1 #include "../cache.h"
2 #include "../refs.h"
3 #include "refs-internal.h"
4 #include "ref-cache.h"
5 #include "../iterator.h"
6 
add_entry_to_dir(struct ref_dir * dir,struct ref_entry * entry)7 void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
8 {
9 	ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
10 	dir->entries[dir->nr++] = entry;
11 	/* optimize for the case that entries are added in order */
12 	if (dir->nr == 1 ||
13 	    (dir->nr == dir->sorted + 1 &&
14 	     strcmp(dir->entries[dir->nr - 2]->name,
15 		    dir->entries[dir->nr - 1]->name) < 0))
16 		dir->sorted = dir->nr;
17 }
18 
get_ref_dir(struct ref_entry * entry)19 struct ref_dir *get_ref_dir(struct ref_entry *entry)
20 {
21 	struct ref_dir *dir;
22 	assert(entry->flag & REF_DIR);
23 	dir = &entry->u.subdir;
24 	if (entry->flag & REF_INCOMPLETE) {
25 		if (!dir->cache->fill_ref_dir)
26 			BUG("incomplete ref_store without fill_ref_dir function");
27 
28 		dir->cache->fill_ref_dir(dir->cache->ref_store, dir, entry->name);
29 		entry->flag &= ~REF_INCOMPLETE;
30 	}
31 	return dir;
32 }
33 
create_ref_entry(const char * refname,const struct object_id * oid,int flag)34 struct ref_entry *create_ref_entry(const char *refname,
35 				   const struct object_id *oid, int flag)
36 {
37 	struct ref_entry *ref;
38 
39 	FLEX_ALLOC_STR(ref, name, refname);
40 	oidcpy(&ref->u.value.oid, oid);
41 	ref->flag = flag;
42 	return ref;
43 }
44 
create_ref_cache(struct ref_store * refs,fill_ref_dir_fn * fill_ref_dir)45 struct ref_cache *create_ref_cache(struct ref_store *refs,
46 				   fill_ref_dir_fn *fill_ref_dir)
47 {
48 	struct ref_cache *ret = xcalloc(1, sizeof(*ret));
49 
50 	ret->ref_store = refs;
51 	ret->fill_ref_dir = fill_ref_dir;
52 	ret->root = create_dir_entry(ret, "", 0, 1);
53 	return ret;
54 }
55 
56 static void clear_ref_dir(struct ref_dir *dir);
57 
free_ref_entry(struct ref_entry * entry)58 static void free_ref_entry(struct ref_entry *entry)
59 {
60 	if (entry->flag & REF_DIR) {
61 		/*
62 		 * Do not use get_ref_dir() here, as that might
63 		 * trigger the reading of loose refs.
64 		 */
65 		clear_ref_dir(&entry->u.subdir);
66 	}
67 	free(entry);
68 }
69 
free_ref_cache(struct ref_cache * cache)70 void free_ref_cache(struct ref_cache *cache)
71 {
72 	free_ref_entry(cache->root);
73 	free(cache);
74 }
75 
76 /*
77  * Clear and free all entries in dir, recursively.
