1 /* GLIB - Library of useful routines for C programming
2  * Copyright (C) 1995-1997  Peter Mattis, Spencer Kimball and Josh MacDonald
3  *
4  * This library is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU Lesser General Public
6  * License as published by the Free Software Foundation; either
7  * version 2.1 of the License, or (at your option) any later version.
8  *
9  * This library is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * Lesser General Public License for more details.
13  *
14  * You should have received a copy of the GNU Lesser General Public
15  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 /* Originally developed and coded by Makoto Matsumoto and Takuji
19  * Nishimura.  Please mail <matumoto@math.keio.ac.jp>, if you're using
20  * code from this file in your own programs or libraries.
21  * Further information on the Mersenne Twister can be found at
22  * http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
23  * This code was adapted to glib by Sebastian Wilhelmi.
24  */
25 
26 /*
27  * Modified by the GLib Team and others 1997-2000.  See the AUTHORS
28  * file for a list of people on the GLib Team.  See the ChangeLog
29  * files for a list of changes.  These files are distributed with
30  * GLib at ftp://ftp.gtk.org/pub/gtk/.
31  */
32 
33 /*
34  * MT safe
35  */
36 
37 #include "config.h"
38 #define _CRT_RAND_S
39 
40 #include <math.h>
41 #include <errno.h>
42 #include <stdio.h>
43 #include <string.h>
44 #include <sys/types.h>
45 #include "grand.h"
46 
47 #include "genviron.h"
48 #include "gmain.h"
49 #include "gmem.h"
50 #include "gtestutils.h"
51 #include "gthread.h"
52 #include "gtimer.h"
53 
54 #ifdef G_OS_UNIX
55 #include <unistd.h>
56 #endif
57 
58 #ifdef G_OS_WIN32
59 #include <stdlib.h>
60 #include <process.h> /* For getpid() */
61 #endif
62 
63 /**
64  * SECTION:random_numbers
65  * @title: Random Numbers
66  * @short_description: pseudo-random number generator
67  *
68  * The following functions allow you to use a portable, fast and good
69  * pseudo-random number generator (PRNG).
70  *
71  * Do not use this API for cryptographic purposes such as key
72  * generation, nonces, salts or one-time pads.
73  *
74  * This PRNG is suitable for non-cryptographic use such as in games
75  * (shuffling a card deck, generating levels), generating data for
76  * a test suite, etc. If you need random data for cryptographic
77  * purposes, it is recommended to use platform-specific APIs such
78  * as `/dev/random` on UNIX, or CryptGenRandom() on Windows.
79  *
80  * GRand uses the Mersenne Twister PRNG, which was originally
81  * developed by Makoto Matsumoto and Takuji Nishimura. Further
82  * information can be found at
83  * [this page](http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html).
84  *
85  * If you just need a random number, you simply call the g_random_*
86  * functions, which will create a globally used #GRand and use the
87  * according g_rand_* functions internally. Whenever you need a
88  * stream of reproducible random numbers, you better create a
89  * #GRand yourself and use the g_rand_* functions directly, which
90  * will also be slightly faster. Initializing a #GRand with a
91  * certain seed will produce exactly the same series of random
92  * numbers on all platforms. This can thus be used as a seed for
93  * e.g. games.
94  *
95  * The g_rand*_range functions will return high quality equally
96  * distributed random numbers, whereas for example the
97  * `(g_random_int()%max)` approach often
98  * doesn't yield equally distributed numbers.
99  *
100  * GLib changed the seeding algorithm for the pseudo-random number
101  * generator Mersenne Twister, as used by #GRand. This was necessary,
102  * because some seeds would yield very bad pseudo-random streams.
103  * Also the pseudo-random integers generated by g_rand*_int_range()
104  * will have a slightly better equal distribution with the new
105  * version of GLib.
106  *
107  * The original seeding and generation algorithms, as found in
108  * GLib 2.0.x, can be used instead of the new ones by setting the
109  * environment variable `G_RANDOM_VERSION` to the value of '2.0'.
110  * Use the GLib-2.0 algorithms only if you have sequences of numbers
111  * generated with Glib-2.0 that you need to reproduce exactly.
112  */
113 
114 /**
115  * GRand:
116  *
117  * The GRand struct is an opaque data structure. It should only be
118  * accessed through the g_rand_* functions.
