1 #include "sim-main.h"
2 #include "v850_sim.h"
3 #include "simops.h"
4 
5 #include <sys/types.h>
6 
7 #ifdef HAVE_UTIME_H
8 #include <utime.h>
9 #endif
10 
11 #ifdef HAVE_TIME_H
12 #include <time.h>
13 #endif
14 
15 #ifdef HAVE_UNISTD_H
16 #include <unistd.h>
17 #endif
18 
19 #ifdef HAVE_STRING_H
20 #include <string.h>
21 #else
22 #ifdef HAVE_STRINGS_H
23 #include <strings.h>
24 #endif
25 #endif
26 
27 #include "targ-vals.h"
28 
29 #include "libiberty.h"
30 
31 #include <errno.h>
32 #if !defined(__GO32__) && !defined(_WIN32)
33 #include <sys/stat.h>
34 #include <sys/times.h>
35 #include <sys/time.h>
36 #endif
37 
38 /* This is an array of the bit positions of registers r20 .. r31 in
39    that order in a prepare/dispose instruction.  */
40 int type1_regs[12] = { 27, 26, 25, 24, 31, 30, 29, 28, 23, 22, 0, 21 };
41 /* This is an array of the bit positions of registers r16 .. r31 in
42    that order in a push/pop instruction.  */
43 int type2_regs[16] = { 3, 2, 1, 0, 27, 26, 25, 24, 31, 30, 29, 28, 23, 22, 20, 21};
44 /* This is an array of the bit positions of registers r1 .. r15 in
45    that order in a push/pop instruction.  */
46 int type3_regs[15] = { 2, 1, 0, 27, 26, 25, 24, 31, 30, 29, 28, 23, 22, 20, 21};
47 
48 #ifdef DEBUG
49 #ifndef SIZE_INSTRUCTION
50 #define SIZE_INSTRUCTION 18
51 #endif
52 
53 #ifndef SIZE_VALUES
54 #define SIZE_VALUES 11
55 #endif
56 
57 
58 unsigned32 trace_values[3];
59 int trace_num_values;
60 unsigned32 trace_pc;
61 const char *trace_name;
62 int trace_module;
63 
64 
65 void
trace_input(name,type,size)66 trace_input (name, type, size)
67      char *name;
68      enum op_types type;
69      int size;
70 {
71 
72   if (!TRACE_ALU_P (STATE_CPU (simulator, 0)))
73     return;
74 
75   trace_pc = PC;
76   trace_name = name;
77   trace_module = TRACE_ALU_IDX;
78 
79   switch (type)
80     {
81     default:
82     case OP_UNKNOWN:
83     case OP_NONE:
84     case OP_TRAP:
85       trace_num_values = 0;
86       break;
87 
88     case OP_REG:
89     case OP_REG_REG_MOVE:
90       trace_values[0] = State.regs[OP[0]];
91       trace_num_values = 1;
92       break;
93 
94     case OP_BIT_CHANGE:
95     case OP_REG_REG:
96     case OP_REG_REG_CMP:
97       trace_values[0] = State.regs[OP[1]];
98       trace_values[1] = State.regs[OP[0]];
99       trace_num_values = 2;
100       break;
101 
102     case OP_IMM_REG:
103     case OP_IMM_REG_CMP:
104       trace_values[0] = SEXT5 (OP[0]);
105       trace_values[1] = OP[1];
106       trace_num_values = 2;
107       break;
108 
109     case OP_IMM_REG_MOVE:
110       trace_values[0] = SEXT5 (OP[0]);
111       trace_num_values = 1;
112       break;
113 
114     case OP_COND_BR:
115       trace_values[0] = State.pc;
116       trace_values[1] = SEXT9 (OP[0]);
117       trace_values[2] = PSW;
118       trace_num_values = 3;
119       break;
120 
121     case OP_LOAD16:
122       trace_values[0] = OP[1] * size;
123       trace_values[1] = State.regs[30];
124       trace_num_values = 2;
125       break;
126 
127     case OP_STORE16:
128       trace_values[0] = State.regs[OP[0]];
129       trace_values[1] = OP[1] * size;
130       trace_values[2] = State.regs[30];
131       trace_num_values = 3;
132       break;
133 
134     case OP_LOAD32:
135       trace_values[0] = EXTEND16 (OP[2]);
136       trace_values[1] = State.regs[OP[0]];
137       trace_num_values = 2;
138       break;
139 
140     case OP_STORE32:
141       trace_values[0] = State.regs[OP[1]];
142       trace_values[1] = EXTEND16 (OP[2]);
143       trace_values[2] = State.regs[OP[0]];
144       trace_num_values = 3;
145       break;
146 
147     case OP_JUMP:
148       trace_values[0] = SEXT22 (OP[0]);
149       trace_values[1] = State.pc;
150       trace_num_values = 2;
151       break;
152 
153     case OP_IMM_REG_REG:
154       trace_values[0] = EXTEND16 (OP[0]) << size;
155       trace_values[1] = State.regs[OP[1]];
156       trace_num_values = 2;
157       break;
158 
159     case OP_IMM16_REG_REG:
160       trace_values[0] = EXTEND16 (OP[2]) << size;
161       trace_values[1] = State.regs[OP[1]];
162       trace_num_values = 2;
163       break;
164 
165     case OP_UIMM_REG_REG:
166       trace_values[0] = (OP[0] & 0xffff) << size;
167       trace_values[1] = State.regs[OP[1]];
168       trace_num_values = 2;
169       break;
170 
171     case OP_UIMM16_REG_REG:
172       trace_values[0] = (OP[2]) << size;
173       trace_values[1] = State.regs[OP[1]];
174       trace_num_values = 2;
175       break;
176 
177     case OP_BIT:
178       trace_num_values = 0;
179       break;
180 
181     case OP_EX1:
182       trace_values[0] = PSW;
183       trace_num_values = 1;
184       break;
185 
186     case OP_EX2:
187       trace_num_values = 0;
188       break;
189 
190     case OP_LDSR:
191       trace_values[0] = State.regs[OP[0]];
192       trace_num_values = 1;
193       break;
194 
195     case OP_STSR:
196       trace_values[0] = State.sregs[OP[1]];
197       trace_num_values = 1;
198     }
199 
200 }
201 
202 void
trace_result(int has_result,unsigned32 result)203 trace_result (int has_result, unsigned32 result)
204 {
205   char buf[1000];
206   char *chp;
207 
208   buf[0] = '\0';
209   chp = buf;
210 
211   /* write out the values saved during the trace_input call */
212   {
213     int i;
214     for (i = 0; i < trace_num_values; i++)
215       {
216 	sprintf (chp, "%*s0x%.8lx", SIZE_VALUES - 10, "",
217 		 (long) trace_values[i]);
218 	chp = strchr (chp, '\0');
219       }
220     while (i++ < 3)
221       {
222 	sprintf (chp, "%*s", SIZE_VALUES, "");
223 	chp = strchr (chp, '\0');
224       }
225   }
226 
227   /* append any result to the end of the buffer */
228   if (has_result)
229     sprintf (chp, " :: 0x%.8lx", (unsigned long)result);
230 
231   trace_generic (simulator, STATE_CPU (simulator, 0), trace_module, buf);
232 }
233 
234 void
trace_output(result)235 trace_output (result)
236      enum op_types result;
237 {
238   if (!TRACE_ALU_P (STATE_CPU (simulator, 0)))
239     return;
240 
241   switch (result)
242     {
243     default:
244     case OP_UNKNOWN:
245     case OP_NONE:
246     case OP_TRAP:
247     case OP_REG:
248     case OP_REG_REG_CMP:
249     case OP_IMM_REG_CMP:
250     case OP_COND_BR:
251     case OP_STORE16:
252     case OP_STORE32:
253     case OP_BIT:
254     case OP_EX2:
255       trace_result (0, 0);
256       break;
257 
258     case OP_LOAD16:
259     case OP_STSR:
260       trace_result (1, State.regs[OP[0]]);
261       break;
262 
263     case OP_REG_REG:
264     case OP_REG_REG_MOVE:
265     case OP_IMM_REG:
266     case OP_IMM_REG_MOVE:
267     case OP_LOAD32:
268     case OP_EX1:
269       trace_result (1, State.regs[OP[1]]);
270       break;
271 
272     case OP_IMM_REG_REG:
273     case OP_UIMM_REG_REG:
274     case OP_IMM16_REG_REG:
275     case OP_UIMM16_REG_REG:
276       trace_result (1, State.regs[OP[1]]);
277       break;
278 
279     case OP_JUMP:
280       if (OP[1] != 0)
281 	trace_result (1, State.regs[OP[1]]);
282       else
283 	trace_result (0, 0);
284       break;
285 
286     case OP_LDSR:
287       trace_result (1, State.sregs[OP[1]]);
288       break;
289     }
290 }
291 #endif
292 
293 
294 /* Returns 1 if the specific condition is met, returns 0 otherwise.  */
295 int
condition_met(unsigned code)296 condition_met (unsigned code)
297 {
298   unsigned int psw = PSW;
299 
300   switch (code & 0xf)
301     {
302       case 0x0: return ((psw & PSW_OV) != 0);
303       case 0x1:	return ((psw & PSW_CY) != 0);
304       case 0x2:	return ((psw & PSW_Z) != 0);
305       case 0x3:	return ((((psw & PSW_CY) != 0) | ((psw & PSW_Z) != 0)) != 0);
306       case 0x4:	return ((psw & PSW_S) != 0);
307     /*case 0x5:	return 1;*/
308       case 0x6: return ((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) != 0);
309       case 0x7:	return (((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) || ((psw & PSW_Z) != 0)) != 0);
310       case 0x8:	return ((psw & PSW_OV) == 0);
311       case 0x9:	return ((psw & PSW_CY) == 0);
312       case 0xa:	return ((psw & PSW_Z) == 0);
313       case 0xb:	return ((((psw & PSW_CY) != 0) | ((psw & PSW_Z) != 0)) == 0);
314       case 0xc:	return ((psw & PSW_S) == 0);
315       case 0xd:	return ((psw & PSW_SAT) != 0);
316       case 0xe:	return ((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) == 0);
317       case 0xf:	return (((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) || ((psw & PSW_Z) != 0)) == 0);
318     }
319 
320   return 1;
321 }
322 
323 unsigned long
Add32(unsigned long a1,unsigned long a2,int * carry)324 Add32 (unsigned long a1, unsigned long a2, int * carry)
325 {
326   unsigned long result = (a1 + a2);
327 
328   * carry = (result < a1);
329 
330   return result;
331 }
332 
333 static void
Multiply64(int sign,unsigned long op0)334 Multiply64 (int sign, unsigned long op0)
335 {
336   unsigned long op1;
337   unsigned long lo;
338   unsigned long mid1;
339   unsigned long mid2;
340   unsigned long hi;
341   unsigned long RdLo;
342   unsigned long RdHi;
343   int           carry;
344 
345   op1 = State.regs[ OP[1] ];
346 
347   if (sign)
348     {
349       /* Compute sign of result and adjust operands if necessary.  */
350 
351       sign = (op0 ^ op1) & 0x80000000;
352 
353       if (((signed long) op0) < 0)
354 	op0 = - op0;
355 
356       if (((signed long) op1) < 0)
357 	op1 = - op1;
358     }
359 
360   /* We can split the 32x32 into four 16x16 operations. This ensures
361      that we do not lose precision on 32bit only hosts: */
362   lo   = ( (op0        & 0xFFFF) *  (op1        & 0xFFFF));
363   mid1 = ( (op0        & 0xFFFF) * ((op1 >> 16) & 0xFFFF));
364   mid2 = (((op0 >> 16) & 0xFFFF) *  (op1        & 0xFFFF));
365   hi   = (((op0 >> 16) & 0xFFFF) * ((op1 >> 16) & 0xFFFF));
366 
367   /* We now need to add all of these results together, taking care
368      to propogate the carries from the additions: */
369   RdLo = Add32 (lo, (mid1 << 16), & carry);
370   RdHi = carry;
371   RdLo = Add32 (RdLo, (mid2 << 16), & carry);
372   RdHi += (carry + ((mid1 >> 16) & 0xFFFF) + ((mid2 >> 16) & 0xFFFF) + hi);
373 
374   if (sign)
375     {
376       /* Negate result if necessary.  */
377 
378       RdLo = ~ RdLo;
379       RdHi = ~ RdHi;
380       if (RdLo == 0xFFFFFFFF)
381 	{
382 	  RdLo = 0;
383 	  RdHi += 1;
384 	}
385       else
386 	RdLo += 1;
387     }
388 
389   /* Don't store into register 0.  */
390   if (OP[1])
391     State.regs[ OP[1]       ] = RdLo;
392   if (OP[2] >> 11)
393     State.regs[ OP[2] >> 11 ] = RdHi;
394 
395   return;
396 }
397 
398 
399 /* Read a null terminated string from memory, return in a buffer */
400 static char *
fetch_str(sd,addr)401 fetch_str (sd, addr)
402      SIM_DESC sd;
403      address_word addr;
404 {
405   char *buf;
406   int nr = 0;
407   while (sim_core_read_1 (STATE_CPU (sd, 0),
408 			  PC, read_map, addr + nr) != 0)
409     nr++;
410   buf = NZALLOC (char, nr + 1);
411   sim_read (simulator, addr, buf, nr);
412   return buf;
413 }
414 
415 /* Read a null terminated argument vector from memory, return in a
416    buffer */
417 static char **
fetch_argv(sd,addr)418 fetch_argv (sd, addr)
419      SIM_DESC sd;
420      address_word addr;
421 {
422   int max_nr = 64;
423   int nr = 0;
424   char **buf = xmalloc (max_nr * sizeof (char*));
425   while (1)
426     {
427       unsigned32 a = sim_core_read_4 (STATE_CPU (sd, 0),
428 				      PC, read_map, addr + nr * 4);
429       if (a == 0) break;
430       buf[nr] = fetch_str (sd, a);
431       nr ++;
432       if (nr == max_nr - 1)
433 	{
434 	  max_nr += 50;
435 	  buf = xrealloc (buf, max_nr * sizeof (char*));
436 	}
437     }
438   buf[nr] = 0;
439   return buf;
440 }
441 
442 
443 /* sst.b */
444 int
OP_380()445 OP_380 ()
446 {
447   trace_input ("sst.b", OP_STORE16, 1);
448 
449   store_mem (State.regs[30] + (OP[3] & 0x7f), 1, State.regs[ OP[1] ]);
450 
451   trace_output (OP_STORE16);
452 
453   return 2;
454 }
455 
456 /* sst.h */
457 int
OP_480()458 OP_480 ()
459 {
460   trace_input ("sst.h", OP_STORE16, 2);
461 
462   store_mem (State.regs[30] + ((OP[3] & 0x7f) << 1), 2, State.regs[ OP[1] ]);
463 
464   trace_output (OP_STORE16);
465 
466   return 2;
467 }
468 
469 /* sst.w */
470 int
OP_501()471 OP_501 ()
472 {
473   trace_input ("sst.w", OP_STORE16, 4);
474 
