1// Go support for Protocol Buffers - Google's data interchange format
2//
3// Copyright 2010 The Go Authors.  All rights reserved.
4// https://github.com/golang/protobuf
5//
6// Redistribution and use in source and binary forms, with or without
7// modification, are permitted provided that the following conditions are
8// met:
9//
10//     * Redistributions of source code must retain the above copyright
11// notice, this list of conditions and the following disclaimer.
12//     * Redistributions in binary form must reproduce the above
13// copyright notice, this list of conditions and the following disclaimer
14// in the documentation and/or other materials provided with the
15// distribution.
16//     * Neither the name of Google Inc. nor the names of its
17// contributors may be used to endorse or promote products derived from
18// this software without specific prior written permission.
19//
20// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31
32package proto
33
34/*
35 * Routines for decoding protocol buffer data to construct in-memory representations.
36 */
37
38import (
39	"errors"
40	"fmt"
41	"io"
42	"os"
43	"reflect"
44)
45
46// errOverflow is returned when an integer is too large to be represented.
47var errOverflow = errors.New("proto: integer overflow")
48
49// ErrInternalBadWireType is returned by generated code when an incorrect
50// wire type is encountered. It does not get returned to user code.
51var ErrInternalBadWireType = errors.New("proto: internal error: bad wiretype for oneof")
52
53// The fundamental decoders that interpret bytes on the wire.
54// Those that take integer types all return uint64 and are
55// therefore of type valueDecoder.
56
57// DecodeVarint reads a varint-encoded integer from the slice.
58// It returns the integer and the number of bytes consumed, or
59// zero if there is not enough.
60// This is the format for the
61// int32, int64, uint32, uint64, bool, and enum
62// protocol buffer types.
63func DecodeVarint(buf []byte) (x uint64, n int) {
64	// x, n already 0
65	for shift := uint(0); shift < 64; shift += 7 {
66		if n >= len(buf) {
67			return 0, 0
68		}
69		b := uint64(buf[n])
70		n++
71		x |= (b & 0x7F) << shift
72		if (b & 0x80) == 0 {
73			return x, n
74		}
75	}
76
77	// The number is too large to represent in a 64-bit value.
78	return 0, 0
79}
80
81// DecodeVarint reads a varint-encoded integer from the Buffer.
82// This is the format for the
83// int32, int64, uint32, uint64, bool, and enum
84// protocol buffer types.
85func (p *Buffer) DecodeVarint() (x uint64, err error) {
86	// x, err already 0
87
88	i := p.index
89	l := len(p.buf)
90
91	for shift := uint(0); shift < 64; shift += 7 {
92		if i >= l {
93			err = io.ErrUnexpectedEOF
94			return
95		}
96		b := p.buf[i]
97		i++
98		x |= (uint64(b) & 0x7F) << shift
99		if b < 0x80 {
100			p.index = i
101			return
102		}
103	}
104
105	// The number is too large to represent in a 64-bit value.
106	err = errOverflow
107	return
108}
109
110// DecodeFixed64 reads a 64-bit integer from the Buffer.
111// This is the format for the
112// fixed64, sfixed64, and double protocol buffer types.
113func (p *Buffer) DecodeFixed64() (x uint64, err error) {
114	// x, err already 0
115	i := p.index + 8
116	if i < 0 || i > len(p.buf) {
117		err = io.ErrUnexpectedEOF
118		return
119	}
120	p.index = i
121
122	x = uint64(p.buf[i-8])
123	x |= uint64(p.buf[i-7]) << 8
124	x |= uint64(p.buf[i-6]) << 16
125	x |= uint64(p.buf[i-5]) << 24
126	x |= uint64(p.buf[i-4]) << 32
127	x |= uint64(p.buf[i-3]) << 40
128	x |= uint64(p.buf[i-2]) << 48
129	x |= uint64(p.buf[i-1]) << 56
130	return
131}
132
133// DecodeFixed32 reads a 32-bit integer from the Buffer.
134// This is the format for the
135// fixed32, sfixed32, and float protocol buffer types.
