_msg = read_object_file(new_oid, &new_type, &new_len);
805 	if (!new_msg || !new_len || new_type != OBJ_BLOB) {
806 		free(new_msg);
807 		return 0;
808 	}
809 	if (!is_null_oid(cur_oid))
810 		cur_msg = read_object_file(cur_oid, &cur_type, &cur_len);
811 	if (!cur_msg || !cur_len || cur_type != OBJ_BLOB) {
812 		free(cur_msg);
813 		free(new_msg);
814 		oidcpy(cur_oid, new_oid);
815 		return 0;
816 	}
817 
818 	/* we will separate the notes by two newlines anyway */
819 	if (cur_msg[cur_len - 1] == '\n')
820 		cur_len--;
821 
822 	/* concatenate cur_msg and new_msg into buf */
823 	buf_len = cur_len + 2 + new_len;
824 	buf = (char *) xmalloc(buf_len);
825 	memcpy(buf, cur_msg, cur_len);
826 	buf[cur_len] = '\n';
827 	buf[cur_len + 1] = '\n';
828 	memcpy(buf + cur_len + 2, new_msg, new_len);
829 	free(cur_msg);
830 	free(new_msg);
831 
832 	/* create a new blob object from buf */
833 	ret = write_object_file(buf, buf_len, blob_type, cur_oid);
834 	free(buf);
835 	return ret;
836 }
837 
combine_notes_overwrite(struct object_id * cur_oid,const struct object_id * new_oid)838 int combine_notes_overwrite(struct object_id *cur_oid,
839 			    const struct object_id *new_oid)
840 {
841 	oidcpy(cur_oid, new_oid);
842 	return 0;
843 }
844 
combine_notes_ignore(struct object_id * cur_oid,const struct object_id * new_oid)845 int combine_notes_ignore(struct object_id *cur_oid,
846 			 const struct object_id *new_oid)
847 {
848 	return 0;
849 }
850 
851 /*
852  * Add the lines from the named object to list, with trailing
853  * newlines removed.
854  */
string_list_add_note_lines(struct string_list * list,const struct object_id * oid)855 static int string_list_add_note_lines(struct string_list *list,
856 				      const struct object_id *oid)
857 {
858 	char *data;
859 	unsigned long len;
860 	enum object_type t;
861 
862 	if (is_null_oid(oid))
863 		return 0;
864 
865 	/* read_sha1_file NUL-terminates */
866 	data = read_object_file(oid, &t, &len);
867 	if (t != OBJ_BLOB || !data || !len) {
868 		free(data);
869 		return t != OBJ_BLOB || !data;
870 	}
871 
872 	/*
873 	 * If the last line of the file is EOL-terminated, this will
874 	 * add an empty string to the list.  But it will be removed
875 	 * later, along with any empty strings that came from empty
876 	 * lines within the file.
