1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2 
3    Copyright (C) 1993-2021 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "frame.h"
22 #include "frame-unwind.h"
23 #include "frame-base.h"
24 #include "dwarf2/frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "value.h"
28 #include "gdbcmd.h"
29 #include "gdbcore.h"
30 #include "dis-asm.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "linespec.h"
34 #include "regcache.h"
35 #include "reggroups.h"
36 #include "arch-utils.h"
37 #include "osabi.h"
38 #include "block.h"
39 #include "infcall.h"
40 #include "trad-frame.h"
41 
42 #include "elf-bfd.h"
43 
44 #include "alpha-tdep.h"
45 #include <algorithm>
46 
47 /* Instruction decoding.  The notations for registers, immediates and
48    opcodes are the same as the one used in Compaq's Alpha architecture
49    handbook.  */
50 
51 #define INSN_OPCODE(insn) ((insn & 0xfc000000) >> 26)
52 
53 /* Memory instruction format */
54 #define MEM_RA(insn) ((insn & 0x03e00000) >> 21)
55 #define MEM_RB(insn) ((insn & 0x001f0000) >> 16)
56 #define MEM_DISP(insn) \
57   (((insn & 0x8000) == 0) ? (insn & 0xffff) : -((-insn) & 0xffff))
58 
59 static const int lda_opcode = 0x08;
60 static const int stq_opcode = 0x2d;
61 
62 /* Branch instruction format */
63 #define BR_RA(insn) MEM_RA(insn)
64 
65 static const int br_opcode = 0x30;
66 static const int bne_opcode = 0x3d;
67 
68 /* Operate instruction format */
69 #define OPR_FUNCTION(insn) ((insn & 0xfe0) >> 5)
70 #define OPR_HAS_IMMEDIATE(insn) ((insn & 0x1000) == 0x1000)
71 #define OPR_RA(insn) MEM_RA(insn)
72 #define OPR_RC(insn) ((insn & 0x1f))
73 #define OPR_LIT(insn) ((insn & 0x1fe000) >> 13)
74 
75 static const int subq_opcode = 0x10;
76 static const int subq_function = 0x29;
77 
78 
79 /* Return the name of the REGNO register.
80 
81    An empty name corresponds to a register number that used to
82    be used for a virtual register.  That virtual register has
83    been removed, but the index is still reserved to maintain
84    compatibility with existing remote alpha targets.  */
85 
86 static const char *
alpha_register_name(struct gdbarch * gdbarch,int regno)87 alpha_register_name (struct gdbarch *gdbarch, int regno)
88 {
89   static const char * const register_names[] =
90   {
91     "v0",   "t0",   "t1",   "t2",   "t3",   "t4",   "t5",   "t6",
92     "t7",   "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "fp",
93     "a0",   "a1",   "a2",   "a3",   "a4",   "a5",   "t8",   "t9",
94     "t10",  "t11",  "ra",   "t12",  "at",   "gp",   "sp",   "zero",
95     "f0",   "f1",   "f2",   "f3",   "f4",   "f5",   "f6",   "f7",
96     "f8",   "f9",   "f10",  "f11",  "f12",  "f13",  "f14",  "f15",
97     "f16",  "f17",  "f18",  "f19",  "f20",  "f21",  "f22",  "f23",
98     "f24",  "f25",  "f26",  "f27",  "f28",  "f29",  "f30",  "fpcr",
99     "pc",   "",     "unique"
100   };
101 
102   if (regno < 0)
103     return NULL;
104   if (regno >= ARRAY_SIZE(register_names))
105     return NULL;
106   return register_names[regno];
107 }
108 
109 static int
alpha_cannot_fetch_register(struct gdbarch * gdbarch,int regno)110 alpha_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
111 {
112   return (strlen (alpha_register_name (gdbarch, regno)) == 0);
113 }
114 
115 static int
alpha_cannot_store_register(struct gdbarch * gdbarch,int regno)116 alpha_cannot_store_register (struct gdbarch *gdbarch, int regno)
117 {
118   return (regno == ALPHA_ZERO_REGNUM
119 	  || strlen (alpha_register_name (gdbarch, regno)) == 0);
120 }
121 
122 static struct type *
alpha_register_type(struct gdbarch * gdbarch,int regno)123 alpha_register_type (struct gdbarch *gdbarch, int regno)
124 {
125   if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
126     return builtin_type (gdbarch)->builtin_data_ptr;
127   if (regno == ALPHA_PC_REGNUM)
128     return builtin_type (gdbarch)->builtin_func_ptr;
129 
130   /* Don't need to worry about little vs big endian until
131      some jerk tries to port to alpha-unicosmk.  */
132   if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
133     return builtin_type (gdbarch)->builtin_double;
134 
135   return builtin_type (gdbarch)->builtin_int64;
136 }
137 
138 /* Is REGNUM a member of REGGROUP?  */
139 
140 static int
alpha_register_reggroup_p(struct gdbarch * gdbarch,int regnum,struct reggroup * group)141 alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
142 			   struct reggroup *group)
143 {
144   /* Filter out any registers eliminated, but whose regnum is
145      reserved for backward compatibility, e.g. the vfp.  */
146   if (gdbarch_register_name (gdbarch, regnum) == NULL
147       || *gdbarch_register_name (gdbarch, regnum) == '\0')
148     return 0;
149 
150   if (group == all_reggroup)
151     return 1;
152 
153   /* Zero should not be saved or restored.  Technically it is a general
154      register (just as $f31 would be a float if we represented it), but
155      there's no point displaying it during "info regs", so leave it out
156      of all groups except for "all".  */
157   if (regnum == ALPHA_ZERO_REGNUM)
158     return 0;
159 
160   /* All other registers are saved and restored.  */
161   if (group == save_reggroup || group == restore_reggroup)
162     return 1;
163 
164   /* All other groups are non-overlapping.  */
165 
166   /* Since this is really a PALcode memory slot...  */
167   if (regnum == ALPHA_UNIQUE_REGNUM)
168     return group == system_reggroup;
169 
170   /* Force the FPCR to be considered part of the floating point state.  */
171   if (regnum == ALPHA_FPCR_REGNUM)
172     return group == float_reggroup;
173 
174   if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
175     return group == float_reggroup;
176   else
177     return group == general_reggroup;
178 }
179 
180 /* The following represents exactly the conversion performed by
181    the LDS instruction.  This applies to both single-precision
182    floating point and 32-bit integers.  */
183 
184 static void
alpha_lds(struct gdbarch * gdbarch,void * out,const void * in)185 alpha_lds (struct gdbarch *gdbarch, void *out, const void *in)
186 {
187   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
188   ULONGEST mem
189     = extract_unsigned_integer ((const gdb_byte *) in, 4, byte_order);
190   ULONGEST frac    = (mem >>  0) & 0x7fffff;
191   ULONGEST sign    = (mem >> 31) & 1;
192   ULONGEST exp_msb = (mem >> 30) & 1;
193   ULONGEST exp_low = (mem >> 23) & 0x7f;
194   ULONGEST exp, reg;
195 
196   exp = (exp_msb << 10) | exp_low;
197   if (exp_msb)
198     {
199       if (exp_low == 0x7f)
200 	exp = 0x7ff;
201     }
202   else
203     {
204       if (exp_low != 0x00)
205 	exp |= 0x380;
206     }
207 
208   reg = (sign << 63) | (exp << 52) | (frac << 29);
209   store_unsigned_integer ((gdb_byte *) out, 8, byte_order, reg);
210 }
211 
212 /* Similarly, this represents exactly the conversion performed by
213    the STS instruction.  */
214 
215 static void
alpha_sts(struct gdbarch * gdbarch,void * out,const void * in)216 alpha_sts (struct gdbarch *gdbarch, void *out, const void *in)
217 {
218   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
219   ULONGEST reg, mem;
220 
221   reg = extract_unsigned_integer ((const gdb_byte *) in, 8, byte_order);
222   mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
223   store_unsigned_integer ((gdb_byte *) out, 4, byte_order, mem);
224 }
225 
226 /* The alpha needs a conversion between register and memory format if the
227    register is a floating point register and memory format is float, as the
228    register format must be double or memory format is an integer with 4
229    bytes, as the representation of integers in floating point
230    registers is different.  */
231 
232 static int
alpha_convert_register_p(struct gdbarch * gdbarch,int regno,struct type * type)233 alpha_convert_register_p (struct gdbarch *gdbarch, int regno,
234 			  struct type *type)
235 {
236   return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31
237 	  && TYPE_LENGTH (type) == 4);
238 }
239 
240 static int
alpha_register_to_value(struct frame_info * frame,int regnum,struct type * valtype,gdb_byte * out,int * optimizedp,int * unavailablep)241 alpha_register_to_value (struct frame_info *frame, int regnum,
242 			 struct type *valtype, gdb_byte *out,
243 			int *optimizedp, int *unavailablep)
244 {
245   struct gdbarch *gdbarch = get_frame_arch (frame);
246   struct value *value = get_frame_register_value (frame, regnum);
247 
248   gdb_assert (value != NULL);
249   *optimizedp = value_optimized_out (value);
250   *unavailablep = !value_entirely_available (value);
251 
252   if (*optimizedp || *unavailablep)
253     {
254       release_value (value);
255       return 0;
256     }
257 
258   /* Convert to VALTYPE.  */
259 
260   gdb_assert (TYPE_LENGTH (valtype) == 4);
261   alpha_sts (gdbarch, out, value_contents_all (value));
262 
263   release_value (value);
264   return 1;
265 }
266 
267 static void
alpha_value_to_register(struct frame_info * frame,int regnum,struct type * valtype,const gdb_byte * in)268 alpha_value_to_register (struct frame_info *frame, int regnum,
269 			 struct type *valtype, const gdb_byte *in)
270 {
271   gdb_byte out[ALPHA_REGISTER_SIZE];
272 
273   gdb_assert (TYPE_LENGTH (valtype) == 4);
274   gdb_assert (register_size (get_frame_arch (frame), regnum)
275 	      <= ALPHA_REGISTER_SIZE);
276   alpha_lds (get_frame_arch (frame), out, in);
277 
278   put_frame_register (frame, regnum, out);
279 }
280 
281 
282 /* The alpha passes the first six arguments in the registers, the rest on
283    the stack.  The register arguments are stored in ARG_REG_BUFFER, and
284    then moved into the register file; this simplifies the passing of a
285    large struct which extends from the registers to the stack, plus avoids
286    three ptrace invocations per word.