78  */
clear_ref_dir(struct ref_dir * dir)79 static void clear_ref_dir(struct ref_dir *dir)
80 {
81 	int i;
82 	for (i = 0; i < dir->nr; i++)
83 		free_ref_entry(dir->entries[i]);
84 	FREE_AND_NULL(dir->entries);
85 	dir->sorted = dir->nr = dir->alloc = 0;
86 }
87 
create_dir_entry(struct ref_cache * cache,const char * dirname,size_t len,int incomplete)88 struct ref_entry *create_dir_entry(struct ref_cache *cache,
89 				   const char *dirname, size_t len,
90 				   int incomplete)
91 {
92 	struct ref_entry *direntry;
93 
94 	FLEX_ALLOC_MEM(direntry, name, dirname, len);
95 	direntry->u.subdir.cache = cache;
96 	direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
97 	return direntry;
98 }
99 
ref_entry_cmp(const void * a,const void * b)100 static int ref_entry_cmp(const void *a, const void *b)
101 {
102 	struct ref_entry *one = *(struct ref_entry **)a;
103 	struct ref_entry *two = *(struct ref_entry **)b;
104 	return strcmp(one->name, two->name);
105 }
106 
107 static void sort_ref_dir(struct ref_dir *dir);
108 
109 struct string_slice {
110 	size_t len;
111 	const char *str;
112 };
113 
ref_entry_cmp_sslice(const void * key_,const void * ent_)114 static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
115 {
116 	const struct string_slice *key = key_;
117 	const struct ref_entry *ent = *(const struct ref_entry * const *)ent_;
118 	int cmp = strncmp(key->str, ent->name, key->len);
119 	if (cmp)
120 		return cmp;
121 	return '\0' - (unsigned char)ent->name[key->len];
122 }
123 
search_ref_dir(struct ref_dir * dir,const char * refname,size_t len)124 int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
125 {
126 	struct ref_entry **r;
127 	struct string_slice key;
128 
129 	if (refname == NULL || !dir->nr)
130 		return -1;
131 
132 	sort_ref_dir(dir);
133 	key.len = len;
134 	key.str = refname;
135 	r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
136 		    ref_entry_cmp_sslice);
137 
138 	if (r == NULL)
139 		return -1;
140 
141 	return r - dir->entries;
142 }
143 
144 /*
145  * Search for a directory entry directly within dir (without
146  * recursing).  Sort dir if necessary.  subdirname must be a directory
147  * name (i.e., end in '/').  If mkdir is set, then create the
148  * directory if it is missing; otherwise, return NULL if the desired
149  * directory cannot be found.  dir must already be complete.
150  */
search_for_subdir(struct ref_dir * dir,const char * subdirname,size_t len,int mkdir)151 static struct ref_dir *search_for_subdir(struct ref_dir *dir,
152 					 const char *subdirname, size_t len,
153 					 int mkdir)
154 {
155 	int entry_index = search_ref_dir(dir, subdirname, len);
156 	struct ref_entry *entry;
157 	if (entry_index == -1) {
158 		if (!mkdir)
159 			return NULL;
160 		/*
161 		 * Since dir is complete, the absence of a subdir
162 		 * means that the subdir really doesn't exist;
163 		 * therefore, create an empty record for it but mark
164 		 * the record complete.
165 		 */
166 		entry = create_dir_entry(dir->cache, subdirname, len, 0);
167 		add_entry_to_dir(dir, entry);
168 	} else {
169 		entry = dir->entries[entry_index];
170 	}
171 	return get_ref_dir(entry);
172 }
173 
174 /*
175  * If refname is a reference name, find the ref_dir within the dir
176  * tree that should hold refname. If refname is a directory name
177  * (i.e., it ends in '/'), then return that ref_dir itself. dir must
178  * represent the top-level directory and must already be complete.
179  * Sort ref_dirs and recurse into subdirectories as necessary. If
180  * mkdir is set, then create any missing directories; otherwise,
181  * return NULL if the desired directory cannot be found.
182  */
find_containing_dir(struct ref_dir * dir,const char * refname,int mkdir)183 static struct ref_dir *find_containing_dir(struct ref_dir *dir,
184 					   const char *refname, int mkdir)
185 {
186 	const char *slash;
187 	for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
188 		size_t dirnamelen = slash - refname + 1;
189 		struct ref_dir *subdir;
190 		subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
191 		if (!subdir) {
192 			dir = NULL;
193 			break;
194 		}
195 		dir = subdir;
196 	}
197 
198 	return dir;
199 }
200 
find_ref_entry(struct ref_dir * dir,const char * refname)201 struct ref_entry *find_ref_entry(struct ref_dir *dir, const char *refname)
202 {
203 	int entry_index;
204 	struct ref_entry *entry;
205 	dir = find_containing_dir(dir, refname, 0);
206 	if (!dir)
207 		return NULL;
208 	entry_index = search_ref_dir(dir, refname, strlen(refname));
209 	if (entry_index == -1)
210 		return NULL;
211 	entry = dir->entries[entry_index];
212 	return (entry->flag & REF_DIR) ? NULL : entry;
213 }
214 
remove_entry_from_dir(struct ref_dir * dir,const char * refname)215 int remove_entry_from_dir(struct ref_dir *dir, const char *refname)
216 {
217 	int refname_len = strlen(refname);
218 	int entry_index;
219 	struct ref_entry *entry;
220 	int is_dir = refname[refname_len - 1] == '/';
221 	if (is_dir) {
222 		/*
223 		 * refname represents a reference directory.  Remove
224 		 * the trailing slash; otherwise we will get the
225 		 * directory *representing* refname rather than the
226 		 * one *containing* it.