119  **/
120 
121 G_LOCK_DEFINE_STATIC (global_random);
122 
123 /* Period parameters */
124 #define N 624
125 #define M 397
126 #define MATRIX_A 0x9908b0df   /* constant vector a */
127 #define UPPER_MASK 0x80000000 /* most significant w-r bits */
128 #define LOWER_MASK 0x7fffffff /* least significant r bits */
129 
130 /* Tempering parameters */
131 #define TEMPERING_MASK_B 0x9d2c5680
132 #define TEMPERING_MASK_C 0xefc60000
133 #define TEMPERING_SHIFT_U(y)  (y >> 11)
134 #define TEMPERING_SHIFT_S(y)  (y << 7)
135 #define TEMPERING_SHIFT_T(y)  (y << 15)
136 #define TEMPERING_SHIFT_L(y)  (y >> 18)
137 
138 static guint
get_random_version(void)139 get_random_version (void)
140 {
141   static gsize initialized = FALSE;
142   static guint random_version;
143 
144   if (g_once_init_enter (&initialized))
145     {
146       const gchar *version_string = g_getenv ("G_RANDOM_VERSION");
147       if (!version_string || version_string[0] == '\000' ||
148 	  strcmp (version_string, "2.2") == 0)
149 	random_version = 22;
150       else if (strcmp (version_string, "2.0") == 0)
151 	random_version = 20;
152       else
153 	{
154 	  g_warning ("Unknown G_RANDOM_VERSION \"%s\". Using version 2.2.",
155 		     version_string);
156 	  random_version = 22;
157 	}
158       g_once_init_leave (&initialized, TRUE);
159     }
160 
161   return random_version;
162 }
163 
164 struct _GRand
165 {
166   guint32 mt[N]; /* the array for the state vector  */
167   guint mti;
168 };
169 
170 /**
171  * g_rand_new_with_seed:
172  * @seed: a value to initialize the random number generator
173  *
174  * Creates a new random number generator initialized with @seed.
175  *
176  * Returns: the new #GRand
177  **/
178 GRand*
g_rand_new_with_seed(guint32 seed)179 g_rand_new_with_seed (guint32 seed)
180 {
181   GRand *rand = g_new0 (GRand, 1);
182   g_rand_set_seed (rand, seed);
183   return rand;
184 }
185 
186 /**
187  * g_rand_new_with_seed_array:
188  * @seed: an array of seeds to initialize the random number generator
189  * @seed_length: an array of seeds to initialize the random number
190  *     generator
191  *
192  * Creates a new random number generator initialized with @seed.
193  *
194  * Returns: the new #GRand
195  *
196  * Since: 2.4
197  */
198 GRand*
g_rand_new_with_seed_array(const guint32 * seed,guint seed_length)199 g_rand_new_with_seed_array (const guint32 *seed,
200                             guint          seed_length)
201 {
202   GRand *rand = g_new0 (GRand, 1);
203   g_rand_set_seed_array (rand, seed, seed_length);
204   return rand;
205 }
206 
207 /**
208  * g_rand_new:
209  *
210  * Creates a new random number generator initialized with a seed taken
211  * either from `/dev/urandom` (if existing) or from the current time
212  * (as a fallback).
213  *
214  * On Windows, the seed is taken from rand_s().
215  *
216  * Returns: the new #GRand
217  */
218 GRand*
g_rand_new(void)219 g_rand_new (void)
220 {
221   guint32 seed[4];
222 #ifdef G_OS_UNIX
223   static gboolean dev_urandom_exists = TRUE;
224 
225   if (dev_urandom_exists)
226     {
227       FILE* dev_urandom;
228 
229       do
230 	{
231 	  dev_urandom = fopen("/dev/urandom", "rb");
232 	}
233       while G_UNLIKELY (dev_urandom == NULL && errno == EINTR);
234 
235       if (dev_urandom)
236 	{
237 	  int r;
238 
239 	  setvbuf (dev_urandom, NULL, _IONBF, 0);
240 	  do
241 	    {
242 	      errno = 0;
243 	      r = fread (seed, sizeof (seed), 1, dev_urandom);
244 	    }
245 	  while G_UNLIKELY (errno == EINTR);
246 
247 	  if (r != 1)
248 	    dev_urandom_exists = FALSE;
249 
250 	  fclose (dev_urandom);
251 	}
252       else
253 	dev_urandom_exists = FALSE;
254     }
255 
256   if (!dev_urandom_exists)
257     {
258       gint64 now_us = g_get_real_time ();
259       seed[0] = now_us / G_USEC_PER_SEC;
260       seed[1] = now_us % G_USEC_PER_SEC;
261       seed[2] = getpid ();
262       seed[3] = getppid ();
263     }
264 #else /* G_OS_WIN32 */
265   /* rand_s() is only available since Visual Studio 2005 and
266    * MinGW-w64 has a wrapper that will emulate rand_s() if it's not in msvcrt
267    */
268 #if (defined(_MSC_VER) && _MSC_VER >= 1400) || defined(__MINGW64_VERSION_MAJOR)
269   gsize i;
270 
271   for (i = 0; i < G_N_ELEMENTS (seed); i++)
272     rand_s (&seed[i]);
273 #else
274 #warning Using insecure seed for random number generation because of missing rand_s() in Windows XP
275   GTimeVal now;
276 
277   g_get_current_time (&now);
278   seed[0] = now.tv_sec;
279   seed[1] = now.tv_usec;
280   seed[2] = getpid ();
281   seed[3] = 0;
282 #endif
283 
284 #endif
285 
286   return g_rand_new_with_seed_array (seed, 4);
287 }
288 
289 /**
290  * g_rand_free:
291  * @rand_: a #GRand
292  *
293  * Frees the memory allocated for the #GRand.