475   store_mem (State.regs[30] + ((OP[3] & 0x7e) << 1), 4, State.regs[ OP[1] ]);
476 
477   trace_output (OP_STORE16);
478 
479   return 2;
480 }
481 
482 /* ld.b */
483 int
OP_700()484 OP_700 ()
485 {
486   int adr;
487 
488   trace_input ("ld.b", OP_LOAD32, 1);
489 
490   adr = State.regs[ OP[0] ] + EXTEND16 (OP[2]);
491 
492   State.regs[ OP[1] ] = EXTEND8 (load_mem (adr, 1));
493 
494   trace_output (OP_LOAD32);
495 
496   return 4;
497 }
498 
499 /* ld.h */
500 int
OP_720()501 OP_720 ()
502 {
503   int adr;
504 
505   trace_input ("ld.h", OP_LOAD32, 2);
506 
507   adr = State.regs[ OP[0] ] + EXTEND16 (OP[2]);
508   adr &= ~0x1;
509 
510   State.regs[ OP[1] ] = EXTEND16 (load_mem (adr, 2));
511 
512   trace_output (OP_LOAD32);
513 
514   return 4;
515 }
516 
517 /* ld.w */
518 int
OP_10720()519 OP_10720 ()
520 {
521   int adr;
522 
523   trace_input ("ld.w", OP_LOAD32, 4);
524 
525   adr = State.regs[ OP[0] ] + EXTEND16 (OP[2] & ~1);
526   adr &= ~0x3;
527 
528   State.regs[ OP[1] ] = load_mem (adr, 4);
529 
530   trace_output (OP_LOAD32);
531 
532   return 4;
533 }
534 
535 /* st.b */
536 int
OP_740()537 OP_740 ()
538 {
539   trace_input ("st.b", OP_STORE32, 1);
540 
541   store_mem (State.regs[ OP[0] ] + EXTEND16 (OP[2]), 1, State.regs[ OP[1] ]);
542 
543   trace_output (OP_STORE32);
544 
545   return 4;
546 }
547 
548 /* st.h */
549 int
OP_760()550 OP_760 ()
551 {
552   int adr;
553 
554   trace_input ("st.h", OP_STORE32, 2);
555 
556   adr = State.regs[ OP[0] ] + EXTEND16 (OP[2]);
557   adr &= ~1;
558 
559   store_mem (adr, 2, State.regs[ OP[1] ]);
560 
561   trace_output (OP_STORE32);
562 
563   return 4;
564 }
565 
566 /* st.w */
567 int
OP_10760()568 OP_10760 ()
569 {
570   int adr;
571 
572   trace_input ("st.w", OP_STORE32, 4);
573 
574   adr = State.regs[ OP[0] ] + EXTEND16 (OP[2] & ~1);
575   adr &= ~3;
576 
577   store_mem (adr, 4, State.regs[ OP[1] ]);
578 
579   trace_output (OP_STORE32);
580 
581   return 4;
582 }
583 
584 /* add reg, reg */
585 int
OP_1C0()586 OP_1C0 ()
587 {
588   unsigned int op0, op1, result, z, s, cy, ov;
589 
590   trace_input ("add", OP_REG_REG, 0);
591 
592   /* Compute the result.  */
593 
594   op0 = State.regs[ OP[0] ];
595   op1 = State.regs[ OP[1] ];
596 
597   result = op0 + op1;
598 
599   /* Compute the condition codes.  */
600   z = (result == 0);
601   s = (result & 0x80000000);
602   cy = (result < op0 || result < op1);
603   ov = ((op0 & 0x80000000) == (op1 & 0x80000000)
604 	&& (op0 & 0x80000000) != (result & 0x80000000));
605 
606   /* Store the result and condition codes.  */
607   State.regs[OP[1]] = result;
608   PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
609   PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
610 		     | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
611   trace_output (OP_REG_REG);
612 
613   return 2;
614 }
615 
616 /* add sign_extend(imm5), reg */
617 int
OP_240()618 OP_240 ()
619 {
620   unsigned int op0, op1, result, z, s, cy, ov;
621   int temp;
622 
623   trace_input ("add", OP_IMM_REG, 0);
624 
625   /* Compute the result.  */
626   temp = SEXT5 (OP[0]);
627   op0 = temp;
628   op1 = State.regs[OP[1]];
629   result = op0 + op1;
630 
631   /* Compute the condition codes.  */
632   z = (result == 0);
633   s = (result & 0x80000000);
634   cy = (result < op0 || result < op1);
635   ov = ((op0 & 0x80000000) == (op1 & 0x80000000)
636 	&& (op0 & 0x80000000) != (result & 0x80000000));
637 
638   /* Store the result and condition codes.  */
639   State.regs[OP[1]] = result;
640   PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
641   PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
642 		| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
643   trace_output (OP_IMM_REG);
644 
645   return 2;
646 }
647 
648 /* addi sign_extend(imm16), reg, reg */
649 int
OP_600()650 OP_600 ()
651 {
652   unsigned int op0, op1, result, z, s, cy, ov;
653 
654   trace_input ("addi", OP_IMM16_REG_REG, 0);
655 
656   /* Compute the result.  */
657 
658   op0 = EXTEND16 (OP[2]);
659   op1 = State.regs[ OP[0] ];
660   result = op0 + op1;
661 
662   /* Compute the condition codes.  */
663   z = (result == 0);
664   s = (result & 0x80000000);
665   cy = (result < op0 || result < op1);
666   ov = ((op0 & 0x80000000) == (op1 & 0x80000000)
667 	&& (op0 & 0x80000000) != (result & 0x80000000));
668 
669   /* Store the result and condition codes.  */
670   State.regs[OP[1]] = result;
671   PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
672   PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
673 		| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
674   trace_output (OP_IMM16_REG_REG);
675 
676   return 4;
677 }
678 
679 /* sub reg1, reg2 */
680 int
OP_1A0()681 OP_1A0 ()
682 {
683   unsigned int op0, op1, result, z, s, cy, ov;
684 
685   trace_input ("sub", OP_REG_REG, 0);
686   /* Compute the result.  */
687   op0 = State.regs[ OP[0] ];
688   op1 = State.regs[ OP[1] ];
689   result = op1 - op0;
690 
691   /* Compute the condition codes.  */
692   z = (result == 0);
693   s = (result & 0x80000000);
694   cy = (op1 < op0);
695   ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
696 	&& (op1 & 0x80000000) != (result & 0x80000000));
697 
698   /* Store the result and condition codes.  */
699   State.regs[OP[1]] = result;
700   PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
701   PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
702 		| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
703   trace_output (OP_REG_REG);
704 
705   return 2;
706 }
707 
708 /* subr reg1, reg2 */
709 int
OP_180()710 OP_180 ()
711 {
712   unsigned int op0, op1, result, z, s, cy, ov;
713 
714   trace_input ("subr", OP_REG_REG, 0);
715   /* Compute the result.  */
716   op0 = State.regs[ OP[0] ];
717   op1 = State.regs[ OP[1] ];
718   result = op0 - op1;
719 
720   /* Compute the condition codes.  */
721   z = (result == 0);
722   s = (result & 0x80000000);
723   cy = (op0 < op1);
724   ov = ((op0 & 0x80000000) != (op1 & 0x80000000)
725 	&& (op0 & 0x80000000) != (result & 0x80000000));
726 
727   /* Store the result and condition codes.  */
728   State.regs[OP[1]] = result;
729   PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
730   PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
731 		| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
732   trace_output (OP_REG_REG);
733 
734   return 2;
735 }
736 
737 /* sxh reg1 */
738 int
OP_E0()739 OP_E0 ()
740 {
741   trace_input ("mulh", OP_REG_REG, 0);
742 
743   State.regs[ OP[1] ] = (EXTEND16 (State.regs[ OP[1] ]) * EXTEND16 (State.regs[ OP[0] ]));
744 
745   trace_output (OP_REG_REG);
746 
747   return 2;
748 }
749 
750 /* mulh sign_extend(imm5), reg2 */
751 int
OP_2E0()752 OP_2E0 ()
753 {
754   trace_input ("mulh", OP_IMM_REG, 0);
755 
756   State.regs[ OP[1] ] = EXTEND16 (State.regs[ OP[1] ]) * SEXT5 (OP[0]);
757 
758   trace_output (OP_IMM_REG);
759 
760   return 2;
761 }
762 
763 /* mulhi imm16, reg1, reg2 */
764 int
OP_6E0()765 OP_6E0 ()
766 {
767   trace_input ("mulhi", OP_IMM16_REG_REG, 0);
768 
769   State.regs[ OP[1] ] = EXTEND16 (State.regs[ OP[0] ]) * EXTEND16 (OP[2]);
770 
771   trace_output (OP_IMM16_REG_REG);
772 
773   return 4;
774 }
775 
776 /* cmp reg, reg */
777 int
OP_1E0()778 OP_1E0 ()
779 {
780   unsigned int op0, op1, result, z, s, cy, ov;
781 
782   trace_input ("cmp", OP_REG_REG_CMP, 0);
783   /* Compute the result.  */
784   op0 = State.regs[ OP[0] ];
785   op1 = State.regs[ OP[1] ];
786   result = op1 - op0;
787 
788   /* Compute the condition codes.  */
789   z = (result == 0);
790   s = (result & 0x80000000);
791   cy = (op1 < op0);
792   ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
793 	&& (op1 & 0x80000000) != (result & 0x80000000));
794 
795   /* Set condition codes.  */
796   PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
797   PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
798 		| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
799   trace_output (OP_REG_REG_CMP);
800 
801   return 2;
802 }
803 
804 /* cmp sign_extend(imm5), reg */
805 int
OP_260()806 OP_260 ()
807 {
808   unsigned int op0, op1, result, z, s, cy, ov;
809   int temp;
810 
811   /* Compute the result.  */
812   trace_input ("cmp", OP_IMM_REG_CMP, 0);
813   temp = SEXT5 (OP[0]);
814   op0 = temp;
815   op1 = State.regs[OP[1]];
816   result = op1 - op0;
817 
818   /* Compute the condition codes.  */
819   z = (result == 0);
820   s = (result & 0x80000000);
821   cy = (op1 < op0);
822   ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
823 	&& (op1 & 0x80000000) != (result & 0x80000000));
824 
825   /* Set condition codes.  */
826   PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
827   PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
828 		| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
829   trace_output (OP_IMM_REG_CMP);
830 
831   return 2;
832 }
833 
834 /* setf cccc,reg2 */
835 int
OP_7E0()836 OP_7E0 ()
837 {
838   trace_input ("setf", OP_EX1, 0);
839 
840   State.regs[ OP[1] ] = condition_met (OP[0]);
841 
842   trace_output (OP_EX1);
843 
844   return 4;
845 }
846 
847 /* satadd reg,reg */
848 int
OP_C0()849 OP_C0 ()
850 {
851   unsigned int op0, op1, result, z, s, cy, ov, sat;
852 
853   trace_input ("satadd", OP_REG_REG, 0);
854   /* Compute the result.  */
855   op0 = State.regs[ OP[0] ];
856   op1 = State.regs[ OP[1] ];
857   result = op0 + op1;
858 
859   /* Compute the condition codes.  */
860   z = (result == 0);
861   s = (result & 0x80000000);
862   cy = (result < op0 || result < op1);
863   ov = ((op0 & 0x80000000) == (op1 & 0x80000000)
864 	&& (op0 & 0x80000000) != (result & 0x80000000));
865   sat = ov;
866 
867   /* Handle saturated results.  */
868   if (sat && s)
869     {
870       /* An overflow that results in a negative result implies that we
871 	 became too positive.  */
872       result = 0x7fffffff;
873       s = 0;
874     }
875   else if (sat)
876     {
877       /* Any other overflow must have thus been too negative.  */
878       result = 0x80000000;
879       s = 1;
880       z = 0;
881     }
882 
883   /* Store the result and condition codes.  */
884   State.regs[OP[1]] = result;
885   PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
886   PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
887 	  | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
888 	  | (sat ? PSW_SAT : 0));
889 
890   trace_output (OP_REG_REG);
891 
892   return 2;
893 }
894 
895 /* satadd sign_extend(imm5), reg */
896 int
OP_220()897 OP_220 ()
898 {
899   unsigned int op0, op1, result, z, s, cy, ov, sat;
900 
901   int temp;
902 
903   trace_input ("satadd", OP_IMM_REG, 0);
904 
905   /* Compute the result.  */
906   temp = SEXT5 (OP[0]);
907   op0 = temp;
908   op1 = State.regs[OP[1]];
909   result = op0 + op1;
910 
911   /* Compute the condition codes.  */
912   z = (result == 0);
913   s = (result & 0x80000000);
914   cy = (result < op0 || result < op1);
915   ov = ((op0 & 0x80000000) == (op1 & 0x80000000)
916 	&& (op0 & 0x80000000) != (result & 0x80000000));
917   sat = ov;
918 
919   /* Handle saturated results.  */
920   if (sat && s)
921     {
922       /* An overflow that results in a negative result implies that we
923 	 became too positive.  */
924       result = 0x7fffffff;
925       s = 0;
926     }
927   else if (sat)
928     {
929       /* Any other overflow must have thus been too negative.  */
930       result = 0x80000000;
931       s = 1;
932       z = 0;
933     }
934 
935   /* Store the result and condition codes.  */
936   State.regs[OP[1]] = result;
937   PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
938   PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
939 		| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
940 		| (sat ? PSW_SAT : 0));
941   trace_output (OP_IMM_REG);
942 
943   return 2;
944 }
945 
946 /* satsub reg1, reg2 */
947 int
OP_A0()948 OP_A0 ()
949 {
950   unsigned int op0, op1, result, z, s, cy, ov, sat;
951 
952   trace_input ("satsub", OP_REG_REG, 0);
953 
954   /* Compute the result.  */
955   op0 = State.regs[ OP[0] ];
956   op1 = State.regs[ OP[1] ];
957   result = op1 - op0;
958 
959   /* Compute the condition codes.  */
960   z = (result == 0);
961   s = (result & 0x80000000);
962   cy = (op1 < op0);
963   ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