136func (p *Buffer) DecodeFixed32() (x uint64, err error) {
137	// x, err already 0
138	i := p.index + 4
139	if i < 0 || i > len(p.buf) {
140		err = io.ErrUnexpectedEOF
141		return
142	}
143	p.index = i
144
145	x = uint64(p.buf[i-4])
146	x |= uint64(p.buf[i-3]) << 8
147	x |= uint64(p.buf[i-2]) << 16
148	x |= uint64(p.buf[i-1]) << 24
149	return
150}
151
152// DecodeZigzag64 reads a zigzag-encoded 64-bit integer
153// from the Buffer.
154// This is the format used for the sint64 protocol buffer type.
155func (p *Buffer) DecodeZigzag64() (x uint64, err error) {
156	x, err = p.DecodeVarint()
157	if err != nil {
158		return
159	}
160	x = (x >> 1) ^ uint64((int64(x&1)<<63)>>63)
161	return
162}
163
164// DecodeZigzag32 reads a zigzag-encoded 32-bit integer
165// from  the Buffer.
166// This is the format used for the sint32 protocol buffer type.
167func (p *Buffer) DecodeZigzag32() (x uint64, err error) {
168	x, err = p.DecodeVarint()
169	if err != nil {
170		return
171	}
172	x = uint64((uint32(x) >> 1) ^ uint32((int32(x&1)<<31)>>31))
173	return
174}
175
176// These are not ValueDecoders: they produce an array of bytes or a string.
177// bytes, embedded messages
178
179// DecodeRawBytes reads a count-delimited byte buffer from the Buffer.
180// This is the format used for the bytes protocol buffer
181// type and for embedded messages.
182func (p *Buffer) DecodeRawBytes(alloc bool) (buf []byte, err error) {
183	n, err := p.DecodeVarint()
184	if err != nil {
185		return nil, err
186	}
187
188	nb := int(n)
189	if nb < 0 {
190		return nil, fmt.Errorf("proto: bad byte length %d", nb)
191	}
192	end := p.index + nb
193	if end < p.index || end > len(p.buf) {
194		return nil, io.ErrUnexpectedEOF
195	}
196
197	if !alloc {
198		// todo: check if can get more uses of alloc=false
199		buf = p.buf[p.index:end]
200		p.index += nb
201		return
202	}
203
204	buf = make([]byte, nb)
205	copy(buf, p.buf[p.index:])
206	p.index += nb
207	return
208}
209
210// DecodeStringBytes reads an encoded string from the Buffer.
211// This is the format used for the proto2 string type.
212func (p *Buffer) DecodeStringBytes() (s string, err error) {
213	buf, err := p.DecodeRawBytes(false)
214	if err != nil {
215		return
216	}
217	return string(buf), nil
218}
219
220// Skip the next item in the buffer. Its wire type is decoded and presented as an argument.
221// If the protocol buffer has extensions, and the field matches, add it as an extension.
222// Otherwise, if the XXX_unrecognized field exists, append the skipped data there.
223func (o *Buffer) skipAndSave(t reflect.Type, tag, wire int, base structPointer, unrecField field) error {
224	oi := o.index
225
226	err := o.skip(t, tag, wire)
227	if err != nil {
228		return err
229	}
230
231	if !unrecField.IsValid() {
232		return nil
233	}
234
235	ptr := structPointer_Bytes(base, unrecField)
236
237	// Add the skipped field to struct field
238	obuf := o.buf
239
240	o.buf = *ptr
241	o.EncodeVarint(uint64(tag<<3 | wire))
242	*ptr = append(o.buf, obuf[oi:o.index]...)
243
244	o.buf = obuf
245
246	return nil
247}
248
249// Skip the next item in the buffer. Its wire type is decoded and presented as an argument.
