1 //===------------------------- UnwindCursor.hpp ---------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
7 //
8 //
9 // C++ interface to lower levels of libunwind
10 //===----------------------------------------------------------------------===//
11 
12 #ifndef __UNWINDCURSOR_HPP__
13 #define __UNWINDCURSOR_HPP__
14 
15 #include <algorithm>
16 #include <stdint.h>
17 #include <stdio.h>
18 #include <stdlib.h>
19 #include <unwind.h>
20 
21 #ifdef _WIN32
22   #include <windows.h>
23   #include <ntverp.h>
24 #endif
25 #ifdef __APPLE__
26   #include <mach-o/dyld.h>
27 #endif
28 
29 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
30 // Provide a definition for the DISPATCHER_CONTEXT struct for old (Win7 and
31 // earlier) SDKs.
32 // MinGW-w64 has always provided this struct.
33   #if defined(_WIN32) && defined(_LIBUNWIND_TARGET_X86_64) && \
34       !defined(__MINGW32__) && VER_PRODUCTBUILD < 8000
35 struct _DISPATCHER_CONTEXT {
36   ULONG64 ControlPc;
37   ULONG64 ImageBase;
38   PRUNTIME_FUNCTION FunctionEntry;
39   ULONG64 EstablisherFrame;
40   ULONG64 TargetIp;
41   PCONTEXT ContextRecord;
42   PEXCEPTION_ROUTINE LanguageHandler;
43   PVOID HandlerData;
44   PUNWIND_HISTORY_TABLE HistoryTable;
45   ULONG ScopeIndex;
46   ULONG Fill0;
47 };
48   #endif
49 
50 struct UNWIND_INFO {
51   uint8_t Version : 3;
52   uint8_t Flags : 5;
53   uint8_t SizeOfProlog;
54   uint8_t CountOfCodes;
55   uint8_t FrameRegister : 4;
56   uint8_t FrameOffset : 4;
57   uint16_t UnwindCodes[2];
58 };
59 
60 extern "C" _Unwind_Reason_Code __libunwind_seh_personality(
61     int, _Unwind_Action, uint64_t, _Unwind_Exception *,
62     struct _Unwind_Context *);
63 
64 #endif
65 
66 #include "config.h"
67 
68 #include "AddressSpace.hpp"
69 #include "CompactUnwinder.hpp"
70 #include "config.h"
71 #include "DwarfInstructions.hpp"
72 #include "EHHeaderParser.hpp"
73 #include "libunwind.h"
74 #include "Registers.hpp"
75 #include "RWMutex.hpp"
76 #include "Unwind-EHABI.h"
77 
78 namespace libunwind {
79 
80 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
81 /// Cache of recently found FDEs.
82 template <typename A>
83 class _LIBUNWIND_HIDDEN DwarfFDECache {
84   typedef typename A::pint_t pint_t;
85 public:
86   static pint_t findFDE(pint_t mh, pint_t pc);
87   static void add(pint_t mh, pint_t ip_start, pint_t ip_end, pint_t fde);
88   static void removeAllIn(pint_t mh);
89   static void iterateCacheEntries(void (*func)(unw_word_t ip_start,
90                                                unw_word_t ip_end,
91                                                unw_word_t fde, unw_word_t mh));
92 
93 private:
94 
95   struct entry {
96     pint_t mh;
97     pint_t ip_start;
98     pint_t ip_end;
99     pint_t fde;
100   };
101 
102   // These fields are all static to avoid needing an initializer.
103   // There is only one instance of this class per process.
104   static RWMutex _lock;
105 #ifdef __APPLE__
106   static void dyldUnloadHook(const struct mach_header *mh, intptr_t slide);
107   static bool _registeredForDyldUnloads;
108 #endif
109   // Can't use std::vector<> here because this code is below libc++.
110   static entry *_buffer;
111   static entry *_bufferUsed;
112   static entry *_bufferEnd;
113   static entry _initialBuffer[64];
114 };
115 
116 template <typename A>
117 typename DwarfFDECache<A>::entry *
118 DwarfFDECache<A>::_buffer = _initialBuffer;
119 
120 template <typename A>
121 typename DwarfFDECache<A>::entry *
122 DwarfFDECache<A>::_bufferUsed = _initialBuffer;
123 
124 template <typename A>
125 typename DwarfFDECache<A>::entry *
126 DwarfFDECache<A>::_bufferEnd = &_initialBuffer[64];
127 
128 template <typename A>
129 typename DwarfFDECache<A>::entry DwarfFDECache<A>::_initialBuffer[64];
130 
131 template <typename A>
132 RWMutex DwarfFDECache<A>::_lock;
133 
134 #ifdef __APPLE__
135 template <typename A>
136 bool DwarfFDECache<A>::_registeredForDyldUnloads = false;
137 #endif
138 
139 template <typename A>
findFDE(pint_t mh,pint_t pc)140 typename A::pint_t DwarfFDECache<A>::findFDE(pint_t mh, pint_t pc) {
141   pint_t result = 0;
142   _LIBUNWIND_LOG_IF_FALSE(_lock.lock_shared());
143   for (entry *p = _buffer; p < _bufferUsed; ++p) {
144     if ((mh == p->mh) || (mh == 0)) {
145       if ((p->ip_start <= pc) && (pc < p->ip_end)) {
146         result = p->fde;
147         break;
148       }
149     }
150   }
151   _LIBUNWIND_LOG_IF_FALSE(_lock.unlock_shared());
152   return result;
153 }
154 
155 template <typename A>
add(pint_t mh,pint_t ip_start,pint_t ip_end,pint_t fde)156 void DwarfFDECache<A>::add(pint_t mh, pint_t ip_start, pint_t ip_end,
157                            pint_t fde) {
158 #if !defined(_LIBUNWIND_NO_HEAP)
159   _LIBUNWIND_LOG_IF_FALSE(_lock.lock());
160   if (_bufferUsed >= _bufferEnd) {
161     size_t oldSize = (size_t)(_bufferEnd - _buffer);
162     size_t newSize = oldSize * 4;
163     // Can't use operator new (we are below it).
164     entry *newBuffer = (entry *)malloc(newSize * sizeof(entry));
165     memcpy(newBuffer, _buffer, oldSize * sizeof(entry));
166     if (_buffer != _initialBuffer)
167       free(_buffer);
168     _buffer = newBuffer;
169     _bufferUsed = &newBuffer[oldSize];
170     _bufferEnd = &newBuffer[newSize];
171   }
172   _bufferUsed->mh = mh;
173   _bufferUsed->ip_start = ip_start;
174   _bufferUsed->ip_end = ip_end;
175   _bufferUsed->fde = fde;
176   ++_bufferUsed;
177 #ifdef __APPLE__
178   if (!_registeredForDyldUnloads) {
179     _dyld_register_func_for_remove_image(&dyldUnloadHook);
180     _registeredForDyldUnloads = true;
181   }
182 #endif
183   _LIBUNWIND_LOG_IF_FALSE(_lock.unlock());
184 #endif
185 }
186 
187 template <typename A>
removeAllIn(pint_t mh)188 void DwarfFDECache<A>::removeAllIn(pint_t mh) {
189   _LIBUNWIND_LOG_IF_FALSE(_lock.lock());
190   entry *d = _buffer;
191   for (const entry *s = _buffer; s < _bufferUsed; ++s) {
192     if (s->mh != mh) {
193       if (d != s)
194         *d = *s;
195       ++d;
196     }
197   }
198   _bufferUsed = d;
199   _LIBUNWIND_LOG_IF_FALSE(_lock.unlock());
200 }
201 
202 #ifdef __APPLE__
203 template <typename A>
dyldUnloadHook(const struct mach_header * mh,intptr_t)204 void DwarfFDECache<A>::dyldUnloadHook(const struct mach_header *mh, intptr_t ) {
205   removeAllIn((pint_t) mh);
206 }
207 #endif
208 
209 template <typename A>
iterateCacheEntries(void (* func)(unw_word_t ip_start,unw_word_t ip_end,unw_word_t fde,unw_word_t mh))210 void DwarfFDECache<A>::iterateCacheEntries(void (*func)(
211     unw_word_t ip_start, unw_word_t ip_end, unw_word_t fde, unw_word_t mh)) {
212   _LIBUNWIND_LOG_IF_FALSE(_lock.lock());
213   for (entry *p = _buffer; p < _bufferUsed; ++p) {
214     (*func)(p->ip_start, p->ip_end, p->fde, p->mh);
215   }
216   _LIBUNWIND_LOG_IF_FALSE(_lock.unlock());
217 }
218 #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
219 
220 
221 #define arrayoffsetof(type, index, field) ((size_t)(&((type *)0)[index].field))
222 
223 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
224 template <typename A> class UnwindSectionHeader {
225 public:
UnwindSectionHeader(A & addressSpace,typename A::pint_t addr)226   UnwindSectionHeader(A &addressSpace, typename A::pint_t addr)
227       : _addressSpace(addressSpace), _addr(addr) {}
228 
version() const229   uint32_t version() const {
230     return _addressSpace.get32(_addr +
231                                offsetof(unwind_info_section_header, version));
232   }
commonEncodingsArraySectionOffset() const233   uint32_t commonEncodingsArraySectionOffset() const {
234     return _addressSpace.get32(_addr +
235                                offsetof(unwind_info_section_header,
236                                         commonEncodingsArraySectionOffset));
237   }
commonEncodingsArrayCount() const238   uint32_t commonEncodingsArrayCount() const {
239     return _addressSpace.get32(_addr + offsetof(unwind_info_section_header,
240                                                 commonEncodingsArrayCount));
241   }
personalityArraySectionOffset() const242   uint32_t personalityArraySectionOffset() const {
243     return _addressSpace.get32(_addr + offsetof(unwind_info_section_header,
244                                                 personalityArraySectionOffset));
245   }
personalityArrayCount() const246   uint32_t personalityArrayCount() const {
247     return _addressSpace.get32(
248         _addr + offsetof(unwind_info_section_header, personalityArrayCount));
249   }
indexSectionOffset() const250   uint32_t indexSectionOffset() const {
251     return _addressSpace.get32(
252         _addr + offsetof(unwind_info_section_header, indexSectionOffset));
253   }
indexCount() const254   uint32_t indexCount() const {
255     return _addressSpace.get32(
256         _addr + offsetof(unwind_info_section_header, indexCount));
257   }
258 
259 private:
260   A                     &_addressSpace;
261   typename A::pint_t     _addr;
262 };
263 
264 template <typename A> class UnwindSectionIndexArray {
265 public:
UnwindSectionIndexArray(A & addressSpace,typename A::pint_t addr)266   UnwindSectionIndexArray(A &addressSpace, typename A::pint_t addr)
267       : _addressSpace(addressSpace), _addr(addr) {}
268 
functionOffset(uint32_t index) const269   uint32_t functionOffset(uint32_t index) const {
270     return _addressSpace.get32(
271         _addr + arrayoffsetof(unwind_info_section_header_index_entry, index,
272                               functionOffset));
273   }
secondLevelPagesSectionOffset(uint32_t index) const274   uint32_t secondLevelPagesSectionOffset(uint32_t index) const {
275     return _addressSpace.get32(
276         _addr + arrayoffsetof(unwind_info_section_header_index_entry, index,
277                               secondLevelPagesSectionOffset));
278   }
lsdaIndexArraySectionOffset(uint32_t index) const279   uint32_t lsdaIndexArraySectionOffset(uint32_t index) const {
280     return _addressSpace.get32(
281         _addr + arrayoffsetof(unwind_info_section_header_index_entry, index,
282                               lsdaIndexArraySectionOffset));
283   }
284 
285 private:
286   A                   &_addressSpace;
287   typename A::pint_t   _addr;
288 };
289 