964 	&& (op1 & 0x80000000) != (result & 0x80000000));
965   sat = ov;
966 
967   /* Handle saturated results.  */
968   if (sat && s)
969     {
970       /* An overflow that results in a negative result implies that we
971 	 became too positive.  */
972       result = 0x7fffffff;
973       s = 0;
974     }
975   else if (sat)
976     {
977       /* Any other overflow must have thus been too negative.  */
978       result = 0x80000000;
979       s = 1;
980       z = 0;
981     }
982 
983   /* Store the result and condition codes.  */
984   State.regs[OP[1]] = result;
985   PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
986   PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
987 	  | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
988 	  | (sat ? PSW_SAT : 0));
989 
990   trace_output (OP_REG_REG);
991   return 2;
992 }
993 
994 /* satsubi sign_extend(imm16), reg */
995 int
OP_660()996 OP_660 ()
997 {
998   unsigned int op0, op1, result, z, s, cy, ov, sat;
999   int temp;
1000 
1001   trace_input ("satsubi", OP_IMM_REG, 0);
1002 
1003   /* Compute the result.  */
1004   temp = EXTEND16 (OP[2]);
1005   op0 = temp;
1006   op1 = State.regs[ OP[0] ];
1007   result = op1 - op0;
1008 
1009   /* Compute the condition codes.  */
1010   z = (result == 0);
1011   s = (result & 0x80000000);
1012   cy = (op1 < op0);
1013   ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
1014 	&& (op1 & 0x80000000) != (result & 0x80000000));
1015   sat = ov;
1016 
1017   /* Handle saturated results.  */
1018   if (sat && s)
1019     {
1020       /* An overflow that results in a negative result implies that we
1021 	 became too positive.  */
1022       result = 0x7fffffff;
1023       s = 0;
1024     }
1025   else if (sat)
1026     {
1027       /* Any other overflow must have thus been too negative.  */
1028       result = 0x80000000;
1029       s = 1;
1030       z = 0;
1031     }
1032 
1033   /* Store the result and condition codes.  */
1034   State.regs[OP[1]] = result;
1035   PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
1036   PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
1037 		| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
1038 		| (sat ? PSW_SAT : 0));
1039 
1040   trace_output (OP_IMM_REG);
1041 
1042   return 4;
1043 }
1044 
1045 /* satsubr reg,reg */
1046 int
OP_80()1047 OP_80 ()
1048 {
1049   unsigned int op0, op1, result, z, s, cy, ov, sat;
1050 
1051   trace_input ("satsubr", OP_REG_REG, 0);
1052 
1053   /* Compute the result.  */
1054   op0 = State.regs[ OP[0] ];
1055   op1 = State.regs[ OP[1] ];
1056   result = op0 - op1;
1057 
1058   /* Compute the condition codes.  */
1059   z = (result == 0);
1060   s = (result & 0x80000000);
1061   cy = (op0 < op1);
1062   ov = ((op0 & 0x80000000) != (op1 & 0x80000000)
1063 	&& (op0 & 0x80000000) != (result & 0x80000000));
1064   sat = ov;
1065 
1066   /* Handle saturated results.  */
1067   if (sat && s)
1068     {
1069       /* An overflow that results in a negative result implies that we
1070 	 became too positive.  */
1071       result = 0x7fffffff;
1072       s = 0;
1073     }
1074   else if (sat)
1075     {
1076       /* Any other overflow must have thus been too negative.  */
1077       result = 0x80000000;
1078       s = 1;
1079       z = 0;
1080     }
1081 
1082   /* Store the result and condition codes.  */
1083   State.regs[OP[1]] = result;
1084   PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
1085   PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
1086 	  | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
1087 	  | (sat ? PSW_SAT : 0));
1088 
1089   trace_output (OP_REG_REG);
1090 
1091   return 2;
1092 }
1093 
1094 /* tst reg,reg */
1095 int
OP_160()1096 OP_160 ()
1097 {
1098   unsigned int op0, op1, result, z, s;
1099 
1100   trace_input ("tst", OP_REG_REG_CMP, 0);
1101 
1102   /* Compute the result.  */
1103   op0 = State.regs[ OP[0] ];
1104   op1 = State.regs[ OP[1] ];
1105   result = op0 & op1;
1106 
1107   /* Compute the condition codes.  */
1108   z = (result == 0);
1109   s = (result & 0x80000000);
1110 
1111   /* Store the condition codes.  */
1112   PSW &= ~(PSW_Z | PSW_S | PSW_OV);
1113   PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
1114   trace_output (OP_REG_REG_CMP);
1115 
1116   return 2;
1117 }
1118 
1119 /* mov sign_extend(imm5), reg */
1120 int
OP_200()1121 OP_200 ()
1122 {
1123   int value = SEXT5 (OP[0]);
1124 
1125   trace_input ("mov", OP_IMM_REG_MOVE, 0);
1126 
1127   State.regs[ OP[1] ] = value;
1128 
1129   trace_output (OP_IMM_REG_MOVE);
1130 
1131   return 2;
1132 }
1133 
1134 /* movhi imm16, reg, reg */
1135 int
OP_640()1136 OP_640 ()
1137 {
1138   trace_input ("movhi", OP_UIMM16_REG_REG, 16);
1139 
1140   State.regs[ OP[1] ] = State.regs[ OP[0] ] + (OP[2] << 16);
1141 
1142   trace_output (OP_UIMM16_REG_REG);
1143 
1144   return 4;
1145 }
1146 
1147 /* sar zero_extend(imm5),reg1 */
1148 int
OP_2A0()1149 OP_2A0 ()
1150 {
1151   unsigned int op0, op1, result, z, s, cy;
1152 
1153   trace_input ("sar", OP_IMM_REG, 0);
1154   op0 = OP[0];
1155   op1 = State.regs[ OP[1] ];
1156   result = (signed)op1 >> op0;
1157 
1158   /* Compute the condition codes.  */
1159   z = (result == 0);
1160   s = (result & 0x80000000);
1161   cy = op0 ? (op1 & (1 << (op0 - 1))) : 0;
1162 
1163   /* Store the result and condition codes.  */
1164   State.regs[ OP[1] ] = result;
1165   PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
1166   PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
1167 		| (cy ? PSW_CY : 0));
1168   trace_output (OP_IMM_REG);
1169 
1170   return 2;
1171 }
1172 
1173 /* sar reg1, reg2 */
1174 int
OP_A007E0()1175 OP_A007E0 ()
1176 {
1177   unsigned int op0, op1, result, z, s, cy;
1178 
1179   trace_input ("sar", OP_REG_REG, 0);
1180 
1181   op0 = State.regs[ OP[0] ] & 0x1f;
1182   op1 = State.regs[ OP[1] ];
1183   result = (signed)op1 >> op0;
1184 
1185   /* Compute the condition codes.  */
1186   z = (result == 0);
1187   s = (result & 0x80000000);
1188   cy = op0 ? (op1 & (1 << (op0 - 1))) : 0;
1189 
1190   /* Store the result and condition codes.  */
1191   State.regs[OP[1]] = result;
1192   PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
1193   PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
1194 		| (cy ? PSW_CY : 0));
1195   trace_output (OP_REG_REG);
1196 
1197   return 4;
1198 }
1199 
1200 /* shl zero_extend(imm5),reg1 */
1201 int
OP_2C0()1202 OP_2C0 ()
1203 {
1204   unsigned int op0, op1, result, z, s, cy;
1205 
1206   trace_input ("shl", OP_IMM_REG, 0);
1207   op0 = OP[0];
1208   op1 = State.regs[ OP[1] ];
1209   result = op1 << op0;
1210 
1211   /* Compute the condition codes.  */
1212   z = (result == 0);
1213   s = (result & 0x80000000);
1214   cy = op0 ? (op1 & (1 << (32 - op0))) : 0;
1215 
1216   /* Store the result and condition codes.  */
1217   State.regs[OP[1]] = result;
1218   PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
1219   PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
1220 		| (cy ? PSW_CY : 0));
1221   trace_output (OP_IMM_REG);
1222 
1223   return 2;
1224 }
1225 
1226 /* shl reg1, reg2 */
1227 int
OP_C007E0()1228 OP_C007E0 ()
1229 {
1230   unsigned int op0, op1, result, z, s, cy;
1231 
1232   trace_input ("shl", OP_REG_REG, 0);
1233   op0 = State.regs[ OP[0] ] & 0x1f;
1234   op1 = State.regs[ OP[1] ];
1235   result = op1 << op0;
1236 
1237   /* Compute the condition codes.  */
1238   z = (result == 0);
1239   s = (result & 0x80000000);
1240   cy = op0 ? (op1 & (1 << (32 - op0))) : 0;
1241 
1242   /* Store the result and condition codes.  */
1243   State.regs[OP[1]] = result;
1244   PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
1245   PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
1246 		| (cy ? PSW_CY : 0));
1247   trace_output (OP_REG_REG);
1248 
1249   return 4;
1250 }
1251 
1252 /* shr zero_extend(imm5),reg1 */
1253 int
OP_280()1254 OP_280 ()
1255 {
1256   unsigned int op0, op1, result, z, s, cy;
1257 
1258   trace_input ("shr", OP_IMM_REG, 0);
1259   op0 = OP[0];
1260   op1 = State.regs[ OP[1] ];
1261   result = op1 >> op0;
1262 
1263   /* Compute the condition codes.  */
1264   z = (result == 0);
1265   s = (result & 0x80000000);
1266   cy = op0 ? (op1 & (1 << (op0 - 1))) : 0;
1267 
1268   /* Store the result and condition codes.  */
1269   State.regs[OP[1]] = result;
1270   PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
1271   PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
1272 		| (cy ? PSW_CY : 0));
1273   trace_output (OP_IMM_REG);
1274 
1275   return 2;
1276 }
1277 
1278 /* shr reg1, reg2 */
1279 int
OP_8007E0()1280 OP_8007E0 ()
1281 {
1282   unsigned int op0, op1, result, z, s, cy;
1283 
1284   trace_input ("shr", OP_REG_REG, 0);
1285   op0 = State.regs[ OP[0] ] & 0x1f;
1286   op1 = State.regs[ OP[1] ];
1287   result = op1 >> op0;
1288 
1289   /* Compute the condition codes.  */
1290   z = (result == 0);
1291   s = (result & 0x80000000);
1292   cy = op0 ? (op1 & (1 << (op0 - 1))) : 0;
1293 
1294   /* Store the result and condition codes.  */
1295   State.regs[OP[1]] = result;
1296   PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
1297   PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
1298 		| (cy ? PSW_CY : 0));
1299   trace_output (OP_REG_REG);
1300 
1301   return 4;
1302 }
1303 
1304 /* or reg, reg */
1305 int
OP_100()1306 OP_100 ()
1307 {
1308   unsigned int op0, op1, result, z, s;
1309 
1310   trace_input ("or", OP_REG_REG, 0);
1311 
1312   /* Compute the result.  */
1313   op0 = State.regs[ OP[0] ];
1314   op1 = State.regs[ OP[1] ];
1315   result = op0 | op1;
1316 
1317   /* Compute the condition codes.  */
1318   z = (result == 0);
1319   s = (result & 0x80000000);
1320 
1321   /* Store the result and condition codes.  */
1322   State.regs[OP[1]] = result;
1323   PSW &= ~(PSW_Z | PSW_S | PSW_OV);
1324   PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
1325   trace_output (OP_REG_REG);
1326 
1327   return 2;
1328 }
1329 
1330 /* ori zero_extend(imm16), reg, reg */
1331 int
OP_680()1332 OP_680 ()
1333 {
1334   unsigned int op0, op1, result, z, s;
1335 
1336   trace_input ("ori", OP_UIMM16_REG_REG, 0);
1337   op0 = OP[2];
1338   op1 = State.regs[ OP[0] ];
1339   result = op0 | op1;
1340 
1341   /* Compute the condition codes.  */
1342   z = (result == 0);
1343   s = (result & 0x80000000);
1344 
1345   /* Store the result and condition codes.  */
1346   State.regs[OP[1]] = result;
1347   PSW &= ~(PSW_Z | PSW_S | PSW_OV);
1348   PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
1349   trace_output (OP_UIMM16_REG_REG);
1350 
1351   return 4;
1352 }
1353 
1354 /* and reg, reg */
1355 int
OP_140()1356 OP_140 ()
1357 {
1358   unsigned int op0, op1, result, z, s;
1359 
1360   trace_input ("and", OP_REG_REG, 0);
1361 
1362   /* Compute the result.  */
1363   op0 = State.regs[ OP[0] ];
1364   op1 = State.regs[ OP[1] ];
1365   result = op0 & op1;
1366 
1367   /* Compute the condition codes.  */
1368   z = (result == 0);
1369   s = (result & 0x80000000);
1370 
1371   /* Store the result and condition codes.  */
1372   State.regs[OP[1]] = result;
1373   PSW &= ~(PSW_Z | PSW_S | PSW_OV);
1374   PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
1375   trace_output (OP_REG_REG);
1376 
1377   return 2;
1378 }
1379 
1380 /* andi zero_extend(imm16), reg, reg */
1381 int
OP_6C0()1382 OP_6C0 ()
1383 {
1384   unsigned int result, z;
1385 
1386   trace_input ("andi", OP_UIMM16_REG_REG, 0);
1387 
1388   result = OP[2] & State.regs[ OP[0] ];
1389 
1390   /* Compute the condition codes.  */
1391   z = (result == 0);
1392 
1393   /* Store the result and condition codes.  */
1394   State.regs[ OP[1] ] = result;
1395 
1396   PSW &= ~(PSW_Z | PSW_S | PSW_OV);
1397   PSW |= (z ? PSW_Z : 0);
1398 
1399   trace_output (OP_UIMM16_REG_REG);
1400 
1401   return 4;
1402 }
1403 
1404 /* xor reg, reg */
1405 int
OP_120()1406 OP_120 ()
1407 {
1408   unsigned int op0, op1, result, z, s;
1409 
1410   trace_input ("xor", OP_REG_REG, 0);
1411 
1412   /* Compute the result.  */
1413   op0 = State.regs[ OP[0] ];
1414   op1 = State.regs[ OP[1] ];
1415   result = op0 ^ op1;
1416 
1417   /* Compute the condition codes.  */
1418   z = (result == 0);
1419   s = (result & 0x80000000);
1420 
1421   /* Store the result and condition codes.  */
1422   State.regs[OP[1]] = result;
1423   PSW &= ~(PSW_Z | PSW_S | PSW_OV);