287 
288    We don't bother tracking which register values should go in integer
289    regs or fp regs; we load the same values into both.
290 
291    If the called function is returning a structure, the address of the
292    structure to be returned is passed as a hidden first argument.  */
293 
294 static CORE_ADDR
alpha_push_dummy_call(struct gdbarch * gdbarch,struct value * function,struct regcache * regcache,CORE_ADDR bp_addr,int nargs,struct value ** args,CORE_ADDR sp,function_call_return_method return_method,CORE_ADDR struct_addr)295 alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
296 		       struct regcache *regcache, CORE_ADDR bp_addr,
297 		       int nargs, struct value **args, CORE_ADDR sp,
298 		       function_call_return_method return_method,
299 		       CORE_ADDR struct_addr)
300 {
301   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
302   int i;
303   int accumulate_size = (return_method == return_method_struct) ? 8 : 0;
304   struct alpha_arg
305     {
306       const gdb_byte *contents;
307       int len;
308       int offset;
309     };
310   struct alpha_arg *alpha_args = XALLOCAVEC (struct alpha_arg, nargs);
311   struct alpha_arg *m_arg;
312   gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
313   int required_arg_regs;
314   CORE_ADDR func_addr = find_function_addr (function, NULL);
315 
316   /* The ABI places the address of the called function in T12.  */
317   regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
318 
319   /* Set the return address register to point to the entry point
320      of the program, where a breakpoint lies in wait.  */
321   regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
322 
323   /* Lay out the arguments in memory.  */
324   for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
325     {
326       struct value *arg = args[i];
327       struct type *arg_type = check_typedef (value_type (arg));
328 
329       /* Cast argument to long if necessary as the compiler does it too.  */
330       switch (arg_type->code ())
331 	{
332 	case TYPE_CODE_INT:
333 	case TYPE_CODE_BOOL:
334 	case TYPE_CODE_CHAR:
335 	case TYPE_CODE_RANGE:
336 	case TYPE_CODE_ENUM:
337 	  if (TYPE_LENGTH (arg_type) == 4)
338 	    {
339 	      /* 32-bit values must be sign-extended to 64 bits
340 		 even if the base data type is unsigned.  */
341 	      arg_type = builtin_type (gdbarch)->builtin_int32;
342 	      arg = value_cast (arg_type, arg);
343 	    }
344 	  if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
345 	    {
346 	      arg_type = builtin_type (gdbarch)->builtin_int64;
347 	      arg = value_cast (arg_type, arg);
348 	    }
349 	  break;
350 
351 	case TYPE_CODE_FLT:
352 	  /* "float" arguments loaded in registers must be passed in
353 	     register format, aka "double".  */
354 	  if (accumulate_size < sizeof (arg_reg_buffer)
355 	      && TYPE_LENGTH (arg_type) == 4)
356 	    {
357 	      arg_type = builtin_type (gdbarch)->builtin_double;
358 	      arg = value_cast (arg_type, arg);
359 	    }
360 	  /* Tru64 5.1 has a 128-bit long double, and passes this by
361 	     invisible reference.  No one else uses this data type.  */
362 	  else if (TYPE_LENGTH (arg_type) == 16)
363 	    {
364 	      /* Allocate aligned storage.  */
365 	      sp = (sp & -16) - 16;
366 
367 	      /* Write the real data into the stack.  */
368 	      write_memory (sp, value_contents (arg), 16);
369 
370 	      /* Construct the indirection.  */
371 	      arg_type = lookup_pointer_type (arg_type);
372 	      arg = value_from_pointer (arg_type, sp);
373 	    }
374 	  break;
375 
376 	case TYPE_CODE_COMPLEX:
377 	  /* ??? The ABI says that complex values are passed as two
378 	     separate scalar values.  This distinction only matters
379 	     for complex float.  However, GCC does not implement this.  */
380 
381 	  /* Tru64 5.1 has a 128-bit long double, and passes this by
382 	     invisible reference.  */
383 	  if (TYPE_LENGTH (arg_type) == 32)
384 	    {
385 	      /* Allocate aligned storage.  */
386 	      sp = (sp & -16) - 16;
387 
388 	      /* Write the real data into the stack.  */
389 	      write_memory (sp, value_contents (arg), 32);
390 
391 	      /* Construct the indirection.  */
392 	      arg_type = lookup_pointer_type (arg_type);
393 	      arg = value_from_pointer (arg_type, sp);
394 	    }
395 	  break;
396 
397 	default:
398 	  break;
399 	}
400       m_arg->len = TYPE_LENGTH (arg_type);
401       m_arg->offset = accumulate_size;
402       accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
403       m_arg->contents = value_contents (arg);
404     }
405 
406   /* Determine required argument register loads, loading an argument register
407      is expensive as it uses three ptrace calls.  */
408   required_arg_regs = accumulate_size / 8;
409   if (required_arg_regs > ALPHA_NUM_ARG_REGS)
410     required_arg_regs = ALPHA_NUM_ARG_REGS;
411 
412   /* Make room for the arguments on the stack.  */
413   if (accumulate_size < sizeof(arg_reg_buffer))
414     accumulate_size = 0;
415   else
416     accumulate_size -= sizeof(arg_reg_buffer);
417   sp -= accumulate_size;
418 
419   /* Keep sp aligned to a multiple of 16 as the ABI requires.  */
420   sp &= ~15;
421 
422   /* `Push' arguments on the stack.  */
423   for (i = nargs; m_arg--, --i >= 0;)
424     {
425       const gdb_byte *contents = m_arg->contents;
426       int offset = m_arg->offset;
427       int len = m_arg->len;
428 
429       /* Copy the bytes destined for registers into arg_reg_buffer.  */
430       if (offset < sizeof(arg_reg_buffer))
431 	{
432 	  if (offset + len <= sizeof(arg_reg_buffer))
433 	    {
434 	      memcpy (arg_reg_buffer + offset, contents, len);
435 	      continue;
436 	    }
437 	  else
438 	    {
439 	      int tlen = sizeof(arg_reg_buffer) - offset;
440 	      memcpy (arg_reg_buffer + offset, contents, tlen);
441 	      offset += tlen;
442 	      contents += tlen;
443 	      len -= tlen;
444 	    }
445 	}
446 
447       /* Everything else goes to the stack.  */
448       write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
449     }
450   if (return_method == return_method_struct)
451     store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE,
452 			    byte_order, struct_addr);
453 
454   /* Load the argument registers.  */
455   for (i = 0; i < required_arg_regs; i++)
456     {
457       regcache->cooked_write (ALPHA_A0_REGNUM + i,
458 			      arg_reg_buffer + i * ALPHA_REGISTER_SIZE);
459       regcache->cooked_write (ALPHA_FPA0_REGNUM + i,
460 			      arg_reg_buffer + i * ALPHA_REGISTER_SIZE);
461     }
462 
463   /* Finally, update the stack pointer.  */
464   regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
465 
466   return sp;
467 }
468 
469 /* Extract from REGCACHE the value about to be returned from a function
470    and copy it into VALBUF.  */
471 
472 static void
alpha_extract_return_value(struct type * valtype,struct regcache * regcache,gdb_byte * valbuf)473 alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
474 			    gdb_byte *valbuf)
475 {
476   struct gdbarch *gdbarch = regcache->arch ();
477   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
478   gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
479   ULONGEST l;
480 
481   switch (valtype->code ())
482     {
483     case TYPE_CODE_FLT:
484       switch (TYPE_LENGTH (valtype))
485 	{
486 	case 4:
487 	  regcache->cooked_read (ALPHA_FP0_REGNUM, raw_buffer);
488 	  alpha_sts (gdbarch, valbuf, raw_buffer);
489 	  break;
490 
491 	case 8:
492 	  regcache->cooked_read (ALPHA_FP0_REGNUM, valbuf);
