1 /* Searching in a string.  -*- coding: utf-8 -*-
2    Copyright (C) 2005-2020 Free Software Foundation, Inc.
3    Written by Bruno Haible <bruno@clisp.org>, 2005.
4 
5    This program is free software: you can redistribute it and/or modify
6    it under the terms of the GNU General Public License as published by
7    the Free Software Foundation; either version 3 of the License, or
8    (at your option) any later version.
9 
10    This program is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13    GNU General Public License for more details.
14 
15    You should have received a copy of the GNU General Public License
16    along with this program.  If not, see <https://www.gnu.org/licenses/>.  */
17 
18 #include <config.h>
19 
20 /* Specification.  */
21 #include <string.h>
22 
23 #include <stdbool.h>
24 #include <stddef.h>  /* for NULL, in case a nonstandard string.h lacks it */
25 #include <stdlib.h>
26 
27 #include "malloca.h"
28 #include "mbuiter.h"
29 
30 /* Knuth-Morris-Pratt algorithm.  */
31 #define UNIT unsigned char
32 #define CANON_ELEMENT(c) c
33 #include "str-kmp.h"
34 
35 /* Knuth-Morris-Pratt algorithm.
36    See https://en.wikipedia.org/wiki/Knuth-Morris-Pratt_algorithm
37    Return a boolean indicating success:
38    Return true and set *RESULTP if the search was completed.
39    Return false if it was aborted because not enough memory was available.  */
40 static bool
knuth_morris_pratt_multibyte(const char * haystack,const char * needle,const char ** resultp)41 knuth_morris_pratt_multibyte (const char *haystack, const char *needle,
42                               const char **resultp)
43 {
44   size_t m = mbslen (needle);
45   mbchar_t *needle_mbchars;
46   size_t *table;
47 
48   /* Allocate room for needle_mbchars and the table.  */
49   void *memory = nmalloca (m, sizeof (mbchar_t) + sizeof (size_t));
50   void *table_memory;
51   if (memory == NULL)
52     return false;
53   needle_mbchars = memory;
54   table_memory = needle_mbchars + m;
55   table = table_memory;
56 
57   /* Fill needle_mbchars.  */
58   {
59     mbui_iterator_t iter;
60     size_t j;
61 
62     j = 0;
63     for (mbui_init (iter, needle); mbui_avail (iter); mbui_advance (iter), j++)
64       mb_copy (&needle_mbchars[j], &mbui_cur (iter));
65   }
66 
67   /* Fill the table.
68      For 0 < i < m:
69        0 < table[i] <= i is defined such that
70        forall 0 < x < table[i]: needle[x..i-1] != needle[0..i-1-x],
71        and table[i] is as large as possible with this property.
72      This implies:
73      1) For 0 < i < m:
74           If table[i] < i,
75           needle[table[i]..i-1] = needle[0..i-1-table[i]].
76      2) For 0 < i < m:
77           rhaystack[0..i-1] == needle[0..i-1]
78           and exists h, i <= h < m: rhaystack[h] != needle[h]
79           implies
80           forall 0 <= x < table[i]: rhaystack[x..x+m-1] != needle[0..m-1].
81      table[0] remains uninitialized.  */
82   {
83     size_t i, j;
84 
85     /* i = 1: Nothing to verify for x = 0.  */
86     table[1] = 1;
87     j = 0;
88 
89     for (i = 2; i < m; i++)
90       {
91         /* Here: j = i-1 - table[i-1].
92            The inequality needle[x..i-1] != needle[0..i-1-x] is known to hold
93            for x < table[i-1], by induction.
94            Furthermore, if j>0: needle[i-1-j..i-2] = needle[0..j-1].  */
95         mbchar_t *b = &needle_mbchars[i - 1];
96 
97         for (;;)
98           {
99             /* Invariants: The inequality needle[x..i-1] != needle[0..i-1-x]
100                is known to hold for x < i-1-j.
101                Furthermore, if j>0: needle[i-1-j..i-2] = needle[0..j-1].  */
102             if (mb_equal (*b, needle_mbchars[j]))
103               {
104                 /* Set table[i] := i-1-j.  */
105                 table[i] = i - ++j;
106                 break;
107               }
108             /* The inequality needle[x..i-1] != needle[0..i-1-x] also holds
109                for x = i-1-j, because
110                  needle[i-1] != needle[j] = needle[i-1-x].  */
111             if (j == 0)
112               {
113                 /* The inequality holds for all possible x.  */
114                 table[i] = i;
115                 break;
116               }
117             /* The inequality needle[x..i-1] != needle[0..i-1-x] also holds
118                for i-1-j < x < i-1-j+table[j], because for these x:
119                  needle[x..i-2]
120                  = needle[x-(i-1-j)..j-1]
121                  != needle[0..j-1-(x-(i-1-j))]  (by definition of table[j])
122                     = needle[0..i-2-x],
123                hence needle[x..i-1] != needle[0..i-1-x].
