1 /* hash - hashing table processing.
2 
3    Copyright (C) 1998-2004, 2006-2007, 2009-2020 Free Software Foundation, Inc.
4 
5    Written by Jim Meyering, 1992.
6 
7    This program is free software: you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <https://www.gnu.org/licenses/>.  */
19 
20 /* A generic hash table package.  */
21 
22 /* Define USE_OBSTACK to 1 if you want the allocator to use obstacks instead
23    of malloc.  If you change USE_OBSTACK, you have to recompile!  */
24 
25 #include <config.h>
26 
27 #include "hash.h"
28 
29 #include "bitrotate.h"
30 #include "xalloc-oversized.h"
31 
32 #include <stdint.h>
33 #include <stdio.h>
34 #include <stdlib.h>
35 
36 #if USE_OBSTACK
37 # include "obstack.h"
38 # ifndef obstack_chunk_alloc
39 #  define obstack_chunk_alloc malloc
40 # endif
41 # ifndef obstack_chunk_free
42 #  define obstack_chunk_free free
43 # endif
44 #endif
45 
46 struct hash_entry
47   {
48     void *data;
49     struct hash_entry *next;
50   };
51 
52 struct hash_table
53   {
54     /* The array of buckets starts at BUCKET and extends to BUCKET_LIMIT-1,
55        for a possibility of N_BUCKETS.  Among those, N_BUCKETS_USED buckets
56        are not empty, there are N_ENTRIES active entries in the table.  */
57     struct hash_entry *bucket;
58     struct hash_entry const *bucket_limit;
59     size_t n_buckets;
60     size_t n_buckets_used;
61     size_t n_entries;
62 
63     /* Tuning arguments, kept in a physically separate structure.  */
64     const Hash_tuning *tuning;
65 
66     /* Three functions are given to 'hash_initialize', see the documentation
67        block for this function.  In a word, HASHER randomizes a user entry
68        into a number up from 0 up to some maximum minus 1; COMPARATOR returns
69        true if two user entries compare equally; and DATA_FREER is the cleanup
70        function for a user entry.  */
71     Hash_hasher hasher;
72     Hash_comparator comparator;
73     Hash_data_freer data_freer;
74 
75     /* A linked list of freed struct hash_entry structs.  */
76     struct hash_entry *free_entry_list;
77 
78 #if USE_OBSTACK
79     /* Whenever obstacks are used, it is possible to allocate all overflowed
80        entries into a single stack, so they all can be freed in a single
81        operation.  It is not clear if the speedup is worth the trouble.  */
82     struct obstack entry_stack;
83 #endif
84   };
85 
86 /* A hash table contains many internal entries, each holding a pointer to
87    some user-provided data (also called a user entry).  An entry indistinctly
88    refers to both the internal entry and its associated user entry.  A user
89    entry contents may be hashed by a randomization function (the hashing
90    function, or just "hasher" for short) into a number (or "slot") between 0
91    and the current table size.  At each slot position in the hash table,
92    starts a linked chain of entries for which the user data all hash to this
93    slot.  A bucket is the collection of all entries hashing to the same slot.
94 
95    A good "hasher" function will distribute entries rather evenly in buckets.
96    In the ideal case, the length of each bucket is roughly the number of
97    entries divided by the table size.  Finding the slot for a data is usually
98    done in constant time by the "hasher", and the later finding of a precise
99    entry is linear in time with the size of the bucket.  Consequently, a
100    larger hash table size (that is, a larger number of buckets) is prone to
101    yielding shorter chains, *given* the "hasher" function behaves properly.
102 
103    Long buckets slow down the lookup algorithm.  One might use big hash table
104    sizes in hope to reduce the average length of buckets, but this might
105    become inordinate, as unused slots in the hash table take some space.  The
106    best bet is to make sure you are using a good "hasher" function (beware
107    that those are not that easy to write! :-), and to use a table size
108    larger than the actual number of entries.  */
109 
110 /* If an insertion makes the ratio of nonempty buckets to table size larger
111    than the growth threshold (a number between 0.0 and 1.0), then increase
112    the table size by multiplying by the growth factor (a number greater than
113    1.0).  The growth threshold defaults to 0.8, and the growth factor
114    defaults to 1.414, meaning that the table will have doubled its size
115    every second time 80% of the buckets get used.  */
116 #define DEFAULT_GROWTH_THRESHOLD 0.8f
117 #define DEFAULT_GROWTH_FACTOR 1.414f
118 
119 /* If a deletion empties a bucket and causes the ratio of used buckets to
120    table size to become smaller than the shrink threshold (a number between
121    0.0 and 1.0), then shrink the table by multiplying by the shrink factor (a
122    number greater than the shrink threshold but smaller than 1.0).  The shrink
123    threshold and factor default to 0.0 and 1.0, meaning that the table never
124    shrinks.  */
125 #define DEFAULT_SHRINK_THRESHOLD 0.0f
126 #define DEFAULT_SHRINK_FACTOR 1.0f
127 
128 /* Use this to initialize or reset a TUNING structure to
129    some sensible values. */
130 static const Hash_tuning default_tuning =
131   {
132     DEFAULT_SHRINK_THRESHOLD,
133     DEFAULT_SHRINK_FACTOR,
134     DEFAULT_GROWTH_THRESHOLD,
135     DEFAULT_GROWTH_FACTOR,
136     false
137   };
138 
139 /* Information and lookup.  */
140 
141 /* The following few functions provide information about the overall hash