290 template <typename A> class UnwindSectionRegularPageHeader {
291 public:
UnwindSectionRegularPageHeader(A & addressSpace,typename A::pint_t addr)292   UnwindSectionRegularPageHeader(A &addressSpace, typename A::pint_t addr)
293       : _addressSpace(addressSpace), _addr(addr) {}
294 
kind() const295   uint32_t kind() const {
296     return _addressSpace.get32(
297         _addr + offsetof(unwind_info_regular_second_level_page_header, kind));
298   }
entryPageOffset() const299   uint16_t entryPageOffset() const {
300     return _addressSpace.get16(
301         _addr + offsetof(unwind_info_regular_second_level_page_header,
302                          entryPageOffset));
303   }
entryCount() const304   uint16_t entryCount() const {
305     return _addressSpace.get16(
306         _addr +
307         offsetof(unwind_info_regular_second_level_page_header, entryCount));
308   }
309 
310 private:
311   A &_addressSpace;
312   typename A::pint_t _addr;
313 };
314 
315 template <typename A> class UnwindSectionRegularArray {
316 public:
UnwindSectionRegularArray(A & addressSpace,typename A::pint_t addr)317   UnwindSectionRegularArray(A &addressSpace, typename A::pint_t addr)
318       : _addressSpace(addressSpace), _addr(addr) {}
319 
functionOffset(uint32_t index) const320   uint32_t functionOffset(uint32_t index) const {
321     return _addressSpace.get32(
322         _addr + arrayoffsetof(unwind_info_regular_second_level_entry, index,
323                               functionOffset));
324   }
encoding(uint32_t index) const325   uint32_t encoding(uint32_t index) const {
326     return _addressSpace.get32(
327         _addr +
328         arrayoffsetof(unwind_info_regular_second_level_entry, index, encoding));
329   }
330 
331 private:
332   A &_addressSpace;
333   typename A::pint_t _addr;
334 };
335 
336 template <typename A> class UnwindSectionCompressedPageHeader {
337 public:
UnwindSectionCompressedPageHeader(A & addressSpace,typename A::pint_t addr)338   UnwindSectionCompressedPageHeader(A &addressSpace, typename A::pint_t addr)
339       : _addressSpace(addressSpace), _addr(addr) {}
340 
kind() const341   uint32_t kind() const {
342     return _addressSpace.get32(
343         _addr +
344         offsetof(unwind_info_compressed_second_level_page_header, kind));
345   }
entryPageOffset() const346   uint16_t entryPageOffset() const {
347     return _addressSpace.get16(
348         _addr + offsetof(unwind_info_compressed_second_level_page_header,
349                          entryPageOffset));
350   }
entryCount() const351   uint16_t entryCount() const {
352     return _addressSpace.get16(
353         _addr +
354         offsetof(unwind_info_compressed_second_level_page_header, entryCount));
355   }
encodingsPageOffset() const356   uint16_t encodingsPageOffset() const {
357     return _addressSpace.get16(
358         _addr + offsetof(unwind_info_compressed_second_level_page_header,
359                          encodingsPageOffset));
360   }
encodingsCount() const361   uint16_t encodingsCount() const {
362     return _addressSpace.get16(
363         _addr + offsetof(unwind_info_compressed_second_level_page_header,
364                          encodingsCount));
365   }
366 
367 private:
368   A &_addressSpace;
369   typename A::pint_t _addr;
370 };
371 
372 template <typename A> class UnwindSectionCompressedArray {
373 public:
UnwindSectionCompressedArray(A & addressSpace,typename A::pint_t addr)374   UnwindSectionCompressedArray(A &addressSpace, typename A::pint_t addr)
375       : _addressSpace(addressSpace), _addr(addr) {}
376 
functionOffset(uint32_t index) const377   uint32_t functionOffset(uint32_t index) const {
378     return UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(
379         _addressSpace.get32(_addr + index * sizeof(uint32_t)));
380   }
encodingIndex(uint32_t index) const381   uint16_t encodingIndex(uint32_t index) const {
382     return UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX(
383         _addressSpace.get32(_addr + index * sizeof(uint32_t)));
384   }
385 
386 private:
387   A &_addressSpace;
388   typename A::pint_t _addr;
389 };
390 
391 template <typename A> class UnwindSectionLsdaArray {
392 public:
UnwindSectionLsdaArray(A & addressSpace,typename A::pint_t addr)393   UnwindSectionLsdaArray(A &addressSpace, typename A::pint_t addr)
394       : _addressSpace(addressSpace), _addr(addr) {}
395 
functionOffset(uint32_t index) const396   uint32_t functionOffset(uint32_t index) const {
397     return _addressSpace.get32(
398         _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry,
399                               index, functionOffset));
400   }
lsdaOffset(uint32_t index) const401   uint32_t lsdaOffset(uint32_t index) const {
402     return _addressSpace.get32(
403         _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry,
404                               index, lsdaOffset));
405   }
406 
407 private:
408   A                   &_addressSpace;
409   typename A::pint_t   _addr;
410 };
411 #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
412 
413 class _LIBUNWIND_HIDDEN AbstractUnwindCursor {
414 public:
415   // NOTE: provide a class specific placement deallocation function (S5.3.4 p20)
416   // This avoids an unnecessary dependency to libc++abi.
operator delete(void *,size_t)417   void operator delete(void *, size_t) {}
418 
~AbstractUnwindCursor()419   virtual ~AbstractUnwindCursor() {}
validReg(int)420   virtual bool validReg(int) { _LIBUNWIND_ABORT("validReg not implemented"); }
getReg(int)421   virtual unw_word_t getReg(int) { _LIBUNWIND_ABORT("getReg not implemented"); }
setReg(int,unw_word_t)422   virtual void setReg(int, unw_word_t) {
423     _LIBUNWIND_ABORT("setReg not implemented");
424   }
validFloatReg(int)425   virtual bool validFloatReg(int) {
426     _LIBUNWIND_ABORT("validFloatReg not implemented");
427   }
getFloatReg(int)428   virtual unw_fpreg_t getFloatReg(int) {
429     _LIBUNWIND_ABORT("getFloatReg not implemented");
430   }
setFloatReg(int,unw_fpreg_t)431   virtual void setFloatReg(int, unw_fpreg_t) {
432     _LIBUNWIND_ABORT("setFloatReg not implemented");
433   }
step()434   virtual int step() { _LIBUNWIND_ABORT("step not implemented"); }
getInfo(unw_proc_info_t *)435   virtual void getInfo(unw_proc_info_t *) {
436     _LIBUNWIND_ABORT("getInfo not implemented");
437   }
jumpto()438   virtual void jumpto() { _LIBUNWIND_ABORT("jumpto not implemented"); }
isSignalFrame()439   virtual bool isSignalFrame() {
440     _LIBUNWIND_ABORT("isSignalFrame not implemented");
441   }
getFunctionName(char *,size_t,unw_word_t *)442   virtual bool getFunctionName(char *, size_t, unw_word_t *) {
443     _LIBUNWIND_ABORT("getFunctionName not implemented");
444   }
setInfoBasedOnIPRegister(bool=false)445   virtual void setInfoBasedOnIPRegister(bool = false) {
446     _LIBUNWIND_ABORT("setInfoBasedOnIPRegister not implemented");
447   }
getRegisterName(int)448   virtual const char *getRegisterName(int) {
449     _LIBUNWIND_ABORT("getRegisterName not implemented");
450   }
451 #ifdef __arm__
saveVFPAsX()452   virtual void saveVFPAsX() { _LIBUNWIND_ABORT("saveVFPAsX not implemented"); }
453 #endif
454 };
455 
456 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) && defined(_WIN32)
457 
458 /// \c UnwindCursor contains all state (including all register values) during
459 /// an unwind.  This is normally stack-allocated inside a unw_cursor_t.
460 template <typename A, typename R>
461 class UnwindCursor : public AbstractUnwindCursor {
462   typedef typename A::pint_t pint_t;
463 public:
464                       UnwindCursor(unw_context_t *context, A &as);
465                       UnwindCursor(CONTEXT *context, A &as);
466                       UnwindCursor(A &as, void *threadArg);
~UnwindCursor()467   virtual             ~UnwindCursor() {}
468   virtual bool        validReg(int);
469   virtual unw_word_t  getReg(int);
470   virtual void        setReg(int, unw_word_t);
471   virtual bool        validFloatReg(int);
472   virtual unw_fpreg_t getFloatReg(int);
473   virtual void        setFloatReg(int, unw_fpreg_t);
474   virtual int         step();
475   virtual void        getInfo(unw_proc_info_t *);
476   virtual void        jumpto();
477   virtual bool        isSignalFrame();
478   virtual bool        getFunctionName(char *buf, size_t len, unw_word_t *off);
479   virtual void        setInfoBasedOnIPRegister(bool isReturnAddress = false);
480   virtual const char *getRegisterName(int num);
481 #ifdef __arm__
482   virtual void        saveVFPAsX();
483 #endif
484 
getDispatcherContext()485   DISPATCHER_CONTEXT *getDispatcherContext() { return &_dispContext; }
setDispatcherContext(DISPATCHER_CONTEXT * disp)486   void setDispatcherContext(DISPATCHER_CONTEXT *disp) { _dispContext = *disp; }
487 
488 private:
489 
getLastPC() const490   pint_t getLastPC() const { return _dispContext.ControlPc; }
setLastPC(pint_t pc)491   void setLastPC(pint_t pc) { _dispContext.ControlPc = pc; }
lookUpSEHUnwindInfo(pint_t pc,pint_t * base)492   RUNTIME_FUNCTION *lookUpSEHUnwindInfo(pint_t pc, pint_t *base) {
493     _dispContext.FunctionEntry = RtlLookupFunctionEntry(pc,
494                                                         &_dispContext.ImageBase,
495                                                         _dispContext.HistoryTable);
496     *base = _dispContext.ImageBase;
497     return _dispContext.FunctionEntry;
498   }
499   bool getInfoFromSEH(pint_t pc);
stepWithSEHData()500   int stepWithSEHData() {
501     _dispContext.LanguageHandler = RtlVirtualUnwind(UNW_FLAG_UHANDLER,
502                                                     _dispContext.ImageBase,
503                                                     _dispContext.ControlPc,
504                                                     _dispContext.FunctionEntry,
505                                                     _dispContext.ContextRecord,
506                                                     &_dispContext.HandlerData,
507                                                     &_dispContext.EstablisherFrame,
508                                                     NULL);
509     // Update some fields of the unwind info now, since we have them.