250func (o *Buffer) skip(t reflect.Type, tag, wire int) error {
251
252	var u uint64
253	var err error
254
255	switch wire {
256	case WireVarint:
257		_, err = o.DecodeVarint()
258	case WireFixed64:
259		_, err = o.DecodeFixed64()
260	case WireBytes:
261		_, err = o.DecodeRawBytes(false)
262	case WireFixed32:
263		_, err = o.DecodeFixed32()
264	case WireStartGroup:
265		for {
266			u, err = o.DecodeVarint()
267			if err != nil {
268				break
269			}
270			fwire := int(u & 0x7)
271			if fwire == WireEndGroup {
272				break
273			}
274			ftag := int(u >> 3)
275			err = o.skip(t, ftag, fwire)
276			if err != nil {
277				break
278			}
279		}
280	default:
281		err = fmt.Errorf("proto: can't skip unknown wire type %d for %s", wire, t)
282	}
283	return err
284}
285
286// Unmarshaler is the interface representing objects that can
287// unmarshal themselves.  The method should reset the receiver before
288// decoding starts.  The argument points to data that may be
289// overwritten, so implementations should not keep references to the
290// buffer.
291type Unmarshaler interface {
292	Unmarshal([]byte) error
293}
294
295// Unmarshal parses the protocol buffer representation in buf and places the
296// decoded result in pb.  If the struct underlying pb does not match
297// the data in buf, the results can be unpredictable.
298//
299// Unmarshal resets pb before starting to unmarshal, so any
300// existing data in pb is always removed. Use UnmarshalMerge
301// to preserve and append to existing data.
302func Unmarshal(buf []byte, pb Message) error {
303	pb.Reset()
304	return UnmarshalMerge(buf, pb)
305}
306
307// UnmarshalMerge parses the protocol buffer representation in buf and
308// writes the decoded result to pb.  If the struct underlying pb does not match
309// the data in buf, the results can be unpredictable.
310//
311// UnmarshalMerge merges into existing data in pb.
312// Most code should use Unmarshal instead.
313func UnmarshalMerge(buf []byte, pb Message) error {
314	// If the object can unmarshal itself, let it.
315	if u, ok := pb.(Unmarshaler); ok {
316		return u.Unmarshal(buf)
317	}
318	return NewBuffer(buf).Unmarshal(pb)
319}
320
321// DecodeMessage reads a count-delimited message from the Buffer.
322func (p *Buffer) DecodeMessage(pb Message) error {
323	enc, err := p.DecodeRawBytes(false)
324	if err != nil {
325		return err
326	}
327	return NewBuffer(enc).Unmarshal(pb)
328}
329
330// DecodeGroup reads a tag-delimited group from the Buffer.
331func (p *Buffer) DecodeGroup(pb Message) error {
332	typ, base, err := getbase(pb)
333	if err != nil {
334		return err
335	}
336	return p.unmarshalType(typ.Elem(), GetProperties(typ.Elem()), true, base)
337}
338
339// Unmarshal parses the protocol buffer representation in the
340// Buffer and places the decoded result in pb.  If the struct
341// underlying pb does not match the data in the buffer, the results can be
342// unpredictable.
343func (p *Buffer) Unmarshal(pb Message) error {
344	// If the object can unmarshal itself, let it.
345	if u, ok := pb.(Unmarshaler); ok {
346		err := u.Unmarshal(p.buf[p.index:])
347		p.index = len(p.buf)
348		return err
349	}
350
351	typ, base, err := getbase(pb)
352	if err != nil {
353		return err
354	}
355
356	err = p.unmarshalType(typ.Elem(), GetProperties(typ.Elem()), false, base)
357
358	if collectStats {
359		stats.Decode++
360	}
361
362	return err
363}
364
365// unmarshalType does the work of unmarshaling a structure.
