1 /*
2 Bullet Continuous Collision Detection and Physics Library
3 Copyright (c) 2003-2009 Erwin Coumans  http://bulletphysics.org
4 
5 This software is provided 'as-is', without any express or implied warranty.
6 In no event will the authors be held liable for any damages arising from the use of this software.
7 Permission is granted to anyone to use this software for any purpose,
8 including commercial applications, and to alter it and redistribute it freely,
9 subject to the following restrictions:
10 
11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13 3. This notice may not be removed or altered from any source distribution.
14 */
15 
16 #include "btCylinderShape.h"
17 
btCylinderShape(const btVector3 & halfExtents)18 btCylinderShape::btCylinderShape (const btVector3& halfExtents)
19 :btConvexInternalShape(),
20 m_upAxis(1)
21 {
22 	btVector3 margin(getMargin(),getMargin(),getMargin());
23 	m_implicitShapeDimensions = (halfExtents * m_localScaling) - margin;
24 	m_shapeType = CYLINDER_SHAPE_PROXYTYPE;
25 }
26 
27 
btCylinderShapeX(const btVector3 & halfExtents)28 btCylinderShapeX::btCylinderShapeX (const btVector3& halfExtents)
29 :btCylinderShape(halfExtents)
30 {
31 	m_upAxis = 0;
32 
33 }
34 
35 
btCylinderShapeZ(const btVector3 & halfExtents)36 btCylinderShapeZ::btCylinderShapeZ (const btVector3& halfExtents)
37 :btCylinderShape(halfExtents)
38 {
39 	m_upAxis = 2;
40 
41 }
42 
getAabb(const btTransform & t,btVector3 & aabbMin,btVector3 & aabbMax) const43 void btCylinderShape::getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const
44 {
45 	btTransformAabb(getHalfExtentsWithoutMargin(),getMargin(),t,aabbMin,aabbMax);
46 }
47 
calculateLocalInertia(btScalar mass,btVector3 & inertia) const48 void	btCylinderShape::calculateLocalInertia(btScalar mass,btVector3& inertia) const
49 {
50 
51 //Until Bullet 2.77 a box approximation was used, so uncomment this if you need backwards compatibility
52 //#define USE_BOX_INERTIA_APPROXIMATION 1
53 #ifndef USE_BOX_INERTIA_APPROXIMATION
54 
55 	/*
56 	cylinder is defined as following:
57 	*
58 	* - principle axis aligned along y by default, radius in x, z-value not used
59 	* - for btCylinderShapeX: principle axis aligned along x, radius in y direction, z-value not used
60 	* - for btCylinderShapeZ: principle axis aligned along z, radius in x direction, y-value not used
61 	*
62 	*/
63 
64 	btScalar radius2;	// square of cylinder radius
65 	btScalar height2;	// square of cylinder height
66 	btVector3 halfExtents = getHalfExtentsWithMargin();	// get cylinder dimension
67 	btScalar div12 = mass / 12.f;
68 	btScalar div4 = mass / 4.f;
69 	btScalar div2 = mass / 2.f;
70 	int idxRadius, idxHeight;
71 
72 	switch (m_upAxis)	// get indices of radius and height of cylinder
73 	{
74 		case 0:		// cylinder is aligned along x
75 			idxRadius = 1;
76 			idxHeight = 0;
77 			break;
78 		case 2:		// cylinder is aligned along z
79 			idxRadius = 0;
80 			idxHeight = 2;
81 			break;
82 		default:	// cylinder is aligned along y
83 			idxRadius = 0;
84 			idxHeight = 1;
85 	}
86 
87 	// calculate squares
88 	radius2 = halfExtents[idxRadius] * halfExtents[idxRadius];
89 	height2 = btScalar(4.) * halfExtents[idxHeight] * halfExtents[idxHeight];
90 
91 	// calculate tensor terms
92 	btScalar t1 = div12 * height2 + div4 * radius2;
93 	btScalar t2 = div2 * radius2;
94 
95 	switch (m_upAxis)	// set diagonal elements of inertia tensor
96 	{
97 		case 0:		// cylinder is aligned along x
98 			inertia.setValue(t2,t1,t1);
99 			break;
100 		case 2:		// cylinder is aligned along z
101 			inertia.setValue(t1,t1,t2);
102 			break;
103 		default:	// cylinder is aligned along y
104 			inertia.setValue(t1,t2,t1);
105 	}
106 #else //USE_BOX_INERTIA_APPROXIMATION
107 	//approximation of box shape
108 	btVector3 halfExtents = getHalfExtentsWithMargin();
109 
110 	btScalar lx=btScalar(2.)*(halfExtents.x());
111 	btScalar ly=btScalar(2.)*(halfExtents.y());
112 	btScalar lz=btScalar(2.)*(halfExtents.z());
113 
114 	inertia.setValue(mass/(btScalar(12.0)) * (ly*ly + lz*lz),
115 					mass/(btScalar(12.0)) * (lx*lx + lz*lz),
116 					mass/(btScalar(12.0)) * (lx*lx + ly*ly));
117 #endif //USE_BOX_INERTIA_APPROXIMATION
118 }
119 
120 
CylinderLocalSupportX(const btVector3 & halfExtents,const btVector3 & v)121 SIMD_FORCE_INLINE btVector3 CylinderLocalSupportX(const btVector3& halfExtents,const btVector3& v)
122 {
123 const int cylinderUpAxis = 0;
124 const int XX = 1;
125 const int YY = 0;
126 const int ZZ = 2;
127 