510     _info.lsda = reinterpret_cast<unw_word_t>(_dispContext.HandlerData);
511     if (_dispContext.LanguageHandler) {
512       _info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality);
513     } else
514       _info.handler = 0;
515     return UNW_STEP_SUCCESS;
516   }
517 
518   A                   &_addressSpace;
519   unw_proc_info_t      _info;
520   DISPATCHER_CONTEXT   _dispContext;
521   CONTEXT              _msContext;
522   UNWIND_HISTORY_TABLE _histTable;
523   bool                 _unwindInfoMissing;
524 };
525 
526 
527 template <typename A, typename R>
UnwindCursor(unw_context_t * context,A & as)528 UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as)
529     : _addressSpace(as), _unwindInfoMissing(false) {
530   static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit),
531                 "UnwindCursor<> does not fit in unw_cursor_t");
532   memset(&_info, 0, sizeof(_info));
533   memset(&_histTable, 0, sizeof(_histTable));
534   _dispContext.ContextRecord = &_msContext;
535   _dispContext.HistoryTable = &_histTable;
536   // Initialize MS context from ours.
537   R r(context);
538   _msContext.ContextFlags = CONTEXT_CONTROL|CONTEXT_INTEGER|CONTEXT_FLOATING_POINT;
539 #if defined(_LIBUNWIND_TARGET_X86_64)
540   _msContext.Rax = r.getRegister(UNW_X86_64_RAX);
541   _msContext.Rcx = r.getRegister(UNW_X86_64_RCX);
542   _msContext.Rdx = r.getRegister(UNW_X86_64_RDX);
543   _msContext.Rbx = r.getRegister(UNW_X86_64_RBX);
544   _msContext.Rsp = r.getRegister(UNW_X86_64_RSP);
545   _msContext.Rbp = r.getRegister(UNW_X86_64_RBP);
546   _msContext.Rsi = r.getRegister(UNW_X86_64_RSI);
547   _msContext.Rdi = r.getRegister(UNW_X86_64_RDI);
548   _msContext.R8 = r.getRegister(UNW_X86_64_R8);
549   _msContext.R9 = r.getRegister(UNW_X86_64_R9);
550   _msContext.R10 = r.getRegister(UNW_X86_64_R10);
551   _msContext.R11 = r.getRegister(UNW_X86_64_R11);
552   _msContext.R12 = r.getRegister(UNW_X86_64_R12);
553   _msContext.R13 = r.getRegister(UNW_X86_64_R13);
554   _msContext.R14 = r.getRegister(UNW_X86_64_R14);
555   _msContext.R15 = r.getRegister(UNW_X86_64_R15);
556   _msContext.Rip = r.getRegister(UNW_REG_IP);
557   union {
558     v128 v;
559     M128A m;
560   } t;
561   t.v = r.getVectorRegister(UNW_X86_64_XMM0);
562   _msContext.Xmm0 = t.m;
563   t.v = r.getVectorRegister(UNW_X86_64_XMM1);
564   _msContext.Xmm1 = t.m;
565   t.v = r.getVectorRegister(UNW_X86_64_XMM2);
566   _msContext.Xmm2 = t.m;
567   t.v = r.getVectorRegister(UNW_X86_64_XMM3);
568   _msContext.Xmm3 = t.m;
569   t.v = r.getVectorRegister(UNW_X86_64_XMM4);
570   _msContext.Xmm4 = t.m;
571   t.v = r.getVectorRegister(UNW_X86_64_XMM5);
572   _msContext.Xmm5 = t.m;
573   t.v = r.getVectorRegister(UNW_X86_64_XMM6);
574   _msContext.Xmm6 = t.m;
575   t.v = r.getVectorRegister(UNW_X86_64_XMM7);
576   _msContext.Xmm7 = t.m;
577   t.v = r.getVectorRegister(UNW_X86_64_XMM8);
578   _msContext.Xmm8 = t.m;
579   t.v = r.getVectorRegister(UNW_X86_64_XMM9);
580   _msContext.Xmm9 = t.m;
581   t.v = r.getVectorRegister(UNW_X86_64_XMM10);
582   _msContext.Xmm10 = t.m;
583   t.v = r.getVectorRegister(UNW_X86_64_XMM11);
584   _msContext.Xmm11 = t.m;
585   t.v = r.getVectorRegister(UNW_X86_64_XMM12);
586   _msContext.Xmm12 = t.m;
587   t.v = r.getVectorRegister(UNW_X86_64_XMM13);
588   _msContext.Xmm13 = t.m;
589   t.v = r.getVectorRegister(UNW_X86_64_XMM14);
590   _msContext.Xmm14 = t.m;
591   t.v = r.getVectorRegister(UNW_X86_64_XMM15);
592   _msContext.Xmm15 = t.m;
593 #elif defined(_LIBUNWIND_TARGET_ARM)
594   _msContext.R0 = r.getRegister(UNW_ARM_R0);
595   _msContext.R1 = r.getRegister(UNW_ARM_R1);
596   _msContext.R2 = r.getRegister(UNW_ARM_R2);
597   _msContext.R3 = r.getRegister(UNW_ARM_R3);
598   _msContext.R4 = r.getRegister(UNW_ARM_R4);
599   _msContext.R5 = r.getRegister(UNW_ARM_R5);
600   _msContext.R6 = r.getRegister(UNW_ARM_R6);
601   _msContext.R7 = r.getRegister(UNW_ARM_R7);
602   _msContext.R8 = r.getRegister(UNW_ARM_R8);
603   _msContext.R9 = r.getRegister(UNW_ARM_R9);
604   _msContext.R10 = r.getRegister(UNW_ARM_R10);
605   _msContext.R11 = r.getRegister(UNW_ARM_R11);
606   _msContext.R12 = r.getRegister(UNW_ARM_R12);
607   _msContext.Sp = r.getRegister(UNW_ARM_SP);
608   _msContext.Lr = r.getRegister(UNW_ARM_LR);
609   _msContext.Pc = r.getRegister(UNW_ARM_IP);
610   for (int i = UNW_ARM_D0; i <= UNW_ARM_D31; ++i) {
611     union {
612       uint64_t w;
613       double d;
614     } d;
615     d.d = r.getFloatRegister(i);
616     _msContext.D[i - UNW_ARM_D0] = d.w;
617   }
618 #elif defined(_LIBUNWIND_TARGET_AARCH64)
619   for (int i = UNW_ARM64_X0; i <= UNW_ARM64_X30; ++i)
620     _msContext.X[i - UNW_ARM64_X0] = r.getRegister(i);
621   _msContext.Sp = r.getRegister(UNW_REG_SP);
622   _msContext.Pc = r.getRegister(UNW_REG_IP);
623   for (int i = UNW_ARM64_D0; i <= UNW_ARM64_D31; ++i)
624     _msContext.V[i - UNW_ARM64_D0].D[0] = r.getFloatRegister(i);
625 #endif
626 }
627 
628 template <typename A, typename R>
UnwindCursor(CONTEXT * context,A & as)629 UnwindCursor<A, R>::UnwindCursor(CONTEXT *context, A &as)
630     : _addressSpace(as), _unwindInfoMissing(false) {
631   static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit),
632                 "UnwindCursor<> does not fit in unw_cursor_t");
633   memset(&_info, 0, sizeof(_info));
634   memset(&_histTable, 0, sizeof(_histTable));
635   _dispContext.ContextRecord = &_msContext;
636   _dispContext.HistoryTable = &_histTable;
637   _msContext = *context;
638 }
639 
640 
641 template <typename A, typename R>
validReg(int regNum)642 bool UnwindCursor<A, R>::validReg(int regNum) {
643   if (regNum == UNW_REG_IP || regNum == UNW_REG_SP) return true;
644 #if defined(_LIBUNWIND_TARGET_X86_64)
645   if (regNum >= UNW_X86_64_RAX && regNum <= UNW_X86_64_R15) return true;
646 #elif defined(_LIBUNWIND_TARGET_ARM)
647   if (regNum >= UNW_ARM_R0 && regNum <= UNW_ARM_R15) return true;
648 #elif defined(_LIBUNWIND_TARGET_AARCH64)
649   if (regNum >= UNW_ARM64_X0 && regNum <= UNW_ARM64_X30) return true;
650 #endif
651   return false;
652 }
653 
654 template <typename A, typename R>
getReg(int regNum)655 unw_word_t UnwindCursor<A, R>::getReg(int regNum) {
656   switch (regNum) {
657 #if defined(_LIBUNWIND_TARGET_X86_64)
658   case UNW_REG_IP: return _msContext.Rip;
659   case UNW_X86_64_RAX: return _msContext.Rax;
660   case UNW_X86_64_RDX: return _msContext.Rdx;
661   case UNW_X86_64_RCX: return _msContext.Rcx;
662   case UNW_X86_64_RBX: return _msContext.Rbx;
663   case UNW_REG_SP:
664   case UNW_X86_64_RSP: return _msContext.Rsp;
665   case UNW_X86_64_RBP: return _msContext.Rbp;
666   case UNW_X86_64_RSI: return _msContext.Rsi;
667   case UNW_X86_64_RDI: return _msContext.Rdi;
668   case UNW_X86_64_R8: return _msContext.R8;
669   case UNW_X86_64_R9: return _msContext.R9;
670   case UNW_X86_64_R10: return _msContext.R10;
671   case UNW_X86_64_R11: return _msContext.R11;
672   case UNW_X86_64_R12: return _msContext.R12;
673   case UNW_X86_64_R13: return _msContext.R13;
674   case UNW_X86_64_R14: return _msContext.R14;
675   case UNW_X86_64_R15: return _msContext.R15;
676 #elif defined(_LIBUNWIND_TARGET_ARM)
677   case UNW_ARM_R0: return _msContext.R0;
678   case UNW_ARM_R1: return _msContext.R1;
679   case UNW_ARM_R2: return _msContext.R2;
680   case UNW_ARM_R3: return _msContext.R3;
681   case UNW_ARM_R4: return _msContext.R4;
682   case UNW_ARM_R5: return _msContext.R5;
683   case UNW_ARM_R6: return _msContext.R6;
684   case UNW_ARM_R7: return _msContext.R7;
685   case UNW_ARM_R8: return _msContext.R8;
686   case UNW_ARM_R9: return _msContext.R9;
687   case UNW_ARM_R10: return _msContext.R10;
688   case UNW_ARM_R11: return _msContext.R11;
689   case UNW_ARM_R12: return _msContext.R12;
690   case UNW_REG_SP:
691   case UNW_ARM_SP: return _msContext.Sp;
692   case UNW_ARM_LR: return _msContext.Lr;
693   case UNW_REG_IP:
694   case UNW_ARM_IP: return _msContext.Pc;
695 #elif defined(_LIBUNWIND_TARGET_AARCH64)
696   case UNW_REG_SP: return _msContext.Sp;
697   case UNW_REG_IP: return _msContext.Pc;
698   default: return _msContext.X[regNum - UNW_ARM64_X0];
699 #endif
700   }
701   _LIBUNWIND_ABORT("unsupported register");
702 }
703 
704 template <typename A, typename R>
setReg(int regNum,unw_word_t value)705 void UnwindCursor<A, R>::setReg(int regNum, unw_word_t value) {
706   switch (regNum) {
707 #if defined(_LIBUNWIND_TARGET_X86_64)
708   case UNW_REG_IP: _msContext.Rip = value; break;
709   case UNW_X86_64_RAX: _msContext.Rax = value; break;
710   case UNW_X86_64_RDX: _msContext.Rdx = value; break;
711   case UNW_X86_64_RCX: _msContext.Rcx = value; break;
712   case UNW_X86_64_RBX: _msContext.Rbx = value; break;
713   case UNW_REG_SP:
714   case UNW_X86_64_RSP: _msContext.Rsp = value; break;
715   case UNW_X86_64_RBP: _msContext.Rbp = value; break;
716   case UNW_X86_64_RSI: _msContext.Rsi = value; break;
717   case UNW_X86_64_RDI: _msContext.Rdi = value; break;
718   case UNW_X86_64_R8: _msContext.R8 = value; break;
719   case UNW_X86_64_R9: _msContext.R9 = value; break;
720   case UNW_X86_64_R10: _msContext.R10 = value; break;
721   case UNW_X86_64_R11: _msContext.R11 = value; break;
722   case UNW_X86_64_R12: _msContext.R12 = value; break;
723   case UNW_X86_64_R13: _msContext.R13 = value; break;
724   case UNW_X86_64_R14: _msContext.R14 = value; break;
725   case UNW_X86_64_R15: _msContext.R15 = value; break;
726 #elif defined(_LIBUNWIND_TARGET_ARM)
727   case UNW_ARM_R0: _msContext.R0 = value; break;
728   case UNW_ARM_R1: _msContext.R1 = value; break;
729   case UNW_ARM_R2: _msContext.R2 = value; break;
730   case UNW_ARM_R3: _msContext.R3 = value; break;
731   case UNW_ARM_R4: _msContext.R4 = value; break;
732   case UNW_ARM_R5: _msContext.R5 = value; break;
733   case UNW_ARM_R6: _msContext.R6 = value; break;
734   case UNW_ARM_R7: _msContext.R7 = value; break;
735   case UNW_ARM_R8: _msContext.R8 = value; break;
736   case UNW_ARM_R9: _msContext.R9 = value; break;
737   case UNW_ARM_R10: _msContext.R10 = value; break;
738   case UNW_ARM_R11: _msContext.R11 = value; break;
739   case UNW_ARM_R12: _msContext.R12 = value; break;
740   case UNW_REG_SP:
741   case UNW_ARM_SP: _msContext.Sp = value; break;
742   case UNW_ARM_LR: _msContext.Lr = value; break;
743   case UNW_REG_IP:
744   case UNW_ARM_IP: _msContext.Pc = value; break;
745 #elif defined(_LIBUNWIND_TARGET_AARCH64)
746   case UNW_REG_SP: _msContext.Sp = value; break;
747   case UNW_REG_IP: _msContext.Pc = value; break;
748   case UNW_ARM64_X0:
749   case UNW_ARM64_X1:
750   case UNW_ARM64_X2:
751   case UNW_ARM64_X3:
752   case UNW_ARM64_X4:
753   case UNW_ARM64_X5:
754   case UNW_ARM64_X6:
755   case UNW_ARM64_X7:
756   case UNW_ARM64_X8:
757   case UNW_ARM64_X9:
758   case UNW_ARM64_X10:
759   case UNW_ARM64_X11:
760   case UNW_ARM64_X12:
761   case UNW_ARM64_X13:
762   case UNW_ARM64_X14:
763   case UNW_ARM64_X15:
764   case UNW_ARM64_X16:
765   case UNW_ARM64_X17:
766   case UNW_ARM64_X18:
767   case UNW_ARM64_X19:
768   case UNW_ARM64_X20:
769   case UNW_ARM64_X21:
770   case UNW_ARM64_X22:
771   case UNW_ARM64_X23:
772   case UNW_ARM64_X24:
773   case UNW_ARM64_X25:
774   case UNW_ARM64_X26:
775   case UNW_ARM64_X27:
776   case UNW_ARM64_X28:
777   case UNW_ARM64_FP:
778   case UNW_ARM64_LR: _msContext.X[regNum - UNW_ARM64_X0] = value; break;
779 #endif
780   default:
781     _LIBUNWIND_ABORT("unsupported register");
782   }
783 }
784 
785 template <typename A, typename R>
validFloatReg(int regNum)786 bool UnwindCursor<A, R>::validFloatReg(int regNum) {
787 #if defined(_LIBUNWIND_TARGET_ARM)
788   if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) return true;
789   if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) return true;
790 #elif defined(_LIBUNWIND_TARGET_AARCH64)
791   if (regNum >= UNW_ARM64_D0 && regNum <= UNW_ARM64_D31) return true;
792 #endif
793   return false;
794 }
795 
796 template <typename A, typename R>
getFloatReg(int regNum)797 unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) {
798 #if defined(_LIBUNWIND_TARGET_ARM)
799   if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) {
800     union {
801       uint32_t w;
802       float f;
803     } d;
804     d.w = _msContext.S[regNum - UNW_ARM_S0];
805     return d.f;
806   }
807   if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) {
808     union {
809       uint64_t w;
810       double d;
811     } d;
812     d.w = _msContext.D[regNum - UNW_ARM_D0];
813     return d.d;
814   }
815   _LIBUNWIND_ABORT("unsupported float register");
816 #elif defined(_LIBUNWIND_TARGET_AARCH64)
817   return _msContext.V[regNum - UNW_ARM64_D0].D[0];
818 #else
819   _LIBUNWIND_ABORT("float registers unimplemented");
820 #endif
821 }
822 
823 template <typename A, typename R>
setFloatReg(int regNum,unw_fpreg_t value)824 void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) {
825 #if defined(_LIBUNWIND_TARGET_ARM)
826   if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) {
827     union {
828       uint32_t w;
829       float f;
830     } d;
831     d.f = value;
832     _msContext.S[regNum - UNW_ARM_S0] = d.w;
833   }
834   if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) {
835     union {
836       uint64_t w;
837       double d;
838     } d;
839     d.d = value;
840     _msContext.D[regNum - UNW_ARM_D0] = d.w;
841   }
842   _LIBUNWIND_ABORT("unsupported float register");
843 #elif defined(_LIBUNWIND_TARGET_AARCH64)
844   _msContext.V[regNum - UNW_ARM64_D0].D[0] = value;
845 #else
846   _LIBUNWIND_ABORT("float registers unimplemented");
847 #endif
848 }
849 
jumpto()850 template <typename A, typename R> void UnwindCursor<A, R>::jumpto() {
851   RtlRestoreContext(&_msContext, nullptr);
852 }
853 
854 #ifdef __arm__
saveVFPAsX()855 template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() {}
856 #endif
857 
858 template <typename A, typename R>
getRegisterName(int regNum)859 const char *UnwindCursor<A, R>::getRegisterName(int regNum) {
860   return R::getRegisterName(regNum);
861 }
862 
isSignalFrame()863 template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() {
864   return false;
865 }
866 
867 #else  // !defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) || !defined(_WIN32)
868 
869 /// UnwindCursor contains all state (including all register values) during
870 /// an unwind.  This is normally stack allocated inside a unw_cursor_t.
871 template <typename A, typename R>
872 class UnwindCursor : public AbstractUnwindCursor{
873   typedef typename A::pint_t pint_t;
874 public:
875                       UnwindCursor(unw_context_t *context, A &as);
876                       UnwindCursor(A &as, void *threadArg);
~UnwindCursor()877   virtual             ~UnwindCursor() {}
878   virtual bool        validReg(int);
879   virtual unw_word_t  getReg(int);
880   virtual void        setReg(int, unw_word_t);
881   virtual bool        validFloatReg(int);
882   virtual unw_fpreg_t getFloatReg(int);
883   virtual void        setFloatReg(int, unw_fpreg_t);
884   virtual int         step();
885   virtual void        getInfo(unw_proc_info_t *);
886   virtual void        jumpto();
887   virtual bool        isSignalFrame();
888   virtual bool        getFunctionName(char *buf, size_t len, unw_word_t *off);
889   virtual void        setInfoBasedOnIPRegister(bool isReturnAddress = false);
890   virtual const char *getRegisterName(int num);
891 #ifdef __arm__
892   virtual void        saveVFPAsX();
893 #endif
894 
895 private:
896 
897 #if defined(_LIBUNWIND_ARM_EHABI)
898   bool getInfoFromEHABISection(pint_t pc, const UnwindInfoSections &sects);
899 
stepWithEHABI()900   int stepWithEHABI() {
901     size_t len = 0;
902     size_t off = 0;
903     // FIXME: Calling decode_eht_entry() here is violating the libunwind
904     // abstraction layer.