294  */
295 void
g_rand_free(GRand * rand)296 g_rand_free (GRand *rand)
297 {
298   g_return_if_fail (rand != NULL);
299 
300   g_free (rand);
301 }
302 
303 /**
304  * g_rand_copy:
305  * @rand_: a #GRand
306  *
307  * Copies a #GRand into a new one with the same exact state as before.
308  * This way you can take a snapshot of the random number generator for
309  * replaying later.
310  *
311  * Returns: the new #GRand
312  *
313  * Since: 2.4
314  */
315 GRand*
g_rand_copy(GRand * rand)316 g_rand_copy (GRand *rand)
317 {
318   GRand* new_rand;
319 
320   g_return_val_if_fail (rand != NULL, NULL);
321 
322   new_rand = g_new0 (GRand, 1);
323   memcpy (new_rand, rand, sizeof (GRand));
324 
325   return new_rand;
326 }
327 
328 /**
329  * g_rand_set_seed:
330  * @rand_: a #GRand
331  * @seed: a value to reinitialize the random number generator
332  *
333  * Sets the seed for the random number generator #GRand to @seed.
334  */
335 void
g_rand_set_seed(GRand * rand,guint32 seed)336 g_rand_set_seed (GRand   *rand,
337                  guint32  seed)
338 {
339   g_return_if_fail (rand != NULL);
340 
341   switch (get_random_version ())
342     {
343     case 20:
344       /* setting initial seeds to mt[N] using         */
345       /* the generator Line 25 of Table 1 in          */
346       /* [KNUTH 1981, The Art of Computer Programming */
347       /*    Vol. 2 (2nd Ed.), pp102]                  */
348 
349       if (seed == 0) /* This would make the PRNG produce only zeros */
350 	seed = 0x6b842128; /* Just set it to another number */
351 
352       rand->mt[0]= seed;
353       for (rand->mti=1; rand->mti<N; rand->mti++)
354 	rand->mt[rand->mti] = (69069 * rand->mt[rand->mti-1]);
355 
356       break;
357     case 22:
358       /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
359       /* In the previous version (see above), MSBs of the    */
360       /* seed affect only MSBs of the array mt[].            */
361 
362       rand->mt[0]= seed;
363       for (rand->mti=1; rand->mti<N; rand->mti++)
364 	rand->mt[rand->mti] = 1812433253UL *
365 	  (rand->mt[rand->mti-1] ^ (rand->mt[rand->mti-1] >> 30)) + rand->mti;
366       break;
367     default:
368       g_assert_not_reached ();
369     }
370 }
371 
372 /**
373  * g_rand_set_seed_array:
374  * @rand_: a #GRand
375  * @seed: array to initialize with
376  * @seed_length: length of array
377  *
378  * Initializes the random number generator by an array of longs.
379  * Array can be of arbitrary size, though only the first 624 values
380  * are taken.  This function is useful if you have many low entropy
381  * seeds, or if you require more then 32 bits of actual entropy for
382  * your application.