1424   PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
1425   trace_output (OP_REG_REG);
1426 
1427   return 2;
1428 }
1429 
1430 /* xori zero_extend(imm16), reg, reg */
1431 int
OP_6A0()1432 OP_6A0 ()
1433 {
1434   unsigned int op0, op1, result, z, s;
1435 
1436   trace_input ("xori", OP_UIMM16_REG_REG, 0);
1437   op0 = OP[2];
1438   op1 = State.regs[ OP[0] ];
1439   result = op0 ^ op1;
1440 
1441   /* Compute the condition codes.  */
1442   z = (result == 0);
1443   s = (result & 0x80000000);
1444 
1445   /* Store the result and condition codes.  */
1446   State.regs[OP[1]] = result;
1447   PSW &= ~(PSW_Z | PSW_S | PSW_OV);
1448   PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
1449   trace_output (OP_UIMM16_REG_REG);
1450 
1451   return 4;
1452 }
1453 
1454 /* not reg1, reg2 */
1455 int
OP_20()1456 OP_20 ()
1457 {
1458   unsigned int op0, result, z, s;
1459 
1460   trace_input ("not", OP_REG_REG_MOVE, 0);
1461   /* Compute the result.  */
1462   op0 = State.regs[ OP[0] ];
1463   result = ~op0;
1464 
1465   /* Compute the condition codes.  */
1466   z = (result == 0);
1467   s = (result & 0x80000000);
1468 
1469   /* Store the result and condition codes.  */
1470   State.regs[OP[1]] = result;
1471   PSW &= ~(PSW_Z | PSW_S | PSW_OV);
1472   PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
1473   trace_output (OP_REG_REG_MOVE);
1474 
1475   return 2;
1476 }
1477 
1478 /* set1 */
1479 int
OP_7C0()1480 OP_7C0 ()
1481 {
1482   unsigned int op0, op1, op2;
1483   int temp;
1484 
1485   trace_input ("set1", OP_BIT, 0);
1486   op0 = State.regs[ OP[0] ];
1487   op1 = OP[1] & 0x7;
1488   temp = EXTEND16 (OP[2]);
1489   op2 = temp;
1490   temp = load_mem (op0 + op2, 1);
1491   PSW &= ~PSW_Z;
1492   if ((temp & (1 << op1)) == 0)
1493     PSW |= PSW_Z;
1494   temp |= (1 << op1);
1495   store_mem (op0 + op2, 1, temp);
1496   trace_output (OP_BIT);
1497 
1498   return 4;
1499 }
1500 
1501 /* not1 */
1502 int
OP_47C0()1503 OP_47C0 ()
1504 {
1505   unsigned int op0, op1, op2;
1506   int temp;
1507 
1508   trace_input ("not1", OP_BIT, 0);
1509   op0 = State.regs[ OP[0] ];
1510   op1 = OP[1] & 0x7;
1511   temp = EXTEND16 (OP[2]);
1512   op2 = temp;
1513   temp = load_mem (op0 + op2, 1);
1514   PSW &= ~PSW_Z;
1515   if ((temp & (1 << op1)) == 0)
1516     PSW |= PSW_Z;
1517   temp ^= (1 << op1);
1518   store_mem (op0 + op2, 1, temp);
1519   trace_output (OP_BIT);
1520 
1521   return 4;
1522 }
1523 
1524 /* clr1 */
1525 int
OP_87C0()1526 OP_87C0 ()
1527 {
1528   unsigned int op0, op1, op2;
1529   int temp;
1530 
1531   trace_input ("clr1", OP_BIT, 0);
1532   op0 = State.regs[ OP[0] ];
1533   op1 = OP[1] & 0x7;
1534   temp = EXTEND16 (OP[2]);
1535   op2 = temp;
1536   temp = load_mem (op0 + op2, 1);
1537   PSW &= ~PSW_Z;
1538   if ((temp & (1 << op1)) == 0)
1539     PSW |= PSW_Z;
1540   temp &= ~(1 << op1);
1541   store_mem (op0 + op2, 1, temp);
1542   trace_output (OP_BIT);
1543 
1544   return 4;
1545 }
1546 
1547 /* tst1 */
1548 int
OP_C7C0()1549 OP_C7C0 ()
1550 {
1551   unsigned int op0, op1, op2;
1552   int temp;
1553 
1554   trace_input ("tst1", OP_BIT, 0);
1555   op0 = State.regs[ OP[0] ];
1556   op1 = OP[1] & 0x7;
1557   temp = EXTEND16 (OP[2]);
1558   op2 = temp;
1559   temp = load_mem (op0 + op2, 1);
1560   PSW &= ~PSW_Z;
1561   if ((temp & (1 << op1)) == 0)
1562     PSW |= PSW_Z;
1563   trace_output (OP_BIT);
1564 
1565   return 4;
1566 }
1567 
1568 /* di */
1569 int
OP_16007E0()1570 OP_16007E0 ()
1571 {
1572   trace_input ("di", OP_NONE, 0);
1573   PSW |= PSW_ID;
1574   trace_output (OP_NONE);
1575 
1576   return 4;
1577 }
1578 
1579 /* ei */
1580 int
OP_16087E0()1581 OP_16087E0 ()
1582 {
1583   trace_input ("ei", OP_NONE, 0);
1584   PSW &= ~PSW_ID;
1585   trace_output (OP_NONE);
1586 
1587   return 4;
1588 }
1589 
1590 /* halt */
1591 int
OP_12007E0()1592 OP_12007E0 ()
1593 {
1594   trace_input ("halt", OP_NONE, 0);
1595   /* FIXME this should put processor into a mode where NMI still handled */
1596   trace_output (OP_NONE);
1597   sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC,
1598 		   sim_stopped, SIM_SIGTRAP);
1599   return 0;
1600 }
1601 
1602 /* trap */
1603 int
OP_10007E0()1604 OP_10007E0 ()
1605 {
1606   trace_input ("trap", OP_TRAP, 0);
1607   trace_output (OP_TRAP);
1608 
1609   /* Trap 31 is used for simulating OS I/O functions */
1610 
1611   if (OP[0] == 31)
1612     {
1613       int save_errno = errno;
1614       errno = 0;
1615 
1616 /* Registers passed to trap 0 */
1617 
1618 #define FUNC   State.regs[6]	/* function number, return value */
1619 #define PARM1  State.regs[7]	/* optional parm 1 */
1620 #define PARM2  State.regs[8]	/* optional parm 2 */
1621 #define PARM3  State.regs[9]	/* optional parm 3 */
1622 
1623 /* Registers set by trap 0 */
1624 
1625 #define RETVAL State.regs[10]	/* return value */
1626 #define RETERR State.regs[11]	/* return error code */
1627 
1628 /* Turn a pointer in a register into a pointer into real memory. */
1629 
1630 #define MEMPTR(x) (map (x))
1631 
1632       RETERR = 0;
1633 
1634       switch (FUNC)
1635 	{
1636 
1637 #ifdef HAVE_FORK
1638 #ifdef TARGET_SYS_fork
1639 	case TARGET_SYS_fork:
1640 	  RETVAL = fork ();
1641 	  RETERR = errno;
1642 	  break;
1643 #endif
1644 #endif
1645 
1646 #ifdef HAVE_EXECVE
1647 #ifdef TARGET_SYS_execv
1648 	case TARGET_SYS_execve:
1649 	  {
1650 	    char *path = fetch_str (simulator, PARM1);
1651 	    char **argv = fetch_argv (simulator, PARM2);
1652 	    char **envp = fetch_argv (simulator, PARM3);
1653 	    RETVAL = execve (path, argv, envp);
1654 	    free (path);
1655 	    freeargv (argv);
1656 	    freeargv (envp);
1657 	    RETERR = errno;
1658 	    break;
1659 	  }
1660 #endif
1661 #endif
1662 
1663 #if HAVE_EXECV
1664 #ifdef TARGET_SYS_execv
1665 	case TARGET_SYS_execv:
1666 	  {
1667 	    char *path = fetch_str (simulator, PARM1);
1668 	    char **argv = fetch_argv (simulator, PARM2);
1669 	    RETVAL = execv (path, argv);
1670 	    free (path);
1671 	    freeargv (argv);
1672 	    RETERR = errno;
1673 	    break;
1674 	  }
1675 #endif
1676 #endif
1677 
1678 #if 0
1679 #ifdef TARGET_SYS_pipe
1680 	case TARGET_SYS_pipe:
1681 	  {
1682 	    reg_t buf;
1683 	    int host_fd[2];
1684 
1685 	    buf = PARM1;
1686 	    RETVAL = pipe (host_fd);
1687 	    SW (buf, host_fd[0]);
1688 	    buf += sizeof(uint16);
1689 	    SW (buf, host_fd[1]);
1690 	    RETERR = errno;
1691 	  }
1692 	  break;
1693 #endif
1694 #endif
1695 
1696 #if 0
1697 #ifdef TARGET_SYS_wait
1698 	case TARGET_SYS_wait:
1699 	  {
1700 	    int status;
1701 
1702 	    RETVAL = wait (&status);
1703 	    SW (PARM1, status);
1704 	    RETERR = errno;
1705 	  }
1706 	  break;
1707 #endif
1708 #endif
1709 
1710 #ifdef TARGET_SYS_read
1711 	case TARGET_SYS_read:
1712 	  {
1713 	    char *buf = zalloc (PARM3);
1714 	    RETVAL = sim_io_read (simulator, PARM1, buf, PARM3);
1715 	    sim_write (simulator, PARM2, buf, PARM3);
1716 	    free (buf);
1717 	    if ((int) RETVAL < 0)
1718 	      RETERR = sim_io_get_errno (simulator);
1719 	    break;
1720 	  }
1721 #endif
1722 
1723 #ifdef TARGET_SYS_write
1724 	case TARGET_SYS_write:
1725 	  {
1726 	    char *buf = zalloc (PARM3);
1727 	    sim_read (simulator, PARM2, buf, PARM3);
1728 	    if (PARM1 == 1)
1729 	      RETVAL = sim_io_write_stdout (simulator, buf, PARM3);
1730 	    else
1731 	      RETVAL = sim_io_write (simulator, PARM1, buf, PARM3);
1732 	    free (buf);
1733 	    if ((int) RETVAL < 0)
1734 	      RETERR = sim_io_get_errno (simulator);
1735 	    break;
1736 	  }
1737 #endif
1738 
1739 #ifdef TARGET_SYS_lseek
1740 	case TARGET_SYS_lseek:
1741 	  RETVAL = sim_io_lseek (simulator, PARM1, PARM2, PARM3);
1742 	  if ((int) RETVAL < 0)
1743 	    RETERR = sim_io_get_errno (simulator);
1744 	  break;
1745 #endif
1746 
1747 #ifdef TARGET_SYS_close
1748 	case TARGET_SYS_close:
1749 	  RETVAL = sim_io_close (simulator, PARM1);
1750 	  if ((int) RETVAL < 0)
1751 	    RETERR = sim_io_get_errno (simulator);
1752 	  break;
1753 #endif
1754 
1755 #ifdef TARGET_SYS_open
1756 	case TARGET_SYS_open:
1757 	  {
1758 	    char *buf = fetch_str (simulator, PARM1);
1759 	    RETVAL = sim_io_open (simulator, buf, PARM2);
1760 	    free (buf);
1761 	    if ((int) RETVAL < 0)
1762 	      RETERR = sim_io_get_errno (simulator);
1763 	    break;
1764 	  }
1765 #endif
1766 
1767 #ifdef TARGET_SYS_exit
1768 	case TARGET_SYS_exit:
1769 	  if ((PARM1 & 0xffff0000) == 0xdead0000 && (PARM1 & 0xffff) != 0)
1770 	    /* get signal encoded by kill */
1771 	    sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC,
1772 			     sim_signalled, PARM1 & 0xffff);
1773 	  else if (PARM1 == 0xdead)
1774 	    /* old libraries */
1775 	    sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC,
1776 			     sim_stopped, SIM_SIGABRT);
1777 	  else
1778 	    /* PARM1 has exit status */
1779 	    sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC,
1780 			     sim_exited, PARM1);
1781 	  break;
1782 #endif
1783 
1784 #ifdef TARGET_SYS_stat
1785 	case TARGET_SYS_stat:	/* added at hmsi */
1786 	  /* stat system call */
1787 	  {
1788 	    struct stat host_stat;
1789 	    reg_t buf;
1790 	    char *path = fetch_str (simulator, PARM1);
1791 
1792 	    RETVAL = sim_io_stat (simulator, path, &host_stat);
1793 
1794 	    free (path);
1795 	    buf = PARM2;
1796 
1797 	    /* Just wild-assed guesses.  */
1798 	    store_mem (buf, 2, host_stat.st_dev);
1799 	    store_mem (buf + 2, 2, host_stat.st_ino);
1800 	    store_mem (buf + 4, 4, host_stat.st_mode);
1801 	    store_mem (buf + 8, 2, host_stat.st_nlink);
1802 	    store_mem (buf + 10, 2, host_stat.st_uid);
1803 	    store_mem (buf + 12, 2, host_stat.st_gid);
1804 	    store_mem (buf + 14, 2, host_stat.st_rdev);
1805 	    store_mem (buf + 16, 4, host_stat.st_size);
1806 	    store_mem (buf + 20, 4, host_stat.st_atime);
1807 	    store_mem (buf + 28, 4, host_stat.st_mtime);
1808 	    store_mem (buf + 36, 4, host_stat.st_ctime);
1809 
1810 	    if ((int) RETVAL < 0)
1811 	      RETERR = sim_io_get_errno (simulator);
1812 	  }
1813 	  break;
1814 #endif
1815 
1816 #ifdef TARGET_SYS_fstat
1817 	case TARGET_SYS_fstat:
1818 	  /* fstat system call */
1819 	  {
1820 	    struct stat host_stat;
1821 	    reg_t buf;
1822 
1823 	    RETVAL = sim_io_fstat (simulator, PARM1, &host_stat);
1824 
1825 	    buf = PARM2;
1826 
1827 	    /* Just wild-assed guesses.  */
1828 	    store_mem (buf, 2, host_stat.st_dev);
1829 	    store_mem (buf + 2, 2, host_stat.st_ino);
1830 	    store_mem (buf + 4, 4, host_stat.st_mode);
1831 	    store_mem (buf + 8, 2, host_stat.st_nlink);
1832 	    store_mem (buf + 10, 2, host_stat.st_uid);
1833 	    store_mem (buf + 12, 2, host_stat.st_gid);
1834 	    store_mem (buf + 14, 2, host_stat.st_rdev);
1835 	    store_mem (buf + 16, 4, host_stat.st_size);
1836 	    store_mem (buf + 20, 4, host_stat.st_atime);
1837 	    store_mem (buf + 28, 4, host_stat.st_mtime);
1838 	    store_mem (buf + 36, 4, host_stat.st_ctime);
1839 
1840 	    if ((int) RETVAL < 0)
1841 	      RETERR = sim_io_get_errno (simulator);
1842 	  }
1843 	  break;
1844 #endif
1845 
1846 #ifdef TARGET_SYS_rename
1847 	case TARGET_SYS_rename:
1848 	  {
1849 	    char *oldpath = fetch_str (simulator, PARM1);
1850 	    char *newpath = fetch_str (simulator, PARM2);
1851 	    RETVAL = sim_io_rename (simulator, oldpath, newpath);
1852 	    free (oldpath);
1853 	    free (newpath);
1854 	    if ((int) RETVAL < 0)
1855 	      RETERR = sim_io_get_errno (simulator);
1856 	  }
1857 	  break;
1858 #endif
1859 
1860 #ifdef TARGET_SYS_unlink
1861 	case TARGET_SYS_unlink:
1862 	  {
1863 	    char *path = fetch_str (simulator, PARM1);
1864 	    RETVAL = sim_io_unlink (simulator, path);
1865 	    free (path);
1866 	    if ((int) RETVAL < 0)
1867 	      RETERR = sim_io_get_errno (simulator);
1868 	  }
1869 	  break;
1870 #endif
1871 
1872 #ifdef HAVE_CHOWN
1873 #ifdef TARGET_SYS_chown
1874 	case TARGET_SYS_chown:
1875 	  {
1876 	    char *path = fetch_str (simulator, PARM1);
1877 	    RETVAL = chown (path, PARM2, PARM3);
1878 	    free (path);
1879 	    RETERR = errno;
1880 	  }
1881 	  break;
1882 #endif
1883 #endif
1884 
1885 #if HAVE_CHMOD
1886 #ifdef TARGET_SYS_chmod
1887 	case TARGET_SYS_chmod:
1888 	  {
1889 	    char *path = fetch_str (simulator, PARM1);
1890 	    RETVAL = chmod (path, PARM2);
1891 	    free (path);
1892 	    RETERR = errno;
1893 	  }
1894 	  break;