493 	  break;
494 
495 	case 16:
496 	  regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
497 	  read_memory (l, valbuf, 16);
498 	  break;
499 
500 	default:
501 	  internal_error (__FILE__, __LINE__,
502 			  _("unknown floating point width"));
503 	}
504       break;
505 
506     case TYPE_CODE_COMPLEX:
507       switch (TYPE_LENGTH (valtype))
508 	{
509 	case 8:
510 	  /* ??? This isn't correct wrt the ABI, but it's what GCC does.  */
511 	  regcache->cooked_read (ALPHA_FP0_REGNUM, valbuf);
512 	  break;
513 
514 	case 16:
515 	  regcache->cooked_read (ALPHA_FP0_REGNUM, valbuf);
516 	  regcache->cooked_read (ALPHA_FP0_REGNUM + 1, valbuf + 8);
517 	  break;
518 
519 	case 32:
520 	  regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
521 	  read_memory (l, valbuf, 32);
522 	  break;
523 
524 	default:
525 	  internal_error (__FILE__, __LINE__,
526 			  _("unknown floating point width"));
527 	}
528       break;
529 
530     default:
531       /* Assume everything else degenerates to an integer.  */
532       regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
533       store_unsigned_integer (valbuf, TYPE_LENGTH (valtype), byte_order, l);
534       break;
535     }
536 }
537 
538 /* Insert the given value into REGCACHE as if it was being
539    returned by a function.  */
540 
541 static void
alpha_store_return_value(struct type * valtype,struct regcache * regcache,const gdb_byte * valbuf)542 alpha_store_return_value (struct type *valtype, struct regcache *regcache,
543 			  const gdb_byte *valbuf)
544 {
545   struct gdbarch *gdbarch = regcache->arch ();
546   gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
547   ULONGEST l;
548 
549   switch (valtype->code ())
550     {
551     case TYPE_CODE_FLT:
552       switch (TYPE_LENGTH (valtype))
553 	{
554 	case 4:
555 	  alpha_lds (gdbarch, raw_buffer, valbuf);
556 	  regcache->cooked_write (ALPHA_FP0_REGNUM, raw_buffer);
557 	  break;
558 
559 	case 8:
560 	  regcache->cooked_write (ALPHA_FP0_REGNUM, valbuf);
561 	  break;
562 
563 	case 16:
564 	  /* FIXME: 128-bit long doubles are returned like structures:
565 	     by writing into indirect storage provided by the caller
566 	     as the first argument.  */
567 	  error (_("Cannot set a 128-bit long double return value."));
568 
569 	default:
570 	  internal_error (__FILE__, __LINE__,
571 			  _("unknown floating point width"));
572 	}
573       break;
574 
575     case TYPE_CODE_COMPLEX:
576       switch (TYPE_LENGTH (valtype))
577 	{
578 	case 8:
579 	  /* ??? This isn't correct wrt the ABI, but it's what GCC does.  */
580 	  regcache->cooked_write (ALPHA_FP0_REGNUM, valbuf);
581 	  break;
582 
583 	case 16:
584 	  regcache->cooked_write (ALPHA_FP0_REGNUM, valbuf);
585 	  regcache->cooked_write (ALPHA_FP0_REGNUM + 1, valbuf + 8);
586 	  break;
587 
588 	case 32:
589 	  /* FIXME: 128-bit long doubles are returned like structures:
590 	     by writing into indirect storage provided by the caller
591 	     as the first argument.  */
592 	  error (_("Cannot set a 128-bit long double return value."));
593 
594 	default:
595 	  internal_error (__FILE__, __LINE__,
596 			  _("unknown floating point width"));
597 	}
598       break;
599 
600     default:
601       /* Assume everything else degenerates to an integer.  */
602       /* 32-bit values must be sign-extended to 64 bits
603 	 even if the base data type is unsigned.  */
604       if (TYPE_LENGTH (valtype) == 4)
605 	valtype = builtin_type (gdbarch)->builtin_int32;
606       l = unpack_long (valtype, valbuf);
607       regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
608       break;
609     }
610 }
611 
612 static enum return_value_convention
alpha_return_value(struct gdbarch * gdbarch,struct value * function,struct type * type,struct regcache * regcache,gdb_byte * readbuf,const gdb_byte * writebuf)613 alpha_return_value (struct gdbarch *gdbarch, struct value *function,
614 		    struct type *type, struct regcache *regcache,
615 		    gdb_byte *readbuf, const gdb_byte *writebuf)
616 {
617   enum type_code code = type->code ();
618 
619   if ((code == TYPE_CODE_STRUCT
620        || code == TYPE_CODE_UNION
621        || code == TYPE_CODE_ARRAY)
622       && gdbarch_tdep (gdbarch)->return_in_memory (type))
623     {
624       if (readbuf)
625 	{
626 	  ULONGEST addr;
627 	  regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
628 	  read_memory (addr, readbuf, TYPE_LENGTH (type));
629 	}
630 
631       return RETURN_VALUE_ABI_RETURNS_ADDRESS;
632     }
633 
634   if (readbuf)
635     alpha_extract_return_value (type, regcache, readbuf);
636   if (writebuf)
637     alpha_store_return_value (type, regcache, writebuf);
638 
639   return RETURN_VALUE_REGISTER_CONVENTION;
640 }
641 
642 static int
alpha_return_in_memory_always(struct type * type)643 alpha_return_in_memory_always (struct type *type)
644 {
645   return 1;
646 }
647 
648 
649 constexpr gdb_byte alpha_break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
650 
651 typedef BP_MANIPULATION (alpha_break_insn) alpha_breakpoint;
652 
653 
654 /* This returns the PC of the first insn after the prologue.
655    If we can't find the prologue, then return 0.  */
656 
657 CORE_ADDR
alpha_after_prologue(CORE_ADDR pc)658 alpha_after_prologue (CORE_ADDR pc)
659 {
660   struct symtab_and_line sal;
661   CORE_ADDR func_addr, func_end;
662 
663   if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
664     return 0;
665 
666   sal = find_pc_line (func_addr, 0);
667   if (sal.end < func_end)
668     return sal.end;
669 
670   /* The line after the prologue is after the end of the function.  In this
671      case, tell the caller to find the prologue the hard way.  */
672   return 0;
673 }
674 
675 /* Read an instruction from memory at PC, looking through breakpoints.  */
676 
677 unsigned int
alpha_read_insn(struct gdbarch * gdbarch,CORE_ADDR pc)678 alpha_read_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
679 {
680   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
681   gdb_byte buf[ALPHA_INSN_SIZE];
682   int res;
683 
684   res = target_read_memory (pc, buf, sizeof (buf));
685   if (res != 0)
686     memory_error (TARGET_XFER_E_IO, pc);
687   return extract_unsigned_integer (buf, sizeof (buf), byte_order);
688 }
689 
690 /* To skip prologues, I use this predicate.  Returns either PC itself
691    if the code at PC does not look like a function prologue; otherwise
692    returns an address that (if we're lucky) follows the prologue.  If
693    LENIENT, then we must skip everything which is involved in setting
694    up the frame (it's OK to skip more, just so long as we don't skip
695    anything which might clobber the registers which are being saved.  */
696 
697 static CORE_ADDR
alpha_skip_prologue(struct gdbarch * gdbarch,CORE_ADDR pc)698 alpha_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
699 {
700   unsigned long inst;
701   int offset;
702   CORE_ADDR post_prologue_pc;
703   gdb_byte buf[ALPHA_INSN_SIZE];
704 
705   /* Silently return the unaltered pc upon memory errors.
706      This could happen on OSF/1 if decode_line_1 tries to skip the
707      prologue for quickstarted shared library functions when the
708      shared library is not yet mapped in.
709      Reading target memory is slow over serial lines, so we perform
710      this check only if the target has shared libraries (which all
711      Alpha targets do).  */
712   if (target_read_memory (pc, buf, sizeof (buf)))
713     return pc;
714 
715   /* See if we can determine the end of the prologue via the symbol table.
