1 /***********************************************************************
2  * Copyright (c) 2013, 2014 Pieter Wuille                              *
3  * Distributed under the MIT software license, see the accompanying    *
4  * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5  ***********************************************************************/
6 
7 #ifndef SECP256K1_FIELD_H
8 #define SECP256K1_FIELD_H
9 
10 /** Field element module.
11  *
12  *  Field elements can be represented in several ways, but code accessing
13  *  it (and implementations) need to take certain properties into account:
14  *  - Each field element can be normalized or not.
15  *  - Each field element has a magnitude, which represents how far away
16  *    its representation is away from normalization. Normalized elements
17  *    always have a magnitude of 1, but a magnitude of 1 doesn't imply
18  *    normality.
19  */
20 
21 #if defined HAVE_CONFIG_H
22 #include "libsecp256k1-config.h"
23 #endif
24 
25 #include "util.h"
26 
27 #if defined(SECP256K1_WIDEMUL_INT128)
28 #include "field_5x52.h"
29 #elif defined(SECP256K1_WIDEMUL_INT64)
30 #include "field_10x26.h"
31 #else
32 #error "Please select wide multiplication implementation"
33 #endif
34 
35 /** Normalize a field element. This brings the field element to a canonical representation, reduces
36  *  its magnitude to 1, and reduces it modulo field size `p`.
37  */
38 static void rustsecp256k1_v0_4_1_fe_normalize(rustsecp256k1_v0_4_1_fe *r);
39 
40 /** Weakly normalize a field element: reduce its magnitude to 1, but don't fully normalize. */
41 static void rustsecp256k1_v0_4_1_fe_normalize_weak(rustsecp256k1_v0_4_1_fe *r);
42 
43 /** Normalize a field element, without constant-time guarantee. */
44 static void rustsecp256k1_v0_4_1_fe_normalize_var(rustsecp256k1_v0_4_1_fe *r);
45 
46 /** Verify whether a field element represents zero i.e. would normalize to a zero value. */
47 static int rustsecp256k1_v0_4_1_fe_normalizes_to_zero(const rustsecp256k1_v0_4_1_fe *r);
48 
49 /** Verify whether a field element represents zero i.e. would normalize to a zero value,
50  *  without constant-time guarantee. */
51 static int rustsecp256k1_v0_4_1_fe_normalizes_to_zero_var(const rustsecp256k1_v0_4_1_fe *r);
52 
53 /** Set a field element equal to a small integer. Resulting field element is normalized. */
54 static void rustsecp256k1_v0_4_1_fe_set_int(rustsecp256k1_v0_4_1_fe *r, int a);
55 
56 /** Sets a field element equal to zero, initializing all fields. */
57 static void rustsecp256k1_v0_4_1_fe_clear(rustsecp256k1_v0_4_1_fe *a);
58 
59 /** Verify whether a field element is zero. Requires the input to be normalized. */
60 static int rustsecp256k1_v0_4_1_fe_is_zero(const rustsecp256k1_v0_4_1_fe *a);
61 
62 /** Check the "oddness" of a field element. Requires the input to be normalized. */
63 static int rustsecp256k1_v0_4_1_fe_is_odd(const rustsecp256k1_v0_4_1_fe *a);
64 
65 /** Compare two field elements. Requires magnitude-1 inputs. */
66 static int rustsecp256k1_v0_4_1_fe_equal(const rustsecp256k1_v0_4_1_fe *a, const rustsecp256k1_v0_4_1_fe *b);
67 
68 /** Same as rustsecp256k1_v0_4_1_fe_equal, but may be variable time. */
69 static int rustsecp256k1_v0_4_1_fe_equal_var(const rustsecp256k1_v0_4_1_fe *a, const rustsecp256k1_v0_4_1_fe *b);
70 
71 /** Compare two field elements. Requires both inputs to be normalized */
72 static int rustsecp256k1_v0_4_1_fe_cmp_var(const rustsecp256k1_v0_4_1_fe *a, const rustsecp256k1_v0_4_1_fe *b);
73 
74 /** Set a field element equal to 32-byte big endian value. If successful, the resulting field element is normalized. */
75 static int rustsecp256k1_v0_4_1_fe_set_b32(rustsecp256k1_v0_4_1_fe *r, const unsigned char *a);
76 
77 /** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
78 static void rustsecp256k1_v0_4_1_fe_get_b32(unsigned char *r, const rustsecp256k1_v0_4_1_fe *a);
79 
80 /** Set a field element equal to the additive inverse of another. Takes a maximum magnitude of the input
81  *  as an argument. The magnitude of the output is one higher. */
82 static void rustsecp256k1_v0_4_1_fe_negate(rustsecp256k1_v0_4_1_fe *r, const rustsecp256k1_v0_4_1_fe *a, int m);
83 
84 /** Multiplies the passed field element with a small integer constant. Multiplies the magnitude by that
85  *  small integer. */
86 static void rustsecp256k1_v0_4_1_fe_mul_int(rustsecp256k1_v0_4_1_fe *r, int a);
87 
88 /** Adds a field element to another. The result has the sum of the inputs' magnitudes as magnitude. */
89 static void rustsecp256k1_v0_4_1_fe_add(rustsecp256k1_v0_4_1_fe *r, const rustsecp256k1_v0_4_1_fe *a);
90 
91 /** Sets a field element to be the product of two others. Requires the inputs' magnitudes to be at most 8.