905     const uint32_t *ehtp =
906         decode_eht_entry(reinterpret_cast<const uint32_t *>(_info.unwind_info),
907                          &off, &len);
908     if (_Unwind_VRS_Interpret((_Unwind_Context *)this, ehtp, off, len) !=
909             _URC_CONTINUE_UNWIND)
910       return UNW_STEP_END;
911     return UNW_STEP_SUCCESS;
912   }
913 #endif
914 
915 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
916   bool getInfoFromDwarfSection(pint_t pc, const UnwindInfoSections &sects,
917                                             uint32_t fdeSectionOffsetHint=0);
stepWithDwarfFDE()918   int stepWithDwarfFDE() {
919     return DwarfInstructions<A, R>::stepWithDwarf(_addressSpace,
920                                               (pint_t)this->getReg(UNW_REG_IP),
921                                               (pint_t)_info.unwind_info,
922                                               _registers);
923   }
924 #endif
925 
926 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
927   bool getInfoFromCompactEncodingSection(pint_t pc,
928                                             const UnwindInfoSections &sects);
stepWithCompactEncoding()929   int stepWithCompactEncoding() {
930   #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
931     if ( compactSaysUseDwarf() )
932       return stepWithDwarfFDE();
933   #endif
934     R dummy;
935     return stepWithCompactEncoding(dummy);
936   }
937 
938 #if defined(_LIBUNWIND_TARGET_X86_64)
stepWithCompactEncoding(Registers_x86_64 &)939   int stepWithCompactEncoding(Registers_x86_64 &) {
940     return CompactUnwinder_x86_64<A>::stepWithCompactEncoding(
941         _info.format, _info.start_ip, _addressSpace, _registers);
942   }
943 #endif
944 
945 #if defined(_LIBUNWIND_TARGET_I386)
stepWithCompactEncoding(Registers_x86 &)946   int stepWithCompactEncoding(Registers_x86 &) {
947     return CompactUnwinder_x86<A>::stepWithCompactEncoding(
948         _info.format, (uint32_t)_info.start_ip, _addressSpace, _registers);
949   }
950 #endif
951 
952 #if defined(_LIBUNWIND_TARGET_PPC)
stepWithCompactEncoding(Registers_ppc &)953   int stepWithCompactEncoding(Registers_ppc &) {
954     return UNW_EINVAL;
955   }
956 #endif
957 
958 #if defined(_LIBUNWIND_TARGET_PPC64)
stepWithCompactEncoding(Registers_ppc64 &)959   int stepWithCompactEncoding(Registers_ppc64 &) {
960     return UNW_EINVAL;
961   }
962 #endif
963 
964 
965 #if defined(_LIBUNWIND_TARGET_AARCH64)
stepWithCompactEncoding(Registers_arm64 &)966   int stepWithCompactEncoding(Registers_arm64 &) {
967     return CompactUnwinder_arm64<A>::stepWithCompactEncoding(
968         _info.format, _info.start_ip, _addressSpace, _registers);
969   }
970 #endif
971 
972 #if defined(_LIBUNWIND_TARGET_MIPS_O32)
stepWithCompactEncoding(Registers_mips_o32 &)973   int stepWithCompactEncoding(Registers_mips_o32 &) {
974     return UNW_EINVAL;
975   }
976 #endif
977 
978 #if defined(_LIBUNWIND_TARGET_MIPS_NEWABI)
stepWithCompactEncoding(Registers_mips_newabi &)979   int stepWithCompactEncoding(Registers_mips_newabi &) {
980     return UNW_EINVAL;
981   }
982 #endif
983 
984 #if defined(_LIBUNWIND_TARGET_SPARC)
stepWithCompactEncoding(Registers_sparc &)985   int stepWithCompactEncoding(Registers_sparc &) { return UNW_EINVAL; }
986 #endif
987 
compactSaysUseDwarf(uint32_t * offset=NULL) const988   bool compactSaysUseDwarf(uint32_t *offset=NULL) const {
989     R dummy;
990     return compactSaysUseDwarf(dummy, offset);
991   }
992 
993 #if defined(_LIBUNWIND_TARGET_X86_64)
compactSaysUseDwarf(Registers_x86_64 &,uint32_t * offset) const994   bool compactSaysUseDwarf(Registers_x86_64 &, uint32_t *offset) const {
995     if ((_info.format & UNWIND_X86_64_MODE_MASK) == UNWIND_X86_64_MODE_DWARF) {
996       if (offset)
997         *offset = (_info.format & UNWIND_X86_64_DWARF_SECTION_OFFSET);
998       return true;
999     }
1000     return false;
1001   }
1002 #endif
1003 
1004 #if defined(_LIBUNWIND_TARGET_I386)
compactSaysUseDwarf(Registers_x86 &,uint32_t * offset) const1005   bool compactSaysUseDwarf(Registers_x86 &, uint32_t *offset) const {
1006     if ((_info.format & UNWIND_X86_MODE_MASK) == UNWIND_X86_MODE_DWARF) {
1007       if (offset)
1008         *offset = (_info.format & UNWIND_X86_DWARF_SECTION_OFFSET);
1009       return true;
1010     }
1011     return false;
1012   }
1013 #endif
1014 
1015 #if defined(_LIBUNWIND_TARGET_PPC)
compactSaysUseDwarf(Registers_ppc &,uint32_t *) const1016   bool compactSaysUseDwarf(Registers_ppc &, uint32_t *) const {
1017     return true;
1018   }
1019 #endif
1020 
1021 #if defined(_LIBUNWIND_TARGET_PPC64)
compactSaysUseDwarf(Registers_ppc64 &,uint32_t *) const1022   bool compactSaysUseDwarf(Registers_ppc64 &, uint32_t *) const {
1023     return true;
1024   }
1025 #endif
1026 
1027 #if defined(_LIBUNWIND_TARGET_AARCH64)
compactSaysUseDwarf(Registers_arm64 &,uint32_t * offset) const1028   bool compactSaysUseDwarf(Registers_arm64 &, uint32_t *offset) const {
1029     if ((_info.format & UNWIND_ARM64_MODE_MASK) == UNWIND_ARM64_MODE_DWARF) {
1030       if (offset)
1031         *offset = (_info.format & UNWIND_ARM64_DWARF_SECTION_OFFSET);
1032       return true;
1033     }
1034     return false;
1035   }
1036 #endif
1037 
1038 #if defined(_LIBUNWIND_TARGET_MIPS_O32)
compactSaysUseDwarf(Registers_mips_o32 &,uint32_t *) const1039   bool compactSaysUseDwarf(Registers_mips_o32 &, uint32_t *) const {
1040     return true;
1041   }
1042 #endif
1043 
1044 #if defined(_LIBUNWIND_TARGET_MIPS_NEWABI)
compactSaysUseDwarf(Registers_mips_newabi &,uint32_t *) const1045   bool compactSaysUseDwarf(Registers_mips_newabi &, uint32_t *) const {
1046     return true;
1047   }
1048 #endif
1049 
1050 #if defined(_LIBUNWIND_TARGET_SPARC)
compactSaysUseDwarf(Registers_sparc &,uint32_t *) const1051   bool compactSaysUseDwarf(Registers_sparc &, uint32_t *) const { return true; }
1052 #endif
1053 
1054 #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
1055 
1056 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
dwarfEncoding() const1057   compact_unwind_encoding_t dwarfEncoding() const {
1058     R dummy;
1059     return dwarfEncoding(dummy);
1060   }
1061 
1062 #if defined(_LIBUNWIND_TARGET_X86_64)
dwarfEncoding(Registers_x86_64 &) const1063   compact_unwind_encoding_t dwarfEncoding(Registers_x86_64 &) const {
1064     return UNWIND_X86_64_MODE_DWARF;
1065   }
1066 #endif
1067 
1068 #if defined(_LIBUNWIND_TARGET_I386)
dwarfEncoding(Registers_x86 &) const1069   compact_unwind_encoding_t dwarfEncoding(Registers_x86 &) const {
1070     return UNWIND_X86_MODE_DWARF;
1071   }
1072 #endif
1073 
1074 #if defined(_LIBUNWIND_TARGET_PPC)
dwarfEncoding(Registers_ppc &) const1075   compact_unwind_encoding_t dwarfEncoding(Registers_ppc &) const {
1076     return 0;
1077   }
1078 #endif
1079 
1080 #if defined(_LIBUNWIND_TARGET_PPC64)
dwarfEncoding(Registers_ppc64 &) const1081   compact_unwind_encoding_t dwarfEncoding(Registers_ppc64 &) const {
1082     return 0;
1083   }
1084 #endif
1085 
1086 #if defined(_LIBUNWIND_TARGET_AARCH64)
dwarfEncoding(Registers_arm64 &) const1087   compact_unwind_encoding_t dwarfEncoding(Registers_arm64 &) const {
1088     return UNWIND_ARM64_MODE_DWARF;
1089   }
1090 #endif
1091 
1092 #if defined(_LIBUNWIND_TARGET_ARM)
dwarfEncoding(Registers_arm &) const1093   compact_unwind_encoding_t dwarfEncoding(Registers_arm &) const {
1094     return 0;
1095   }
1096 #endif
1097 
1098 #if defined (_LIBUNWIND_TARGET_OR1K)
dwarfEncoding(Registers_or1k &) const1099   compact_unwind_encoding_t dwarfEncoding(Registers_or1k &) const {
1100     return 0;
1101   }
1102 #endif
1103 
1104 #if defined (_LIBUNWIND_TARGET_MIPS_O32)
dwarfEncoding(Registers_mips_o32 &) const1105   compact_unwind_encoding_t dwarfEncoding(Registers_mips_o32 &) const {
1106     return 0;
1107   }
1108 #endif
1109 
1110 #if defined (_LIBUNWIND_TARGET_MIPS_NEWABI)
dwarfEncoding(Registers_mips_newabi &) const1111   compact_unwind_encoding_t dwarfEncoding(Registers_mips_newabi &) const {
1112     return 0;
1113   }
1114 #endif
1115 
1116 #if defined(_LIBUNWIND_TARGET_SPARC)
dwarfEncoding(Registers_sparc &) const1117   compact_unwind_encoding_t dwarfEncoding(Registers_sparc &) const { return 0; }
1118 #endif
1119 
1120 #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
1121 
1122 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
1123   // For runtime environments using SEH unwind data without Windows runtime
1124   // support.
getLastPC() const1125   pint_t getLastPC() const { /* FIXME: Implement */ return 0; }
setLastPC(pint_t pc)1126   void setLastPC(pint_t pc) { /* FIXME: Implement */ }
lookUpSEHUnwindInfo(pint_t pc,pint_t * base)1127   RUNTIME_FUNCTION *lookUpSEHUnwindInfo(pint_t pc, pint_t *base) {
1128     /* FIXME: Implement */
1129     *base = 0;
1130     return nullptr;
1131   }
1132   bool getInfoFromSEH(pint_t pc);
stepWithSEHData()1133   int stepWithSEHData() { /* FIXME: Implement */ return 0; }
1134 #endif // defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
1135 
1136 
1137   A               &_addressSpace;
1138   R                _registers;
1139   unw_proc_info_t  _info;
1140   bool             _unwindInfoMissing;
1141   bool             _isSignalFrame;
1142 };
1143 
1144 
1145 template <typename A, typename R>
UnwindCursor(unw_context_t * context,A & as)1146 UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as)
1147     : _addressSpace(as), _registers(context), _unwindInfoMissing(false),
1148       _isSignalFrame(false) {
1149   static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit),
1150                 "UnwindCursor<> does not fit in unw_cursor_t");
1151   memset(&_info, 0, sizeof(_info));
1152 }
1153 
1154 template <typename A, typename R>
UnwindCursor(A & as,void *)1155 UnwindCursor<A, R>::UnwindCursor(A &as, void *)
1156     : _addressSpace(as), _unwindInfoMissing(false), _isSignalFrame(false) {
1157   memset(&_info, 0, sizeof(_info));
1158   // FIXME
1159   // fill in _registers from thread arg
1160 }
1161 
1162 
1163 template <typename A, typename R>
validReg(int regNum)1164 bool UnwindCursor<A, R>::validReg(int regNum) {
1165   return _registers.validRegister(regNum);
1166 }
1167 
1168 template <typename A, typename R>
getReg(int regNum)1169 unw_word_t UnwindCursor<A, R>::getReg(int regNum) {
1170   return _registers.getRegister(regNum);
1171 }
1172 
1173 template <typename A, typename R>
setReg(int regNum,unw_word_t value)1174 void UnwindCursor<A, R>::setReg(int regNum, unw_word_t value) {
1175   _registers.setRegister(regNum, (typename A::pint_t)value);
1176 }
1177 
1178 template <typename A, typename R>
validFloatReg(int regNum)1179 bool UnwindCursor<A, R>::validFloatReg(int regNum) {
1180   return _registers.validFloatRegister(regNum);
1181 }
1182 
1183 template <typename A, typename R>
getFloatReg(int regNum)1184 unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) {
1185   return _registers.getFloatRegister(regNum);
1186 }
1187 
1188 template <typename A, typename R>
setFloatReg(int regNum,unw_fpreg_t value)1189 void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) {
1190   _registers.setFloatRegister(regNum, value);
1191 }
1192 
jumpto()1193 template <typename A, typename R> void UnwindCursor<A, R>::jumpto() {
1194   _registers.jumpto();
1195 }
1196 
1197 #ifdef __arm__
saveVFPAsX()1198 template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() {
1199   _registers.saveVFPAsX();
1200 }
1201 #endif
1202 
1203 template <typename A, typename R>
getRegisterName(int regNum)1204 const char *UnwindCursor<A, R>::getRegisterName(int regNum) {
1205   return _registers.getRegisterName(regNum);
1206 }
1207 
isSignalFrame()1208 template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() {
1209   return _isSignalFrame;
1210 }
1211 
1212 #endif // defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
1213 
1214 #if defined(_LIBUNWIND_ARM_EHABI)
1215 struct EHABIIndexEntry {