383  *
384  * Since: 2.4
385  */
386 void
g_rand_set_seed_array(GRand * rand,const guint32 * seed,guint seed_length)387 g_rand_set_seed_array (GRand         *rand,
388                        const guint32 *seed,
389                        guint          seed_length)
390 {
391   guint i, j, k;
392 
393   g_return_if_fail (rand != NULL);
394   g_return_if_fail (seed_length >= 1);
395 
396   g_rand_set_seed (rand, 19650218UL);
397 
398   i=1; j=0;
399   k = (N>seed_length ? N : seed_length);
400   for (; k; k--)
401     {
402       rand->mt[i] = (rand->mt[i] ^
403 		     ((rand->mt[i-1] ^ (rand->mt[i-1] >> 30)) * 1664525UL))
404 	      + seed[j] + j; /* non linear */
405       rand->mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
406       i++; j++;
407       if (i>=N)
408         {
409 	  rand->mt[0] = rand->mt[N-1];
410 	  i=1;
411 	}
412       if (j>=seed_length)
413 	j=0;
414     }
415   for (k=N-1; k; k--)
416     {
417       rand->mt[i] = (rand->mt[i] ^
418 		     ((rand->mt[i-1] ^ (rand->mt[i-1] >> 30)) * 1566083941UL))
419 	      - i; /* non linear */
420       rand->mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
421       i++;
422       if (i>=N)
423         {
424 	  rand->mt[0] = rand->mt[N-1];
425 	  i=1;
426 	}
427     }
428 
429   rand->mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */
430 }
431 
432 /**
433  * g_rand_boolean:
434  * @rand_: a #GRand
435  *
436  * Returns a random #gboolean from @rand_.
437  * This corresponds to an unbiased coin toss.
438  *
439  * Returns: a random #gboolean
440  */
441 /**
442  * g_rand_int:
443  * @rand_: a #GRand
444  *
445  * Returns the next random #guint32 from @rand_ equally distributed over
446  * the range [0..2^32-1].
447  *
448  * Returns: a random number
449  */
450 guint32
g_rand_int(GRand * rand)451 g_rand_int (GRand *rand)
452 {
453   guint32 y;
454   static const guint32 mag01[2]={0x0, MATRIX_A};
455   /* mag01[x] = x * MATRIX_A  for x=0,1 */
456 
457   g_return_val_if_fail (rand != NULL, 0);
458 
459   if (rand->mti >= N) { /* generate N words at one time */
460     int kk;
461 
462     for (kk = 0; kk < N - M; kk++) {
463       y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK);
464       rand->mt[kk] = rand->mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1];
465     }
466     for (; kk < N - 1; kk++) {
467       y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK);
468       rand->mt[kk] = rand->mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1];
469     }
470     y = (rand->mt[N-1]&UPPER_MASK)|(rand->mt[0]&LOWER_MASK);
471     rand->mt[N-1] = rand->mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1];
472 
473     rand->mti = 0;
474   }
475 
476   y = rand->mt[rand->mti++];
477   y ^= TEMPERING_SHIFT_U(y);
478   y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B;
479   y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C;
480   y ^= TEMPERING_SHIFT_L(y);
481 
482   return y;
483 }
484 
485 /* transform [0..2^32] -> [0..1] */
486 #define G_RAND_DOUBLE_TRANSFORM 2.3283064365386962890625e-10
487 
488 /**
489  * g_rand_int_range:
490  * @rand_: a #GRand
491  * @begin: lower closed bound of the interval
492  * @end: upper open bound of the interval
493  *
494  * Returns the next random #gint32 from @rand_ equally distributed over
495  * the range [@begin..@end-1].
496  *
497  * Returns: a random number
498  */
499 gint32
g_rand_int_range(GRand * rand,gint32 begin,gint32 end)500 g_rand_int_range (GRand  *rand,
501                   gint32  begin,
502                   gint32  end)
503 {
504   guint32 dist = end - begin;
505   guint32 random = 0;
506 
507   g_return_val_if_fail (rand != NULL, begin);
508   g_return_val_if_fail (end > begin, begin);
509 
510   switch (get_random_version ())
511     {
512     case 20:
513       if (dist <= 0x10000L) /* 2^16 */
514 	{
515 	  /* This method, which only calls g_rand_int once is only good
516 	   * for (end - begin) <= 2^16, because we only have 32 bits set
517 	   * from the one call to g_rand_int ().
518 	   *
519 	   * We are using (trans + trans * trans), because g_rand_int only
520 	   * covers [0..2^32-1] and thus g_rand_int * trans only covers
521 	   * [0..1-2^-32], but the biggest double < 1 is 1-2^-52.
522 	   */
523 
524 	  gdouble double_rand = g_rand_int (rand) *
525 	    (G_RAND_DOUBLE_TRANSFORM +
526 	     G_RAND_DOUBLE_TRANSFORM * G_RAND_DOUBLE_TRANSFORM);
527 
528 	  random = (gint32) (double_rand * dist);
529 	}
530       else
531 	{
532 	  /* Now we use g_rand_double_range (), which will set 52 bits
533 	   * for us, so that it is safe to round and still get a decent
534 	   * distribution
535            */
536 	  random = (gint32) g_rand_double_range (rand, 0, dist);
537 	}
538       break;
539     case 22:
540       if (dist == 0)
541 	random = 0;
542       else
543 	{
544 	  /* maxvalue is set to the predecessor of the greatest
545 	   * multiple of dist less or equal 2^32.