124                Furthermore
125                  needle[i-1-j+table[j]..i-2]
126                  = needle[table[j]..j-1]
127                  = needle[0..j-1-table[j]]  (by definition of table[j]).  */
128             j = j - table[j];
129           }
130         /* Here: j = i - table[i].  */
131       }
132   }
133 
134   /* Search, using the table to accelerate the processing.  */
135   {
136     size_t j;
137     mbui_iterator_t rhaystack;
138     mbui_iterator_t phaystack;
139 
140     *resultp = NULL;
141     j = 0;
142     mbui_init (rhaystack, haystack);
143     mbui_init (phaystack, haystack);
144     /* Invariant: phaystack = rhaystack + j.  */
145     while (mbui_avail (phaystack))
146       if (mb_equal (needle_mbchars[j], mbui_cur (phaystack)))
147         {
148           j++;
149           mbui_advance (phaystack);
150           if (j == m)
151             {
152               /* The entire needle has been found.  */
153               *resultp = mbui_cur_ptr (rhaystack);
154               break;
155             }
156         }
157       else if (j > 0)
158         {
159           /* Found a match of needle[0..j-1], mismatch at needle[j].  */
160           size_t count = table[j];
161           j -= count;
162           for (; count > 0; count--)
163             {
164               if (!mbui_avail (rhaystack))
165                 abort ();
166               mbui_advance (rhaystack);
167             }
168         }
169       else
170         {
171           /* Found a mismatch at needle[0] already.  */
172           if (!mbui_avail (rhaystack))
173             abort ();
174           mbui_advance (rhaystack);
175           mbui_advance (phaystack);
176         }
177   }
178 
179   freea (memory);
180   return true;
181 }
182 
183 /* Find the first occurrence of the character string NEEDLE in the character
184    string HAYSTACK.  Return NULL if NEEDLE is not found in HAYSTACK.  */
185 char *
mbsstr(const char * haystack,const char * needle)186 mbsstr (const char *haystack, const char *needle)
187 {
188   /* Be careful not to look at the entire extent of haystack or needle
189      until needed.  This is useful because of these two cases:
190        - haystack may be very long, and a match of needle found early,
191        - needle may be very long, and not even a short initial segment of
192          needle may be found in haystack.  */
193   if (MB_CUR_MAX > 1)
194     {
195       mbui_iterator_t iter_needle;
196 
197       mbui_init (iter_needle, needle);
198       if (mbui_avail (iter_needle))
199         {
200           /* Minimizing the worst-case complexity:
201              Let n = mbslen(haystack), m = mbslen(needle).
202              The naïve algorithm is O(n*m) worst-case.
203              The Knuth-Morris-Pratt algorithm is O(n) worst-case but it needs a
204              memory allocation.
205              To achieve linear complexity and yet amortize the cost of the
206              memory allocation, we activate the Knuth-Morris-Pratt algorithm
207              only once the naïve algorithm has already run for some time; more
208              precisely, when
209                - the outer loop count is >= 10,
210                - the average number of comparisons per outer loop is >= 5,
211                - the total number of comparisons is >= m.