227 		 */
228 		char *dirname = xmemdupz(refname, refname_len - 1);
229 		dir = find_containing_dir(dir, dirname, 0);
230 		free(dirname);
231 	} else {
232 		dir = find_containing_dir(dir, refname, 0);
233 	}
234 	if (!dir)
235 		return -1;
236 	entry_index = search_ref_dir(dir, refname, refname_len);
237 	if (entry_index == -1)
238 		return -1;
239 	entry = dir->entries[entry_index];
240 
241 	MOVE_ARRAY(&dir->entries[entry_index],
242 		   &dir->entries[entry_index + 1], dir->nr - entry_index - 1);
243 	dir->nr--;
244 	if (dir->sorted > entry_index)
245 		dir->sorted--;
246 	free_ref_entry(entry);
247 	return dir->nr;
248 }
249 
add_ref_entry(struct ref_dir * dir,struct ref_entry * ref)250 int add_ref_entry(struct ref_dir *dir, struct ref_entry *ref)
251 {
252 	dir = find_containing_dir(dir, ref->name, 1);
253 	if (!dir)
254 		return -1;
255 	add_entry_to_dir(dir, ref);
256 	return 0;
257 }
258 
259 /*
260  * Emit a warning and return true iff ref1 and ref2 have the same name
261  * and the same oid. Die if they have the same name but different
262  * oids.
263  */
is_dup_ref(const struct ref_entry * ref1,const struct ref_entry * ref2)264 static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
265 {
266 	if (strcmp(ref1->name, ref2->name))
267 		return 0;
268 
269 	/* Duplicate name; make sure that they don't conflict: */
270 
271 	if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
272 		/* This is impossible by construction */
273 		die("Reference directory conflict: %s", ref1->name);
274 
275 	if (!oideq(&ref1->u.value.oid, &ref2->u.value.oid))
276 		die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
277 
278 	warning("Duplicated ref: %s", ref1->name);
279 	return 1;
280 }
281 
282 /*
283  * Sort the entries in dir non-recursively (if they are not already
284  * sorted) and remove any duplicate entries.
285  */
sort_ref_dir(struct ref_dir * dir)286 static void sort_ref_dir(struct ref_dir *dir)
287 {
288 	int i, j;
289 	struct ref_entry *last = NULL;
290 
291 	/*
292 	 * This check also prevents passing a zero-length array to qsort(),
293 	 * which is a problem on some platforms.
294 	 */
295 	if (dir->sorted == dir->nr)
296 		return;
297 
298 	QSORT(dir->entries, dir->nr, ref_entry_cmp);
299 
300 	/* Remove any duplicates: */
301 	for (i = 0, j = 0; j < dir->nr; j++) {
302 		struct ref_entry *entry = dir->entries[j];
303 		if (last && is_dup_ref(last, entry))
304 			free_ref_entry(entry);
305 		else
306 			last = dir->entries[i++] = entry;
307 	}
308 	dir->sorted = dir->nr = i;
309 }
310 
311 enum prefix_state {
312 	/* All refs within the directory would match prefix: */
313 	PREFIX_CONTAINS_DIR,
314 
315 	/* Some, but not all, refs within the directory might match prefix: */
316 	PREFIX_WITHIN_DIR,
317 
318 	/* No refs within the directory could possibly match prefix: */
319 	PREFIX_EXCLUDES_DIR
320 };
321 
322 /*
323  * Return a `prefix_state` constant describing the relationship
324  * between the directory with the specified `dirname` and `prefix`.