366func (o *Buffer) unmarshalType(st reflect.Type, prop *StructProperties, is_group bool, base structPointer) error {
367	var state errorState
368	required, reqFields := prop.reqCount, uint64(0)
369
370	var err error
371	for err == nil && o.index < len(o.buf) {
372		oi := o.index
373		var u uint64
374		u, err = o.DecodeVarint()
375		if err != nil {
376			break
377		}
378		wire := int(u & 0x7)
379		if wire == WireEndGroup {
380			if is_group {
381				return nil // input is satisfied
382			}
383			return fmt.Errorf("proto: %s: wiretype end group for non-group", st)
384		}
385		tag := int(u >> 3)
386		if tag <= 0 {
387			return fmt.Errorf("proto: %s: illegal tag %d (wire type %d)", st, tag, wire)
388		}
389		fieldnum, ok := prop.decoderTags.get(tag)
390		if !ok {
391			// Maybe it's an extension?
392			if prop.extendable {
393				if e := structPointer_Interface(base, st).(extendableProto); isExtensionField(e, int32(tag)) {
394					if err = o.skip(st, tag, wire); err == nil {
395						ext := e.ExtensionMap()[int32(tag)] // may be missing
396						ext.enc = append(ext.enc, o.buf[oi:o.index]...)
397						e.ExtensionMap()[int32(tag)] = ext
398					}
399					continue
400				}
401			}
402			// Maybe it's a oneof?
403			if prop.oneofUnmarshaler != nil {
404				m := structPointer_Interface(base, st).(Message)
405				// First return value indicates whether tag is a oneof field.
406				ok, err = prop.oneofUnmarshaler(m, tag, wire, o)
407				if err == ErrInternalBadWireType {
408					// Map the error to something more descriptive.
409					// Do the formatting here to save generated code space.
410					err = fmt.Errorf("bad wiretype for oneof field in %T", m)
411				}
412				if ok {
413					continue
414				}
415			}
416			err = o.skipAndSave(st, tag, wire, base, prop.unrecField)
417			continue
418		}
419		p := prop.Prop[fieldnum]
420
421		if p.dec == nil {
422			fmt.Fprintf(os.Stderr, "proto: no protobuf decoder for %s.%s\n", st, st.Field(fieldnum).Name)
423			continue
424		}
425		dec := p.dec
426		if wire != WireStartGroup && wire != p.WireType {
427			if wire == WireBytes && p.packedDec != nil {
428				// a packable field
429				dec = p.packedDec
430			} else {
431				err = fmt.Errorf("proto: bad wiretype for field %s.%s: got wiretype %d, want %d", st, st.Field(fieldnum).Name, wire, p.WireType)
432				continue
433			}
434		}
435		decErr := dec(o, p, base)
436		if decErr != nil && !state.shouldContinue(decErr, p) {
437			err = decErr
438		}
439		if err == nil && p.Required {
440			// Successfully decoded a required field.
441			if tag <= 64 {
442				// use bitmap for fields 1-64 to catch field reuse.
443				var mask uint64 = 1 << uint64(tag-1)
444				if reqFields&mask == 0 {
445					// new required field
446					reqFields |= mask
447					required--
448				}
449			} else {
450				// This is imprecise. It can be fooled by a required field
451				// with a tag > 64 that is encoded twice; that's very rare.
452				// A fully correct implementation would require allocating
453				// a data structure, which we would like to avoid.
454				required--
455			}
456		}
457	}
458	if err == nil {
459		if is_group {
460			return io.ErrUnexpectedEOF
461		}
462		if state.err != nil {
463			return state.err
464		}
465		if required > 0 {
466			// Not enough information to determine the exact field. If we use extra
467			// CPU, we could determine the field only if the missing required field
468			// has a tag <= 64 and we check reqFields.
469			return &RequiredNotSetError{"{Unknown}"}
470		}
471	}
472	return err
473}
474
475// Individual type decoders
476// For each,
477//	u is the decoded value,
478//	v is a pointer to the field (pointer) in the struct
479
480// Sizes of the pools to allocate inside the Buffer.
481// The goal is modest amortization and allocation
482// on at least 16-byte boundaries.
483const (
484	boolPoolSize   = 16
485	uint32PoolSize = 8
486	uint64PoolSize = 4
487)
488
489// Decode a bool.