877 	 */
878 	string_list_split(list, data, '\n', -1);
879 	free(data);
880 	return 0;
881 }
882 
string_list_join_lines_helper(struct string_list_item * item,void * cb_data)883 static int string_list_join_lines_helper(struct string_list_item *item,
884 					 void *cb_data)
885 {
886 	struct strbuf *buf = cb_data;
887 	strbuf_addstr(buf, item->string);
888 	strbuf_addch(buf, '\n');
889 	return 0;
890 }
891 
combine_notes_cat_sort_uniq(struct object_id * cur_oid,const struct object_id * new_oid)892 int combine_notes_cat_sort_uniq(struct object_id *cur_oid,
893 				const struct object_id *new_oid)
894 {
895 	struct string_list sort_uniq_list = STRING_LIST_INIT_DUP;
896 	struct strbuf buf = STRBUF_INIT;
897 	int ret = 1;
898 
899 	/* read both note blob objects into unique_lines */
900 	if (string_list_add_note_lines(&sort_uniq_list, cur_oid))
901 		goto out;
902 	if (string_list_add_note_lines(&sort_uniq_list, new_oid))
903 		goto out;
904 	string_list_remove_empty_items(&sort_uniq_list, 0);
905 	string_list_sort(&sort_uniq_list);
906 	string_list_remove_duplicates(&sort_uniq_list, 0);
907 
908 	/* create a new blob object from sort_uniq_list */
909 	if (for_each_string_list(&sort_uniq_list,
910 				 string_list_join_lines_helper, &buf))
911 		goto out;
912 
913 	ret = write_object_file(buf.buf, buf.len, blob_type, cur_oid);
914 
915 out:
916 	strbuf_release(&buf);
917 	string_list_clear(&sort_uniq_list, 0);
918 	return ret;
919 }
920 
string_list_add_one_ref(const char * refname,const struct object_id * oid,int flag,void * cb)921 static int string_list_add_one_ref(const char *refname, const struct object_id *oid,
922 				   int flag, void *cb)
923 {
924 	struct string_list *refs = cb;
925 	if (!unsorted_string_list_has_string(refs, refname))
926 		string_list_append(refs, refname);
927 	return 0;
928 }
929 
930 /*
931  * The list argument must have strdup_strings set on it.
932  */
string_list_add_refs_by_glob(struct string_list * list,const char * glob)933 void string_list_add_refs_by_glob(struct string_list *list, const char *glob)
934 {
935 	assert(list->strdup_strings);
936 	if (has_glob_specials(glob)) {
937 		for_each_glob_ref(string_list_add_one_ref, glob, list);
938 	} else {
939 		struct object_id oid;
940 		if (get_oid(glob, &oid))
941 			warning("notes ref %s is invalid", glob);
942 		if (!unsorted_string_list_has_string(list, glob))
943 			string_list_append(list, glob);
944 	}
945 }
946 
string_list_add_refs_from_colon_sep(struct string_list * list,const char * globs)947 void string_list_add_refs_from_colon_sep(struct string_list *list,
948 					 const char *globs)
949 {
950 	struct string_list split = STRING_LIST_INIT_NODUP;
951 	char *globs_copy = xstrdup(globs);
952 	int i;
953 
954 	string_list_split_in_place(&split, globs_copy, ':', -1);
955 	string_list_remove_empty_items(&split, 0);
956 
957 	for (i = 0; i < split.nr; i++)
958 		string_list_add_refs_by_glob(list, split.items[i].string);
959 
960 	string_list_clear(&split, 0);
961 	free(globs_copy);
962 }
963 
notes_display_config(const char * k,const char * v,void * cb)964 static int notes_display_config(const char *k, const char *v, void *cb)
965 {
966 	int *load_refs = cb;
967 