142    table organization: the number of entries, number of buckets and maximum
143    length of buckets.  */
144 
145 /* Return the number of buckets in the hash table.  The table size, the total
146    number of buckets (used plus unused), or the maximum number of slots, are
147    the same quantity.  */
148 
149 size_t
hash_get_n_buckets(const Hash_table * table)150 hash_get_n_buckets (const Hash_table *table)
151 {
152   return table->n_buckets;
153 }
154 
155 /* Return the number of slots in use (non-empty buckets).  */
156 
157 size_t
hash_get_n_buckets_used(const Hash_table * table)158 hash_get_n_buckets_used (const Hash_table *table)
159 {
160   return table->n_buckets_used;
161 }
162 
163 /* Return the number of active entries.  */
164 
165 size_t
hash_get_n_entries(const Hash_table * table)166 hash_get_n_entries (const Hash_table *table)
167 {
168   return table->n_entries;
169 }
170 
171 /* Return the length of the longest chain (bucket).  */
172 
173 size_t
hash_get_max_bucket_length(const Hash_table * table)174 hash_get_max_bucket_length (const Hash_table *table)
175 {
176   struct hash_entry const *bucket;
177   size_t max_bucket_length = 0;
178 
179   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
180     {
181       if (bucket->data)
182         {
183           struct hash_entry const *cursor = bucket;
184           size_t bucket_length = 1;
185 
186           while (cursor = cursor->next, cursor)
187             bucket_length++;
188 
189           if (bucket_length > max_bucket_length)
190             max_bucket_length = bucket_length;
191         }
192     }
193 
194   return max_bucket_length;
195 }
196 
197 /* Do a mild validation of a hash table, by traversing it and checking two
198    statistics.  */
199 
200 bool
hash_table_ok(const Hash_table * table)201 hash_table_ok (const Hash_table *table)
202 {
203   struct hash_entry const *bucket;
204   size_t n_buckets_used = 0;
205   size_t n_entries = 0;
206 
207   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
208     {
209       if (bucket->data)
210         {
211           struct hash_entry const *cursor = bucket;
212 
213           /* Count bucket head.  */
214           n_buckets_used++;
215           n_entries++;
216 
217           /* Count bucket overflow.  */
218           while (cursor = cursor->next, cursor)
219             n_entries++;
220         }
221     }
222 
223   if (n_buckets_used == table->n_buckets_used && n_entries == table->n_entries)
224     return true;
225 
226   return false;
227 }
228 
229 void
hash_print_statistics(const Hash_table * table,FILE * stream)230 hash_print_statistics (const Hash_table *table, FILE *stream)
231 {
232   size_t n_entries = hash_get_n_entries (table);
233   size_t n_buckets = hash_get_n_buckets (table);
234   size_t n_buckets_used = hash_get_n_buckets_used (table);
235   size_t max_bucket_length = hash_get_max_bucket_length (table);
236 
237   fprintf (stream, "# entries:         %lu\n", (unsigned long int) n_entries);
238   fprintf (stream, "# buckets:         %lu\n", (unsigned long int) n_buckets);
239   fprintf (stream, "# buckets used:    %lu (%.2f%%)\n",
240            (unsigned long int) n_buckets_used,
241            (100.0 * n_buckets_used) / n_buckets);
242   fprintf (stream, "max bucket length: %lu\n",
243            (unsigned long int) max_bucket_length);
244 }
245 
246 /* Hash KEY and return a pointer to the selected bucket.
247    If TABLE->hasher misbehaves, abort.  */
248 static struct hash_entry *
safe_hasher(const Hash_table * table,const void * key)249 safe_hasher (const Hash_table *table, const void *key)
250 {
251   size_t n = table->hasher (key, table->n_buckets);
252   if (! (n < table->n_buckets))
253     abort ();
254   return table->bucket + n;
255 }
256 
257 /* If ENTRY matches an entry already in the hash table, return the
258    entry from the table.  Otherwise, return NULL.  */
259 
260 void *
hash_lookup(const Hash_table * table,const void * entry)261 hash_lookup (const Hash_table *table, const void *entry)
262 {
263   struct hash_entry const *bucket = safe_hasher (table, entry);
264   struct hash_entry const *cursor;
265 
266   if (bucket->data == NULL)
267     return NULL;
268 
269   for (cursor = bucket; cursor; cursor = cursor->next)
270     if (entry == cursor->data || table->comparator (entry, cursor->data))
271       return cursor->data;
272 
273   return NULL;
274 }
275 
276 /* Walking.  */
277 
278 /* The functions in this page traverse the hash table and process the
279    contained entries.  For the traversal to work properly, the hash table
280    should not be resized nor modified while any particular entry is being
281    processed.  In particular, entries should not be added, and an entry
282    may be removed only if there is no shrink threshold and the entry being
283    removed has already been passed to hash_get_next.  */
284 
285 /* Return the first data in the table, or NULL if the table is empty.  */
286 
287 void *
hash_get_first(const Hash_table * table)288 hash_get_first (const Hash_table *table)
289 {
290   struct hash_entry const *bucket;
291 
292   if (table->n_entries == 0)
293     return NULL;
294 
295   for (bucket = table->bucket; ; bucket++)
296     if (! (bucket < table->bucket_limit))
297       abort ();
298     else if (bucket->data)
299       return bucket->data;
300 }
301 
302 /* Return the user data for the entry following ENTRY, where ENTRY has been
303    returned by a previous call to either 'hash_get_first' or 'hash_get_next'.