1895 #endif
1896 #endif
1897 
1898 #ifdef TARGET_SYS_time
1899 #if HAVE_TIME
1900 	case TARGET_SYS_time:
1901 	  {
1902 	    time_t now;
1903 	    RETVAL = time (&now);
1904 	    store_mem (PARM1, 4, now);
1905 	    RETERR = errno;
1906 	  }
1907 	  break;
1908 #endif
1909 #endif
1910 
1911 #if !defined(__GO32__) && !defined(_WIN32)
1912 #ifdef TARGET_SYS_times
1913 	case TARGET_SYS_times:
1914 	  {
1915 	    struct tms tms;
1916 	    RETVAL = times (&tms);
1917 	    store_mem (PARM1, 4, tms.tms_utime);
1918 	    store_mem (PARM1 + 4, 4, tms.tms_stime);
1919 	    store_mem (PARM1 + 8, 4, tms.tms_cutime);
1920 	    store_mem (PARM1 + 12, 4, tms.tms_cstime);
1921 	    reterr = errno;
1922 	    break;
1923 	  }
1924 #endif
1925 #endif
1926 
1927 #ifdef TARGET_SYS_gettimeofday
1928 #if !defined(__GO32__) && !defined(_WIN32)
1929 	case TARGET_SYS_gettimeofday:
1930 	  {
1931 	    struct timeval t;
1932 	    struct timezone tz;
1933 	    RETVAL = gettimeofday (&t, &tz);
1934 	    store_mem (PARM1, 4, t.tv_sec);
1935 	    store_mem (PARM1 + 4, 4, t.tv_usec);
1936 	    store_mem (PARM2, 4, tz.tz_minuteswest);
1937 	    store_mem (PARM2 + 4, 4, tz.tz_dsttime);
1938 	    RETERR = errno;
1939 	    break;
1940 	  }
1941 #endif
1942 #endif
1943 
1944 #ifdef TARGET_SYS_utime
1945 #if HAVE_UTIME
1946 	case TARGET_SYS_utime:
1947 	  {
1948 	    /* Cast the second argument to void *, to avoid type mismatch
1949 	       if a prototype is present.  */
1950 	    sim_io_error (simulator, "Utime not supported");
1951 	    /* RETVAL = utime (path, (void *) MEMPTR (PARM2)); */
1952 	  }
1953 	  break;
1954 #endif
1955 #endif
1956 
1957 	default:
1958 	  abort ();
1959 	}
1960       errno = save_errno;
1961 
1962       return 4;
1963     }
1964   else
1965     {				/* Trap 0 -> 30 */
1966       EIPC = PC + 4;
1967       EIPSW = PSW;
1968       /* Mask out EICC */
1969       ECR &= 0xffff0000;
1970       ECR |= 0x40 + OP[0];
1971       /* Flag that we are now doing exception processing.  */
1972       PSW |= PSW_EP | PSW_ID;
1973       PC = (OP[0] < 0x10) ? 0x40 : 0x50;
1974 
1975       return 0;
1976     }
1977 }
1978 
1979 /* tst1 reg2, [reg1] */
1980 int
OP_E607E0(void)1981 OP_E607E0 (void)
1982 {
1983   int temp;
1984 
1985   trace_input ("tst1", OP_BIT, 1);
1986 
1987   temp = load_mem (State.regs[ OP[0] ], 1);
1988 
1989   PSW &= ~PSW_Z;
1990   if ((temp & (1 << (State.regs[ OP[1] ] & 0x7))) == 0)
1991     PSW |= PSW_Z;
1992 
1993   trace_output (OP_BIT);
1994 
1995   return 4;
1996 }
1997 
1998 /* mulu reg1, reg2, reg3 */
1999 int
OP_22207E0(void)2000 OP_22207E0 (void)
2001 {
2002   trace_input ("mulu", OP_REG_REG_REG, 0);
2003 
2004   Multiply64 (0, State.regs[ OP[0] ]);
2005 
2006   trace_output (OP_REG_REG_REG);
2007 
2008   return 4;
2009 }
2010 
2011 #define BIT_CHANGE_OP( name, binop )		\
2012   unsigned int bit;				\
2013   unsigned int temp;				\
2014   						\
2015   trace_input (name, OP_BIT_CHANGE, 0);		\
2016   						\
2017   bit  = 1 << (State.regs[ OP[1] ] & 0x7);	\
2018   temp = load_mem (State.regs[ OP[0] ], 1);	\
2019 						\
2020   PSW &= ~PSW_Z;				\
2021   if ((temp & bit) == 0)			\
2022     PSW |= PSW_Z;				\
2023   temp binop bit;				\
2024   						\
2025   store_mem (State.regs[ OP[0] ], 1, temp);	\
2026 	     					\
2027   trace_output (OP_BIT_CHANGE);			\
2028 	     					\
2029   return 4;
2030 
2031 /* clr1 reg2, [reg1] */
2032 int
OP_E407E0(void)2033 OP_E407E0 (void)
2034 {
2035   BIT_CHANGE_OP ("clr1", &= ~ );
2036 }
2037 
2038 /* not1 reg2, [reg1] */
2039 int
OP_E207E0(void)2040 OP_E207E0 (void)
2041 {
2042   BIT_CHANGE_OP ("not1", ^= );
2043 }
2044 
2045 /* set1 */
2046 int
OP_E007E0(void)2047 OP_E007E0 (void)
2048 {
2049   BIT_CHANGE_OP ("set1", |= );
2050 }
2051 
2052 /* sasf */
2053 int
OP_20007E0(void)2054 OP_20007E0 (void)
2055 {
2056   trace_input ("sasf", OP_EX1, 0);
2057 
2058   State.regs[ OP[1] ] = (State.regs[ OP[1] ] << 1) | condition_met (OP[0]);
2059 
2060   trace_output (OP_EX1);
2061 
2062   return 4;
2063 }
2064 
2065 /* This function is courtesy of Sugimoto at NEC, via Seow Tan
2066    (Soew_Tan@el.nec.com) */
2067 void
divun(unsigned int N,unsigned long int als,unsigned long int sfi,unsigned32 * quotient_ptr,unsigned32 * remainder_ptr,int * overflow_ptr)2068 divun
2069 (
2070   unsigned int       N,
2071   unsigned long int  als,
2072   unsigned long int  sfi,
2073   unsigned32 /*unsigned long int*/ *  quotient_ptr,
2074   unsigned32 /*unsigned long int*/ *  remainder_ptr,
2075   int *          overflow_ptr
2076 )
2077 {
2078   unsigned long   ald = sfi >> (N - 1);
2079   unsigned long   alo = als;
2080   unsigned int    Q   = 1;
2081   unsigned int    C;
2082   unsigned int    S   = 0;
2083   unsigned int    i;
2084   unsigned int    R1  = 1;
2085   unsigned int    DBZ = (als == 0) ? 1 : 0;
2086   unsigned long   alt = Q ? ~als : als;
2087 
2088   /* 1st Loop */
2089   alo = ald + alt + Q;
2090   C   = (((alt >> 31) & (ald >> 31))
2091 	 | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
2092   C   = C ^ Q;
2093   Q   = ~(C ^ S) & 1;
2094   R1  = (alo == 0) ? 0 : (R1 & Q);
2095   if ((S ^ (alo>>31)) && !C)
2096     {
2097       DBZ = 1;
2098     }
2099   S   = alo >> 31;
2100   sfi = (sfi << (32-N+1)) | Q;
2101   ald = (alo << 1) | (sfi >> 31);
2102 
2103   /* 2nd - N-1th Loop */
2104   for (i = 2; i < N; i++)
2105     {
2106       alt = Q ? ~als : als;
2107       alo = ald + alt + Q;
2108       C   = (((alt >> 31) & (ald >> 31))
2109 	     | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
2110       C   = C ^ Q;
2111       Q   = ~(C ^ S) & 1;
2112       R1  = (alo == 0) ? 0 : (R1 & Q);
2113       if ((S ^ (alo>>31)) && !C && !DBZ)
2114 	{
2115 	  DBZ = 1;
2116 	}
2117       S   = alo >> 31;
2118       sfi = (sfi << 1) | Q;
2119       ald = (alo << 1) | (sfi >> 31);
2120     }
2121 
2122   /* Nth Loop */
2123   alt = Q ? ~als : als;
2124   alo = ald + alt + Q;
2125   C   = (((alt >> 31) & (ald >> 31))
2126 	 | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
2127   C   = C ^ Q;
2128   Q   = ~(C ^ S) & 1;
2129   R1  = (alo == 0) ? 0 : (R1 & Q);
2130   if ((S ^ (alo>>31)) && !C)
2131     {
2132       DBZ = 1;
2133     }
2134 
2135   * quotient_ptr  = (sfi << 1) | Q;
2136   * remainder_ptr = Q ? alo : (alo + als);
2137   * overflow_ptr  = DBZ | R1;
2138 }
2139 
2140 /* This function is courtesy of Sugimoto at NEC, via Seow Tan (Soew_Tan@el.nec.com) */
2141 void
divn(unsigned int N,unsigned long int als,unsigned long int sfi,signed32 * quotient_ptr,signed32 * remainder_ptr,int * overflow_ptr)2142 divn
2143 (
2144   unsigned int       N,
2145   unsigned long int  als,
2146   unsigned long int  sfi,
2147   signed32 /*signed long int*/ *  quotient_ptr,
2148   signed32 /*signed long int*/ *  remainder_ptr,
2149   int *          overflow_ptr
2150 )
2151 {
2152   unsigned long	  ald = (signed long) sfi >> (N - 1);
2153   unsigned long   alo = als;
2154   unsigned int    SS  = als >> 31;
2155   unsigned int	  SD  = sfi >> 31;
2156   unsigned int    R1  = 1;
2157   unsigned int    OV;
2158   unsigned int    DBZ = als == 0 ? 1 : 0;
2159   unsigned int    Q   = ~(SS ^ SD) & 1;
2160   unsigned int    C;
2161   unsigned int    S;
2162   unsigned int    i;
2163   unsigned long   alt = Q ? ~als : als;
2164 
2165 
2166   /* 1st Loop */
2167 
2168   alo = ald + alt + Q;
2169   C   = (((alt >> 31) & (ald >> 31))
2170 	 | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
2171   Q   = C ^ SS;
2172   R1  = (alo == 0) ? 0 : (R1 & (Q ^ (SS ^ SD)));
2173   S   = alo >> 31;
2174   sfi = (sfi << (32-N+1)) | Q;
2175   ald = (alo << 1) | (sfi >> 31);
2176   if ((alo >> 31) ^ (ald >> 31))
2177     {
2178       DBZ = 1;
2179     }
2180 
2181   /* 2nd - N-1th Loop */
2182 
2183   for (i = 2; i < N; i++)
2184     {
2185       alt = Q ? ~als : als;
2186       alo = ald + alt + Q;
2187       C   = (((alt >> 31) & (ald >> 31))
2188 	     | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
2189       Q   = C ^ SS;
2190       R1  = (alo == 0) ? 0 : (R1 & (Q ^ (SS ^ SD)));
2191       S   = alo >> 31;
2192       sfi = (sfi << 1) | Q;
2193       ald = (alo << 1) | (sfi >> 31);
2194       if ((alo >> 31) ^ (ald >> 31))
2195 	{
2196 	  DBZ = 1;
2197 	}
2198     }
2199 
2200   /* Nth Loop */
2201   alt = Q ? ~als : als;
2202   alo = ald + alt + Q;
2203   C   = (((alt >> 31) & (ald >> 31))
2204 	 | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
2205   Q   = C ^ SS;
2206   R1  = (alo == 0) ? 0 : (R1 & (Q ^ (SS ^ SD)));
2207   sfi = (sfi << (32-N+1));
2208   ald = alo;
2209 
2210   /* End */
2211   if (alo != 0)
2212     {
2213       alt = Q ? ~als : als;
2214       alo = ald + alt + Q;
2215     }
2216   R1  = R1 & ((~alo >> 31) ^ SD);
2217   if ((alo != 0) && ((Q ^ (SS ^ SD)) ^ R1)) alo = ald;
2218   if (N != 32)
2219     ald = sfi = (long) ((sfi >> 1) | (SS ^ SD) << 31) >> (32-N-1) | Q;
2220   else
2221     ald = sfi = sfi | Q;
2222 
2223   OV = DBZ | ((alo == 0) ? 0 : R1);
2224 
2225   * remainder_ptr = alo;
2226 
2227   /* Adj */
2228   if (((alo != 0) && ((SS ^ SD) ^ R1))
2229       || ((alo == 0) && (SS ^ R1)))
2230     alo = ald + 1;
2231   else
2232     alo = ald;
2233 
2234   OV  = (DBZ | R1) ? OV : ((alo >> 31) & (~ald >> 31));
2235 
2236   * quotient_ptr  = alo;
2237   * overflow_ptr  = OV;
2238 }
2239 
2240 /* sdivun imm5, reg1, reg2, reg3 */
2241 int
OP_1C207E0(void)2242 OP_1C207E0 (void)
2243 {
2244   unsigned32 /*unsigned long int*/  quotient;
2245   unsigned32 /*unsigned long int*/  remainder;
2246   unsigned long int  divide_by;
2247   unsigned long int  divide_this;
2248   int            overflow = 0;
2249   unsigned int       imm5;
2250 
2251   trace_input ("sdivun", OP_IMM_REG_REG_REG, 0);
2252 
2253   imm5 = 32 - ((OP[3] & 0x3c0000) >> 17);
2254 
2255   divide_by   = State.regs[ OP[0] ];
2256   divide_this = State.regs[ OP[1] ] << imm5;
2257 
2258   divun (imm5, divide_by, divide_this, & quotient, & remainder, & overflow);
2259 
2260   State.regs[ OP[1]       ] = quotient;
2261   State.regs[ OP[2] >> 11 ] = remainder;
2262 
2263   /* Set condition codes.  */
2264   PSW &= ~(PSW_Z | PSW_S | PSW_OV);
2265 
2266   if (overflow)      PSW |= PSW_OV;
2267   if (quotient == 0) PSW |= PSW_Z;
2268   if (quotient & 0x80000000) PSW |= PSW_S;
2269 
2270   trace_output (OP_IMM_REG_REG_REG);
2271 
2272   return 4;
2273 }
2274 
2275 /* sdivn imm5, reg1, reg2, reg3 */
2276 int
OP_1C007E0(void)2277 OP_1C007E0 (void)
2278 {
2279   signed32 /*signed long int*/  quotient;
2280   signed32 /*signed long int*/  remainder;
2281   signed long int  divide_by;
2282   signed long int  divide_this;
2283   int          overflow = 0;
2284   unsigned int     imm5;
2285 
2286   trace_input ("sdivn", OP_IMM_REG_REG_REG, 0);
2287 
2288   imm5 = 32 - ((OP[3] & 0x3c0000) >> 17);
2289 
2290   divide_by   = (signed32) State.regs[ OP[0] ];
2291   divide_this = (signed32) (State.regs[ OP[1] ] << imm5);
2292 
2293   divn (imm5, divide_by, divide_this, & quotient, & remainder, & overflow);
2294 
2295   State.regs[ OP[1]       ] = quotient;
2296   State.regs[ OP[2] >> 11 ] = remainder;
2297 
2298   /* Set condition codes.  */
2299   PSW &= ~(PSW_Z | PSW_S | PSW_OV);
2300 
2301   if (overflow)      PSW |= PSW_OV;
2302   if (quotient == 0) PSW |= PSW_Z;
2303   if (quotient <  0) PSW |= PSW_S;
2304 
2305   trace_output (OP_IMM_REG_REG_REG);
2306 
2307   return 4;
2308 }
2309 
2310 /* sdivhun imm5, reg1, reg2, reg3 */
2311 int
OP_18207E0(void)2312 OP_18207E0 (void)
2313 {
2314   unsigned32 /*unsigned long int*/  quotient;
2315   unsigned32 /*unsigned long int*/  remainder;
2316   unsigned long int  divide_by;
2317   unsigned long int  divide_this;
2318   int            overflow = 0;
2319   unsigned int       imm5;
2320 
2321   trace_input ("sdivhun", OP_IMM_REG_REG_REG, 0);
2322 
2323   imm5 = 32 - ((OP[3] & 0x3c0000) >> 17);
2324 
2325   divide_by   = State.regs[ OP[0] ] & 0xffff;
2326   divide_this = State.regs[ OP[1] ] << imm5;
2327 
2328   divun (imm5, divide_by, divide_this, & quotient, & remainder, & overflow);
2329 
2330   State.regs[ OP[1]       ] = quotient;
2331   State.regs[ OP[2] >> 11 ] = remainder;
2332 
2333   /* Set condition codes.  */
2334   PSW &= ~(PSW_Z | PSW_S | PSW_OV);
2335 
2336   if (overflow)      PSW |= PSW_OV;
2337   if (quotient == 0) PSW |= PSW_Z;
2338   if (quotient & 0x80000000) PSW |= PSW_S;
2339 