968 	if (*load_refs && !strcmp(k, "notes.displayref")) {
969 		if (!v)
970 			config_error_nonbool(k);
971 		string_list_add_refs_by_glob(&display_notes_refs, v);
972 	}
973 
974 	return 0;
975 }
976 
default_notes_ref(void)977 const char *default_notes_ref(void)
978 {
979 	const char *notes_ref = NULL;
980 	if (!notes_ref)
981 		notes_ref = getenv(GIT_NOTES_REF_ENVIRONMENT);
982 	if (!notes_ref)
983 		notes_ref = notes_ref_name; /* value of core.notesRef config */
984 	if (!notes_ref)
985 		notes_ref = GIT_NOTES_DEFAULT_REF;
986 	return notes_ref;
987 }
988 
init_notes(struct notes_tree * t,const char * notes_ref,combine_notes_fn combine_notes,int flags)989 void init_notes(struct notes_tree *t, const char *notes_ref,
990 		combine_notes_fn combine_notes, int flags)
991 {
992 	struct object_id oid, object_oid;
993 	unsigned short mode;
994 	struct leaf_node root_tree;
995 
996 	if (!t)
997 		t = &default_notes_tree;
998 	assert(!t->initialized);
999 
1000 	if (!notes_ref)
1001 		notes_ref = default_notes_ref();
1002 
1003 	if (!combine_notes)
1004 		combine_notes = combine_notes_concatenate;
1005 
1006 	t->root = (struct int_node *) xcalloc(1, sizeof(struct int_node));
1007 	t->first_non_note = NULL;
1008 	t->prev_non_note = NULL;
1009 	t->ref = xstrdup_or_null(notes_ref);
1010 	t->update_ref = (flags & NOTES_INIT_WRITABLE) ? t->ref : NULL;
1011 	t->combine_notes = combine_notes;
1012 	t->initialized = 1;
1013 	t->dirty = 0;
1014 
1015 	if (flags & NOTES_INIT_EMPTY || !notes_ref ||
1016 	    get_oid_treeish(notes_ref, &object_oid))
1017 		return;
1018 	if (flags & NOTES_INIT_WRITABLE && read_ref(notes_ref, &object_oid))
1019 		die("Cannot use notes ref %s", notes_ref);
1020 	if (get_tree_entry(the_repository, &object_oid, "", &oid, &mode))
1021 		die("Failed to read notes tree referenced by %s (%s)",
1022 		    notes_ref, oid_to_hex(&object_oid));
1023 
1024 	oidclr(&root_tree.key_oid);
1025 	oidcpy(&root_tree.val_oid, &oid);
1026 	load_subtree(t, &root_tree, t->root, 0);
1027 }
1028 
load_notes_trees(struct string_list * refs,int flags)1029 struct notes_tree **load_notes_trees(struct string_list *refs, int flags)
1030 {
1031 	struct string_list_item *item;
1032 	int counter = 0;
1033 	struct notes_tree **trees;
1034 	ALLOC_ARRAY(trees, refs->nr + 1);
1035 	for_each_string_list_item(item, refs) {
1036 		struct notes_tree *t = xcalloc(1, sizeof(struct notes_tree));
1037 		init_notes(t, item->string, combine_notes_ignore, flags);
1038 		trees[counter++] = t;
1039 	}
1040 	trees[counter] = NULL;
1041 	return trees;
1042 }
1043 
init_display_notes(struct display_notes_opt * opt)1044 void init_display_notes(struct display_notes_opt *opt)
1045 {
1046 	memset(opt, 0, sizeof(*opt));
1047 	opt->use_default_notes = -1;
1048 }
1049 
enable_default_display_notes(struct display_notes_opt * opt,int * show_notes)1050 void enable_default_display_notes(struct display_notes_opt *opt, int *show_notes)
1051 {
1052 	opt->use_default_notes = 1;
1053 	*show_notes = 1;
1054 }
1055 
enable_ref_display_notes(struct display_notes_opt * opt,int * show_notes,const char * ref)1056 void enable_ref_display_notes(struct display_notes_opt *opt, int *show_notes,
1057 		const char *ref) {