304    Return NULL if there are no more entries.  */
305 
306 void *
hash_get_next(const Hash_table * table,const void * entry)307 hash_get_next (const Hash_table *table, const void *entry)
308 {
309   struct hash_entry const *bucket = safe_hasher (table, entry);
310   struct hash_entry const *cursor;
311 
312   /* Find next entry in the same bucket.  */
313   cursor = bucket;
314   do
315     {
316       if (cursor->data == entry && cursor->next)
317         return cursor->next->data;
318       cursor = cursor->next;
319     }
320   while (cursor != NULL);
321 
322   /* Find first entry in any subsequent bucket.  */
323   while (++bucket < table->bucket_limit)
324     if (bucket->data)
325       return bucket->data;
326 
327   /* None found.  */
328   return NULL;
329 }
330 
331 /* Fill BUFFER with pointers to active user entries in the hash table, then
332    return the number of pointers copied.  Do not copy more than BUFFER_SIZE
333    pointers.  */
334 
335 size_t
hash_get_entries(const Hash_table * table,void ** buffer,size_t buffer_size)336 hash_get_entries (const Hash_table *table, void **buffer,
337                   size_t buffer_size)
338 {
339   size_t counter = 0;
340   struct hash_entry const *bucket;
341   struct hash_entry const *cursor;
342 
343   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
344     {
345       if (bucket->data)
346         {
347           for (cursor = bucket; cursor; cursor = cursor->next)
348             {
349               if (counter >= buffer_size)
350                 return counter;
351               buffer[counter++] = cursor->data;
352             }
353         }
354     }
355 
356   return counter;
357 }
358 
359 /* Call a PROCESSOR function for each entry of a hash table, and return the
360    number of entries for which the processor function returned success.  A
361    pointer to some PROCESSOR_DATA which will be made available to each call to
362    the processor function.  The PROCESSOR accepts two arguments: the first is
363    the user entry being walked into, the second is the value of PROCESSOR_DATA
364    as received.  The walking continue for as long as the PROCESSOR function
365    returns nonzero.  When it returns zero, the walking is interrupted.  */
366 
367 size_t
hash_do_for_each(const Hash_table * table,Hash_processor processor,void * processor_data)368 hash_do_for_each (const Hash_table *table, Hash_processor processor,
369                   void *processor_data)
370 {
371   size_t counter = 0;
372   struct hash_entry const *bucket;
373   struct hash_entry const *cursor;
374 
375   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
376     {
377       if (bucket->data)
378         {
379           for (cursor = bucket; cursor; cursor = cursor->next)
380             {
381               if (! processor (cursor->data, processor_data))
382                 return counter;
383               counter++;
384             }
385         }
386     }
387 
388   return counter;
389 }
390 
391 /* Allocation and clean-up.  */
392 
393 #if 0
394 
395 /* Return a hash index for a NUL-terminated STRING between 0 and N_BUCKETS-1.
396    This is a convenience routine for constructing other hashing functions.  */
397 
398 #if USE_DIFF_HASH
399 
400 /* About hashings, Paul Eggert writes to me (FP), on 1994-01-01: "Please see
401    B. J. McKenzie, R. Harries & T. Bell, Selecting a hashing algorithm,
402    Software--practice & experience 20, 2 (Feb 1990), 209-224.  Good hash
403    algorithms tend to be domain-specific, so what's good for [diffutils'] io.c
404    may not be good for your application."  */
405 
406 size_t
407 hash_string (const char *string, size_t n_buckets)
408 {
409 # define HASH_ONE_CHAR(Value, Byte) \
410   ((Byte) + rotl_sz (Value, 7))
411 
412   size_t value = 0;
413   unsigned char ch;
414 
415   for (; (ch = *string); string++)
416     value = HASH_ONE_CHAR (value, ch);
417   return value % n_buckets;
418 
419 # undef HASH_ONE_CHAR
420 }
421 
422 #else /* not USE_DIFF_HASH */
423 
424 /* This one comes from 'recode', and performs a bit better than the above as
425    per a few experiments.  It is inspired from a hashing routine found in the
426    very old Cyber 'snoop', itself written in typical Greg Mansfield style.