2340   trace_output (OP_IMM_REG_REG_REG);
2341 
2342   return 4;
2343 }
2344 
2345 /* sdivhn imm5, reg1, reg2, reg3 */
2346 int
OP_18007E0(void)2347 OP_18007E0 (void)
2348 {
2349   signed32 /*signed long int*/  quotient;
2350   signed32 /*signed long int*/  remainder;
2351   signed long int  divide_by;
2352   signed long int  divide_this;
2353   int          overflow = 0;
2354   unsigned int     imm5;
2355 
2356   trace_input ("sdivhn", OP_IMM_REG_REG_REG, 0);
2357 
2358   imm5 = 32 - ((OP[3] & 0x3c0000) >> 17);
2359 
2360   divide_by   = EXTEND16 (State.regs[ OP[0] ]);
2361   divide_this = (signed32) (State.regs[ OP[1] ] << imm5);
2362 
2363   divn (imm5, divide_by, divide_this, & quotient, & remainder, & overflow);
2364 
2365   State.regs[ OP[1]       ] = quotient;
2366   State.regs[ OP[2] >> 11 ] = remainder;
2367 
2368   /* Set condition codes.  */
2369   PSW &= ~(PSW_Z | PSW_S | PSW_OV);
2370 
2371   if (overflow)      PSW |= PSW_OV;
2372   if (quotient == 0) PSW |= PSW_Z;
2373   if (quotient <  0) PSW |= PSW_S;
2374 
2375   trace_output (OP_IMM_REG_REG_REG);
2376 
2377   return 4;
2378 }
2379 
2380 /* divu  reg1, reg2, reg3 */
2381 int
OP_2C207E0(void)2382 OP_2C207E0 (void)
2383 {
2384   unsigned long int quotient;
2385   unsigned long int remainder;
2386   unsigned long int divide_by;
2387   unsigned long int divide_this;
2388   int           overflow = 0;
2389 
2390   trace_input ("divu", OP_REG_REG_REG, 0);
2391 
2392   /* Compute the result.  */
2393 
2394   divide_by   = State.regs[ OP[0] ];
2395   divide_this = State.regs[ OP[1] ];
2396 
2397   if (divide_by == 0)
2398     {
2399       PSW |= PSW_OV;
2400     }
2401   else
2402     {
2403       State.regs[ OP[1]       ] = quotient  = divide_this / divide_by;
2404       State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by;
2405 
2406       /* Set condition codes.  */
2407       PSW &= ~(PSW_Z | PSW_S | PSW_OV);
2408 
2409       if (overflow)      PSW |= PSW_OV;
2410       if (quotient == 0) PSW |= PSW_Z;
2411       if (quotient & 0x80000000) PSW |= PSW_S;
2412     }
2413 
2414   trace_output (OP_REG_REG_REG);
2415 
2416   return 4;
2417 }
2418 
2419 /* div  reg1, reg2, reg3 */
2420 int
OP_2C007E0(void)2421 OP_2C007E0 (void)
2422 {
2423   signed long int quotient;
2424   signed long int remainder;
2425   signed long int divide_by;
2426   signed long int divide_this;
2427 
2428   trace_input ("div", OP_REG_REG_REG, 0);
2429 
2430   /* Compute the result.  */
2431 
2432   divide_by   = (signed32) State.regs[ OP[0] ];
2433   divide_this = State.regs[ OP[1] ];
2434 
2435   if (divide_by == 0)
2436     {
2437       PSW |= PSW_OV;
2438     }
2439   else if (divide_by == -1 && divide_this == (1L << 31))
2440     {
2441       PSW &= ~PSW_Z;
2442       PSW |= PSW_OV | PSW_S;
2443       State.regs[ OP[1] ] = (1 << 31);
2444       State.regs[ OP[2] >> 11 ] = 0;
2445     }
2446   else
2447     {
2448       divide_this = (signed32) divide_this;
2449       State.regs[ OP[1]       ] = quotient  = divide_this / divide_by;
2450       State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by;
2451 
2452       /* Set condition codes.  */
2453       PSW &= ~(PSW_Z | PSW_S | PSW_OV);
2454 
2455       if (quotient == 0) PSW |= PSW_Z;
2456       if (quotient <  0) PSW |= PSW_S;
2457     }
2458 
2459   trace_output (OP_REG_REG_REG);
2460 
2461   return 4;
2462 }
2463 
2464 /* divhu  reg1, reg2, reg3 */
2465 int
OP_28207E0(void)2466 OP_28207E0 (void)
2467 {
2468   unsigned long int quotient;
2469   unsigned long int remainder;
2470   unsigned long int divide_by;
2471   unsigned long int divide_this;
2472   int           overflow = 0;
2473 
2474   trace_input ("divhu", OP_REG_REG_REG, 0);
2475 
2476   /* Compute the result.  */
2477 
2478   divide_by   = State.regs[ OP[0] ] & 0xffff;
2479   divide_this = State.regs[ OP[1] ];
2480 
2481   if (divide_by == 0)
2482     {
2483       PSW |= PSW_OV;
2484     }
2485   else
2486     {
2487       State.regs[ OP[1]       ] = quotient  = divide_this / divide_by;
2488       State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by;
2489 
2490       /* Set condition codes.  */
2491       PSW &= ~(PSW_Z | PSW_S | PSW_OV);
2492 
2493       if (overflow)      PSW |= PSW_OV;
2494       if (quotient == 0) PSW |= PSW_Z;
2495       if (quotient & 0x80000000) PSW |= PSW_S;
2496     }
2497 
2498   trace_output (OP_REG_REG_REG);
2499 
2500   return 4;
2501 }
2502 
2503 /* divh  reg1, reg2, reg3 */
2504 int
OP_28007E0(void)2505 OP_28007E0 (void)
2506 {
2507   signed long int quotient;
2508   signed long int remainder;
2509   signed long int divide_by;
2510   signed long int divide_this;
2511   int         overflow = 0;
2512 
2513   trace_input ("divh", OP_REG_REG_REG, 0);
2514 
2515   /* Compute the result.  */
2516 
2517   divide_by  = EXTEND16 (State.regs[ OP[0] ]);
2518   divide_this = State.regs[ OP[1] ];
2519 
2520   if (divide_by == 0)
2521     {
2522       PSW |= PSW_OV;
2523     }
2524   else if (divide_by == -1 && divide_this == (1L << 31))
2525     {
2526       PSW &= ~PSW_Z;
2527       PSW |= PSW_OV | PSW_S;
2528       State.regs[ OP[1] ] = (1 << 31);
2529       State.regs[ OP[2] >> 11 ] = 0;
2530     }
2531   else
2532     {
2533       divide_this = (signed32) divide_this;
2534       State.regs[ OP[1]       ] = quotient  = divide_this / divide_by;
2535       State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by;
2536 
2537       /* Set condition codes.  */
2538       PSW &= ~(PSW_Z | PSW_S | PSW_OV);
2539 
2540       if (quotient == 0) PSW |= PSW_Z;
2541       if (quotient <  0) PSW |= PSW_S;
2542     }
2543 
2544   trace_output (OP_REG_REG_REG);
2545 
2546   return 4;
2547 }
2548 
2549 /* mulu imm9, reg2, reg3 */
2550 int
OP_24207E0(void)2551 OP_24207E0 (void)
2552 {
2553   trace_input ("mulu", OP_IMM_REG_REG, 0);
2554 
2555   Multiply64 (0, (OP[3] & 0x1f) | ((OP[3] >> 13) & 0x1e0));
2556 
2557   trace_output (OP_IMM_REG_REG);
2558 
2559   return 4;
2560 }
2561 
2562 /* mul imm9, reg2, reg3 */
2563 int
OP_24007E0(void)2564 OP_24007E0 (void)
2565 {
2566   trace_input ("mul", OP_IMM_REG_REG, 0);
2567 
2568   Multiply64 (1, SEXT9 ((OP[3] & 0x1f) | ((OP[3] >> 13) & 0x1e0)));
2569 
2570   trace_output (OP_IMM_REG_REG);
2571 
2572   return 4;
2573 }
2574 
2575 /* ld.hu */
2576 int
OP_107E0(void)2577 OP_107E0 (void)
2578 {
2579   int adr;
2580 
2581   trace_input ("ld.hu", OP_LOAD32, 2);
2582 
2583   adr = State.regs[ OP[0] ] + EXTEND16 (OP[2] & ~1);
2584   adr &= ~0x1;
2585 
2586   State.regs[ OP[1] ] = load_mem (adr, 2);
2587 
2588   trace_output (OP_LOAD32);
2589 
2590   return 4;
2591 }
2592 
2593 
2594 /* ld.bu */
2595 int
OP_10780(void)2596 OP_10780 (void)
2597 {
2598   int adr;
2599 
2600   trace_input ("ld.bu", OP_LOAD32, 1);
2601 
2602   adr = (State.regs[ OP[0] ]
2603 	 + (EXTEND16 (OP[2] & ~1) | ((OP[3] >> 5) & 1)));
2604 
2605   State.regs[ OP[1] ] = load_mem (adr, 1);
2606 
2607   trace_output (OP_LOAD32);
2608 
2609   return 4;
2610 }
2611 
2612 /* prepare list12, imm5, imm32 */
2613 int
OP_1B0780(void)2614 OP_1B0780 (void)
2615 {
2616   int  i;
2617 
2618   trace_input ("prepare", OP_PUSHPOP1, 0);
2619 
2620   /* Store the registers with lower number registers being placed at higher addresses.  */
2621   for (i = 0; i < 12; i++)
2622     if ((OP[3] & (1 << type1_regs[ i ])))
2623       {
2624 	SP -= 4;
2625 	store_mem (SP, 4, State.regs[ 20 + i ]);
2626       }
2627 
2628   SP -= (OP[3] & 0x3e) << 1;
2629 
2630   EP = load_mem (PC + 4, 4);
2631 
2632   trace_output (OP_PUSHPOP1);
2633 
2634   return 8;
2635 }
2636 
2637 /* prepare list12, imm5, imm16-32 */
2638 int
OP_130780(void)2639 OP_130780 (void)
2640 {
2641   int  i;
2642 
2643   trace_input ("prepare", OP_PUSHPOP1, 0);
2644 
2645   /* Store the registers with lower number registers being placed at higher addresses.  */
2646   for (i = 0; i < 12; i++)
2647     if ((OP[3] & (1 << type1_regs[ i ])))
2648       {
2649 	SP -= 4;
2650 	store_mem (SP, 4, State.regs[ 20 + i ]);
2651       }
2652 
2653   SP -= (OP[3] & 0x3e) << 1;
2654 
2655   EP = load_mem (PC + 4, 2) << 16;
2656 
2657   trace_output (OP_PUSHPOP1);
2658 
2659   return 6;
2660 }
2661 
2662 /* prepare list12, imm5, imm16 */
2663 int
OP_B0780(void)2664 OP_B0780 (void)
2665 {
2666   int  i;
2667 
2668   trace_input ("prepare", OP_PUSHPOP1, 0);
2669 
2670   /* Store the registers with lower number registers being placed at higher addresses.  */
2671   for (i = 0; i < 12; i++)
2672     if ((OP[3] & (1 << type1_regs[ i ])))
2673       {
2674 	SP -= 4;
2675 	store_mem (SP, 4, State.regs[ 20 + i ]);
2676       }
2677 
2678   SP -= (OP[3] & 0x3e) << 1;
2679 
2680   EP = EXTEND16 (load_mem (PC + 4, 2));
2681 
2682   trace_output (OP_PUSHPOP1);
2683 
2684   return 6;
2685 }
2686 
2687 /* prepare list12, imm5, sp */
2688 int
OP_30780(void)2689 OP_30780 (void)
2690 {
2691   int  i;
2692 
2693   trace_input ("prepare", OP_PUSHPOP1, 0);
2694 
2695   /* Store the registers with lower number registers being placed at higher addresses.  */
2696   for (i = 0; i < 12; i++)
2697     if ((OP[3] & (1 << type1_regs[ i ])))
2698       {
2699 	SP -= 4;
2700 	store_mem (SP, 4, State.regs[ 20 + i ]);
2701       }
2702 
2703   SP -= (OP[3] & 0x3e) << 1;
2704 
2705   EP = SP;
2706 
2707   trace_output (OP_PUSHPOP1);
2708 
2709   return 4;
2710 }
2711 
2712 /* mul reg1, reg2, reg3 */
2713 int
OP_22007E0(void)2714 OP_22007E0 (void)
2715 {
2716   trace_input ("mul", OP_REG_REG_REG, 0);
2717 
2718   Multiply64 (1, State.regs[ OP[0] ]);
2719 
2720   trace_output (OP_REG_REG_REG);
2721 
2722   return 4;
2723 }
2724 
2725 /* popmh list18 */
2726 int
OP_307F0(void)2727 OP_307F0 (void)
2728 {
2729   int i;
2730 
2731   trace_input ("popmh", OP_PUSHPOP2, 0);
2732 
2733   if (OP[3] & (1 << 19))
2734     {
2735       if ((PSW & PSW_NP) && ((PSW & PSW_EP) == 0))
2736 	{
2737 	  FEPSW = load_mem ( SP      & ~ 3, 4);
2738 	  FEPC  = load_mem ((SP + 4) & ~ 3, 4);
2739 	}
2740       else
2741 	{
2742 	  EIPSW = load_mem ( SP      & ~ 3, 4);
2743 	  EIPC  = load_mem ((SP + 4) & ~ 3, 4);
2744 	}
2745 
2746       SP += 8;
2747     }
2748 
2749   /* Load the registers with lower number registers being retrieved from higher addresses.  */
2750   for (i = 16; i--;)
2751     if ((OP[3] & (1 << type2_regs[ i ])))
2752       {
2753 	State.regs[ i + 16 ] = load_mem (SP & ~ 3, 4);
2754 	SP += 4;
2755       }
2756 
2757   trace_output (OP_PUSHPOP2);
2758 
2759   return 4;
2760 }
2761 
2762 /* popml lsit18 */
2763 int
OP_107F0(void)2764 OP_107F0 (void)
2765 {
2766   int i;
2767 
2768   trace_input ("popml", OP_PUSHPOP3, 0);
2769 
2770   if (OP[3] & (1 << 19))
2771     {
2772       if ((PSW & PSW_NP) && ((PSW & PSW_EP) == 0))
2773 	{
2774 	  FEPSW = load_mem ( SP      & ~ 3, 4);
2775 	  FEPC =  load_mem ((SP + 4) & ~ 3, 4);
2776 	}
2777       else
2778 	{
2779 	  EIPSW = load_mem ( SP      & ~ 3, 4);
2780 	  EIPC  = load_mem ((SP + 4) & ~ 3, 4);
2781 	}
2782 
2783       SP += 8;
2784     }
2785 
2786   if (OP[3] & (1 << 3))
2787     {
2788       PSW = load_mem (SP & ~ 3, 4);
2789       SP += 4;
2790     }
2791 
2792   /* Load the registers with lower number registers being retrieved from higher addresses.  */
2793   for (i = 15; i--;)
2794     if ((OP[3] & (1 << type3_regs[ i ])))
2795       {
2796 	State.regs[ i + 1 ] = load_mem (SP & ~ 3, 4);
2797 	SP += 4;
2798       }
2799 
2800   trace_output (OP_PUSHPOP2);
2801 
2802   return 4;
2803 }
2804 
2805 /* pushmh list18 */
2806 int
OP_307E0(void)2807 OP_307E0 (void)
2808 {
2809   int i;
2810 
2811   trace_input ("pushmh", OP_PUSHPOP2, 0);
2812 
2813   /* Store the registers with lower number registers being placed at higher addresses.  */
2814   for (i = 0; i < 16; i++)
2815     if ((OP[3] & (1 << type2_regs[ i ])))
2816       {
2817 	SP -= 4;
2818 	store_mem (SP & ~ 3, 4, State.regs[ i + 16 ]);
2819       }
2820 
2821   if (OP[3] & (1 << 19))
2822     {
2823       SP -= 8;
2824 
2825       if ((PSW & PSW_NP) && ((PSW & PSW_EP) == 0))
2826 	{
2827 	  store_mem ((SP + 4) & ~ 3, 4, FEPC);
2828 	  store_mem ( SP      & ~ 3, 4, FEPSW);
2829 	}
2830       else
2831 	{
2832 	  store_mem ((SP + 4) & ~ 3, 4, EIPC);
2833 	  store_mem ( SP      & ~ 3, 4, EIPSW);
2834 	}
2835     }
2836 
2837   trace_output (OP_PUSHPOP2);
2838 
2839   return 4;
2840 }
2841 
2842 /* V850E2R FPU functions */
2843 /*
2844   sim_fpu_status_invalid_snan = 1,				-V--- (sim spec.)