716      If so, then return either PC, or the PC after the prologue, whichever
717      is greater.  */
718 
719   post_prologue_pc = alpha_after_prologue (pc);
720   if (post_prologue_pc != 0)
721     return std::max (pc, post_prologue_pc);
722 
723   /* Can't determine prologue from the symbol table, need to examine
724      instructions.  */
725 
726   /* Skip the typical prologue instructions.  These are the stack adjustment
727      instruction and the instructions that save registers on the stack
728      or in the gcc frame.  */
729   for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
730     {
731       inst = alpha_read_insn (gdbarch, pc + offset);
732 
733       if ((inst & 0xffff0000) == 0x27bb0000)	/* ldah $gp,n($t12) */
734 	continue;
735       if ((inst & 0xffff0000) == 0x23bd0000)	/* lda $gp,n($gp) */
736 	continue;
737       if ((inst & 0xffff0000) == 0x23de0000)	/* lda $sp,n($sp) */
738 	continue;
739       if ((inst & 0xffe01fff) == 0x43c0153e)	/* subq $sp,n,$sp */
740 	continue;
741 
742       if (((inst & 0xfc1f0000) == 0xb41e0000		/* stq reg,n($sp) */
743 	   || (inst & 0xfc1f0000) == 0x9c1e0000)	/* stt reg,n($sp) */
744 	  && (inst & 0x03e00000) != 0x03e00000)		/* reg != $zero */
745 	continue;
746 
747       if (inst == 0x47de040f)			/* bis sp,sp,fp */
748 	continue;
749       if (inst == 0x47fe040f)			/* bis zero,sp,fp */
750 	continue;
751 
752       break;
753     }
754   return pc + offset;
755 }
756 
757 
758 static const int ldl_l_opcode = 0x2a;
759 static const int ldq_l_opcode = 0x2b;
760 static const int stl_c_opcode = 0x2e;
761 static const int stq_c_opcode = 0x2f;
762 
763 /* Checks for an atomic sequence of instructions beginning with a LDL_L/LDQ_L
764    instruction and ending with a STL_C/STQ_C instruction.  If such a sequence
765    is found, attempt to step through it.  A breakpoint is placed at the end of
766    the sequence.  */
767 
768 static std::vector<CORE_ADDR>
alpha_deal_with_atomic_sequence(struct gdbarch * gdbarch,CORE_ADDR pc)769 alpha_deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
770 {
771   CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX};
772   CORE_ADDR loc = pc;
773   CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence.  */
774   unsigned int insn = alpha_read_insn (gdbarch, loc);
775   int insn_count;
776   int index;
777   int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed).  */
778   const int atomic_sequence_length = 16; /* Instruction sequence length.  */
779   int bc_insn_count = 0; /* Conditional branch instruction count.  */
780 
781   /* Assume all atomic sequences start with a LDL_L/LDQ_L instruction.  */
782   if (INSN_OPCODE (insn) != ldl_l_opcode
783       && INSN_OPCODE (insn) != ldq_l_opcode)
784     return {};
785 
786   /* Assume that no atomic sequence is longer than "atomic_sequence_length"
787      instructions.  */
788   for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
789     {
790       loc += ALPHA_INSN_SIZE;
791       insn = alpha_read_insn (gdbarch, loc);
792 
793       /* Assume that there is at most one branch in the atomic
794 	 sequence.  If a branch is found, put a breakpoint in
795 	 its destination address.  */
796       if (INSN_OPCODE (insn) >= br_opcode)
797 	{
798 	  int immediate = (insn & 0x001fffff) << 2;
799 
800 	  immediate = (immediate ^ 0x400000) - 0x400000;
801 
802 	  if (bc_insn_count >= 1)
803 	    return {}; /* More than one branch found, fallback
804 			  to the standard single-step code.  */
805 
806 	  breaks[1] = loc + ALPHA_INSN_SIZE + immediate;
807 
808 	  bc_insn_count++;
809 	  last_breakpoint++;
810 	}
811 
812       if (INSN_OPCODE (insn) == stl_c_opcode
813 	  || INSN_OPCODE (insn) == stq_c_opcode)
814 	break;
815     }
816 
817   /* Assume that the atomic sequence ends with a STL_C/STQ_C instruction.  */
818   if (INSN_OPCODE (insn) != stl_c_opcode
819       && INSN_OPCODE (insn) != stq_c_opcode)
820     return {};
821 
822   closing_insn = loc;
823   loc += ALPHA_INSN_SIZE;
824 
825   /* Insert a breakpoint right after the end of the atomic sequence.  */
826   breaks[0] = loc;
827 
828   /* Check for duplicated breakpoints.  Check also for a breakpoint
829      placed (branch instruction's destination) anywhere in sequence.  */
830   if (last_breakpoint
831       && (breaks[1] == breaks[0]
832 	  || (breaks[1] >= pc && breaks[1] <= closing_insn)))
833     last_breakpoint = 0;
834 
835   std::vector<CORE_ADDR> next_pcs;
836 
837   for (index = 0; index <= last_breakpoint; index++)
838     next_pcs.push_back (breaks[index]);
839 
840   return next_pcs;
841 }
842 
843 
844 /* Figure out where the longjmp will land.
845    We expect the first arg to be a pointer to the jmp_buf structure from
846    which we extract the PC (JB_PC) that we will land at.  The PC is copied
847    into the "pc".  This routine returns true on success.  */
848 
849 static int
alpha_get_longjmp_target(struct frame_info * frame,CORE_ADDR * pc)850 alpha_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
851 {
852   struct gdbarch *gdbarch = get_frame_arch (frame);
853   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
854   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
855   CORE_ADDR jb_addr;
856   gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
857 
858   jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM);
859 
860   if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
861 			  raw_buffer, tdep->jb_elt_size))
862     return 0;
863 
864   *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size, byte_order);
865   return 1;
866 }
867 
868 
869 /* Frame unwinder for signal trampolines.  We use alpha tdep bits that
870    describe the location and shape of the sigcontext structure.  After
871    that, all registers are in memory, so it's easy.  */
872 /* ??? Shouldn't we be able to do this generically, rather than with
873    OSABI data specific to Alpha?  */
874 
875 struct alpha_sigtramp_unwind_cache
876 {
877   CORE_ADDR sigcontext_addr;
878 };
879 
880 static struct alpha_sigtramp_unwind_cache *
alpha_sigtramp_frame_unwind_cache(struct frame_info * this_frame,void ** this_prologue_cache)881 alpha_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
882 				   void **this_prologue_cache)
883 {
884   struct alpha_sigtramp_unwind_cache *info;
885   struct gdbarch_tdep *tdep;
886 
887   if (*this_prologue_cache)
888     return (struct alpha_sigtramp_unwind_cache *) *this_prologue_cache;
889 
890   info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
891   *this_prologue_cache = info;
892 
893   tdep = gdbarch_tdep (get_frame_arch (this_frame));
894   info->sigcontext_addr = tdep->sigcontext_addr (this_frame);
895 
896   return info;
897 }
898 
899 /* Return the address of REGNUM in a sigtramp frame.  Since this is
900    all arithmetic, it doesn't seem worthwhile to cache it.  */
901 
902 static CORE_ADDR
alpha_sigtramp_register_address(struct gdbarch * gdbarch,CORE_ADDR sigcontext_addr,int regnum)903 alpha_sigtramp_register_address (struct gdbarch *gdbarch,
904 				 CORE_ADDR sigcontext_addr, int regnum)
905 {
906   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
907 
908   if (regnum >= 0 && regnum < 32)
909     return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
910   else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
911     return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
912   else if (regnum == ALPHA_PC_REGNUM)
913     return sigcontext_addr + tdep->sc_pc_offset;
914 
915   return 0;
916 }
917 
918 /* Given a GDB frame, determine the address of the calling function's
919    frame.  This will be used to create a new GDB frame struct.  */
920 
921 static void
alpha_sigtramp_frame_this_id(struct frame_info * this_frame,void ** this_prologue_cache,struct frame_id * this_id)922 alpha_sigtramp_frame_this_id (struct frame_info *this_frame,
923 			      void **this_prologue_cache,
924 			      struct frame_id *this_id)
925 {
926   struct gdbarch *gdbarch = get_frame_arch (this_frame);
927   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
928   struct alpha_sigtramp_unwind_cache *info
929     = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
930   CORE_ADDR stack_addr, code_addr;
931 
932   /* If the OSABI couldn't locate the sigcontext, give up.  */
933   if (info->sigcontext_addr == 0)
934     return;
935 
936   /* If we have dynamic signal trampolines, find their start.