427    (By the way, what happened to this excellent man?  Is he still alive?)  */
428 
429 size_t
430 hash_string (const char *string, size_t n_buckets)
431 {
432   size_t value = 0;
433   unsigned char ch;
434 
435   for (; (ch = *string); string++)
436     value = (value * 31 + ch) % n_buckets;
437   return value;
438 }
439 
440 #endif /* not USE_DIFF_HASH */
441 
442 #endif
443 
444 /* Return true if CANDIDATE is a prime number.  CANDIDATE should be an odd
445    number at least equal to 11.  */
446 
447 static bool _GL_ATTRIBUTE_CONST
is_prime(size_t candidate)448 is_prime (size_t candidate)
449 {
450   size_t divisor = 3;
451   size_t square = divisor * divisor;
452 
453   while (square < candidate && (candidate % divisor))
454     {
455       divisor++;
456       square += 4 * divisor;
457       divisor++;
458     }
459 
460   return (candidate % divisor ? true : false);
461 }
462 
463 /* Round a given CANDIDATE number up to the nearest prime, and return that
464    prime.  Primes lower than 10 are merely skipped.  */
465 
466 static size_t _GL_ATTRIBUTE_CONST
next_prime(size_t candidate)467 next_prime (size_t candidate)
468 {
469   /* Skip small primes.  */
470   if (candidate < 10)
471     candidate = 10;
472 
473   /* Make it definitely odd.  */
474   candidate |= 1;
475 
476   while (SIZE_MAX != candidate && !is_prime (candidate))
477     candidate += 2;
478 
479   return candidate;
480 }
481 
482 void
hash_reset_tuning(Hash_tuning * tuning)483 hash_reset_tuning (Hash_tuning *tuning)
484 {
485   *tuning = default_tuning;
486 }
487 
488 /* If the user passes a NULL hasher, we hash the raw pointer.  */
489 static size_t
raw_hasher(const void * data,size_t n)490 raw_hasher (const void *data, size_t n)
491 {
492   /* When hashing unique pointers, it is often the case that they were
493      generated by malloc and thus have the property that the low-order
494      bits are 0.  As this tends to give poorer performance with small
495      tables, we rotate the pointer value before performing division,
496      in an attempt to improve hash quality.  */
497   size_t val = rotr_sz ((size_t) data, 3);
498   return val % n;
499 }
500 
501 /* If the user passes a NULL comparator, we use pointer comparison.  */
502 static bool
raw_comparator(const void * a,const void * b)503 raw_comparator (const void *a, const void *b)
504 {
505   return a == b;
506 }
507 
508 
509 /* For the given hash TABLE, check the user supplied tuning structure for
510    reasonable values, and return true if there is no gross error with it.
511    Otherwise, definitively reset the TUNING field to some acceptable default
512    in the hash table (that is, the user loses the right of further modifying
513    tuning arguments), and return false.  */
514 
515 static bool
check_tuning(Hash_table * table)516 check_tuning (Hash_table *table)
517 {
518   const Hash_tuning *tuning = table->tuning;
519   float epsilon;
520   if (tuning == &default_tuning)
521     return true;
522 
523   /* Be a bit stricter than mathematics would require, so that
524      rounding errors in size calculations do not cause allocations to
525      fail to grow or shrink as they should.  The smallest allocation
526      is 11 (due to next_prime's algorithm), so an epsilon of 0.1
527      should be good enough.  */
528   epsilon = 0.1f;
529 
530   if (epsilon < tuning->growth_threshold
531       && tuning->growth_threshold < 1 - epsilon
532       && 1 + epsilon < tuning->growth_factor
533       && 0 <= tuning->shrink_threshold
534       && tuning->shrink_threshold + epsilon < tuning->shrink_factor
535       && tuning->shrink_factor <= 1
536       && tuning->shrink_threshold + epsilon < tuning->growth_threshold)
537     return true;
538 
539   table->tuning = &default_tuning;
540   return false;
541 }
542 
543 /* Compute the size of the bucket array for the given CANDIDATE and
544    TUNING, or return 0 if there is no possible way to allocate that
545    many entries.  */
546 
547 static size_t _GL_ATTRIBUTE_PURE
compute_bucket_size(size_t candidate,const Hash_tuning * tuning)548 compute_bucket_size (size_t candidate, const Hash_tuning *tuning)
549 {
550   if (!tuning->is_n_buckets)
551     {
552       float new_candidate = candidate / tuning->growth_threshold;
553       if (SIZE_MAX <= new_candidate)
554         return 0;
555       candidate = new_candidate;
556     }
557   candidate = next_prime (candidate);
558   if (xalloc_oversized (candidate, sizeof (struct hash_entry *)))
559     return 0;
560   return candidate;
561 }
562 
563 /* Allocate and return a new hash table, or NULL upon failure.  The initial
564    number of buckets is automatically selected so as to _guarantee_ that you
565    may insert at least CANDIDATE different user entries before any growth of
566    the hash table size occurs.  So, if have a reasonably tight a-priori upper
567    bound on the number of entries you intend to insert in the hash table, you
568    may save some table memory and insertion time, by specifying it here.  If
569    the IS_N_BUCKETS field of the TUNING structure is true, the CANDIDATE
570    argument has its meaning changed to the wanted number of buckets.
571 
572    TUNING points to a structure of user-supplied values, in case some fine
573    tuning is wanted over the default behavior of the hasher.  If TUNING is
574    NULL, the default tuning parameters are used instead.  If TUNING is
575    provided but the values requested are out of bounds or might cause
576    rounding errors, return NULL.
577 
578    The user-supplied HASHER function, when not NULL, accepts two
579    arguments ENTRY and TABLE_SIZE.  It computes, by hashing ENTRY contents, a
580    slot number for that entry which should be in the range 0..TABLE_SIZE-1.
581    This slot number is then returned.
582 
583    The user-supplied COMPARATOR function, when not NULL, accepts two
584    arguments pointing to user data, it then returns true for a pair of entries
585    that compare equal, or false otherwise.  This function is internally called
586    on entries which are already known to hash to the same bucket index,
587    but which are distinct pointers.
588 
589    The user-supplied DATA_FREER function, when not NULL, may be later called
590    with the user data as an argument, just before the entry containing the
591    data gets freed.  This happens from within 'hash_free' or 'hash_clear'.