212              But we try it only once.  If the memory allocation attempt failed,
213              we don't retry it.  */
214           bool try_kmp = true;
215           size_t outer_loop_count = 0;
216           size_t comparison_count = 0;
217           size_t last_ccount = 0;                  /* last comparison count */
218           mbui_iterator_t iter_needle_last_ccount; /* = needle + last_ccount */
219 
220           mbui_iterator_t iter_haystack;
221 
222           mbui_init (iter_needle_last_ccount, needle);
223           mbui_init (iter_haystack, haystack);
224           for (;; mbui_advance (iter_haystack))
225             {
226               if (!mbui_avail (iter_haystack))
227                 /* No match.  */
228                 return NULL;
229 
230               /* See whether it's advisable to use an asymptotically faster
231                  algorithm.  */
232               if (try_kmp
233                   && outer_loop_count >= 10
234                   && comparison_count >= 5 * outer_loop_count)
235                 {
236                   /* See if needle + comparison_count now reaches the end of
237                      needle.  */
238                   size_t count = comparison_count - last_ccount;
239                   for (;
240                        count > 0 && mbui_avail (iter_needle_last_ccount);
241                        count--)
242                     mbui_advance (iter_needle_last_ccount);
243                   last_ccount = comparison_count;
244                   if (!mbui_avail (iter_needle_last_ccount))
245                     {
246                       /* Try the Knuth-Morris-Pratt algorithm.  */
247                       const char *result;
248                       bool success =
249                         knuth_morris_pratt_multibyte (haystack, needle,
250                                                       &result);
251                       if (success)
252                         return (char *) result;
253                       try_kmp = false;
254                     }
255                 }
256 
257               outer_loop_count++;
258               comparison_count++;
259               if (mb_equal (mbui_cur (iter_haystack), mbui_cur (iter_needle)))
260                 /* The first character matches.  */
261                 {
262                   mbui_iterator_t rhaystack;
263                   mbui_iterator_t rneedle;
264 
265                   memcpy (&rhaystack, &iter_haystack, sizeof (mbui_iterator_t));
266                   mbui_advance (rhaystack);
267 
268                   mbui_init (rneedle, needle);
269                   if (!mbui_avail (rneedle))
270                     abort ();
271                   mbui_advance (rneedle);
272 
273                   for (;; mbui_advance (rhaystack), mbui_advance (rneedle))
274                     {
275                       if (!mbui_avail (rneedle))
276                         /* Found a match.  */
277                         return (char *) mbui_cur_ptr (iter_haystack);
278                       if (!mbui_avail (rhaystack))
279                         /* No match.  */
280                         return NULL;
281                       comparison_count++;
282                       if (!mb_equal (mbui_cur (rhaystack), mbui_cur (rneedle)))
283                         /* Nothing in this round.  */
284                         break;
285                     }
286                 }
287             }
288         }
289       else
290         return (char *) haystack;
291     }
292   else
293     {
294       if (*needle != '\0')
295         {
296           /* Minimizing the worst-case complexity:
297              Let n = strlen(haystack), m = strlen(needle).
298              The naïve algorithm is O(n*m) worst-case.
299              The Knuth-Morris-Pratt algorithm is O(n) worst-case but it needs a
300              memory allocation.
301              To achieve linear complexity and yet amortize the cost of the
302              memory allocation, we activate the Knuth-Morris-Pratt algorithm
303              only once the naïve algorithm has already run for some time; more
304              precisely, when
305                - the outer loop count is >= 10,
306                - the average number of comparisons per outer loop is >= 5,
307                - the total number of comparisons is >= m.
308              But we try it only once.  If the memory allocation attempt failed,
309              we don't retry it.  */
310           bool try_kmp = true;
311           size_t outer_loop_count = 0;
312           size_t comparison_count = 0;
313           size_t last_ccount = 0;                  /* last comparison count */
314           const char *needle_last_ccount = needle; /* = needle + last_ccount */
315 
316           /* Speed up the following searches of needle by caching its first
317              character.  */
318           char b = *needle++;
319 
320           for (;; haystack++)
321             {
322               if (*haystack == '\0')
323                 /* No match.  */
324                 return NULL;
325 
326               /* See whether it's advisable to use an asymptotically faster
327                  algorithm.  */
328               if (try_kmp
329                   && outer_loop_count >= 10
330                   && comparison_count >= 5 * outer_loop_count)
331                 {
332                   /* See if needle + comparison_count now reaches the end of
333                      needle.  */
334                   if (needle_last_ccount != NULL)
335                     {
336                       needle_last_ccount +=
337                         strnlen (needle_last_ccount,
338                                  comparison_count - last_ccount);
339                       if (*needle_last_ccount == '\0')
340                         needle_last_ccount = NULL;
341                       last_ccount = comparison_count;
342                     }
343                   if (needle_last_ccount == NULL)
344                     {
345                       /* Try the Knuth-Morris-Pratt algorithm.  */
346                       const unsigned char *result;
347                       bool success =
348                         knuth_morris_pratt ((const unsigned char *) haystack,
349                                             (const unsigned char *) (needle - 1),
350                                             strlen (needle - 1),
351                                             &result);
352                       if (success)
353                         return (char *) result;
354                       try_kmp = false;
355                     }
356                 }
357 
358               outer_loop_count++;
359               comparison_count++;
360               if (*haystack == b)
361                 /* The first character matches.  */
362                 {
363                   const char *rhaystack = haystack + 1;
364                   const char *rneedle = needle;
365 
366                   for (;; rhaystack++, rneedle++)
367                     {
368                       if (*rneedle == '\0')
369                         /* Found a match.  */
370                         return (char *) haystack;
371                       if (*rhaystack == '\0')
372                         /* No match.  */
373                         return NULL;
374                       comparison_count++;
375                       if (*rhaystack != *rneedle)
376                         /* Nothing in this round.  */
377                         break;
378                     }
379                 }
380             }
381         }
382       else
383         return (char *) haystack;
384     }
385 }
386