937      If we do not, then we must assume there is a symbol record
938      that can provide the start address.  */
939   if (tdep->dynamic_sigtramp_offset)
940     {
941       int offset;
942       code_addr = get_frame_pc (this_frame);
943       offset = tdep->dynamic_sigtramp_offset (gdbarch, code_addr);
944       if (offset >= 0)
945 	code_addr -= offset;
946       else
947 	code_addr = 0;
948     }
949   else
950     code_addr = get_frame_func (this_frame);
951 
952   /* The stack address is trivially read from the sigcontext.  */
953   stack_addr = alpha_sigtramp_register_address (gdbarch, info->sigcontext_addr,
954 						ALPHA_SP_REGNUM);
955   stack_addr = get_frame_memory_unsigned (this_frame, stack_addr,
956 					  ALPHA_REGISTER_SIZE);
957 
958   *this_id = frame_id_build (stack_addr, code_addr);
959 }
960 
961 /* Retrieve the value of REGNUM in FRAME.  Don't give up!  */
962 
963 static struct value *
alpha_sigtramp_frame_prev_register(struct frame_info * this_frame,void ** this_prologue_cache,int regnum)964 alpha_sigtramp_frame_prev_register (struct frame_info *this_frame,
965 				    void **this_prologue_cache, int regnum)
966 {
967   struct alpha_sigtramp_unwind_cache *info
968     = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
969   CORE_ADDR addr;
970 
971   if (info->sigcontext_addr != 0)
972     {
973       /* All integer and fp registers are stored in memory.  */
974       addr = alpha_sigtramp_register_address (get_frame_arch (this_frame),
975 					      info->sigcontext_addr, regnum);
976       if (addr != 0)
977 	return frame_unwind_got_memory (this_frame, regnum, addr);
978     }
979 
980   /* This extra register may actually be in the sigcontext, but our
981      current description of it in alpha_sigtramp_frame_unwind_cache
982      doesn't include it.  Too bad.  Fall back on whatever's in the
983      outer frame.  */
984   return frame_unwind_got_register (this_frame, regnum, regnum);
985 }
986 
987 static int
alpha_sigtramp_frame_sniffer(const struct frame_unwind * self,struct frame_info * this_frame,void ** this_prologue_cache)988 alpha_sigtramp_frame_sniffer (const struct frame_unwind *self,
989 			      struct frame_info *this_frame,
990 			      void **this_prologue_cache)
991 {
992   struct gdbarch *gdbarch = get_frame_arch (this_frame);
993   CORE_ADDR pc = get_frame_pc (this_frame);
994   const char *name;
995 
996   /* NOTE: cagney/2004-04-30: Do not copy/clone this code.  Instead
997      look at tramp-frame.h and other simpler per-architecture
998      sigtramp unwinders.  */
999 
1000   /* We shouldn't even bother to try if the OSABI didn't register a
1001      sigcontext_addr handler or pc_in_sigtramp handler.  */
1002   if (gdbarch_tdep (gdbarch)->sigcontext_addr == NULL)
1003     return 0;
1004   if (gdbarch_tdep (gdbarch)->pc_in_sigtramp == NULL)
1005     return 0;
1006 
1007   /* Otherwise we should be in a signal frame.  */
1008   find_pc_partial_function (pc, &name, NULL, NULL);
1009   if (gdbarch_tdep (gdbarch)->pc_in_sigtramp (gdbarch, pc, name))
1010     return 1;
1011 
1012   return 0;
1013 }
1014 
1015 static const struct frame_unwind alpha_sigtramp_frame_unwind =
1016 {
1017   "alpha sigtramp",
1018   SIGTRAMP_FRAME,
1019   default_frame_unwind_stop_reason,
1020   alpha_sigtramp_frame_this_id,
1021   alpha_sigtramp_frame_prev_register,
1022   NULL,
1023   alpha_sigtramp_frame_sniffer
1024 };
1025 
1026 
1027 
1028 /* Heuristic_proc_start may hunt through the text section for a long
1029    time across a 2400 baud serial line.  Allows the user to limit this
1030    search.  */
1031 static int heuristic_fence_post = 0;
1032 
1033 /* Attempt to locate the start of the function containing PC.  We assume that
1034    the previous function ends with an about_to_return insn.  Not foolproof by
1035    any means, since gcc is happy to put the epilogue in the middle of a
1036    function.  But we're guessing anyway...  */
1037 
1038 static CORE_ADDR
alpha_heuristic_proc_start(struct gdbarch * gdbarch,CORE_ADDR pc)1039 alpha_heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
1040 {
1041   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1042   CORE_ADDR last_non_nop = pc;
1043   CORE_ADDR fence = pc - heuristic_fence_post;
1044   CORE_ADDR orig_pc = pc;
1045   CORE_ADDR func;
1046   struct inferior *inf;
1047 
1048   if (pc == 0)
1049     return 0;
1050 
1051   /* First see if we can find the start of the function from minimal
1052      symbol information.  This can succeed with a binary that doesn't
1053      have debug info, but hasn't been stripped.  */
1054   func = get_pc_function_start (pc);
1055   if (func)
1056     return func;
1057 
1058   if (heuristic_fence_post == -1
1059       || fence < tdep->vm_min_address)
1060     fence = tdep->vm_min_address;
1061 
1062   /* Search back for previous return; also stop at a 0, which might be
1063      seen for instance before the start of a code section.  Don't include
1064      nops, since this usually indicates padding between functions.  */
1065   for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
1066     {
1067       unsigned int insn = alpha_read_insn (gdbarch, pc);
1068       switch (insn)
1069 	{
1070 	case 0:			/* invalid insn */
1071 	case 0x6bfa8001:	/* ret $31,($26),1 */
1072 	  return last_non_nop;
1073 
1074 	case 0x2ffe0000:	/* unop: ldq_u $31,0($30) */
1075 	case 0x47ff041f:	/* nop: bis $31,$31,$31 */
1076 	  break;
1077 
1078 	default:
1079 	  last_non_nop = pc;
1080 	  break;
1081 	}
1082     }
1083 
1084   inf = current_inferior ();
1085 
1086   /* It's not clear to me why we reach this point when stopping quietly,
1087      but with this test, at least we don't print out warnings for every
1088      child forked (eg, on decstation).  22apr93 rich@cygnus.com.  */
1089   if (inf->control.stop_soon == NO_STOP_QUIETLY)
1090     {
1091       static int blurb_printed = 0;
1092 
1093       if (fence == tdep->vm_min_address)
1094 	warning (_("Hit beginning of text section without finding \
1095 enclosing function for address %s"), paddress (gdbarch, orig_pc));
1096       else
1097 	warning (_("Hit heuristic-fence-post without finding \
1098 enclosing function for address %s"), paddress (gdbarch, orig_pc));
1099 
1100       if (!blurb_printed)
1101 	{
1102 	  printf_filtered (_("\
1103 This warning occurs if you are debugging a function without any symbols\n\
1104 (for example, in a stripped executable).  In that case, you may wish to\n\
1105 increase the size of the search with the `set heuristic-fence-post' command.\n\
1106 \n\
1107 Otherwise, you told GDB there was a function where there isn't one, or\n\
1108 (more likely) you have encountered a bug in GDB.\n"));
1109 	  blurb_printed = 1;
1110 	}
1111     }
1112 
1113   return 0;
1114 }
1115 
1116 /* Fallback alpha frame unwinder.  Uses instruction scanning and knows
1117    something about the traditional layout of alpha stack frames.  */
1118 
1119 struct alpha_heuristic_unwind_cache
1120 {
1121   CORE_ADDR vfp;
1122   CORE_ADDR start_pc;
1123   trad_frame_saved_reg *saved_regs;
1124   int return_reg;
1125 };
1126 
1127 /* If a probing loop sequence starts at PC, simulate it and compute
1128    FRAME_SIZE and PC after its execution.  Otherwise, return with PC and
1129    FRAME_SIZE unchanged.  */
1130 
1131 static void
alpha_heuristic_analyze_probing_loop(struct gdbarch * gdbarch,CORE_ADDR * pc,int * frame_size)1132 alpha_heuristic_analyze_probing_loop (struct gdbarch *gdbarch, CORE_ADDR *pc,