490func (o *Buffer) dec_bool(p *Properties, base structPointer) error {
491	u, err := p.valDec(o)
492	if err != nil {
493		return err
494	}
495	if len(o.bools) == 0 {
496		o.bools = make([]bool, boolPoolSize)
497	}
498	o.bools[0] = u != 0
499	*structPointer_Bool(base, p.field) = &o.bools[0]
500	o.bools = o.bools[1:]
501	return nil
502}
503
504func (o *Buffer) dec_proto3_bool(p *Properties, base structPointer) error {
505	u, err := p.valDec(o)
506	if err != nil {
507		return err
508	}
509	*structPointer_BoolVal(base, p.field) = u != 0
510	return nil
511}
512
513// Decode an int32.
514func (o *Buffer) dec_int32(p *Properties, base structPointer) error {
515	u, err := p.valDec(o)
516	if err != nil {
517		return err
518	}
519	word32_Set(structPointer_Word32(base, p.field), o, uint32(u))
520	return nil
521}
522
523func (o *Buffer) dec_proto3_int32(p *Properties, base structPointer) error {
524	u, err := p.valDec(o)
525	if err != nil {
526		return err
527	}
528	word32Val_Set(structPointer_Word32Val(base, p.field), uint32(u))
529	return nil
530}
531
532// Decode an int64.
533func (o *Buffer) dec_int64(p *Properties, base structPointer) error {
534	u, err := p.valDec(o)
535	if err != nil {
536		return err
537	}
538	word64_Set(structPointer_Word64(base, p.field), o, u)
539	return nil
540}
541
542func (o *Buffer) dec_proto3_int64(p *Properties, base structPointer) error {
543	u, err := p.valDec(o)
544	if err != nil {
545		return err
546	}
547	word64Val_Set(structPointer_Word64Val(base, p.field), o, u)
548	return nil
549}
550
551// Decode a string.
552func (o *Buffer) dec_string(p *Properties, base structPointer) error {
553	s, err := o.DecodeStringBytes()
554	if err != nil {
555		return err
556	}
557	*structPointer_String(base, p.field) = &s
558	return nil
559}
560
561func (o *Buffer) dec_proto3_string(p *Properties, base structPointer) error {
562	s, err := o.DecodeStringBytes()
563	if err != nil {
564		return err
565	}
566	*structPointer_StringVal(base, p.field) = s
567	return nil
568}
569
570// Decode a slice of bytes ([]byte).
571func (o *Buffer) dec_slice_byte(p *Properties, base structPointer) error {
572	b, err := o.DecodeRawBytes(true)
573	if err != nil {
574		return err
575	}
576	*structPointer_Bytes(base, p.field) = b
577	return nil
578}
579
580// Decode a slice of bools ([]bool).
581func (o *Buffer) dec_slice_bool(p *Properties, base structPointer) error {
582	u, err := p.valDec(o)
583	if err != nil {
584		return err
585	}
586	v := structPointer_BoolSlice(base, p.field)
587	*v = append(*v, u != 0)
588	return nil
589}
590
591// Decode a slice of bools ([]bool) in packed format.
592func (o *Buffer) dec_slice_packed_bool(p *Properties, base structPointer) error {
593	v := structPointer_BoolSlice(base, p.field)
594
595	nn, err := o.DecodeVarint()
596	if err != nil {
597		return err
598	}
599	nb := int(nn) // number of bytes of encoded bools
600	fin := o.index + nb
601	if fin < o.index {
602		return errOverflow
603	}
604
605	y := *v
606	for o.index < fin {
607		u, err := p.valDec(o)
608		if err != nil {
609			return err
610		}
611		y = append(y, u != 0)
612	}
613
614	*v = y
615	return nil
616}
617
618// Decode a slice of int32s ([]int32).
619func (o *Buffer) dec_slice_int32(p *Properties, base structPointer) error {
620	u, err := p.valDec(o)
621	if err != nil {
622		return err
623	}
624	structPointer_Word32Slice(base, p.field).Append(uint32(u))
625	return nil
626}
627
628// Decode a slice of int32s ([]int32) in packed format.