592    You should specify this function only if you want these functions to free
593    all of your 'data' data.  This is typically the case when your data is
594    simply an auxiliary struct that you have malloc'd to aggregate several
595    values.  */
596 
597 Hash_table *
hash_initialize(size_t candidate,const Hash_tuning * tuning,Hash_hasher hasher,Hash_comparator comparator,Hash_data_freer data_freer)598 hash_initialize (size_t candidate, const Hash_tuning *tuning,
599                  Hash_hasher hasher, Hash_comparator comparator,
600                  Hash_data_freer data_freer)
601 {
602   Hash_table *table;
603 
604   if (hasher == NULL)
605     hasher = raw_hasher;
606   if (comparator == NULL)
607     comparator = raw_comparator;
608 
609   table = malloc (sizeof *table);
610   if (table == NULL)
611     return NULL;
612 
613   if (!tuning)
614     tuning = &default_tuning;
615   table->tuning = tuning;
616   if (!check_tuning (table))
617     {
618       /* Fail if the tuning options are invalid.  This is the only occasion
619          when the user gets some feedback about it.  Once the table is created,
620          if the user provides invalid tuning options, we silently revert to
621          using the defaults, and ignore further request to change the tuning
622          options.  */
623       goto fail;
624     }
625 
626   table->n_buckets = compute_bucket_size (candidate, tuning);
627   if (!table->n_buckets)
628     goto fail;
629 
630   table->bucket = calloc (table->n_buckets, sizeof *table->bucket);
631   if (table->bucket == NULL)
632     goto fail;
633   table->bucket_limit = table->bucket + table->n_buckets;
634   table->n_buckets_used = 0;
635   table->n_entries = 0;
636 
637   table->hasher = hasher;
638   table->comparator = comparator;
639   table->data_freer = data_freer;
640 
641   table->free_entry_list = NULL;
642 #if USE_OBSTACK
643   obstack_init (&table->entry_stack);
644 #endif
645   return table;
646 
647  fail:
648   free (table);
649   return NULL;
650 }
651 
652 /* Make all buckets empty, placing any chained entries on the free list.
653    Apply the user-specified function data_freer (if any) to the datas of any
654    affected entries.  */
655 
656 void
hash_clear(Hash_table * table)657 hash_clear (Hash_table *table)
658 {
659   struct hash_entry *bucket;
660 
661   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
662     {
663       if (bucket->data)
664         {
665           struct hash_entry *cursor;
666           struct hash_entry *next;
667 
668           /* Free the bucket overflow.  */
669           for (cursor = bucket->next; cursor; cursor = next)
670             {
671               if (table->data_freer)
672                 table->data_freer (cursor->data);
673               cursor->data = NULL;
674 
675               next = cursor->next;
676               /* Relinking is done one entry at a time, as it is to be expected
677                  that overflows are either rare or short.  */
678               cursor->next = table->free_entry_list;
679               table->free_entry_list = cursor;
680             }
681 
682           /* Free the bucket head.  */
683           if (table->data_freer)
684             table->data_freer (bucket->data);
685           bucket->data = NULL;
686           bucket->next = NULL;
687         }
688     }
689 
690   table->n_buckets_used = 0;
691   table->n_entries = 0;
692 }
693 
694 /* Reclaim all storage associated with a hash table.  If a data_freer
695    function has been supplied by the user when the hash table was created,
696    this function applies it to the data of each entry before freeing that
697    entry.  */
698 
699 void
hash_free(Hash_table * table)700 hash_free (Hash_table *table)
701 {
702   struct hash_entry *bucket;
703   struct hash_entry *cursor;
704   struct hash_entry *next;
705 
706   /* Call the user data_freer function.  */
707   if (table->data_freer && table->n_entries)
708     {
709       for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
710         {
711           if (bucket->data)
712             {
713               for (cursor = bucket; cursor; cursor = cursor->next)
714                 table->data_freer (cursor->data);
715             }
716         }
717     }
718 
719 #if USE_OBSTACK
720 
721   obstack_free (&table->entry_stack, NULL);
722 
723 #else
724 
725   /* Free all bucket overflowed entries.  */
726   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
727     {
728       for (cursor = bucket->next; cursor; cursor = next)
729         {
730           next = cursor->next;
731           free (cursor);
732         }
733     }
734 
735   /* Also reclaim the internal list of previously freed entries.  */
736   for (cursor = table->free_entry_list; cursor; cursor = next)
737     {
738       next = cursor->next;
739       free (cursor);
740     }
741 
742 #endif
743 
744   /* Free the remainder of the hash table structure.  */
745   free (table->bucket);
746   free (table);
747 }
748 
749 /* Insertion and deletion.  */
750 
751 /* Get a new hash entry for a bucket overflow, possibly by recycling a
752    previously freed one.  If this is not possible, allocate a new one.  */
753 
754 static struct hash_entry *
allocate_entry(Hash_table * table)755 allocate_entry (Hash_table *table)
756 {
757   struct hash_entry *new;
758 
759   if (table->free_entry_list)
760     {
761       new = table->free_entry_list;
762       table->free_entry_list = new->next;
763     }
764   else
765     {
766 #if USE_OBSTACK
767       new = obstack_alloc (&table->entry_stack, sizeof *new);
768 #else
769       new = malloc (sizeof *new);
770 #endif
771     }
772 
773   return new;
774 }
775 
776 /* Free a hash entry which was part of some bucket overflow,
777    saving it for later recycling.  */
778 
779 static void
free_entry(Hash_table * table,struct hash_entry * entry)780 free_entry (Hash_table *table, struct hash_entry *entry)
781 {
782   entry->data = NULL;
783   entry->next = table->free_entry_list;
784   table->free_entry_list = entry;
785 }
786 
787 /* This private function is used to help with insertion and deletion.  When
788    ENTRY matches an entry in the table, return a pointer to the corresponding
789    user data and set *BUCKET_HEAD to the head of the selected bucket.