2845   sim_fpu_status_invalid_qnan = 2,				----- (sim spec.)
2846   sim_fpu_status_invalid_isi = 4, (inf - inf)			-V---
2847   sim_fpu_status_invalid_idi = 8, (inf / inf)			-V---
2848   sim_fpu_status_invalid_zdz = 16, (0 / 0)			-V---
2849   sim_fpu_status_invalid_imz = 32, (inf * 0)			-V---
2850   sim_fpu_status_invalid_cvi = 64, convert to integer		-V---
2851   sim_fpu_status_invalid_div0 = 128, (X / 0)			--Z--
2852   sim_fpu_status_invalid_cmp = 256, compare			----- (sim spec.)
2853   sim_fpu_status_invalid_sqrt = 512,				-V---
2854   sim_fpu_status_rounded = 1024,				I----
2855   sim_fpu_status_inexact = 2048,				I---- (sim spec.)
2856   sim_fpu_status_overflow = 4096,				I--O-
2857   sim_fpu_status_underflow = 8192,				I---U
2858   sim_fpu_status_denorm = 16384,				----U (sim spec.)
2859 */
2860 
update_fpsr(SIM_DESC sd,sim_fpu_status status,unsigned int mask,unsigned int double_op_p)2861 void update_fpsr (SIM_DESC sd, sim_fpu_status status, unsigned int mask, unsigned int double_op_p)
2862 {
2863   unsigned int fpsr = FPSR & mask;
2864 
2865   unsigned int flags = 0;
2866 
2867   if (fpsr & FPSR_XEI
2868       && ((status & (sim_fpu_status_rounded
2869 		     | sim_fpu_status_overflow
2870 		     | sim_fpu_status_inexact))
2871 	  || (status & sim_fpu_status_underflow
2872 	      && (fpsr & (FPSR_XEU | FPSR_XEI)) == 0
2873 	      && fpsr & FPSR_FS)))
2874     {
2875       flags |= FPSR_XCI | FPSR_XPI;
2876     }
2877 
2878   if (fpsr & FPSR_XEV
2879       && (status & (sim_fpu_status_invalid_isi
2880 		    | sim_fpu_status_invalid_imz
2881 		    | sim_fpu_status_invalid_zdz
2882 		    | sim_fpu_status_invalid_idi
2883 		    | sim_fpu_status_invalid_cvi
2884 		    | sim_fpu_status_invalid_sqrt
2885 		    | sim_fpu_status_invalid_snan)))
2886     {
2887       flags |= FPSR_XCV | FPSR_XPV;
2888     }
2889 
2890   if (fpsr & FPSR_XEZ
2891       && (status & sim_fpu_status_invalid_div0))
2892     {
2893       flags |= FPSR_XCV | FPSR_XPV;
2894     }
2895 
2896   if (fpsr & FPSR_XEO
2897       && (status & sim_fpu_status_overflow))
2898     {
2899       flags |= FPSR_XCO | FPSR_XPO;
2900     }
2901 
2902   if (((fpsr & FPSR_XEU) || (fpsr & FPSR_FS) == 0)
2903       && (status & (sim_fpu_status_underflow
2904 		    | sim_fpu_status_denorm)))
2905     {
2906       flags |= FPSR_XCU | FPSR_XPU;
2907     }
2908 
2909   if (flags)
2910     {
2911       FPSR &= ~FPSR_XC;
2912       FPSR |= flags;
2913 
2914       SignalExceptionFPE(sd, double_op_p);
2915     }
2916 }
2917 
2918 /*
2919   exception
2920 */
2921 
SignalException(SIM_DESC sd)2922 void  SignalException(SIM_DESC sd)
2923 {
2924   if (MPM & MPM_AUE)
2925     {
2926       PSW = PSW & ~(PSW_NPV | PSW_DMP | PSW_IMP);
2927     }
2928 }
2929 
SignalExceptionFPE(SIM_DESC sd,unsigned int double_op_p)2930 void SignalExceptionFPE(SIM_DESC sd, unsigned int double_op_p)
2931 {
2932   if (((PSW & (PSW_NP|PSW_ID)) == 0)
2933       || !(FPSR & (double_op_p ? FPSR_DEM : FPSR_SEM)))
2934     {
2935       EIPC = PC;
2936       EIPSW = PSW;
2937       EIIC = (FPSR & (double_op_p ? FPSR_DEM : FPSR_SEM))
2938 	? 0x71 : 0x72;
2939       PSW |= (PSW_EP | PSW_ID);
2940       PC = 0x70;
2941 
2942       SignalException(sd);
2943     }
2944 }
2945 
2946 
check_invalid_snan(SIM_DESC sd,sim_fpu_status status,unsigned int double_op_p)2947 void check_invalid_snan(SIM_DESC sd, sim_fpu_status status, unsigned int double_op_p)
2948 {
2949   if ((FPSR & FPSR_XEI)
2950       && (status & sim_fpu_status_invalid_snan))
2951     {
2952       FPSR &= ~FPSR_XC;
2953       FPSR |= FPSR_XCV;
2954       FPSR |= FPSR_XPV;
2955       SignalExceptionFPE(sd, double_op_p);
2956     }
2957 }
2958 
v850_float_compare(SIM_DESC sd,int cmp,sim_fpu wop1,sim_fpu wop2,int double_op_p)2959 int v850_float_compare(SIM_DESC sd, int cmp, sim_fpu wop1, sim_fpu wop2, int double_op_p)
2960 {
2961   int result = -1;
2962 
2963   if (sim_fpu_is_nan(&wop1) || sim_fpu_is_nan(&wop2))
2964     {
2965       if (cmp & 0x8)
2966 	{
2967 	  if (FPSR & FPSR_XEV)
2968 	    {
2969 	      FPSR |= FPSR_XCV | FPSR_XPV;
2970 	      SignalExceptionFPE(sd, double_op_p);
2971 	    }
2972 	}
2973 
2974       switch (cmp)
2975 	{
2976 	case FPU_CMP_F:
2977 	  result = 0;
2978 	  break;
2979 	case FPU_CMP_UN:
2980 	  result = 1;
2981 	  break;
2982 	case FPU_CMP_EQ:
2983 	  result = 0;
2984 	  break;
2985 	case FPU_CMP_UEQ:
2986 	  result = 1;
2987 	  break;
2988 	case FPU_CMP_OLT:
2989 	  result = 0;
2990 	  break;
2991 	case FPU_CMP_ULT:
2992 	  result = 1;
2993 	  break;
2994 	case FPU_CMP_OLE:
2995 	  result = 0;
2996 	  break;
2997 	case FPU_CMP_ULE:
2998 	  result = 1;
2999 	  break;
3000 	case FPU_CMP_SF:
3001 	  result = 0;
3002 	  break;
3003 	case FPU_CMP_NGLE:
3004 	  result = 1;
3005 	  break;
3006 	case FPU_CMP_SEQ:
3007 	  result = 0;
3008 	  break;
3009 	case FPU_CMP_NGL:
3010 	  result = 1;
3011 	  break;
3012 	case FPU_CMP_LT:
3013 	  result = 0;
3014 	  break;
3015 	case FPU_CMP_NGE:
3016 	  result = 1;
3017 	  break;
3018 	case FPU_CMP_LE:
3019 	  result = 0;
3020 	  break;
3021 	case FPU_CMP_NGT:
3022 	  result = 1;
3023 	  break;
3024 	default:
3025 	  abort();
3026 	}
3027     }
3028   else if (sim_fpu_is_infinity(&wop1) && sim_fpu_is_infinity(&wop2)
3029 	   && sim_fpu_sign(&wop1) == sim_fpu_sign(&wop2))
3030     {
3031       switch (cmp)
3032 	{
3033 	case FPU_CMP_F:
3034 	  result = 0;
3035 	  break;
3036 	case FPU_CMP_UN:
3037 	  result = 0;
3038 	  break;
3039 	case FPU_CMP_EQ:
3040 	  result = 1;
3041 	  break;
3042 	case FPU_CMP_UEQ:
3043 	  result = 1;
3044 	  break;
3045 	case FPU_CMP_OLT:
3046 	  result = 0;
3047 	  break;
3048 	case FPU_CMP_ULT:
3049 	  result = 0;
3050 	  break;
3051 	case FPU_CMP_OLE:
3052 	  result = 1;
3053 	  break;
3054 	case FPU_CMP_ULE:
3055 	  result = 1;
3056 	  break;
3057 	case FPU_CMP_SF:
3058 	  result = 0;
3059 	  break;
3060 	case FPU_CMP_NGLE:
3061 	  result = 0;
3062 	  break;
3063 	case FPU_CMP_SEQ:
3064 	  result = 1;
3065 	  break;
3066 	case FPU_CMP_NGL:
3067 	  result = 1;
3068 	  break;
3069 	case FPU_CMP_LT:
3070 	  result = 0;
3071 	  break;
3072 	case FPU_CMP_NGE:
3073 	  result = 0;
3074 	  break;
3075 	case FPU_CMP_LE:
3076 	  result = 1;
3077 	  break;
3078 	case FPU_CMP_NGT:
3079 	  result = 1;
3080 	  break;
3081 	default:
3082 	  abort();
3083 	}
3084     }
3085   else
3086     {
3087       int gt = 0,lt = 0,eq = 0, status;
3088 
3089       status = sim_fpu_cmp( &wop1, &wop2 );
3090 
3091       switch (status) {
3092       case SIM_FPU_IS_SNAN:
3093       case SIM_FPU_IS_QNAN:
3094 	abort();
3095 	break;
3096 
3097       case SIM_FPU_IS_NINF:
3098 	lt = 1;
3099 	break;
3100       case SIM_FPU_IS_PINF:
3101 	gt = 1;
3102 	break;
3103       case SIM_FPU_IS_NNUMBER:
3104 	lt = 1;
3105 	break;
3106       case SIM_FPU_IS_PNUMBER:
3107 	gt = 1;
3108 	break;
3109       case SIM_FPU_IS_NDENORM:
3110 	lt = 1;
3111 	break;
3112       case SIM_FPU_IS_PDENORM:
3113 	gt = 1;
3114 	break;
3115       case SIM_FPU_IS_NZERO:
3116       case SIM_FPU_IS_PZERO:
3117 	eq = 1;
3118 	break;
3119       }
3120 
3121       switch (cmp)
3122 	{
3123 	case FPU_CMP_F:
3124 	  result = 0;
3125 	  break;
3126 	case FPU_CMP_UN:
3127 	  result = 0;
3128 	  break;
3129 	case FPU_CMP_EQ:
3130 	  result = eq;
3131 	  break;
3132 	case FPU_CMP_UEQ:
3133 	  result = eq;
3134 	  break;
3135 	case FPU_CMP_OLT:
3136 	  result = lt;
3137 	  break;
3138 	case FPU_CMP_ULT:
3139 	  result = lt;
3140 	  break;
3141 	case FPU_CMP_OLE:
3142 	  result = lt || eq;
3143 	  break;
3144 	case FPU_CMP_ULE:
3145 	  result = lt || eq;
3146 	  break;
3147 	case FPU_CMP_SF:
3148 	  result = 0;
3149 	  break;
3150 	case FPU_CMP_NGLE:
3151 	  result = 0;
3152 	  break;
3153 	case FPU_CMP_SEQ:
3154 	  result = eq;
3155 	  break;
3156 	case FPU_CMP_NGL:
3157 	  result = eq;
3158 	  break;
3159 	case FPU_CMP_LT:
3160 	  result = lt;
3161 	  break;
3162 	case FPU_CMP_NGE:
3163 	  result = lt;
3164 	  break;
3165 	case FPU_CMP_LE:
3166 	  result = lt || eq;
3167 	  break;
3168 	case FPU_CMP_NGT:
3169 	  result = lt || eq;
3170 	  break;
3171 	}
3172     }
3173 
3174   ASSERT(result != -1);
3175   return result;
3176 }
3177 
v850_div(SIM_DESC sd,unsigned int op0,unsigned int op1,unsigned int * op2p,unsigned int * op3p)3178 void v850_div(SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p, unsigned int *op3p)
3179 {
3180   signed long int quotient;
3181   signed long int remainder;
3182   signed long int divide_by;
3183   signed long int divide_this;
3184   bfd_boolean     overflow = FALSE;
3185 
3186   /* Compute the result.  */
3187   divide_by   = op0;
3188   divide_this = op1;
3189 
3190   if (divide_by == 0 || (divide_by == -1 && divide_this == (1 << 31)))
3191     {
3192       overflow  = TRUE;
3193       divide_by = 1;
3194     }
3195 
3196   quotient  = divide_this / divide_by;
3197   remainder = divide_this % divide_by;
3198 
3199   /* Set condition codes.  */
3200   PSW &= ~(PSW_Z | PSW_S | PSW_OV);
3201 
3202   if (overflow)      PSW |= PSW_OV;
3203   if (quotient == 0) PSW |= PSW_Z;
3204   if (quotient <  0) PSW |= PSW_S;
3205 
3206   *op2p = quotient;
3207   *op3p = remainder;
3208 }
3209 
v850_divu(SIM_DESC sd,unsigned int op0,unsigned int op1,unsigned int * op2p,unsigned int * op3p)3210 void v850_divu(SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p, unsigned int *op3p)
3211 {
3212   unsigned long int quotient;
3213   unsigned long int remainder;
3214   unsigned long int divide_by;
3215   unsigned long int divide_this;
3216   bfd_boolean       overflow = FALSE;
3217 
3218   /* Compute the result.  */
3219 
3220   divide_by   = op0;
3221   divide_this = op1;
3222 
3223   if (divide_by == 0)
3224     {
3225       overflow = TRUE;
3226       divide_by  = 1;
3227     }
3228 
3229   quotient  = divide_this / divide_by;
3230   remainder = divide_this % divide_by;
3231 
3232   /* Set condition codes.  */
3233   PSW &= ~(PSW_Z | PSW_S | PSW_OV);
3234 
3235   if (overflow)      PSW |= PSW_OV;
3236   if (quotient == 0) PSW |= PSW_Z;
3237   if (quotient & 0x80000000) PSW |= PSW_S;
3238 
3239   *op2p = quotient;
3240   *op3p = remainder;
3241 }
3242 
3243 
v850_sar(SIM_DESC sd,unsigned int op0,unsigned int op1,unsigned int * op2p)3244 void v850_sar(SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p)
3245 {
3246   unsigned int result, z, s, cy;
3247 
3248   op0 &= 0x1f;
3249   result = (signed)op1 >> op0;
3250 
3251   /* Compute the condition codes.  */