629func (o *Buffer) dec_slice_packed_int32(p *Properties, base structPointer) error {
630	v := structPointer_Word32Slice(base, p.field)
631
632	nn, err := o.DecodeVarint()
633	if err != nil {
634		return err
635	}
636	nb := int(nn) // number of bytes of encoded int32s
637
638	fin := o.index + nb
639	if fin < o.index {
640		return errOverflow
641	}
642	for o.index < fin {
643		u, err := p.valDec(o)
644		if err != nil {
645			return err
646		}
647		v.Append(uint32(u))
648	}
649	return nil
650}
651
652// Decode a slice of int64s ([]int64).
653func (o *Buffer) dec_slice_int64(p *Properties, base structPointer) error {
654	u, err := p.valDec(o)
655	if err != nil {
656		return err
657	}
658
659	structPointer_Word64Slice(base, p.field).Append(u)
660	return nil
661}
662
663// Decode a slice of int64s ([]int64) in packed format.
664func (o *Buffer) dec_slice_packed_int64(p *Properties, base structPointer) error {
665	v := structPointer_Word64Slice(base, p.field)
666
667	nn, err := o.DecodeVarint()
668	if err != nil {
669		return err
670	}
671	nb := int(nn) // number of bytes of encoded int64s
672
673	fin := o.index + nb
674	if fin < o.index {
675		return errOverflow
676	}
677	for o.index < fin {
678		u, err := p.valDec(o)
679		if err != nil {
680			return err
681		}
682		v.Append(u)
683	}
684	return nil
685}
686
687// Decode a slice of strings ([]string).
688func (o *Buffer) dec_slice_string(p *Properties, base structPointer) error {
689	s, err := o.DecodeStringBytes()
690	if err != nil {
691		return err
692	}
693	v := structPointer_StringSlice(base, p.field)
694	*v = append(*v, s)
695	return nil
696}
697
698// Decode a slice of slice of bytes ([][]byte).
699func (o *Buffer) dec_slice_slice_byte(p *Properties, base structPointer) error {
700	b, err := o.DecodeRawBytes(true)
701	if err != nil {
702		return err
703	}
704	v := structPointer_BytesSlice(base, p.field)
705	*v = append(*v, b)
706	return nil
707}
708
709// Decode a map field.
710func (o *Buffer) dec_new_map(p *Properties, base structPointer) error {
711	raw, err := o.DecodeRawBytes(false)
712	if err != nil {
713		return err
714	}
715	oi := o.index       // index at the end of this map entry
716	o.index -= len(raw) // move buffer back to start of map entry
717
718	mptr := structPointer_NewAt(base, p.field, p.mtype) // *map[K]V
719	if mptr.Elem().IsNil() {
720		mptr.Elem().Set(reflect.MakeMap(mptr.Type().Elem()))
721	}
722	v := mptr.Elem() // map[K]V
723
724	// Prepare addressable doubly-indirect placeholders for the key and value types.
725	// See enc_new_map for why.
726	keyptr := reflect.New(reflect.PtrTo(p.mtype.Key())).Elem() // addressable *K
727	keybase := toStructPointer(keyptr.Addr())                  // **K
728
729	var valbase structPointer
730	var valptr reflect.Value
731	switch p.mtype.Elem().Kind() {
732	case reflect.Slice:
733		// []byte
734		var dummy []byte
735		valptr = reflect.ValueOf(&dummy)  // *[]byte
736		valbase = toStructPointer(valptr) // *[]byte
737	case reflect.Ptr:
738		// message; valptr is **Msg; need to allocate the intermediate pointer
739		valptr = reflect.New(reflect.PtrTo(p.mtype.Elem())).Elem() // addressable *V
740		valptr.Set(reflect.New(valptr.Type().Elem()))
741		valbase = toStructPointer(valptr)
742	default:
743		// everything else
744		valptr = reflect.New(reflect.PtrTo(p.mtype.Elem())).Elem() // addressable *V
745		valbase = toStructPointer(valptr.Addr())                   // **V
746	}
747
748	// Decode.