325  */
overlaps_prefix(const char * dirname,const char * prefix)326 static enum prefix_state overlaps_prefix(const char *dirname,
327 					 const char *prefix)
328 {
329 	while (*prefix && *dirname == *prefix) {
330 		dirname++;
331 		prefix++;
332 	}
333 	if (!*prefix)
334 		return PREFIX_CONTAINS_DIR;
335 	else if (!*dirname)
336 		return PREFIX_WITHIN_DIR;
337 	else
338 		return PREFIX_EXCLUDES_DIR;
339 }
340 
341 /*
342  * Load all of the refs from `dir` (recursively) that could possibly
343  * contain references matching `prefix` into our in-memory cache. If
344  * `prefix` is NULL, prime unconditionally.
345  */
prime_ref_dir(struct ref_dir * dir,const char * prefix)346 static void prime_ref_dir(struct ref_dir *dir, const char *prefix)
347 {
348 	/*
349 	 * The hard work of loading loose refs is done by get_ref_dir(), so we
350 	 * just need to recurse through all of the sub-directories. We do not
351 	 * even need to care about sorting, as traversal order does not matter
352 	 * to us.
353 	 */
354 	int i;
355 	for (i = 0; i < dir->nr; i++) {
356 		struct ref_entry *entry = dir->entries[i];
357 		if (!(entry->flag & REF_DIR)) {
358 			/* Not a directory; no need to recurse. */
359 		} else if (!prefix) {
360 			/* Recurse in any case: */
361 			prime_ref_dir(get_ref_dir(entry), NULL);
362 		} else {
363 			switch (overlaps_prefix(entry->name, prefix)) {
364 			case PREFIX_CONTAINS_DIR:
365 				/*
366 				 * Recurse, and from here down we
367 				 * don't have to check the prefix
368 				 * anymore:
369 				 */
370 				prime_ref_dir(get_ref_dir(entry), NULL);
371 				break;
372 			case PREFIX_WITHIN_DIR:
373 				prime_ref_dir(get_ref_dir(entry), prefix);
374 				break;
375 			case PREFIX_EXCLUDES_DIR:
376 				/* No need to prime this directory. */
377 				break;
378 			}
379 		}
380 	}
381 }
382 
383 /*
384  * A level in the reference hierarchy that is currently being iterated
385  * through.
386  */
387 struct cache_ref_iterator_level {
388 	/*
389 	 * The ref_dir being iterated over at this level. The ref_dir
390 	 * is sorted before being stored here.
391 	 */
392 	struct ref_dir *dir;
393 
394 	enum prefix_state prefix_state;
395 
396 	/*
397 	 * The index of the current entry within dir (which might
398 	 * itself be a directory). If index == -1, then the iteration
399 	 * hasn't yet begun. If index == dir->nr, then the iteration
400 	 * through this level is over.
401 	 */
402 	int index;
403 };
404 
405 /*
406  * Represent an iteration through a ref_dir in the memory cache. The
407  * iteration recurses through subdirectories.
408  */
409 struct cache_ref_iterator {
410 	struct ref_iterator base;
411 
412 	/*
413 	 * The number of levels currently on the stack. This is always
414 	 * at least 1, because when it becomes zero the iteration is
415 	 * ended and this struct is freed.
416 	 */
417 	size_t levels_nr;
418 
419 	/* The number of levels that have been allocated on the stack */
420 	size_t levels_alloc;
421 
422 	/*
423 	 * Only include references with this prefix in the iteration.
424 	 * The prefix is matched textually, without regard for path
425 	 * component boundaries.
426 	 */
427 	const char *prefix;
428 
429 	/*
430 	 * A stack of levels. levels[0] is the uppermost level that is
431 	 * being iterated over in this iteration. (This is not
432 	 * necessary the top level in the references hierarchy. If we
433 	 * are iterating through a subtree, then levels[0] will hold
434 	 * the ref_dir for that subtree, and subsequent levels will go
435 	 * on from there.)