1133 				      int *frame_size)
1134 {
1135   CORE_ADDR cur_pc = *pc;
1136   int cur_frame_size = *frame_size;
1137   int nb_of_iterations, reg_index, reg_probe;
1138   unsigned int insn;
1139 
1140   /* The following pattern is recognized as a probing loop:
1141 
1142 	lda     REG_INDEX,NB_OF_ITERATIONS
1143 	lda     REG_PROBE,<immediate>(sp)
1144 
1145      LOOP_START:
1146 	stq     zero,<immediate>(REG_PROBE)
1147 	subq    REG_INDEX,0x1,REG_INDEX
1148 	lda     REG_PROBE,<immediate>(REG_PROBE)
1149 	bne     REG_INDEX, LOOP_START
1150 
1151 	lda     sp,<immediate>(REG_PROBE)
1152 
1153      If anything different is found, the function returns without
1154      changing PC and FRAME_SIZE.  Otherwise, PC will point immediately
1155      after this sequence, and FRAME_SIZE will be updated.  */
1156 
1157   /* lda     REG_INDEX,NB_OF_ITERATIONS */
1158 
1159   insn = alpha_read_insn (gdbarch, cur_pc);
1160   if (INSN_OPCODE (insn) != lda_opcode)
1161     return;
1162   reg_index = MEM_RA (insn);
1163   nb_of_iterations = MEM_DISP (insn);
1164 
1165   /* lda     REG_PROBE,<immediate>(sp) */
1166 
1167   cur_pc += ALPHA_INSN_SIZE;
1168   insn = alpha_read_insn (gdbarch, cur_pc);
1169   if (INSN_OPCODE (insn) != lda_opcode
1170       || MEM_RB (insn) != ALPHA_SP_REGNUM)
1171     return;
1172   reg_probe = MEM_RA (insn);
1173   cur_frame_size -= MEM_DISP (insn);
1174 
1175   /* stq     zero,<immediate>(REG_PROBE) */
1176 
1177   cur_pc += ALPHA_INSN_SIZE;
1178   insn = alpha_read_insn (gdbarch, cur_pc);
1179   if (INSN_OPCODE (insn) != stq_opcode
1180       || MEM_RA (insn) != 0x1f
1181       || MEM_RB (insn) != reg_probe)
1182     return;
1183 
1184   /* subq    REG_INDEX,0x1,REG_INDEX */
1185 
1186   cur_pc += ALPHA_INSN_SIZE;
1187   insn = alpha_read_insn (gdbarch, cur_pc);
1188   if (INSN_OPCODE (insn) != subq_opcode
1189       || !OPR_HAS_IMMEDIATE (insn)
1190       || OPR_FUNCTION (insn) != subq_function
1191       || OPR_LIT(insn) != 1
1192       || OPR_RA (insn) != reg_index
1193       || OPR_RC (insn) != reg_index)
1194     return;
1195 
1196   /* lda     REG_PROBE,<immediate>(REG_PROBE) */
1197 
1198   cur_pc += ALPHA_INSN_SIZE;
1199   insn = alpha_read_insn (gdbarch, cur_pc);
1200   if (INSN_OPCODE (insn) != lda_opcode
1201       || MEM_RA (insn) != reg_probe
1202       || MEM_RB (insn) != reg_probe)
1203     return;
1204   cur_frame_size -= MEM_DISP (insn) * nb_of_iterations;
1205 
1206   /* bne     REG_INDEX, LOOP_START */
1207 
1208   cur_pc += ALPHA_INSN_SIZE;
1209   insn = alpha_read_insn (gdbarch, cur_pc);
1210   if (INSN_OPCODE (insn) != bne_opcode
1211       || MEM_RA (insn) != reg_index)
1212     return;
1213 
1214   /* lda     sp,<immediate>(REG_PROBE) */
1215 
1216   cur_pc += ALPHA_INSN_SIZE;
1217   insn = alpha_read_insn (gdbarch, cur_pc);
1218   if (INSN_OPCODE (insn) != lda_opcode
1219       || MEM_RA (insn) != ALPHA_SP_REGNUM
1220       || MEM_RB (insn) != reg_probe)
1221     return;
1222   cur_frame_size -= MEM_DISP (insn);
1223 
1224   *pc = cur_pc;
1225   *frame_size = cur_frame_size;
1226 }
1227 
1228 static struct alpha_heuristic_unwind_cache *
alpha_heuristic_frame_unwind_cache(struct frame_info * this_frame,void ** this_prologue_cache,CORE_ADDR start_pc)1229 alpha_heuristic_frame_unwind_cache (struct frame_info *this_frame,
1230 				    void **this_prologue_cache,
1231 				    CORE_ADDR start_pc)
1232 {
1233   struct gdbarch *gdbarch = get_frame_arch (this_frame);
1234   struct alpha_heuristic_unwind_cache *info;
1235   ULONGEST val;
1236   CORE_ADDR limit_pc, cur_pc;
1237   int frame_reg, frame_size, return_reg, reg;
1238 
1239   if (*this_prologue_cache)
1240     return (struct alpha_heuristic_unwind_cache *) *this_prologue_cache;
1241 
1242   info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1243   *this_prologue_cache = info;
1244   info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1245 
1246   limit_pc = get_frame_pc (this_frame);
1247   if (start_pc == 0)
1248     start_pc = alpha_heuristic_proc_start (gdbarch, limit_pc);
1249   info->start_pc = start_pc;
1250 
1251   frame_reg = ALPHA_SP_REGNUM;
1252   frame_size = 0;
1253   return_reg = -1;
1254 
1255   /* If we've identified a likely place to start, do code scanning.  */
1256   if (start_pc != 0)
1257     {
1258       /* Limit the forward search to 50 instructions.  */
1259       if (start_pc + 200 < limit_pc)
1260 	limit_pc = start_pc + 200;
1261 
1262       for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
1263 	{
1264 	  unsigned int word = alpha_read_insn (gdbarch, cur_pc);
1265 
1266 	  if ((word & 0xffff0000) == 0x23de0000)	/* lda $sp,n($sp) */
1267 	    {
1268 	      if (word & 0x8000)
1269 		{
1270 		  /* Consider only the first stack allocation instruction
1271 		     to contain the static size of the frame.  */
1272 		  if (frame_size == 0)
1273 		    frame_size = (-word) & 0xffff;
1274 		}
1275 	      else
1276 		{
1277 		  /* Exit loop if a positive stack adjustment is found, which
1278 		     usually means that the stack cleanup code in the function
1279 		     epilogue is reached.  */
1280 		  break;
1281 		}
1282 	    }
1283 	  else if ((word & 0xfc1f0000) == 0xb41e0000)	/* stq reg,n($sp) */
1284 	    {
1285 	      reg = (word & 0x03e00000) >> 21;
1286 
1287 	      /* Ignore this instruction if we have already encountered
1288 		 an instruction saving the same register earlier in the
1289 		 function code.  The current instruction does not tell
1290 		 us where the original value upon function entry is saved.
1291 		 All it says is that the function we are scanning reused
1292 		 that register for some computation of its own, and is now
1293 		 saving its result.  */
1294 	      if (info->saved_regs[reg].is_addr ())
1295 		continue;
1296 
1297 	      if (reg == 31)
1298 		continue;
1299 
1300 	      /* Do not compute the address where the register was saved yet,
1301 		 because we don't know yet if the offset will need to be
1302 		 relative to $sp or $fp (we can not compute the address
1303 		 relative to $sp if $sp is updated during the execution of
1304 		 the current subroutine, for instance when doing some alloca).
1305 		 So just store the offset for the moment, and compute the
1306 		 address later when we know whether this frame has a frame
1307 		 pointer or not.  */
1308 	      /* Hack: temporarily add one, so that the offset is non-zero
1309 		 and we can tell which registers have save offsets below.  */
1310 	      info->saved_regs[reg].set_addr ((word & 0xffff) + 1);
1311 
1312 	      /* Starting with OSF/1-3.2C, the system libraries are shipped
1313 		 without local symbols, but they still contain procedure
1314 		 descriptors without a symbol reference. GDB is currently
1315 		 unable to find these procedure descriptors and uses
1316 		 heuristic_proc_desc instead.
1317 		 As some low level compiler support routines (__div*, __add*)
1318 		 use a non-standard return address register, we have to
1319 		 add some heuristics to determine the return address register,
1320 		 or stepping over these routines will fail.
1321 		 Usually the return address register is the first register
1322 		 saved on the stack, but assembler optimization might
1323 		 rearrange the register saves.
1324 		 So we recognize only a few registers (t7, t9, ra) within
1325 		 the procedure prologue as valid return address registers.
1326 		 If we encounter a return instruction, we extract the
1327 		 return address register from it.