790    Otherwise, return NULL.  When DELETE is true and ENTRY matches an entry in
791    the table, unlink the matching entry.  */
792 
793 static void *
hash_find_entry(Hash_table * table,const void * entry,struct hash_entry ** bucket_head,bool delete)794 hash_find_entry (Hash_table *table, const void *entry,
795                  struct hash_entry **bucket_head, bool delete)
796 {
797   struct hash_entry *bucket = safe_hasher (table, entry);
798   struct hash_entry *cursor;
799 
800   *bucket_head = bucket;
801 
802   /* Test for empty bucket.  */
803   if (bucket->data == NULL)
804     return NULL;
805 
806   /* See if the entry is the first in the bucket.  */
807   if (entry == bucket->data || table->comparator (entry, bucket->data))
808     {
809       void *data = bucket->data;
810 
811       if (delete)
812         {
813           if (bucket->next)
814             {
815               struct hash_entry *next = bucket->next;
816 
817               /* Bump the first overflow entry into the bucket head, then save
818                  the previous first overflow entry for later recycling.  */
819               *bucket = *next;
820               free_entry (table, next);
821             }
822           else
823             {
824               bucket->data = NULL;
825             }
826         }
827 
828       return data;
829     }
830 
831   /* Scan the bucket overflow.  */
832   for (cursor = bucket; cursor->next; cursor = cursor->next)
833     {
834       if (entry == cursor->next->data
835           || table->comparator (entry, cursor->next->data))
836         {
837           void *data = cursor->next->data;
838 
839           if (delete)
840             {
841               struct hash_entry *next = cursor->next;
842 
843               /* Unlink the entry to delete, then save the freed entry for later
844                  recycling.  */
845               cursor->next = next->next;
846               free_entry (table, next);
847             }
848 
849           return data;
850         }
851     }
852 
853   /* No entry found.  */
854   return NULL;
855 }
856 
857 /* Internal helper, to move entries from SRC to DST.  Both tables must
858    share the same free entry list.  If SAFE, only move overflow
859    entries, saving bucket heads for later, so that no allocations will
860    occur.  Return false if the free entry list is exhausted and an
861    allocation fails.  */
862 
863 static bool
transfer_entries(Hash_table * dst,Hash_table * src,bool safe)864 transfer_entries (Hash_table *dst, Hash_table *src, bool safe)
865 {
866   struct hash_entry *bucket;
867   struct hash_entry *cursor;
868   struct hash_entry *next;
869   for (bucket = src->bucket; bucket < src->bucket_limit; bucket++)
870     if (bucket->data)
871       {
872         void *data;
873         struct hash_entry *new_bucket;
874 
875         /* Within each bucket, transfer overflow entries first and
876            then the bucket head, to minimize memory pressure.  After
877            all, the only time we might allocate is when moving the
878            bucket head, but moving overflow entries first may create
879            free entries that can be recycled by the time we finally
880            get to the bucket head.  */
881         for (cursor = bucket->next; cursor; cursor = next)
882           {
883             data = cursor->data;
884             new_bucket = safe_hasher (dst, data);
885 
886             next = cursor->next;
887 
888             if (new_bucket->data)
889               {
890                 /* Merely relink an existing entry, when moving from a
891                    bucket overflow into a bucket overflow.  */
892                 cursor->next = new_bucket->next;
893                 new_bucket->next = cursor;
894               }
895             else
896               {
897                 /* Free an existing entry, when moving from a bucket
898                    overflow into a bucket header.  */
899                 new_bucket->data = data;
900                 dst->n_buckets_used++;
901                 free_entry (dst, cursor);
902               }
903           }
904         /* Now move the bucket head.  Be sure that if we fail due to
905            allocation failure that the src table is in a consistent
906            state.  */
907         data = bucket->data;
908         bucket->next = NULL;
909         if (safe)
910           continue;
911         new_bucket = safe_hasher (dst, data);
912 
913         if (new_bucket->data)
914           {
915             /* Allocate or recycle an entry, when moving from a bucket
916                header into a bucket overflow.  */
917             struct hash_entry *new_entry = allocate_entry (dst);
918 
919             if (new_entry == NULL)
920               return false;
921 
922             new_entry->data = data;
923             new_entry->next = new_bucket->next;
924             new_bucket->next = new_entry;
925           }
926         else
927           {
928             /* Move from one bucket header to another.  */
929             new_bucket->data = data;
930             dst->n_buckets_used++;
931           }
932         bucket->data = NULL;
933         src->n_buckets_used--;
934       }
935   return true;
936 }
937 
938 /* For an already existing hash table, change the number of buckets through
939    specifying CANDIDATE.  The contents of the hash table are preserved.  The
940    new number of buckets is automatically selected so as to _guarantee_ that
941    the table may receive at least CANDIDATE different user entries, including
942    those already in the table, before any other growth of the hash table size
943    occurs.  If TUNING->IS_N_BUCKETS is true, then CANDIDATE specifies the
944    exact number of buckets desired.  Return true iff the rehash succeeded.  */
945 
946 bool
hash_rehash(Hash_table * table,size_t candidate)947 hash_rehash (Hash_table *table, size_t candidate)
948 {
949   Hash_table storage;
950   Hash_table *new_table;
951   size_t new_size = compute_bucket_size (candidate, table->tuning);
952 
953   if (!new_size)
954     return false;
955   if (new_size == table->n_buckets)
956     return true;
957   new_table = &storage;
958   new_table->bucket = calloc (new_size, sizeof *new_table->bucket);
959   if (new_table->bucket == NULL)
960     return false;
961   new_table->n_buckets = new_size;
962   new_table->bucket_limit = new_table->bucket + new_size;
963   new_table->n_buckets_used = 0;
964   new_table->n_entries = 0;
965   new_table->tuning = table->tuning;
966   new_table->hasher = table->hasher;
967   new_table->comparator = table->comparator;
968   new_table->data_freer = table->data_freer;
969 
970   /* In order for the transfer to successfully complete, we need
971      additional overflow entries when distinct buckets in the old
972      table collide into a common bucket in the new table.  The worst
973      case possible is a hasher that gives a good spread with the old
974      size, but returns a constant with the new size; if we were to
975      guarantee table->n_buckets_used-1 free entries in advance, then
976      the transfer would be guaranteed to not allocate memory.