436 	 */
437 	struct cache_ref_iterator_level *levels;
438 };
439 
cache_ref_iterator_advance(struct ref_iterator * ref_iterator)440 static int cache_ref_iterator_advance(struct ref_iterator *ref_iterator)
441 {
442 	struct cache_ref_iterator *iter =
443 		(struct cache_ref_iterator *)ref_iterator;
444 
445 	while (1) {
446 		struct cache_ref_iterator_level *level =
447 			&iter->levels[iter->levels_nr - 1];
448 		struct ref_dir *dir = level->dir;
449 		struct ref_entry *entry;
450 		enum prefix_state entry_prefix_state;
451 
452 		if (level->index == -1)
453 			sort_ref_dir(dir);
454 
455 		if (++level->index == level->dir->nr) {
456 			/* This level is exhausted; pop up a level */
457 			if (--iter->levels_nr == 0)
458 				return ref_iterator_abort(ref_iterator);
459 
460 			continue;
461 		}
462 
463 		entry = dir->entries[level->index];
464 
465 		if (level->prefix_state == PREFIX_WITHIN_DIR) {
466 			entry_prefix_state = overlaps_prefix(entry->name, iter->prefix);
467 			if (entry_prefix_state == PREFIX_EXCLUDES_DIR)
468 				continue;
469 		} else {
470 			entry_prefix_state = level->prefix_state;
471 		}
472 
473 		if (entry->flag & REF_DIR) {
474 			/* push down a level */
475 			ALLOC_GROW(iter->levels, iter->levels_nr + 1,
476 				   iter->levels_alloc);
477 
478 			level = &iter->levels[iter->levels_nr++];
479 			level->dir = get_ref_dir(entry);
480 			level->prefix_state = entry_prefix_state;
481 			level->index = -1;
482 		} else {
483 			iter->base.refname = entry->name;
484 			iter->base.oid = &entry->u.value.oid;
485 			iter->base.flags = entry->flag;
486 			return ITER_OK;
487 		}
488 	}
489 }
490 
cache_ref_iterator_peel(struct ref_iterator * ref_iterator,struct object_id * peeled)491 static int cache_ref_iterator_peel(struct ref_iterator *ref_iterator,
492 				   struct object_id *peeled)
493 {
494 	return peel_object(ref_iterator->oid, peeled);
495 }
496 
cache_ref_iterator_abort(struct ref_iterator * ref_iterator)497 static int cache_ref_iterator_abort(struct ref_iterator *ref_iterator)
498 {
499 	struct cache_ref_iterator *iter =
500 		(struct cache_ref_iterator *)ref_iterator;
501 
502 	free((char *)iter->prefix);
503 	free(iter->levels);
504 	base_ref_iterator_free(ref_iterator);
505 	return ITER_DONE;
506 }
507 
508 static struct ref_iterator_vtable cache_ref_iterator_vtable = {
509 	cache_ref_iterator_advance,
510 	cache_ref_iterator_peel,
511 	cache_ref_iterator_abort
512 };
513 
cache_ref_iterator_begin(struct ref_cache * cache,const char * prefix,int prime_dir)514 struct ref_iterator *cache_ref_iterator_begin(struct ref_cache *cache,
515 					      const char *prefix,
516 					      int prime_dir)
517 {
518 	struct ref_dir *dir;
519 	struct cache_ref_iterator *iter;
520 	struct ref_iterator *ref_iterator;
521 	struct cache_ref_iterator_level *level;
522 
523 	dir = get_ref_dir(cache->root);
524 	if (prefix && *prefix)
525 		dir = find_containing_dir(dir, prefix, 0);
526 	if (!dir)
527 		/* There's nothing to iterate over. */
528 		return empty_ref_iterator_begin();
529 
530 	if (prime_dir)
531 		prime_ref_dir(dir, prefix);
532 
533 	iter = xcalloc(1, sizeof(*iter));
534 	ref_iterator = &iter->base;
535 	base_ref_iterator_init(ref_iterator, &cache_ref_iterator_vtable, 1);
536 	ALLOC_GROW(iter->levels, 10, iter->levels_alloc);
537 
538 	iter->levels_nr = 1;
539 	level = &iter->levels[0];
540 	level->index = -1;
541 	level->dir = dir;
542 
543 	if (prefix && *prefix) {
544 		iter->prefix = xstrdup(prefix);
545 		level->prefix_state = PREFIX_WITHIN_DIR;
546 	} else {
547 		level->prefix_state = PREFIX_CONTAINS_DIR;
548 	}
549 
550 	return ref_iterator;
551 }
552