1216   uint32_t functionOffset;
1217   uint32_t data;
1218 };
1219 
1220 template<typename A>
1221 struct EHABISectionIterator {
1222   typedef EHABISectionIterator _Self;
1223 
1224   typedef std::random_access_iterator_tag iterator_category;
1225   typedef typename A::pint_t value_type;
1226   typedef typename A::pint_t* pointer;
1227   typedef typename A::pint_t& reference;
1228   typedef size_t size_type;
1229   typedef size_t difference_type;
1230 
beginlibunwind::EHABISectionIterator1231   static _Self begin(A& addressSpace, const UnwindInfoSections& sects) {
1232     return _Self(addressSpace, sects, 0);
1233   }
endlibunwind::EHABISectionIterator1234   static _Self end(A& addressSpace, const UnwindInfoSections& sects) {
1235     return _Self(addressSpace, sects,
1236                  sects.arm_section_length / sizeof(EHABIIndexEntry));
1237   }
1238 
EHABISectionIteratorlibunwind::EHABISectionIterator1239   EHABISectionIterator(A& addressSpace, const UnwindInfoSections& sects, size_t i)
1240       : _i(i), _addressSpace(&addressSpace), _sects(&sects) {}
1241 
operator ++libunwind::EHABISectionIterator1242   _Self& operator++() { ++_i; return *this; }
operator +=libunwind::EHABISectionIterator1243   _Self& operator+=(size_t a) { _i += a; return *this; }
operator --libunwind::EHABISectionIterator1244   _Self& operator--() { assert(_i > 0); --_i; return *this; }
operator -=libunwind::EHABISectionIterator1245   _Self& operator-=(size_t a) { assert(_i >= a); _i -= a; return *this; }
1246 
operator +libunwind::EHABISectionIterator1247   _Self operator+(size_t a) { _Self out = *this; out._i += a; return out; }
operator -libunwind::EHABISectionIterator1248   _Self operator-(size_t a) { assert(_i >= a); _Self out = *this; out._i -= a; return out; }
1249 
operator -libunwind::EHABISectionIterator1250   size_t operator-(const _Self& other) { return _i - other._i; }
1251 
operator ==libunwind::EHABISectionIterator1252   bool operator==(const _Self& other) const {
1253     assert(_addressSpace == other._addressSpace);
1254     assert(_sects == other._sects);
1255     return _i == other._i;
1256   }
1257 
operator *libunwind::EHABISectionIterator1258   typename A::pint_t operator*() const { return functionAddress(); }
1259 
functionAddresslibunwind::EHABISectionIterator1260   typename A::pint_t functionAddress() const {
1261     typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof(
1262         EHABIIndexEntry, _i, functionOffset);
1263     return indexAddr + signExtendPrel31(_addressSpace->get32(indexAddr));
1264   }
1265 
dataAddresslibunwind::EHABISectionIterator1266   typename A::pint_t dataAddress() {
1267     typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof(
1268         EHABIIndexEntry, _i, data);
1269     return indexAddr;
1270   }
1271 
1272  private:
1273   size_t _i;
1274   A* _addressSpace;
1275   const UnwindInfoSections* _sects;
1276 };
1277 
1278 template <typename A, typename R>
getInfoFromEHABISection(pint_t pc,const UnwindInfoSections & sects)1279 bool UnwindCursor<A, R>::getInfoFromEHABISection(
1280     pint_t pc,
1281     const UnwindInfoSections &sects) {
1282   EHABISectionIterator<A> begin =
1283       EHABISectionIterator<A>::begin(_addressSpace, sects);
1284   EHABISectionIterator<A> end =
1285       EHABISectionIterator<A>::end(_addressSpace, sects);
1286   if (begin == end)
1287     return false;
1288 
1289   EHABISectionIterator<A> itNextPC = std::upper_bound(begin, end, pc);
1290   if (itNextPC == begin)
1291     return false;
1292   EHABISectionIterator<A> itThisPC = itNextPC - 1;
1293 
1294   pint_t thisPC = itThisPC.functionAddress();
1295   // If an exception is thrown from a function, corresponding to the last entry
1296   // in the table, we don't really know the function extent and have to choose a
1297   // value for nextPC. Choosing max() will allow the range check during trace to
1298   // succeed.
1299   pint_t nextPC = (itNextPC == end) ? std::numeric_limits<pint_t>::max()
1300                                     : itNextPC.functionAddress();
1301   pint_t indexDataAddr = itThisPC.dataAddress();
1302 
1303   if (indexDataAddr == 0)
1304     return false;
1305 
1306   uint32_t indexData = _addressSpace.get32(indexDataAddr);
1307   if (indexData == UNW_EXIDX_CANTUNWIND)
1308     return false;
1309 
1310   // If the high bit is set, the exception handling table entry is inline inside
1311   // the index table entry on the second word (aka |indexDataAddr|). Otherwise,
1312   // the table points at an offset in the exception handling table (section 5 EHABI).
1313   pint_t exceptionTableAddr;
1314   uint32_t exceptionTableData;
1315   bool isSingleWordEHT;
1316   if (indexData & 0x80000000) {
1317     exceptionTableAddr = indexDataAddr;
1318     // TODO(ajwong): Should this data be 0?
1319     exceptionTableData = indexData;
1320     isSingleWordEHT = true;
1321   } else {
1322     exceptionTableAddr = indexDataAddr + signExtendPrel31(indexData);
1323     exceptionTableData = _addressSpace.get32(exceptionTableAddr);
1324     isSingleWordEHT = false;
1325   }
1326 
1327   // Now we know the 3 things:
1328   //   exceptionTableAddr -- exception handler table entry.
1329   //   exceptionTableData -- the data inside the first word of the eht entry.
1330   //   isSingleWordEHT -- whether the entry is in the index.
1331   unw_word_t personalityRoutine = 0xbadf00d;
1332   bool scope32 = false;
1333   uintptr_t lsda;
1334 
1335   // If the high bit in the exception handling table entry is set, the entry is
1336   // in compact form (section 6.3 EHABI).
1337   if (exceptionTableData & 0x80000000) {
1338     // Grab the index of the personality routine from the compact form.
1339     uint32_t choice = (exceptionTableData & 0x0f000000) >> 24;
1340     uint32_t extraWords = 0;
1341     switch (choice) {
1342       case 0:
1343         personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr0;
1344         extraWords = 0;
1345         scope32 = false;
1346         lsda = isSingleWordEHT ? 0 : (exceptionTableAddr + 4);
1347         break;
1348       case 1:
1349         personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr1;
1350         extraWords = (exceptionTableData & 0x00ff0000) >> 16;
1351         scope32 = false;
1352         lsda = exceptionTableAddr + (extraWords + 1) * 4;
1353         break;
1354       case 2:
1355         personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr2;
1356         extraWords = (exceptionTableData & 0x00ff0000) >> 16;
1357         scope32 = true;
1358         lsda = exceptionTableAddr + (extraWords + 1) * 4;
1359         break;
1360       default:
1361         _LIBUNWIND_ABORT("unknown personality routine");
1362         return false;
1363     }
1364 
1365     if (isSingleWordEHT) {
1366       if (extraWords != 0) {
1367         _LIBUNWIND_ABORT("index inlined table detected but pr function "
1368                          "requires extra words");
1369         return false;
1370       }
1371     }
1372   } else {
1373     pint_t personalityAddr =
1374         exceptionTableAddr + signExtendPrel31(exceptionTableData);
1375     personalityRoutine = personalityAddr;
1376 
1377     // ARM EHABI # 6.2, # 9.2
1378     //
1379     //  +---- ehtp
1380     //  v
1381     // +--------------------------------------+
1382     // | +--------+--------+--------+-------+ |
1383     // | |0| prel31 to personalityRoutine   | |
1384     // | +--------+--------+--------+-------+ |
1385     // | |      N |      unwind opcodes     | |  <-- UnwindData
1386     // | +--------+--------+--------+-------+ |
1387     // | | Word 2        unwind opcodes     | |
1388     // | +--------+--------+--------+-------+ |
1389     // | ...                                  |
1390     // | +--------+--------+--------+-------+ |
1391     // | | Word N        unwind opcodes     | |
1392     // | +--------+--------+--------+-------+ |
1393     // | | LSDA                             | |  <-- lsda
1394     // | | ...                              | |
1395     // | +--------+--------+--------+-------+ |
1396     // +--------------------------------------+
1397 
1398     uint32_t *UnwindData = reinterpret_cast<uint32_t*>(exceptionTableAddr) + 1;
1399     uint32_t FirstDataWord = *UnwindData;
1400     size_t N = ((FirstDataWord >> 24) & 0xff);
1401     size_t NDataWords = N + 1;
1402     lsda = reinterpret_cast<uintptr_t>(UnwindData + NDataWords);
1403   }
1404 
1405   _info.start_ip = thisPC;
1406   _info.end_ip = nextPC;
1407   _info.handler = personalityRoutine;
1408   _info.unwind_info = exceptionTableAddr;
1409   _info.lsda = lsda;
1410   // flags is pr_cache.additional. See EHABI #7.2 for definition of bit 0.
1411   _info.flags = isSingleWordEHT ? 1 : 0 | scope32 ? 0x2 : 0;  // Use enum?
1412 
1413   return true;
1414 }
1415 #endif
1416 
1417 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
1418 template <typename A, typename R>
getInfoFromDwarfSection(pint_t pc,const UnwindInfoSections & sects,uint32_t fdeSectionOffsetHint)1419 bool UnwindCursor<A, R>::getInfoFromDwarfSection(pint_t pc,
1420                                                 const UnwindInfoSections &sects,
1421                                                 uint32_t fdeSectionOffsetHint) {
1422   typename CFI_Parser<A>::FDE_Info fdeInfo;
1423   typename CFI_Parser<A>::CIE_Info cieInfo;
1424   bool foundFDE = false;
1425   bool foundInCache = false;
1426   // If compact encoding table gave offset into dwarf section, go directly there
1427   if (fdeSectionOffsetHint != 0) {
1428     foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section,
1429                                     (uint32_t)sects.dwarf_section_length,
1430                                     sects.dwarf_section + fdeSectionOffsetHint,
1431                                     &fdeInfo, &cieInfo);
1432   }
1433 #if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX)
1434   if (!foundFDE && (sects.dwarf_index_section != 0)) {
1435     foundFDE = EHHeaderParser<A>::findFDE(
1436         _addressSpace, pc, sects.dwarf_index_section,
1437         (uint32_t)sects.dwarf_index_section_length, &fdeInfo, &cieInfo);
1438   }
1439 #endif
1440   if (!foundFDE) {
1441     // otherwise, search cache of previously found FDEs.
1442     pint_t cachedFDE = DwarfFDECache<A>::findFDE(sects.dso_base, pc);
1443     if (cachedFDE != 0) {
1444       foundFDE =
1445           CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section,
1446                                  (uint32_t)sects.dwarf_section_length,
1447                                  cachedFDE, &fdeInfo, &cieInfo);
1448       foundInCache = foundFDE;
1449     }
1450   }
1451   if (!foundFDE) {
1452     // Still not found, do full scan of __eh_frame section.
1453     foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section,
1454                                       (uint32_t)sects.dwarf_section_length, 0,
1455                                       &fdeInfo, &cieInfo);
1456   }
1457   if (foundFDE) {
1458     typename CFI_Parser<A>::PrologInfo prolog;
1459     if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo, pc,
1460                                             R::getArch(), &prolog)) {
1461       // Save off parsed FDE info
1462       _info.start_ip          = fdeInfo.pcStart;
1463       _info.end_ip            = fdeInfo.pcEnd;
1464       _info.lsda              = fdeInfo.lsda;
1465       _info.handler           = cieInfo.personality;
1466       _info.gp                = prolog.spExtraArgSize;
1467       _info.flags             = 0;
1468       _info.format            = dwarfEncoding();
1469       _info.unwind_info       = fdeInfo.fdeStart;
1470       _info.unwind_info_size  = (uint32_t)fdeInfo.fdeLength;
1471       _info.extra             = (unw_word_t) sects.dso_base;
1472 
1473       // Add to cache (to make next lookup faster) if we had no hint
1474       // and there was no index.