3252   z = (result == 0);
3253   s = (result & 0x80000000);
3254   cy = (op1 & (1 << (op0 - 1)));
3255 
3256   /* Store the result and condition codes.  */
3257   PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
3258   PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
3259 		| (cy ? PSW_CY : 0));
3260 
3261   *op2p = result;
3262 }
3263 
v850_shl(SIM_DESC sd,unsigned int op0,unsigned int op1,unsigned int * op2p)3264 void v850_shl(SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p)
3265 {
3266   unsigned int result, z, s, cy;
3267 
3268   op0 &= 0x1f;
3269   result = op1 << op0;
3270 
3271   /* Compute the condition codes.  */
3272   z = (result == 0);
3273   s = (result & 0x80000000);
3274   cy = (op1 & (1 << (32 - op0)));
3275 
3276   /* Store the result and condition codes.  */
3277   PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
3278   PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
3279 		| (cy ? PSW_CY : 0));
3280 
3281   *op2p = result;
3282 }
3283 
3284 void
v850_rotl(SIM_DESC sd,unsigned int amount,unsigned int src,unsigned int * dest)3285 v850_rotl (SIM_DESC sd, unsigned int amount, unsigned int src, unsigned int * dest)
3286 {
3287   unsigned int result, z, s, cy;
3288 
3289   amount &= 0x1f;
3290   result = src << amount;
3291   result |= src >> (32 - amount);
3292 
3293   /* Compute the condition codes.  */
3294   z = (result == 0);
3295   s = (result & 0x80000000);
3296   cy = ! (result & 1);
3297 
3298   /* Store the result and condition codes.  */
3299   PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
3300   PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
3301 		| (cy ? PSW_CY : 0));
3302 
3303   * dest = result;
3304 }
3305 
3306 void
v850_bins(SIM_DESC sd,unsigned int source,unsigned int lsb,unsigned int msb,unsigned int * dest)3307 v850_bins (SIM_DESC sd, unsigned int source, unsigned int lsb, unsigned int msb,
3308 	   unsigned int * dest)
3309 {
3310   unsigned int mask;
3311   unsigned int result, pos, width;
3312   unsigned int z, s;
3313 
3314   pos = lsb;
3315   width = (msb - lsb) + 1;
3316 
3317   mask = ~ (-1 << width);
3318   source &= mask;
3319   mask <<= pos;
3320   result = (* dest) & ~ mask;
3321   result |= source << pos;
3322 
3323   /* Compute the condition codes.  */
3324   z = (result == 0);
3325   s = result & 0x80000000;
3326 
3327   /* Store the result and condition codes.  */
3328   PSW &= ~(PSW_Z | PSW_S | PSW_OV );
3329   PSW |= (z ? PSW_Z : 0) | (s ? PSW_S : 0);
3330 
3331   * dest = result;
3332 }
3333 
v850_shr(SIM_DESC sd,unsigned int op0,unsigned int op1,unsigned int * op2p)3334 void v850_shr(SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p)
3335 {
3336   unsigned int result, z, s, cy;
3337 
3338   op0 &=  0x1f;
3339   result = op1 >> op0;
3340 
3341   /* Compute the condition codes.  */
3342   z = (result == 0);
3343   s = (result & 0x80000000);
3344   cy = (op1 & (1 << (op0 - 1)));
3345 
3346   /* Store the result and condition codes.  */
3347   PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
3348   PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
3349 		| (cy ? PSW_CY : 0));
3350 
3351   *op2p = result;
3352 }
3353 
v850_satadd(SIM_DESC sd,unsigned int op0,unsigned int op1,unsigned int * op2p)3354 void v850_satadd(SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p)
3355 {
3356   unsigned int result, z, s, cy, ov, sat;
3357 
3358   result = op0 + op1;
3359 
3360   /* Compute the condition codes.  */
3361   z = (result == 0);
3362   s = (result & 0x80000000);
3363   cy = (result < op0 || result < op1);
3364   ov = ((op0 & 0x80000000) == (op1 & 0x80000000)
3365 	&& (op0 & 0x80000000) != (result & 0x80000000));
3366   sat = ov;
3367 
3368   /* Store the result and condition codes.  */
3369   PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
3370   PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
3371 	  | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
3372 	  | (sat ? PSW_SAT : 0));
3373 
3374   /* Handle saturated results.  */
3375   if (sat && s)
3376     {
3377       result = 0x7fffffff;
3378       PSW &= ~PSW_S;
3379     }
3380   else if (sat)
3381     {
3382       result = 0x80000000;
3383       PSW |= PSW_S;
3384     }
3385 
3386   *op2p = result;
3387 }
3388 
v850_satsub(SIM_DESC sd,unsigned int op0,unsigned int op1,unsigned int * op2p)3389 void v850_satsub(SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p)
3390 {
3391   unsigned int result, z, s, cy, ov, sat;
3392 
3393   /* Compute the result.  */
3394   result = op1 - op0;
3395 
3396   /* Compute the condition codes.  */
3397   z = (result == 0);
3398   s = (result & 0x80000000);
3399   cy = (op1 < op0);
3400   ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
3401 	&& (op1 & 0x80000000) != (result & 0x80000000));
3402   sat = ov;
3403 
3404   /* Store the result and condition codes.  */
3405   PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
3406   PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
3407 	  | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
3408 	  | (sat ? PSW_SAT : 0));
3409 
3410   /* Handle saturated results.  */
3411   if (sat && s)
3412     {
3413       result = 0x7fffffff;
3414       PSW &= ~PSW_S;
3415     }
3416   else if (sat)
3417     {
3418       result = 0x80000000;
3419       PSW |= PSW_S;
3420     }
3421 
3422   *op2p = result;
3423 }
3424 
3425 unsigned32
load_data_mem(sd,addr,len)3426 load_data_mem(sd, addr, len)
3427      SIM_DESC sd;
3428      SIM_ADDR addr;
3429      int len;
3430 {
3431   uint32 data;
3432 
3433   switch (len)
3434     {
3435     case 1:
3436       data = sim_core_read_unaligned_1 (STATE_CPU (sd, 0),
3437 					PC, read_map, addr);
3438       break;
3439     case 2:
3440       data = sim_core_read_unaligned_2 (STATE_CPU (sd, 0),
3441 					PC, read_map, addr);
3442       break;
3443     case 4:
3444       data = sim_core_read_unaligned_4 (STATE_CPU (sd, 0),
3445 					PC, read_map, addr);
3446       break;
3447     default:
3448       abort ();
3449     }
3450   return data;
3451 }
3452 
3453 void
store_data_mem(sd,addr,len,data)3454 store_data_mem(sd, addr, len, data)
3455      SIM_DESC sd;
3456      SIM_ADDR addr;
3457      int len;
3458      unsigned32 data;
3459 {
3460   switch (len)
3461     {
3462     case 1:
3463       store_mem(addr, 1, data);
3464       break;
3465     case 2:
3466       store_mem(addr, 2, data);
3467       break;
3468     case 4:
3469       store_mem(addr, 4, data);
3470       break;
3471     default:
3472       abort ();
3473     }
3474 }
3475 
mpu_load_mem_test(SIM_DESC sd,unsigned int addr,int size,int base_reg)3476 int mpu_load_mem_test(SIM_DESC sd, unsigned int addr, int size, int base_reg)
3477 {
3478   int result = 1;
3479 
3480   if (PSW & PSW_DMP)
3481     {
3482       if (IPE0 && addr >= IPA2ADDR(IPA0L) && addr <= IPA2ADDR(IPA0L) && IPR0)
3483 	{
3484 	  /* text area */
3485 	}
3486       else if (IPE1 && addr >= IPA2ADDR(IPA1L) && addr <= IPA2ADDR(IPA1L) && IPR1)
3487 	{
3488 	  /* text area */
3489 	}
3490       else if (IPE2 && addr >= IPA2ADDR(IPA2L) && addr <= IPA2ADDR(IPA2L) && IPR2)
3491 	{
3492 	  /* text area */
3493 	}
3494       else if (IPE3 && addr >= IPA2ADDR(IPA3L) && addr <= IPA2ADDR(IPA3L) && IPR3)
3495 	{
3496 	  /* text area */
3497 	}
3498       else if (addr >= PPA2ADDR(PPA & ~PPM) && addr <= DPA2ADDR(PPA | PPM))
3499 	{
3500 	  /* preifarallel area */
3501 	}
3502       else if (addr >= PPA2ADDR(SPAL) && addr <= DPA2ADDR(SPAU))
3503 	{
3504 	  /* stack area */
3505 	}
3506       else if (DPE0 && addr >= DPA2ADDR(DPA0L) && addr <= DPA2ADDR(DPA0L) && DPR0
3507 	       && ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1))
3508 	{
3509 	  /* data area */
3510 	}
3511       else if (DPE1 && addr >= DPA2ADDR(DPA1L) && addr <= DPA2ADDR(DPA1L) && DPR1
3512 	       && ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1))
3513 	{
3514 	  /* data area */
3515 	}
3516       else if (DPE2 && addr >= DPA2ADDR(DPA2L) && addr <= DPA2ADDR(DPA2L) && DPR2
3517 	       && ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1))
3518 	{
3519 	  /* data area */
3520 	}
3521       else if (DPE3 && addr >= DPA2ADDR(DPA3L) && addr <= DPA2ADDR(DPA3L) && DPR3
3522 	       && ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1))
3523 	{
3524 	  /* data area */
3525 	}
3526       else
3527 	{
3528 	  VMECR &= ~(VMECR_VMW | VMECR_VMX);
3529 	  VMECR |= VMECR_VMR;
3530 	  VMADR = addr;
3531 	  VMTID = TID;
3532 	  FEIC = 0x431;
3533 
3534 	  PC = 0x30;
3535 
3536 	  SignalException(sd);
3537 	  result = 0;
3538 	}
3539     }
3540 
3541   return result;
3542 }
3543 
mpu_store_mem_test(SIM_DESC sd,unsigned int addr,int size,int base_reg)3544 int mpu_store_mem_test(SIM_DESC sd, unsigned int addr, int size, int base_reg)
3545 {
3546   int result = 1;
3547 
3548   if (PSW & PSW_DMP)
3549     {
3550       if (addr >= PPA2ADDR(PPA & ~PPM) && addr <= DPA2ADDR(PPA | PPM))
3551 	{
3552 	  /* preifarallel area */
3553 	}
3554       else if (addr >= PPA2ADDR(SPAL) && addr <= DPA2ADDR(SPAU))
3555 	{
3556 	  /* stack area */
3557 	}
3558       else if (DPE0 && addr >= DPA2ADDR(DPA0L) && addr <= DPA2ADDR(DPA0L) && DPW0
3559 	       && ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1))
3560 	{
3561 	  /* data area */
3562 	}
3563       else if (DPE1 && addr >= DPA2ADDR(DPA1L) && addr <= DPA2ADDR(DPA1L) && DPW1
3564 	       && ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1))
3565 	{
3566 	  /* data area */
3567 	}
3568       else if (DPE2 && addr >= DPA2ADDR(DPA2L) && addr <= DPA2ADDR(DPA2L) && DPW2
3569 	       && ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1))
3570 	{
3571 	  /* data area */
3572 	}
3573       else if (DPE3 && addr >= DPA2ADDR(DPA3L) && addr <= DPA2ADDR(DPA3L) && DPW3
3574 	       && ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1))
3575 	{
3576 	  /* data area */
3577 	}
3578       else
3579 	{
3580 	  if (addr >= PPA2ADDR(PPA & ~PPM) && addr <= DPA2ADDR(PPA | PPM))
3581 	    {
3582 	      FEIC = 0x432;
3583 	      VPTID = TID;
3584 	      VPADR = PC;
3585 #ifdef NOT_YET
3586 	      VIP_PP;
3587 	      VPECR;
3588 #endif
3589 	    }
3590 	  else
3591 	    {
3592 	      FEIC = 0x431;
3593 	      VMTID = TID;
3594 	      VMADR = VMECR;
3595 	      VMECR &= ~(VMECR_VMW | VMECR_VMX);
3596 	      VMECR |= VMECR_VMR;
3597 	      PC = 0x30;
3598 	    }
3599 	  result = 0;
3600 	}
3601     }
3602 
3603   return result;
3604 }
3605 
3606