749	// This parses a restricted wire format, namely the encoding of a message
750	// with two fields. See enc_new_map for the format.
751	for o.index < oi {
752		// tagcode for key and value properties are always a single byte
753		// because they have tags 1 and 2.
754		tagcode := o.buf[o.index]
755		o.index++
756		switch tagcode {
757		case p.mkeyprop.tagcode[0]:
758			if err := p.mkeyprop.dec(o, p.mkeyprop, keybase); err != nil {
759				return err
760			}
761		case p.mvalprop.tagcode[0]:
762			if err := p.mvalprop.dec(o, p.mvalprop, valbase); err != nil {
763				return err
764			}
765		default:
766			// TODO: Should we silently skip this instead?
767			return fmt.Errorf("proto: bad map data tag %d", raw[0])
768		}
769	}
770	keyelem, valelem := keyptr.Elem(), valptr.Elem()
771	if !keyelem.IsValid() || !valelem.IsValid() {
772		// We did not decode the key or the value in the map entry.
773		// Either way, it's an invalid map entry.
774		return fmt.Errorf("proto: bad map data: missing key/val")
775	}
776
777	v.SetMapIndex(keyelem, valelem)
778	return nil
779}
780
781// Decode a group.
782func (o *Buffer) dec_struct_group(p *Properties, base structPointer) error {
783	bas := structPointer_GetStructPointer(base, p.field)
784	if structPointer_IsNil(bas) {
785		// allocate new nested message
786		bas = toStructPointer(reflect.New(p.stype))
787		structPointer_SetStructPointer(base, p.field, bas)
788	}
789	return o.unmarshalType(p.stype, p.sprop, true, bas)
790}
791
792// Decode an embedded message.
793func (o *Buffer) dec_struct_message(p *Properties, base structPointer) (err error) {
794	raw, e := o.DecodeRawBytes(false)
795	if e != nil {
796		return e
797	}
798
799	bas := structPointer_GetStructPointer(base, p.field)
800	if structPointer_IsNil(bas) {
801		// allocate new nested message
802		bas = toStructPointer(reflect.New(p.stype))
803		structPointer_SetStructPointer(base, p.field, bas)
804	}
805
806	// If the object can unmarshal itself, let it.
807	if p.isUnmarshaler {
808		iv := structPointer_Interface(bas, p.stype)
809		return iv.(Unmarshaler).Unmarshal(raw)
810	}
811
812	obuf := o.buf
813	oi := o.index
814	o.buf = raw
815	o.index = 0
816
817	err = o.unmarshalType(p.stype, p.sprop, false, bas)
818	o.buf = obuf
819	o.index = oi
820
821	return err
822}
823
824// Decode a slice of embedded messages.
825func (o *Buffer) dec_slice_struct_message(p *Properties, base structPointer) error {
826	return o.dec_slice_struct(p, false, base)
827}
828
829// Decode a slice of embedded groups.
830func (o *Buffer) dec_slice_struct_group(p *Properties, base structPointer) error {
831	return o.dec_slice_struct(p, true, base)
832}
833
834// Decode a slice of structs ([]*struct).
835func (o *Buffer) dec_slice_struct(p *Properties, is_group bool, base structPointer) error {
836	v := reflect.New(p.stype)
837	bas := toStructPointer(v)
838	structPointer_StructPointerSlice(base, p.field).Append(bas)
839
840	if is_group {
841		err := o.unmarshalType(p.stype, p.sprop, is_group, bas)
842		return err
843	}
844
845	raw, err := o.DecodeRawBytes(false)
846	if err != nil {
847		return err
848	}
849
850	// If the object can unmarshal itself, let it.
851	if p.isUnmarshaler {
852		iv := v.Interface()
853		return iv.(Unmarshaler).Unmarshal(raw)
854	}
855
856	obuf := o.buf
857	oi := o.index
858	o.buf = raw
859	o.index = 0
860
861	err = o.unmarshalType(p.stype, p.sprop, is_group, bas)
862
863	o.buf = obuf
864	o.index = oi
865
866	return err
867}
868