1475       if (!foundInCache && (fdeSectionOffsetHint == 0)) {
1476   #if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX)
1477         if (sects.dwarf_index_section == 0)
1478   #endif
1479         DwarfFDECache<A>::add(sects.dso_base, fdeInfo.pcStart, fdeInfo.pcEnd,
1480                               fdeInfo.fdeStart);
1481       }
1482       return true;
1483     }
1484   }
1485   //_LIBUNWIND_DEBUG_LOG("can't find/use FDE for pc=0x%llX", (uint64_t)pc);
1486   return false;
1487 }
1488 #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
1489 
1490 
1491 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
1492 template <typename A, typename R>
getInfoFromCompactEncodingSection(pint_t pc,const UnwindInfoSections & sects)1493 bool UnwindCursor<A, R>::getInfoFromCompactEncodingSection(pint_t pc,
1494                                               const UnwindInfoSections &sects) {
1495   const bool log = false;
1496   if (log)
1497     fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX, mh=0x%llX)\n",
1498             (uint64_t)pc, (uint64_t)sects.dso_base);
1499 
1500   const UnwindSectionHeader<A> sectionHeader(_addressSpace,
1501                                                 sects.compact_unwind_section);
1502   if (sectionHeader.version() != UNWIND_SECTION_VERSION)
1503     return false;
1504 
1505   // do a binary search of top level index to find page with unwind info
1506   pint_t targetFunctionOffset = pc - sects.dso_base;
1507   const UnwindSectionIndexArray<A> topIndex(_addressSpace,
1508                                            sects.compact_unwind_section
1509                                          + sectionHeader.indexSectionOffset());
1510   uint32_t low = 0;
1511   uint32_t high = sectionHeader.indexCount();
1512   uint32_t last = high - 1;
1513   while (low < high) {
1514     uint32_t mid = (low + high) / 2;
1515     //if ( log ) fprintf(stderr, "\tmid=%d, low=%d, high=%d, *mid=0x%08X\n",
1516     //mid, low, high, topIndex.functionOffset(mid));
1517     if (topIndex.functionOffset(mid) <= targetFunctionOffset) {
1518       if ((mid == last) ||
1519           (topIndex.functionOffset(mid + 1) > targetFunctionOffset)) {
1520         low = mid;
1521         break;
1522       } else {
1523         low = mid + 1;
1524       }
1525     } else {
1526       high = mid;
1527     }
1528   }
1529   const uint32_t firstLevelFunctionOffset = topIndex.functionOffset(low);
1530   const uint32_t firstLevelNextPageFunctionOffset =
1531       topIndex.functionOffset(low + 1);
1532   const pint_t secondLevelAddr =
1533       sects.compact_unwind_section + topIndex.secondLevelPagesSectionOffset(low);
1534   const pint_t lsdaArrayStartAddr =
1535       sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low);
1536   const pint_t lsdaArrayEndAddr =
1537       sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low+1);
1538   if (log)
1539     fprintf(stderr, "\tfirst level search for result index=%d "
1540                     "to secondLevelAddr=0x%llX\n",
1541                     low, (uint64_t) secondLevelAddr);
1542   // do a binary search of second level page index
1543   uint32_t encoding = 0;
1544   pint_t funcStart = 0;
1545   pint_t funcEnd = 0;
1546   pint_t lsda = 0;
1547   pint_t personality = 0;
1548   uint32_t pageKind = _addressSpace.get32(secondLevelAddr);
1549   if (pageKind == UNWIND_SECOND_LEVEL_REGULAR) {
1550     // regular page
1551     UnwindSectionRegularPageHeader<A> pageHeader(_addressSpace,
1552                                                  secondLevelAddr);
1553     UnwindSectionRegularArray<A> pageIndex(
1554         _addressSpace, secondLevelAddr + pageHeader.entryPageOffset());
1555     // binary search looks for entry with e where index[e].offset <= pc <
1556     // index[e+1].offset
1557     if (log)
1558       fprintf(stderr, "\tbinary search for targetFunctionOffset=0x%08llX in "
1559                       "regular page starting at secondLevelAddr=0x%llX\n",
1560               (uint64_t) targetFunctionOffset, (uint64_t) secondLevelAddr);
1561     low = 0;
1562     high = pageHeader.entryCount();
1563     while (low < high) {
1564       uint32_t mid = (low + high) / 2;
1565       if (pageIndex.functionOffset(mid) <= targetFunctionOffset) {
1566         if (mid == (uint32_t)(pageHeader.entryCount() - 1)) {
1567           // at end of table
1568           low = mid;
1569           funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base;
1570           break;
1571         } else if (pageIndex.functionOffset(mid + 1) > targetFunctionOffset) {
1572           // next is too big, so we found it
1573           low = mid;
1574           funcEnd = pageIndex.functionOffset(low + 1) + sects.dso_base;
1575           break;
1576         } else {
1577           low = mid + 1;
1578         }
1579       } else {
1580         high = mid;
1581       }
1582     }
1583     encoding = pageIndex.encoding(low);
1584     funcStart = pageIndex.functionOffset(low) + sects.dso_base;
1585     if (pc < funcStart) {
1586       if (log)
1587         fprintf(
1588             stderr,
1589             "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n",
1590             (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd);
1591       return false;
1592     }
1593     if (pc > funcEnd) {
1594       if (log)
1595         fprintf(
1596             stderr,
1597             "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n",
1598             (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd);
1599       return false;
1600     }
1601   } else if (pageKind == UNWIND_SECOND_LEVEL_COMPRESSED) {
1602     // compressed page
1603     UnwindSectionCompressedPageHeader<A> pageHeader(_addressSpace,
1604                                                     secondLevelAddr);
1605     UnwindSectionCompressedArray<A> pageIndex(
1606         _addressSpace, secondLevelAddr + pageHeader.entryPageOffset());
1607     const uint32_t targetFunctionPageOffset =
1608         (uint32_t)(targetFunctionOffset - firstLevelFunctionOffset);
1609     // binary search looks for entry with e where index[e].offset <= pc <
1610     // index[e+1].offset
1611     if (log)
1612       fprintf(stderr, "\tbinary search of compressed page starting at "
1613                       "secondLevelAddr=0x%llX\n",
1614               (uint64_t) secondLevelAddr);
1615     low = 0;
1616     last = pageHeader.entryCount() - 1;
1617     high = pageHeader.entryCount();
1618     while (low < high) {
1619       uint32_t mid = (low + high) / 2;
1620       if (pageIndex.functionOffset(mid) <= targetFunctionPageOffset) {
1621         if ((mid == last) ||
1622             (pageIndex.functionOffset(mid + 1) > targetFunctionPageOffset)) {
1623           low = mid;
1624           break;
1625         } else {
1626           low = mid + 1;
1627         }
1628       } else {
1629         high = mid;
1630       }
1631     }
1632     funcStart = pageIndex.functionOffset(low) + firstLevelFunctionOffset
1633                                                               + sects.dso_base;
1634     if (low < last)
1635       funcEnd =
1636           pageIndex.functionOffset(low + 1) + firstLevelFunctionOffset
1637                                                               + sects.dso_base;
1638     else
1639       funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base;
1640     if (pc < funcStart) {
1641       _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX not in second  "
1642                            "level compressed unwind table. funcStart=0x%llX",
1643                             (uint64_t) pc, (uint64_t) funcStart);
1644       return false;
1645     }
1646     if (pc > funcEnd) {
1647       _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX not in second  "
1648                           "level compressed unwind table. funcEnd=0x%llX",
1649                            (uint64_t) pc, (uint64_t) funcEnd);
1650       return false;
1651     }
1652     uint16_t encodingIndex = pageIndex.encodingIndex(low);
1653     if (encodingIndex < sectionHeader.commonEncodingsArrayCount()) {
1654       // encoding is in common table in section header
1655       encoding = _addressSpace.get32(
1656           sects.compact_unwind_section +
1657           sectionHeader.commonEncodingsArraySectionOffset() +
1658           encodingIndex * sizeof(uint32_t));
1659     } else {
1660       // encoding is in page specific table
1661       uint16_t pageEncodingIndex =
1662           encodingIndex - (uint16_t)sectionHeader.commonEncodingsArrayCount();
1663       encoding = _addressSpace.get32(secondLevelAddr +
1664                                      pageHeader.encodingsPageOffset() +
1665                                      pageEncodingIndex * sizeof(uint32_t));
1666     }
1667   } else {
1668     _LIBUNWIND_DEBUG_LOG("malformed __unwind_info at 0x%0llX bad second "
1669                          "level page",
1670                           (uint64_t) sects.compact_unwind_section);
1671     return false;
1672   }
1673 
1674   // look up LSDA, if encoding says function has one
1675   if (encoding & UNWIND_HAS_LSDA) {
1676     UnwindSectionLsdaArray<A> lsdaIndex(_addressSpace, lsdaArrayStartAddr);
1677     uint32_t funcStartOffset = (uint32_t)(funcStart - sects.dso_base);
1678     low = 0;
1679     high = (uint32_t)(lsdaArrayEndAddr - lsdaArrayStartAddr) /
1680                     sizeof(unwind_info_section_header_lsda_index_entry);
1681     // binary search looks for entry with exact match for functionOffset
1682     if (log)
1683       fprintf(stderr,
1684               "\tbinary search of lsda table for targetFunctionOffset=0x%08X\n",
1685               funcStartOffset);
1686     while (low < high) {
1687       uint32_t mid = (low + high) / 2;
1688       if (lsdaIndex.functionOffset(mid) == funcStartOffset) {
1689         lsda = lsdaIndex.lsdaOffset(mid) + sects.dso_base;
1690         break;
1691       } else if (lsdaIndex.functionOffset(mid) < funcStartOffset) {
1692         low = mid + 1;
1693       } else {
1694         high = mid;
1695       }
1696     }
1697     if (lsda == 0) {
1698       _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with HAS_LSDA bit set for "
1699                     "pc=0x%0llX, but lsda table has no entry",
1700                     encoding, (uint64_t) pc);
1701       return false;
1702     }
1703   }
1704 
1705   // extact personality routine, if encoding says function has one
1706   uint32_t personalityIndex = (encoding & UNWIND_PERSONALITY_MASK) >>
1707                               (__builtin_ctz(UNWIND_PERSONALITY_MASK));
1708   if (personalityIndex != 0) {
1709     --personalityIndex; // change 1-based to zero-based index
1710     if (personalityIndex > sectionHeader.personalityArrayCount()) {
1711       _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with personality index %d,  "
1712                             "but personality table has only %d entires",
1713                             encoding, personalityIndex,
1714                             sectionHeader.personalityArrayCount());
1715       return false;
1716     }
1717     int32_t personalityDelta = (int32_t)_addressSpace.get32(
1718         sects.compact_unwind_section +
1719         sectionHeader.personalityArraySectionOffset() +
1720         personalityIndex * sizeof(uint32_t));
1721     pint_t personalityPointer = sects.dso_base + (pint_t)personalityDelta;
1722     personality = _addressSpace.getP(personalityPointer);
1723     if (log)
1724       fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), "
1725                       "personalityDelta=0x%08X, personality=0x%08llX\n",
1726               (uint64_t) pc, personalityDelta, (uint64_t) personality);
1727   }
1728 
1729   if (log)
1730     fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), "
1731                     "encoding=0x%08X, lsda=0x%08llX for funcStart=0x%llX\n",
1732             (uint64_t) pc, encoding, (uint64_t) lsda, (uint64_t) funcStart);
1733   _info.start_ip = funcStart;
1734   _info.end_ip = funcEnd;
1735   _info.lsda = lsda;
1736   _info.handler = personality;
1737   _info.gp = 0;
1738   _info.flags = 0;
1739   _info.format = encoding;
1740   _info.unwind_info = 0;
1741   _info.unwind_info_size = 0;
1742   _info.extra = sects.dso_base;
1743   return true;
1744 }
1745 #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
1746 
1747 
1748 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
1749 template <typename A, typename R>
getInfoFromSEH(pint_t pc)1750 bool UnwindCursor<A, R>::getInfoFromSEH(pint_t pc) {
1751   pint_t base;
1752   RUNTIME_FUNCTION *unwindEntry = lookUpSEHUnwindInfo(pc, &base);
1753   if (!unwindEntry) {
1754     _LIBUNWIND_DEBUG_LOG("\tpc not in table, pc=0x%llX", (uint64_t) pc);
1755     return false;
1756   }
1757   _info.gp = 0;
1758   _info.flags = 0;
1759   _info.format = 0;
1760   _info.unwind_info_size = sizeof(RUNTIME_FUNCTION);
1761   _info.unwind_info = reinterpret_cast<unw_word_t>(unwindEntry);
1762   _info.extra = base;
1763   _info.start_ip = base + unwindEntry->BeginAddress;
1764 #ifdef _LIBUNWIND_TARGET_X86_64
1765   _info.end_ip = base + unwindEntry->EndAddress;
1766   // Only fill in the handler and LSDA if they're stale.