1328 
1329 		 FIXME: Rewriting GDB to access the procedure descriptors,
1330 		 e.g. via the minimal symbol table, might obviate this
1331 		 hack.  */
1332 	      if (return_reg == -1
1333 		  && cur_pc < (start_pc + 80)
1334 		  && (reg == ALPHA_T7_REGNUM
1335 		      || reg == ALPHA_T9_REGNUM
1336 		      || reg == ALPHA_RA_REGNUM))
1337 		return_reg = reg;
1338 	    }
1339 	  else if ((word & 0xffe0ffff) == 0x6be08001)	/* ret zero,reg,1 */
1340 	    return_reg = (word >> 16) & 0x1f;
1341 	  else if (word == 0x47de040f)			/* bis sp,sp,fp */
1342 	    frame_reg = ALPHA_GCC_FP_REGNUM;
1343 	  else if (word == 0x47fe040f)			/* bis zero,sp,fp */
1344 	    frame_reg = ALPHA_GCC_FP_REGNUM;
1345 
1346 	  alpha_heuristic_analyze_probing_loop (gdbarch, &cur_pc, &frame_size);
1347 	}
1348 
1349       /* If we haven't found a valid return address register yet, keep
1350 	 searching in the procedure prologue.  */
1351       if (return_reg == -1)
1352 	{
1353 	  while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1354 	    {
1355 	      unsigned int word = alpha_read_insn (gdbarch, cur_pc);
1356 
1357 	      if ((word & 0xfc1f0000) == 0xb41e0000)	/* stq reg,n($sp) */
1358 		{
1359 		  reg = (word & 0x03e00000) >> 21;
1360 		  if (reg == ALPHA_T7_REGNUM
1361 		      || reg == ALPHA_T9_REGNUM
1362 		      || reg == ALPHA_RA_REGNUM)
1363 		    {
1364 		      return_reg = reg;
1365 		      break;
1366 		    }
1367 		}
1368 	      else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1369 		{
1370 		  return_reg = (word >> 16) & 0x1f;
1371 		  break;
1372 		}
1373 
1374 	      cur_pc += ALPHA_INSN_SIZE;
1375 	    }
1376 	}
1377     }
1378 
1379   /* Failing that, do default to the customary RA.  */
1380   if (return_reg == -1)
1381     return_reg = ALPHA_RA_REGNUM;
1382   info->return_reg = return_reg;
1383 
1384   val = get_frame_register_unsigned (this_frame, frame_reg);
1385   info->vfp = val + frame_size;
1386 
1387   /* Convert offsets to absolute addresses.  See above about adding
1388      one to the offsets to make all detected offsets non-zero.  */
1389   for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
1390     if (info->saved_regs[reg].is_addr ())
1391       info->saved_regs[reg].set_addr (info->saved_regs[reg].addr ()
1392 				      + val - 1);
1393 
1394   /* The stack pointer of the previous frame is computed by popping
1395      the current stack frame.  */
1396   if (!info->saved_regs[ALPHA_SP_REGNUM].is_addr ())
1397    info->saved_regs[ALPHA_SP_REGNUM].set_value (info->vfp);
1398 
1399   return info;
1400 }
1401 
1402 /* Given a GDB frame, determine the address of the calling function's
1403    frame.  This will be used to create a new GDB frame struct.  */
1404 
1405 static void
alpha_heuristic_frame_this_id(struct frame_info * this_frame,void ** this_prologue_cache,struct frame_id * this_id)1406 alpha_heuristic_frame_this_id (struct frame_info *this_frame,
1407 			       void **this_prologue_cache,
1408 			       struct frame_id *this_id)
1409 {
1410   struct alpha_heuristic_unwind_cache *info
1411     = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1412 
1413   *this_id = frame_id_build (info->vfp, info->start_pc);
1414 }
1415 
1416 /* Retrieve the value of REGNUM in FRAME.  Don't give up!  */
1417 
1418 static struct value *
alpha_heuristic_frame_prev_register(struct frame_info * this_frame,void ** this_prologue_cache,int regnum)1419 alpha_heuristic_frame_prev_register (struct frame_info *this_frame,
1420 				     void **this_prologue_cache, int regnum)
1421 {
1422   struct alpha_heuristic_unwind_cache *info
1423     = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1424 
1425   /* The PC of the previous frame is stored in the link register of
1426      the current frame.  Frob regnum so that we pull the value from
1427      the correct place.  */
1428   if (regnum == ALPHA_PC_REGNUM)
1429     regnum = info->return_reg;
1430 
1431   return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1432 }
1433 
1434 static const struct frame_unwind alpha_heuristic_frame_unwind =
1435 {
1436   "alpha prologue",
1437   NORMAL_FRAME,
1438   default_frame_unwind_stop_reason,
1439   alpha_heuristic_frame_this_id,
1440   alpha_heuristic_frame_prev_register,
1441   NULL,
1442   default_frame_sniffer
1443 };
1444 
1445 static CORE_ADDR
alpha_heuristic_frame_base_address(struct frame_info * this_frame,void ** this_prologue_cache)1446 alpha_heuristic_frame_base_address (struct frame_info *this_frame,
1447 				    void **this_prologue_cache)
1448 {
1449   struct alpha_heuristic_unwind_cache *info
1450     = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1451 
1452   return info->vfp;
1453 }
1454 
1455 static const struct frame_base alpha_heuristic_frame_base = {
1456   &alpha_heuristic_frame_unwind,
1457   alpha_heuristic_frame_base_address,
1458   alpha_heuristic_frame_base_address,
1459   alpha_heuristic_frame_base_address
1460 };
1461 
1462 /* Just like reinit_frame_cache, but with the right arguments to be
1463    callable as an sfunc.  Used by the "set heuristic-fence-post" command.  */
1464 
1465 static void
reinit_frame_cache_sfunc(const char * args,int from_tty,struct cmd_list_element * c)1466 reinit_frame_cache_sfunc (const char *args,
1467 			  int from_tty, struct cmd_list_element *c)
1468 {
1469   reinit_frame_cache ();
1470 }
1471 
1472 /* Helper routines for alpha*-nat.c files to move register sets to and
1473    from core files.  The UNIQUE pointer is allowed to be NULL, as most
1474    targets don't supply this value in their core files.  */
1475 
1476 void
alpha_supply_int_regs(struct regcache * regcache,int regno,const void * r0_r30,const void * pc,const void * unique)1477 alpha_supply_int_regs (struct regcache *regcache, int regno,
1478 		       const void *r0_r30, const void *pc, const void *unique)
1479 {
1480   const gdb_byte *regs = (const gdb_byte *) r0_r30;
1481   int i;
1482 
1483   for (i = 0; i < 31; ++i)
1484     if (regno == i || regno == -1)
1485       regcache->raw_supply (i, regs + i * 8);
1486 
1487   if (regno == ALPHA_ZERO_REGNUM || regno == -1)
1488     {
1489       const gdb_byte zero[8] = { 0 };
1490 
1491       regcache->raw_supply (ALPHA_ZERO_REGNUM, zero);
1492     }
1493 
1494   if (regno == ALPHA_PC_REGNUM || regno == -1)
1495     regcache->raw_supply (ALPHA_PC_REGNUM, pc);
1496 
1497   if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
1498     regcache->raw_supply (ALPHA_UNIQUE_REGNUM, unique);
1499 }
1500 
1501 void
alpha_fill_int_regs(const struct regcache * regcache,int regno,void * r0_r30,void * pc,void * unique)1502 alpha_fill_int_regs (const struct regcache *regcache,
1503 		     int regno, void *r0_r30, void *pc, void *unique)
1504 {
1505   gdb_byte *regs = (gdb_byte *) r0_r30;
1506   int i;
1507 
1508   for (i = 0; i < 31; ++i)
1509     if (regno == i || regno == -1)
1510       regcache->raw_collect (i, regs + i * 8);
1511 
1512   if (regno == ALPHA_PC_REGNUM || regno == -1)
1513     regcache->raw_collect (ALPHA_PC_REGNUM, pc);
1514 
1515   if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
1516     regcache->raw_collect (ALPHA_UNIQUE_REGNUM, unique);
1517 }
1518 
1519 void
alpha_supply_fp_regs(struct regcache * regcache,int regno,const void * f0_f30,const void * fpcr)1520 alpha_supply_fp_regs (struct regcache *regcache, int regno,
1521 		      const void *f0_f30, const void *fpcr)
1522 {
1523   const gdb_byte *regs = (const gdb_byte *) f0_f30;
1524   int i;
1525 
1526   for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1527     if (regno == i || regno == -1)
1528       regcache->raw_supply (i, regs + (i - ALPHA_FP0_REGNUM) * 8);
1529 
1530   if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1531     regcache->raw_supply (ALPHA_FPCR_REGNUM, fpcr);
1532 }
1533 
1534 void
alpha_fill_fp_regs(const struct regcache * regcache,int regno,void * f0_f30,void * fpcr)1535 alpha_fill_fp_regs (const struct regcache *regcache,
1536 		    int regno, void *f0_f30, void *fpcr)
1537 {
1538   gdb_byte *regs = (gdb_byte *) f0_f30;
1539   int i;
1540 
1541   for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1542     if (regno == i || regno == -1)
1543       regcache->raw_collect (i, regs + (i - ALPHA_FP0_REGNUM) * 8);
1544 
1545   if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1546     regcache->raw_collect (ALPHA_FPCR_REGNUM, fpcr);
1547 }
1548 
1549 
1550 
1551 /* Return nonzero if the G_floating register value in REG is equal to
1552    zero for FP control instructions.  */
1553 
1554 static int
fp_register_zero_p(LONGEST reg)1555 fp_register_zero_p (LONGEST reg)
1556 {
1557   /* Check that all bits except the sign bit are zero.  */
1558   const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1559 
1560   return ((reg & zero_mask) == 0);
1561 }
1562 
1563 /* Return the value of the sign bit for the G_floating register
1564    value held in REG.  */
1565 
1566 static int
fp_register_sign_bit(LONGEST reg)1567 fp_register_sign_bit (LONGEST reg)
1568 {
1569   const LONGEST sign_mask = (LONGEST) 1 << 63;
1570 
1571   return ((reg & sign_mask) != 0);
1572 }
1573 
1574 /* alpha_software_single_step() is called just before we want to resume
1575    the inferior, if we want to single-step it but there is no hardware
1576    or kernel single-step support (NetBSD on Alpha, for example).  We find
1577    the target of the coming instruction and breakpoint it.  */
1578 
1579 static CORE_ADDR
alpha_next_pc(struct regcache * regcache,CORE_ADDR pc)1580 alpha_next_pc (struct regcache *regcache, CORE_ADDR pc)
1581 {
1582   struct gdbarch *gdbarch = regcache->arch ();