92  *  The output magnitude is 1 (but not guaranteed to be normalized). */
93 static void rustsecp256k1_v0_4_1_fe_mul(rustsecp256k1_v0_4_1_fe *r, const rustsecp256k1_v0_4_1_fe *a, const rustsecp256k1_v0_4_1_fe * SECP256K1_RESTRICT b);
94 
95 /** Sets a field element to be the square of another. Requires the input's magnitude to be at most 8.
96  *  The output magnitude is 1 (but not guaranteed to be normalized). */
97 static void rustsecp256k1_v0_4_1_fe_sqr(rustsecp256k1_v0_4_1_fe *r, const rustsecp256k1_v0_4_1_fe *a);
98 
99 /** If a has a square root, it is computed in r and 1 is returned. If a does not
100  *  have a square root, the root of its negation is computed and 0 is returned.
101  *  The input's magnitude can be at most 8. The output magnitude is 1 (but not
102  *  guaranteed to be normalized). The result in r will always be a square
103  *  itself. */
104 static int rustsecp256k1_v0_4_1_fe_sqrt(rustsecp256k1_v0_4_1_fe *r, const rustsecp256k1_v0_4_1_fe *a);
105 
106 /** Sets a field element to be the (modular) inverse of another. Requires the input's magnitude to be
107  *  at most 8. The output magnitude is 1 (but not guaranteed to be normalized). */
108 static void rustsecp256k1_v0_4_1_fe_inv(rustsecp256k1_v0_4_1_fe *r, const rustsecp256k1_v0_4_1_fe *a);
109 
110 /** Potentially faster version of rustsecp256k1_v0_4_1_fe_inv, without constant-time guarantee. */
111 static void rustsecp256k1_v0_4_1_fe_inv_var(rustsecp256k1_v0_4_1_fe *r, const rustsecp256k1_v0_4_1_fe *a);
112 
113 /** Convert a field element to the storage type. */
114 static void rustsecp256k1_v0_4_1_fe_to_storage(rustsecp256k1_v0_4_1_fe_storage *r, const rustsecp256k1_v0_4_1_fe *a);
115 
116 /** Convert a field element back from the storage type. */
117 static void rustsecp256k1_v0_4_1_fe_from_storage(rustsecp256k1_v0_4_1_fe *r, const rustsecp256k1_v0_4_1_fe_storage *a);
118 
119 /** If flag is true, set *r equal to *a; otherwise leave it. Constant-time.  Both *r and *a must be initialized.*/
120 static void rustsecp256k1_v0_4_1_fe_storage_cmov(rustsecp256k1_v0_4_1_fe_storage *r, const rustsecp256k1_v0_4_1_fe_storage *a, int flag);
121 
122 /** If flag is true, set *r equal to *a; otherwise leave it. Constant-time.  Both *r and *a must be initialized.*/
123 static void rustsecp256k1_v0_4_1_fe_cmov(rustsecp256k1_v0_4_1_fe *r, const rustsecp256k1_v0_4_1_fe *a, int flag);
124 
125 #endif /* SECP256K1_FIELD_H */
126