128 	//mapping depends on how cylinder local orientation is
129 	// extents of the cylinder is: X,Y is for radius, and Z for height
130 
131 
132 	btScalar radius = halfExtents[XX];
133 	btScalar halfHeight = halfExtents[cylinderUpAxis];
134 
135 
136     btVector3 tmp;
137 	btScalar d ;
138 
139     btScalar s = btSqrt(v[XX] * v[XX] + v[ZZ] * v[ZZ]);
140     if (s != btScalar(0.0))
141 	{
142         d = radius / s;
143 		tmp[XX] = v[XX] * d;
144 		tmp[YY] = v[YY] < 0.0 ? -halfHeight : halfHeight;
145 		tmp[ZZ] = v[ZZ] * d;
146 		return tmp;
147 	}
148     else
149 	{
150 	    tmp[XX] = radius;
151 		tmp[YY] = v[YY] < 0.0 ? -halfHeight : halfHeight;
152 		tmp[ZZ] = btScalar(0.0);
153 		return tmp;
154     }
155 
156 
157 }
158 
159 
160 
161 
162 
163 
CylinderLocalSupportY(const btVector3 & halfExtents,const btVector3 & v)164 inline  btVector3 CylinderLocalSupportY(const btVector3& halfExtents,const btVector3& v)
165 {
166 
167 const int cylinderUpAxis = 1;
168 const int XX = 0;
169 const int YY = 1;
170 const int ZZ = 2;
171 
172 
173 	btScalar radius = halfExtents[XX];
174 	btScalar halfHeight = halfExtents[cylinderUpAxis];
175 
176 
177     btVector3 tmp;
178 	btScalar d ;
179 
180     btScalar s = btSqrt(v[XX] * v[XX] + v[ZZ] * v[ZZ]);
181     if (s != btScalar(0.0))
182 	{
183         d = radius / s;
184 		tmp[XX] = v[XX] * d;
185 		tmp[YY] = v[YY] < 0.0 ? -halfHeight : halfHeight;
186 		tmp[ZZ] = v[ZZ] * d;
187 		return tmp;
188 	}
189     else
190 	{
191 	    tmp[XX] = radius;
192 		tmp[YY] = v[YY] < 0.0 ? -halfHeight : halfHeight;
193 		tmp[ZZ] = btScalar(0.0);
194 		return tmp;
195     }
196 
197 }
198 
CylinderLocalSupportZ(const btVector3 & halfExtents,const btVector3 & v)199 inline btVector3 CylinderLocalSupportZ(const btVector3& halfExtents,const btVector3& v)
200 {
201 const int cylinderUpAxis = 2;
202 const int XX = 0;
203 const int YY = 2;
204 const int ZZ = 1;
205 
206 	//mapping depends on how cylinder local orientation is
207 	// extents of the cylinder is: X,Y is for radius, and Z for height
208 
209 
210 	btScalar radius = halfExtents[XX];
211 	btScalar halfHeight = halfExtents[cylinderUpAxis];
212 
213 
214     btVector3 tmp;
215 	btScalar d ;
216 
217     btScalar s = btSqrt(v[XX] * v[XX] + v[ZZ] * v[ZZ]);
218     if (s != btScalar(0.0))
219 	{
220         d = radius / s;
221 		tmp[XX] = v[XX] * d;
222 		tmp[YY] = v[YY] < 0.0 ? -halfHeight : halfHeight;
223 		tmp[ZZ] = v[ZZ] * d;
224 		return tmp;
225 	}
226     else
227 	{
228 	    tmp[XX] = radius;
229 		tmp[YY] = v[YY] < 0.0 ? -halfHeight : halfHeight;
230 		tmp[ZZ] = btScalar(0.0);
231 		return tmp;
232     }
233 
234 
235 }
236 
localGetSupportingVertexWithoutMargin(const btVector3 & vec) const237 btVector3	btCylinderShapeX::localGetSupportingVertexWithoutMargin(const btVector3& vec)const
238 {
239 	return CylinderLocalSupportX(getHalfExtentsWithoutMargin(),vec);
240 }
241 
242 
localGetSupportingVertexWithoutMargin(const btVector3 & vec) const243 btVector3	btCylinderShapeZ::localGetSupportingVertexWithoutMargin(const btVector3& vec)const
244 {
245 	return CylinderLocalSupportZ(getHalfExtentsWithoutMargin(),vec);
246 }
localGetSupportingVertexWithoutMargin(const btVector3 & vec) const247 btVector3	btCylinderShape::localGetSupportingVertexWithoutMargin(const btVector3& vec)const
248 {
249 	return CylinderLocalSupportY(getHalfExtentsWithoutMargin(),vec);
250 }
251 
batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3 * vectors,btVector3 * supportVerticesOut,int numVectors) const252 void	btCylinderShape::batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const
253 {
254 	for (int i=0;i<numVectors;i++)
255 	{
256 		supportVerticesOut[i] = CylinderLocalSupportY(getHalfExtentsWithoutMargin(),vectors[i]);
257 	}
258 }
259 
batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3 * vectors,btVector3 * supportVerticesOut,int numVectors) const260 void	btCylinderShapeZ::batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const
261 {
262 	for (int i=0;i<numVectors;i++)
263 	{
264 		supportVerticesOut[i] = CylinderLocalSupportZ(getHalfExtentsWithoutMargin(),vectors[i]);
265 	}
266 }
267 
268 
269 
270 
batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3 * vectors,btVector3 * supportVerticesOut,int numVectors) const271 void	btCylinderShapeX::batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const
272 {
273 	for (int i=0;i<numVectors;i++)
274 	{
275 		supportVerticesOut[i] = CylinderLocalSupportX(getHalfExtentsWithoutMargin(),vectors[i]);
276 	}
277 }
278 
279 
280