1058 	struct strbuf buf = STRBUF_INIT;
1059 	strbuf_addstr(&buf, ref);
1060 	expand_notes_ref(&buf);
1061 	string_list_append(&opt->extra_notes_refs,
1062 			strbuf_detach(&buf, NULL));
1063 	*show_notes = 1;
1064 }
1065 
disable_display_notes(struct display_notes_opt * opt,int * show_notes)1066 void disable_display_notes(struct display_notes_opt *opt, int *show_notes)
1067 {
1068 	opt->use_default_notes = -1;
1069 	/* we have been strdup'ing ourselves, so trick
1070 	 * string_list into free()ing strings */
1071 	opt->extra_notes_refs.strdup_strings = 1;
1072 	string_list_clear(&opt->extra_notes_refs, 0);
1073 	opt->extra_notes_refs.strdup_strings = 0;
1074 	*show_notes = 0;
1075 }
1076 
load_display_notes(struct display_notes_opt * opt)1077 void load_display_notes(struct display_notes_opt *opt)
1078 {
1079 	char *display_ref_env;
1080 	int load_config_refs = 0;
1081 	display_notes_refs.strdup_strings = 1;
1082 
1083 	assert(!display_notes_trees);
1084 
1085 	if (!opt || opt->use_default_notes > 0 ||
1086 	    (opt->use_default_notes == -1 && !opt->extra_notes_refs.nr)) {
1087 		string_list_append(&display_notes_refs, default_notes_ref());
1088 		display_ref_env = getenv(GIT_NOTES_DISPLAY_REF_ENVIRONMENT);
1089 		if (display_ref_env) {
1090 			string_list_add_refs_from_colon_sep(&display_notes_refs,
1091 							    display_ref_env);
1092 			load_config_refs = 0;
1093 		} else
1094 			load_config_refs = 1;
1095 	}
1096 
1097 	git_config(notes_display_config, &load_config_refs);
1098 
1099 	if (opt) {
1100 		struct string_list_item *item;
1101 		for_each_string_list_item(item, &opt->extra_notes_refs)
1102 			string_list_add_refs_by_glob(&display_notes_refs,
1103 						     item->string);
1104 	}
1105 
1106 	display_notes_trees = load_notes_trees(&display_notes_refs, 0);
1107 	string_list_clear(&display_notes_refs, 0);
1108 }
1109 
add_note(struct notes_tree * t,const struct object_id * object_oid,const struct object_id * note_oid,combine_notes_fn combine_notes)1110 int add_note(struct notes_tree *t, const struct object_id *object_oid,
1111 		const struct object_id *note_oid, combine_notes_fn combine_notes)
1112 {
1113 	struct leaf_node *l;
1114 
1115 	if (!t)
1116 		t = &default_notes_tree;
1117 	assert(t->initialized);
1118 	t->dirty = 1;
1119 	if (!combine_notes)
1120 		combine_notes = t->combine_notes;
1121 	l = (struct leaf_node *) xmalloc(sizeof(struct leaf_node));
1122 	oidcpy(&l->key_oid, object_oid);
1123 	oidcpy(&l->val_oid, note_oid);
1124 	return note_tree_insert(t, t->root, 0, l, PTR_TYPE_NOTE, combine_notes);
1125 }
1126 
remove_note(struct notes_tree * t,const unsigned char * object_sha1)1127 int remove_note(struct notes_tree *t, const unsigned char *object_sha1)
1128 {
1129 	struct leaf_node l;
1130 
1131 	if (!t)
1132 		t = &default_notes_tree;
1133 	assert(t->initialized);
1134 	hashcpy(l.key_oid.hash, object_sha1);
1135 	oidclr(&l.val_oid);
1136 	note_tree_remove(t, t->root, 0, &l);
1137 	if (is_null_oid(&l.val_oid)) /* no note was removed */
1138 		return 1;
1139 	t->dirty = 1;
1140 	return 0;
1141 }
1142 
get_note(struct notes_tree * t,const struct object_id * oid)1143 const struct object_id *get_note(struct notes_tree *t,
1144 		const struct object_id *oid)