1583   unsigned int insn;
1584   unsigned int op;
1585   int regno;
1586   int offset;
1587   LONGEST rav;
1588 
1589   insn = alpha_read_insn (gdbarch, pc);
1590 
1591   /* Opcode is top 6 bits.  */
1592   op = (insn >> 26) & 0x3f;
1593 
1594   if (op == 0x1a)
1595     {
1596       /* Jump format: target PC is:
1597 	 RB & ~3  */
1598       return (regcache_raw_get_unsigned (regcache, (insn >> 16) & 0x1f) & ~3);
1599     }
1600 
1601   if ((op & 0x30) == 0x30)
1602     {
1603       /* Branch format: target PC is:
1604 	 (new PC) + (4 * sext(displacement))  */
1605       if (op == 0x30		/* BR */
1606 	  || op == 0x34)	/* BSR */
1607 	{
1608  branch_taken:
1609 	  offset = (insn & 0x001fffff);
1610 	  if (offset & 0x00100000)
1611 	    offset  |= 0xffe00000;
1612 	  offset *= ALPHA_INSN_SIZE;
1613 	  return (pc + ALPHA_INSN_SIZE + offset);
1614 	}
1615 
1616       /* Need to determine if branch is taken; read RA.  */
1617       regno = (insn >> 21) & 0x1f;
1618       switch (op)
1619 	{
1620 	  case 0x31:              /* FBEQ */
1621 	  case 0x36:              /* FBGE */
1622 	  case 0x37:              /* FBGT */
1623 	  case 0x33:              /* FBLE */
1624 	  case 0x32:              /* FBLT */
1625 	  case 0x35:              /* FBNE */
1626 	    regno += gdbarch_fp0_regnum (gdbarch);
1627 	}
1628 
1629       rav = regcache_raw_get_signed (regcache, regno);
1630 
1631       switch (op)
1632 	{
1633 	case 0x38:		/* BLBC */
1634 	  if ((rav & 1) == 0)
1635 	    goto branch_taken;
1636 	  break;
1637 	case 0x3c:		/* BLBS */
1638 	  if (rav & 1)
1639 	    goto branch_taken;
1640 	  break;
1641 	case 0x39:		/* BEQ */
1642 	  if (rav == 0)
1643 	    goto branch_taken;
1644 	  break;
1645 	case 0x3d:		/* BNE */
1646 	  if (rav != 0)
1647 	    goto branch_taken;
1648 	  break;
1649 	case 0x3a:		/* BLT */
1650 	  if (rav < 0)
1651 	    goto branch_taken;
1652 	  break;
1653 	case 0x3b:		/* BLE */
1654 	  if (rav <= 0)
1655 	    goto branch_taken;
1656 	  break;
1657 	case 0x3f:		/* BGT */
1658 	  if (rav > 0)
1659 	    goto branch_taken;
1660 	  break;
1661 	case 0x3e:		/* BGE */
1662 	  if (rav >= 0)
1663 	    goto branch_taken;
1664 	  break;
1665 
1666 	/* Floating point branches.  */
1667 
1668 	case 0x31:              /* FBEQ */
1669 	  if (fp_register_zero_p (rav))
1670 	    goto branch_taken;
1671 	  break;
1672 	case 0x36:              /* FBGE */
1673 	  if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1674 	    goto branch_taken;
1675 	  break;
1676 	case 0x37:              /* FBGT */
1677 	  if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1678 	    goto branch_taken;
1679 	  break;
1680 	case 0x33:              /* FBLE */
1681 	  if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1682 	    goto branch_taken;
1683 	  break;
1684 	case 0x32:              /* FBLT */
1685 	  if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1686 	    goto branch_taken;
1687 	  break;
1688 	case 0x35:              /* FBNE */
1689 	  if (! fp_register_zero_p (rav))
1690 	    goto branch_taken;
1691 	  break;
1692 	}
1693     }
1694 
1695   /* Not a branch or branch not taken; target PC is:
1696      pc + 4  */
1697   return (pc + ALPHA_INSN_SIZE);
1698 }
1699 
1700 std::vector<CORE_ADDR>
alpha_software_single_step(struct regcache * regcache)1701 alpha_software_single_step (struct regcache *regcache)
1702 {
1703   struct gdbarch *gdbarch = regcache->arch ();
1704 
1705   CORE_ADDR pc = regcache_read_pc (regcache);
1706 
1707   std::vector<CORE_ADDR> next_pcs
1708     = alpha_deal_with_atomic_sequence (gdbarch, pc);
1709   if (!next_pcs.empty ())
1710     return next_pcs;
1711 
1712   CORE_ADDR next_pc = alpha_next_pc (regcache, pc);
1713   return {next_pc};
1714 }
1715 
1716 
1717 /* Initialize the current architecture based on INFO.  If possible, re-use an
1718    architecture from ARCHES, which is a list of architectures already created
1719    during this debugging session.
1720 
1721    Called e.g. at program startup, when reading a core file, and when reading
1722    a binary file.  */
1723 
1724 static struct gdbarch *
alpha_gdbarch_init(struct gdbarch_info info,struct gdbarch_list * arches)1725 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1726 {
1727   struct gdbarch_tdep *tdep;
1728   struct gdbarch *gdbarch;
1729 
1730   /* Find a candidate among extant architectures.  */
1731   arches = gdbarch_list_lookup_by_info (arches, &info);
1732   if (arches != NULL)
1733     return arches->gdbarch;
1734 
1735   tdep = XCNEW (struct gdbarch_tdep);
1736   gdbarch = gdbarch_alloc (&info, tdep);
1737 
1738   /* Lowest text address.  This is used by heuristic_proc_start()
1739      to decide when to stop looking.  */
1740   tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
1741 
1742   tdep->dynamic_sigtramp_offset = NULL;
1743   tdep->sigcontext_addr = NULL;
1744   tdep->sc_pc_offset = 2 * 8;
1745   tdep->sc_regs_offset = 4 * 8;
1746   tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
1747 
1748   tdep->jb_pc = -1;	/* longjmp support not enabled by default.  */
1749 
1750   tdep->return_in_memory = alpha_return_in_memory_always;
1751 
1752   /* Type sizes */
1753   set_gdbarch_short_bit (gdbarch, 16);
1754   set_gdbarch_int_bit (gdbarch, 32);
1755   set_gdbarch_long_bit (gdbarch, 64);
1756   set_gdbarch_long_long_bit (gdbarch, 64);
1757   set_gdbarch_wchar_bit (gdbarch, 64);
1758   set_gdbarch_wchar_signed (gdbarch, 0);
1759   set_gdbarch_float_bit (gdbarch, 32);
1760   set_gdbarch_double_bit (gdbarch, 64);
1761   set_gdbarch_long_double_bit (gdbarch, 64);
1762   set_gdbarch_ptr_bit (gdbarch, 64);
1763 
1764   /* Register info */
1765   set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1766   set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1767   set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1768   set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1769 
1770   set_gdbarch_register_name (gdbarch, alpha_register_name);
1771   set_gdbarch_register_type (gdbarch, alpha_register_type);
1772 
1773   set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1774   set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1775 
1776   set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1777   set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1778   set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
1779 
1780   set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1781 
1782   /* Prologue heuristics.  */
1783   set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1784 
1785   /* Call info.  */
1786 
1787   set_gdbarch_return_value (gdbarch, alpha_return_value);
1788 
1789   /* Settings for calling functions in the inferior.  */
1790   set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
1791 
1792   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1793   set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1794 
1795   set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1796 				       alpha_breakpoint::kind_from_pc);
1797   set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1798 				       alpha_breakpoint::bp_from_kind);
1799   set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
1800   set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
1801 
1802   /* Handles single stepping of atomic sequences.  */
1803   set_gdbarch_software_single_step (gdbarch, alpha_software_single_step);
1804 
1805   /* Hook in ABI-specific overrides, if they have been registered.  */
1806   gdbarch_init_osabi (info, gdbarch);
1807 
1808   /* Now that we have tuned the configuration, set a few final things
1809      based on what the OS ABI has told us.  */
1810 
1811   if (tdep->jb_pc >= 0)
1812     set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1813 
1814   frame_unwind_append_unwinder (gdbarch, &alpha_sigtramp_frame_unwind);
1815   frame_unwind_append_unwinder (gdbarch, &alpha_heuristic_frame_unwind);
1816 
1817   frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
1818 
1819   return gdbarch;
1820 }
1821 
1822 void
alpha_dwarf2_init_abi(struct gdbarch_info info,struct gdbarch * gdbarch)1823 alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1824 {
1825   dwarf2_append_unwinders (gdbarch);
1826   frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
1827 }
1828 
1829 void _initialize_alpha_tdep ();
1830 void
_initialize_alpha_tdep()1831 _initialize_alpha_tdep ()
1832 {
1833 
1834   gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
1835 
1836   /* Let the user set the fence post for heuristic_proc_start.  */
1837 
1838   /* We really would like to have both "0" and "unlimited" work, but
1839      command.c doesn't deal with that.  So make it a var_zinteger
1840      because the user can always use "999999" or some such for unlimited.  */
1841   /* We need to throw away the frame cache when we set this, since it
1842      might change our ability to get backtraces.  */
1843   add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
1844 			    &heuristic_fence_post, _("\
1845 Set the distance searched for the start of a function."), _("\
1846 Show the distance searched for the start of a function."), _("\
1847 If you are debugging a stripped executable, GDB needs to search through the\n\
1848 program for the start of a function.  This command sets the distance of the\n\
1849 search.  The only need to set it is when debugging a stripped executable."),
1850 			    reinit_frame_cache_sfunc,
1851 			    NULL, /* FIXME: i18n: The distance searched for
1852 				     the start of a function is \"%d\".  */
1853 			    &setlist, &showlist);
1854 }
1855