977      However, for large tables, a guarantee of no further allocation
978      introduces a lot of extra memory pressure, all for an unlikely
979      corner case (most rehashes reduce, rather than increase, the
980      number of overflow entries needed).  So, we instead ensure that
981      the transfer process can be reversed if we hit a memory
982      allocation failure mid-transfer.  */
983 
984   /* Merely reuse the extra old space into the new table.  */
985 #if USE_OBSTACK
986   new_table->entry_stack = table->entry_stack;
987 #endif
988   new_table->free_entry_list = table->free_entry_list;
989 
990   if (transfer_entries (new_table, table, false))
991     {
992       /* Entries transferred successfully; tie up the loose ends.  */
993       free (table->bucket);
994       table->bucket = new_table->bucket;
995       table->bucket_limit = new_table->bucket_limit;
996       table->n_buckets = new_table->n_buckets;
997       table->n_buckets_used = new_table->n_buckets_used;
998       table->free_entry_list = new_table->free_entry_list;
999       /* table->n_entries and table->entry_stack already hold their value.  */
1000       return true;
1001     }
1002 
1003   /* We've allocated new_table->bucket (and possibly some entries),
1004      exhausted the free list, and moved some but not all entries into
1005      new_table.  We must undo the partial move before returning
1006      failure.  The only way to get into this situation is if new_table
1007      uses fewer buckets than the old table, so we will reclaim some
1008      free entries as overflows in the new table are put back into
1009      distinct buckets in the old table.
1010 
1011      There are some pathological cases where a single pass through the
1012      table requires more intermediate overflow entries than using two
1013      passes.  Two passes give worse cache performance and takes
1014      longer, but at this point, we're already out of memory, so slow
1015      and safe is better than failure.  */
1016   table->free_entry_list = new_table->free_entry_list;
1017   if (! (transfer_entries (table, new_table, true)
1018          && transfer_entries (table, new_table, false)))
1019     abort ();
1020   /* table->n_entries already holds its value.  */
1021   free (new_table->bucket);
1022   return false;
1023 }
1024 
1025 /* Insert ENTRY into hash TABLE if there is not already a matching entry.
1026 
1027    Return -1 upon memory allocation failure.
1028    Return 1 if insertion succeeded.
1029    Return 0 if there is already a matching entry in the table,
1030    and in that case, if MATCHED_ENT is non-NULL, set *MATCHED_ENT
1031    to that entry.
1032 
1033    This interface is easier to use than hash_insert when you must
1034    distinguish between the latter two cases.  More importantly,
1035    hash_insert is unusable for some types of ENTRY values.  When using
1036    hash_insert, the only way to distinguish those cases is to compare
1037    the return value and ENTRY.  That works only when you can have two
1038    different ENTRY values that point to data that compares "equal".  Thus,
1039    when the ENTRY value is a simple scalar, you must use
1040    hash_insert_if_absent.  ENTRY must not be NULL.  */
1041 int
hash_insert_if_absent(Hash_table * table,void const * entry,void const ** matched_ent)1042 hash_insert_if_absent (Hash_table *table, void const *entry,
1043                        void const **matched_ent)
1044 {
1045   void *data;
1046   struct hash_entry *bucket;
1047 
1048   /* The caller cannot insert a NULL entry, since hash_lookup returns NULL
1049      to indicate "not found", and hash_find_entry uses "bucket->data == NULL"
1050      to indicate an empty bucket.  */
1051   if (! entry)
1052     abort ();
1053 
1054   /* If there's a matching entry already in the table, return that.  */
1055   if ((data = hash_find_entry (table, entry, &bucket, false)) != NULL)
1056     {
1057       if (matched_ent)
1058         *matched_ent = data;
1059       return 0;
1060     }
1061 
1062   /* If the growth threshold of the buckets in use has been reached, increase
1063      the table size and rehash.  There's no point in checking the number of
1064      entries:  if the hashing function is ill-conditioned, rehashing is not
1065      likely to improve it.  */
1066 
1067   if (table->n_buckets_used
1068       > table->tuning->growth_threshold * table->n_buckets)
1069     {
1070       /* Check more fully, before starting real work.  If tuning arguments
1071          became invalid, the second check will rely on proper defaults.  */
1072       check_tuning (table);
1073       if (table->n_buckets_used
1074           > table->tuning->growth_threshold * table->n_buckets)
1075         {
1076           const Hash_tuning *tuning = table->tuning;
1077           float candidate =
1078             (tuning->is_n_buckets
1079              ? (table->n_buckets * tuning->growth_factor)
1080              : (table->n_buckets * tuning->growth_factor
1081                 * tuning->growth_threshold));