1145 {
1146 	struct leaf_node *found;
1147 
1148 	if (!t)
1149 		t = &default_notes_tree;
1150 	assert(t->initialized);
1151 	found = note_tree_find(t, t->root, 0, oid->hash);
1152 	return found ? &found->val_oid : NULL;
1153 }
1154 
for_each_note(struct notes_tree * t,int flags,each_note_fn fn,void * cb_data)1155 int for_each_note(struct notes_tree *t, int flags, each_note_fn fn,
1156 		void *cb_data)
1157 {
1158 	if (!t)
1159 		t = &default_notes_tree;
1160 	assert(t->initialized);
1161 	return for_each_note_helper(t, t->root, 0, 0, flags, fn, cb_data);
1162 }
1163 
write_notes_tree(struct notes_tree * t,struct object_id * result)1164 int write_notes_tree(struct notes_tree *t, struct object_id *result)
1165 {
1166 	struct tree_write_stack root;
1167 	struct write_each_note_data cb_data;
1168 	int ret;
1169 	int flags;
1170 
1171 	if (!t)
1172 		t = &default_notes_tree;
1173 	assert(t->initialized);
1174 
1175 	/* Prepare for traversal of current notes tree */
1176 	root.next = NULL; /* last forward entry in list is grounded */
1177 	strbuf_init(&root.buf, 256 * (32 + the_hash_algo->hexsz)); /* assume 256 entries */
1178 	root.path[0] = root.path[1] = '\0';
1179 	cb_data.root = &root;
1180 	cb_data.next_non_note = t->first_non_note;
1181 
1182 	/* Write tree objects representing current notes tree */
1183 	flags = FOR_EACH_NOTE_DONT_UNPACK_SUBTREES |
1184 		FOR_EACH_NOTE_YIELD_SUBTREES;
1185 	ret = for_each_note(t, flags, write_each_note, &cb_data) ||
1186 	      write_each_non_note_until(NULL, &cb_data) ||
1187 	      tree_write_stack_finish_subtree(&root) ||
1188 	      write_object_file(root.buf.buf, root.buf.len, tree_type, result);
1189 	strbuf_release(&root.buf);
1190 	return ret;
1191 }
1192 
prune_notes(struct notes_tree * t,int flags)1193 void prune_notes(struct notes_tree *t, int flags)
1194 {
1195 	struct note_delete_list *l = NULL;
1196 
1197 	if (!t)
1198 		t = &default_notes_tree;
1199 	assert(t->initialized);
1200 
1201 	for_each_note(t, 0, prune_notes_helper, &l);
1202 
1203 	while (l) {
1204 		if (flags & NOTES_PRUNE_VERBOSE)
1205 			printf("%s\n", hash_to_hex(l->sha1));
1206 		if (!(flags & NOTES_PRUNE_DRYRUN))
1207 			remove_note(t, l->sha1);
1208 		l = l->next;
1209 	}
1210 }
1211 
free_notes(struct notes_tree * t)1212 void free_notes(struct notes_tree *t)
1213 {
1214 	if (!t)
1215 		t = &default_notes_tree;
1216 	if (t->root)
1217 		note_tree_free(t->root);
1218 	free(t->root);
1219 	while (t->first_non_note) {
1220 		t->prev_non_note = t->first_non_note->next;
1221 		free(t->first_non_note->path);
1222 		free(t->first_non_note);
1223 		t->first_non_note = t->prev_non_note;
1224 	}
1225 	free(t->ref);
1226 	memset(t, 0, sizeof(struct notes_tree));
1227 }
1228 
1229 /*
1230  * Fill the given strbuf with the notes associated with the given object.
1231  *
1232  * If the given notes_tree structure is not initialized, it will be auto-
1233  * initialized to the default value (see documentation for init_notes() above).
1234  * If the given notes_tree is NULL, the internal/default notes_tree will be
1235  * used instead.
1236  *
1237  * (raw != 0) gives the %N userformat; otherwise, the note message is given
1238  * for human consumption.