1767   if (pc != getLastPC()) {
1768     UNWIND_INFO *xdata = reinterpret_cast<UNWIND_INFO *>(base + unwindEntry->UnwindData);
1769     if (xdata->Flags & (UNW_FLAG_EHANDLER|UNW_FLAG_UHANDLER)) {
1770       // The personality is given in the UNWIND_INFO itself. The LSDA immediately
1771       // follows the UNWIND_INFO. (This follows how both Clang and MSVC emit
1772       // these structures.)
1773       // N.B. UNWIND_INFO structs are DWORD-aligned.
1774       uint32_t lastcode = (xdata->CountOfCodes + 1) & ~1;
1775       const uint32_t *handler = reinterpret_cast<uint32_t *>(&xdata->UnwindCodes[lastcode]);
1776       _info.lsda = reinterpret_cast<unw_word_t>(handler+1);
1777       if (*handler) {
1778         _info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality);
1779       } else
1780         _info.handler = 0;
1781     } else {
1782       _info.lsda = 0;
1783       _info.handler = 0;
1784     }
1785   }
1786 #elif defined(_LIBUNWIND_TARGET_ARM)
1787   _info.end_ip = _info.start_ip + unwindEntry->FunctionLength;
1788   _info.lsda = 0; // FIXME
1789   _info.handler = 0; // FIXME
1790 #endif
1791   setLastPC(pc);
1792   return true;
1793 }
1794 #endif
1795 
1796 
1797 template <typename A, typename R>
setInfoBasedOnIPRegister(bool isReturnAddress)1798 void UnwindCursor<A, R>::setInfoBasedOnIPRegister(bool isReturnAddress) {
1799   pint_t pc = (pint_t)this->getReg(UNW_REG_IP);
1800 #if defined(_LIBUNWIND_ARM_EHABI)
1801   // Remove the thumb bit so the IP represents the actual instruction address.
1802   // This matches the behaviour of _Unwind_GetIP on arm.
1803   pc &= (pint_t)~0x1;
1804 #endif
1805 
1806   // If the last line of a function is a "throw" the compiler sometimes
1807   // emits no instructions after the call to __cxa_throw.  This means
1808   // the return address is actually the start of the next function.
1809   // To disambiguate this, back up the pc when we know it is a return
1810   // address.
1811   if (isReturnAddress)
1812     --pc;
1813 
1814   // Ask address space object to find unwind sections for this pc.
1815   UnwindInfoSections sects;
1816   if (_addressSpace.findUnwindSections(pc, sects)) {
1817 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
1818     // If there is a compact unwind encoding table, look there first.
1819     if (sects.compact_unwind_section != 0) {
1820       if (this->getInfoFromCompactEncodingSection(pc, sects)) {
1821   #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
1822         // Found info in table, done unless encoding says to use dwarf.
1823         uint32_t dwarfOffset;
1824         if ((sects.dwarf_section != 0) && compactSaysUseDwarf(&dwarfOffset)) {
1825           if (this->getInfoFromDwarfSection(pc, sects, dwarfOffset)) {
1826             // found info in dwarf, done
1827             return;
1828           }
1829         }
1830   #endif
1831         // If unwind table has entry, but entry says there is no unwind info,
1832         // record that we have no unwind info.
1833         if (_info.format == 0)
1834           _unwindInfoMissing = true;
1835         return;
1836       }
1837     }
1838 #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
1839 
1840 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
1841     // If there is SEH unwind info, look there next.
1842     if (this->getInfoFromSEH(pc))
1843       return;
1844 #endif
1845 
1846 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
1847     // If there is dwarf unwind info, look there next.
1848     if (sects.dwarf_section != 0) {
1849       if (this->getInfoFromDwarfSection(pc, sects)) {
1850         // found info in dwarf, done
1851         return;
1852       }
1853     }
1854 #endif
1855 
1856 #if defined(_LIBUNWIND_ARM_EHABI)
1857     // If there is ARM EHABI unwind info, look there next.
1858     if (sects.arm_section != 0 && this->getInfoFromEHABISection(pc, sects))
1859       return;
1860 #endif
1861   }
1862 
1863 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
1864   // There is no static unwind info for this pc. Look to see if an FDE was
1865   // dynamically registered for it.
1866   pint_t cachedFDE = DwarfFDECache<A>::findFDE(0, pc);
1867   if (cachedFDE != 0) {
1868     CFI_Parser<LocalAddressSpace>::FDE_Info fdeInfo;
1869     CFI_Parser<LocalAddressSpace>::CIE_Info cieInfo;
1870     const char *msg = CFI_Parser<A>::decodeFDE(_addressSpace,
1871                                                 cachedFDE, &fdeInfo, &cieInfo);
1872     if (msg == NULL) {
1873       typename CFI_Parser<A>::PrologInfo prolog;
1874       if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo,
1875                                               pc, R::getArch(), &prolog)) {
1876         // save off parsed FDE info
1877         _info.start_ip         = fdeInfo.pcStart;
1878         _info.end_ip           = fdeInfo.pcEnd;
1879         _info.lsda             = fdeInfo.lsda;
1880         _info.handler          = cieInfo.personality;
1881         _info.gp               = prolog.spExtraArgSize;
1882                                   // Some frameless functions need SP
1883                                   // altered when resuming in function.
1884         _info.flags            = 0;
1885         _info.format           = dwarfEncoding();
1886         _info.unwind_info      = fdeInfo.fdeStart;
1887         _info.unwind_info_size = (uint32_t)fdeInfo.fdeLength;
1888         _info.extra            = 0;
1889         return;
1890       }
1891     }
1892   }
1893 
1894   // Lastly, ask AddressSpace object about platform specific ways to locate
1895   // other FDEs.
1896   pint_t fde;
1897   if (_addressSpace.findOtherFDE(pc, fde)) {
1898     CFI_Parser<LocalAddressSpace>::FDE_Info fdeInfo;
1899     CFI_Parser<LocalAddressSpace>::CIE_Info cieInfo;
1900     if (!CFI_Parser<A>::decodeFDE(_addressSpace, fde, &fdeInfo, &cieInfo)) {
1901       // Double check this FDE is for a function that includes the pc.
1902       if ((fdeInfo.pcStart <= pc) && (pc < fdeInfo.pcEnd)) {
1903         typename CFI_Parser<A>::PrologInfo prolog;
1904         if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo,
1905                                                 pc, R::getArch(), &prolog)) {
1906           // save off parsed FDE info
1907           _info.start_ip         = fdeInfo.pcStart;
1908           _info.end_ip           = fdeInfo.pcEnd;
1909           _info.lsda             = fdeInfo.lsda;
1910           _info.handler          = cieInfo.personality;
1911           _info.gp               = prolog.spExtraArgSize;
1912           _info.flags            = 0;
1913           _info.format           = dwarfEncoding();
1914           _info.unwind_info      = fdeInfo.fdeStart;
1915           _info.unwind_info_size = (uint32_t)fdeInfo.fdeLength;
1916           _info.extra            = 0;
1917           return;
1918         }
1919       }
1920     }
1921   }
1922 #endif // #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
1923 
1924   // no unwind info, flag that we can't reliably unwind
1925   _unwindInfoMissing = true;
1926 }
1927 
1928 template <typename A, typename R>
step()1929 int UnwindCursor<A, R>::step() {
1930   // Bottom of stack is defined is when unwind info cannot be found.
1931   if (_unwindInfoMissing)
1932     return UNW_STEP_END;
1933 
1934   // Use unwinding info to modify register set as if function returned.
1935   int result;
1936 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
1937   result = this->stepWithCompactEncoding();
1938 #elif defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
1939   result = this->stepWithSEHData();
1940 #elif defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
1941   result = this->stepWithDwarfFDE();
1942 #elif defined(_LIBUNWIND_ARM_EHABI)
1943   result = this->stepWithEHABI();
1944 #else
1945   #error Need _LIBUNWIND_SUPPORT_COMPACT_UNWIND or \
1946               _LIBUNWIND_SUPPORT_SEH_UNWIND or \
1947               _LIBUNWIND_SUPPORT_DWARF_UNWIND or \
1948               _LIBUNWIND_ARM_EHABI
1949 #endif
1950 
1951   // update info based on new PC
1952   if (result == UNW_STEP_SUCCESS) {
1953     this->setInfoBasedOnIPRegister(true);
1954     if (_unwindInfoMissing)
1955       return UNW_STEP_END;
1956   }
1957 
1958   return result;
1959 }
1960 
1961 template <typename A, typename R>
getInfo(unw_proc_info_t * info)1962 void UnwindCursor<A, R>::getInfo(unw_proc_info_t *info) {
1963   *info = _info;
1964 }
1965 
1966 template <typename A, typename R>
getFunctionName(char * buf,size_t bufLen,unw_word_t * offset)1967 bool UnwindCursor<A, R>::getFunctionName(char *buf, size_t bufLen,
1968                                                            unw_word_t *offset) {
1969   return _addressSpace.findFunctionName((pint_t)this->getReg(UNW_REG_IP),
1970                                          buf, bufLen, offset);
1971 }
1972 
1973 } // namespace libunwind
1974 
1975 #endif // __UNWINDCURSOR_HPP__
1976