1082 
1083           if (SIZE_MAX <= candidate)
1084             return -1;
1085 
1086           /* If the rehash fails, arrange to return NULL.  */
1087           if (!hash_rehash (table, candidate))
1088             return -1;
1089 
1090           /* Update the bucket we are interested in.  */
1091           if (hash_find_entry (table, entry, &bucket, false) != NULL)
1092             abort ();
1093         }
1094     }
1095 
1096   /* ENTRY is not matched, it should be inserted.  */
1097 
1098   if (bucket->data)
1099     {
1100       struct hash_entry *new_entry = allocate_entry (table);
1101 
1102       if (new_entry == NULL)
1103         return -1;
1104 
1105       /* Add ENTRY in the overflow of the bucket.  */
1106 
1107       new_entry->data = (void *) entry;
1108       new_entry->next = bucket->next;
1109       bucket->next = new_entry;
1110       table->n_entries++;
1111       return 1;
1112     }
1113 
1114   /* Add ENTRY right in the bucket head.  */
1115 
1116   bucket->data = (void *) entry;
1117   table->n_entries++;
1118   table->n_buckets_used++;
1119 
1120   return 1;
1121 }
1122 
1123 /* If ENTRY matches an entry already in the hash table, return the pointer
1124    to the entry from the table.  Otherwise, insert ENTRY and return ENTRY.
1125    Return NULL if the storage required for insertion cannot be allocated.
1126    This implementation does not support duplicate entries or insertion of
1127    NULL.  */
1128 
1129 void *
hash_insert(Hash_table * table,void const * entry)1130 hash_insert (Hash_table *table, void const *entry)
1131 {
1132   void const *matched_ent;
1133   int err = hash_insert_if_absent (table, entry, &matched_ent);
1134   return (err == -1
1135           ? NULL
1136           : (void *) (err == 0 ? matched_ent : entry));
1137 }
1138 
1139 /* If ENTRY is already in the table, remove it and return the just-deleted
1140    data (the user may want to deallocate its storage).  If ENTRY is not in the
1141    table, don't modify the table and return NULL.  */
1142 
1143 void *
hash_delete(Hash_table * table,const void * entry)1144 hash_delete (Hash_table *table, const void *entry)
1145 {
1146   void *data;
1147   struct hash_entry *bucket;
1148 
1149   data = hash_find_entry (table, entry, &bucket, true);
1150   if (!data)
1151     return NULL;
1152 
1153   table->n_entries--;
1154   if (!bucket->data)
1155     {
1156       table->n_buckets_used--;
1157 
1158       /* If the shrink threshold of the buckets in use has been reached,
1159          rehash into a smaller table.  */
1160 
1161       if (table->n_buckets_used
1162           < table->tuning->shrink_threshold * table->n_buckets)
1163         {
1164           /* Check more fully, before starting real work.  If tuning arguments
1165              became invalid, the second check will rely on proper defaults.  */
1166           check_tuning (table);
1167           if (table->n_buckets_used
1168               < table->tuning->shrink_threshold * table->n_buckets)
1169             {
1170               const Hash_tuning *tuning = table->tuning;
1171               size_t candidate =
1172                 (tuning->is_n_buckets
1173                  ? table->n_buckets * tuning->shrink_factor
1174                  : (table->n_buckets * tuning->shrink_factor
1175                     * tuning->growth_threshold));
1176 
1177               if (!hash_rehash (table, candidate))
1178                 {
1179                   /* Failure to allocate memory in an attempt to
1180                      shrink the table is not fatal.  But since memory
1181                      is low, we can at least be kind and free any
1182                      spare entries, rather than keeping them tied up
1183                      in the free entry list.  */
1184 #if ! USE_OBSTACK
1185                   struct hash_entry *cursor = table->free_entry_list;
1186                   struct hash_entry *next;
1187                   while (cursor)
1188                     {
1189                       next = cursor->next;
1190                       free (cursor);
1191                       cursor = next;
1192                     }
1193                   table->free_entry_list = NULL;
1194 #endif
1195                 }
1196             }
1197         }
1198     }
1199 
1200   return data;
1201 }
1202 
1203 /* Testing.  */
1204 
1205 #if TESTING
1206 
1207 void
hash_print(const Hash_table * table)1208 hash_print (const Hash_table *table)
1209 {
1210   struct hash_entry *bucket = (struct hash_entry *) table->bucket;
1211 
1212   for ( ; bucket < table->bucket_limit; bucket++)
1213     {
1214       struct hash_entry *cursor;
1215 
1216       if (bucket)
1217         printf ("%lu:\n", (unsigned long int) (bucket - table->bucket));
1218 
1219       for (cursor = bucket; cursor; cursor = cursor->next)
1220         {
1221           char const *s = cursor->data;
1222           /* FIXME */
1223           if (s)
1224             printf ("  %s\n", s);
1225         }
1226     }
1227 }
1228 
1229 #endif /* TESTING */
1230