1239  */
format_note(struct notes_tree * t,const struct object_id * object_oid,struct strbuf * sb,const char * output_encoding,int raw)1240 static void format_note(struct notes_tree *t, const struct object_id *object_oid,
1241 			struct strbuf *sb, const char *output_encoding, int raw)
1242 {
1243 	static const char utf8[] = "utf-8";
1244 	const struct object_id *oid;
1245 	char *msg, *msg_p;
1246 	unsigned long linelen, msglen;
1247 	enum object_type type;
1248 
1249 	if (!t)
1250 		t = &default_notes_tree;
1251 	if (!t->initialized)
1252 		init_notes(t, NULL, NULL, 0);
1253 
1254 	oid = get_note(t, object_oid);
1255 	if (!oid)
1256 		return;
1257 
1258 	if (!(msg = read_object_file(oid, &type, &msglen)) || type != OBJ_BLOB) {
1259 		free(msg);
1260 		return;
1261 	}
1262 
1263 	if (output_encoding && *output_encoding &&
1264 	    !is_encoding_utf8(output_encoding)) {
1265 		char *reencoded = reencode_string(msg, output_encoding, utf8);
1266 		if (reencoded) {
1267 			free(msg);
1268 			msg = reencoded;
1269 			msglen = strlen(msg);
1270 		}
1271 	}
1272 
1273 	/* we will end the annotation by a newline anyway */
1274 	if (msglen && msg[msglen - 1] == '\n')
1275 		msglen--;
1276 
1277 	if (!raw) {
1278 		const char *ref = t->ref;
1279 		if (!ref || !strcmp(ref, GIT_NOTES_DEFAULT_REF)) {
1280 			strbuf_addstr(sb, "\nNotes:\n");
1281 		} else {
1282 			if (starts_with(ref, "refs/"))
1283 				ref += 5;
1284 			if (starts_with(ref, "notes/"))
1285 				ref += 6;
1286 			strbuf_addf(sb, "\nNotes (%s):\n", ref);
1287 		}
1288 	}
1289 
1290 	for (msg_p = msg; msg_p < msg + msglen; msg_p += linelen + 1) {
1291 		linelen = strchrnul(msg_p, '\n') - msg_p;
1292 
1293 		if (!raw)
1294 			strbuf_addstr(sb, "    ");
1295 		strbuf_add(sb, msg_p, linelen);
1296 		strbuf_addch(sb, '\n');
1297 	}
1298 
1299 	free(msg);
1300 }
1301 
format_display_notes(const struct object_id * object_oid,struct strbuf * sb,const char * output_encoding,int raw)1302 void format_display_notes(const struct object_id *object_oid,
1303 			  struct strbuf *sb, const char *output_encoding, int raw)
1304 {
1305 	int i;
1306 	assert(display_notes_trees);
1307 	for (i = 0; display_notes_trees[i]; i++)
1308 		format_note(display_notes_trees[i], object_oid, sb,
1309 			    output_encoding, raw);
1310 }
1311 
copy_note(struct notes_tree * t,const struct object_id * from_obj,const struct object_id * to_obj,int force,combine_notes_fn combine_notes)1312 int copy_note(struct notes_tree *t,
1313 	      const struct object_id *from_obj, const struct object_id *to_obj,
1314 	      int force, combine_notes_fn combine_notes)
1315 {
1316 	const struct object_id *note = get_note(t, from_obj);
1317 	const struct object_id *existing_note = get_note(t, to_obj);
1318 
1319 	if (!force && existing_note)
1320 		return 1;
1321 
1322 	if (note)
1323 		return add_note(t, to_obj, note, combine_notes);
1324 	else if (existing_note)
1325 		return add_note(t, to_obj, &null_oid, combine_notes);
1326 
1327 	return 0;
1328 }
1329 
expand_notes_ref(struct strbuf * sb)1330 void expand_notes_ref(struct strbuf *sb)
1331 {
1332 	if (starts_with(sb->buf, "refs/notes/"))
1333 		return; /* we're happy */
1334 	else if (starts_with(sb->buf, "notes/"))
1335 		strbuf_insert(sb, 0, "refs/", 5);
1336 	else
1337 		strbuf_insert(sb, 0, "refs/notes/", 11);
1338 }
1339 
expand_loose_notes_ref(struct strbuf * sb)1340 void expand_loose_notes_ref(struct strbuf *sb)
1341 {
1342 	struct object_id object;
1343 
1344 	if (get_oid(sb->buf, &object)) {
1345 		/* fallback to expand_notes_ref */
1346 		expand_notes_ref(sb);
1347 	}
1348 }
1349