546 	   */
547 	  guint32 maxvalue;
548 	  if (dist <= 0x80000000u) /* 2^31 */
549 	    {
550 	      /* maxvalue = 2^32 - 1 - (2^32 % dist) */
551 	      guint32 leftover = (0x80000000u % dist) * 2;
552 	      if (leftover >= dist) leftover -= dist;
553 	      maxvalue = 0xffffffffu - leftover;
554 	    }
555 	  else
556 	    maxvalue = dist - 1;
557 
558 	  do
559 	    random = g_rand_int (rand);
560 	  while (random > maxvalue);
561 
562 	  random %= dist;
563 	}
564       break;
565     default:
566       g_assert_not_reached ();
567     }
568 
569   return begin + random;
570 }
571 
572 /**
573  * g_rand_double:
574  * @rand_: a #GRand
575  *
576  * Returns the next random #gdouble from @rand_ equally distributed over
577  * the range [0..1).
578  *
579  * Returns: a random number
580  */
581 gdouble
g_rand_double(GRand * rand)582 g_rand_double (GRand *rand)
583 {
584   /* We set all 52 bits after the point for this, not only the first
585      32. That's why we need two calls to g_rand_int */
586   gdouble retval = g_rand_int (rand) * G_RAND_DOUBLE_TRANSFORM;
587   retval = (retval + g_rand_int (rand)) * G_RAND_DOUBLE_TRANSFORM;
588 
589   /* The following might happen due to very bad rounding luck, but
590    * actually this should be more than rare, we just try again then */
591   if (retval >= 1.0)
592     return g_rand_double (rand);
593 
594   return retval;
595 }
596 
597 /**
598  * g_rand_double_range:
599  * @rand_: a #GRand
600  * @begin: lower closed bound of the interval
601  * @end: upper open bound of the interval
602  *
603  * Returns the next random #gdouble from @rand_ equally distributed over
604  * the range [@begin..@end).
605  *
606  * Returns: a random number
607  */
608 gdouble
g_rand_double_range(GRand * rand,gdouble begin,gdouble end)609 g_rand_double_range (GRand   *rand,
610                      gdouble  begin,
611                      gdouble  end)
612 {
613   gdouble r;
614 
615   r = g_rand_double (rand);
616 
617   return r * end - (r - 1) * begin;
618 }
619 
620 static GRand *
get_global_random(void)621 get_global_random (void)
622 {
623   static GRand *global_random;
624 
625   /* called while locked */
626   if (!global_random)
627     global_random = g_rand_new ();
628 
629   return global_random;
630 }
631 
632 /**
633  * g_random_boolean:
634  *
635  * Returns a random #gboolean.
636  * This corresponds to an unbiased coin toss.
637  *
638  * Returns: a random #gboolean
639  */
640 /**
641  * g_random_int:
642  *
643  * Return a random #guint32 equally distributed over the range
644  * [0..2^32-1].
645  *
646  * Returns: a random number
647  */
648 guint32
g_random_int(void)649 g_random_int (void)
650 {
651   guint32 result;
652   G_LOCK (global_random);
653   result = g_rand_int (get_global_random ());
654   G_UNLOCK (global_random);
655   return result;
656 }
657 
658 /**
659  * g_random_int_range:
660  * @begin: lower closed bound of the interval
661  * @end: upper open bound of the interval
662  *
663  * Returns a random #gint32 equally distributed over the range
664  * [@begin..@end-1].
665  *
666  * Returns: a random number
667  */
668 gint32
g_random_int_range(gint32 begin,gint32 end)669 g_random_int_range (gint32 begin,
670                     gint32 end)
671 {
672   gint32 result;
673   G_LOCK (global_random);
674   result = g_rand_int_range (get_global_random (), begin, end);
675   G_UNLOCK (global_random);
676   return result;
677 }
678 
679 /**
680  * g_random_double:
681  *
682  * Returns a random #gdouble equally distributed over the range [0..1).
683  *
684  * Returns: a random number
685  */
686 gdouble
g_random_double(void)687 g_random_double (void)
688 {
689   double result;
690   G_LOCK (global_random);
691   result = g_rand_double (get_global_random ());
692   G_UNLOCK (global_random);
693   return result;
694 }
695 
696 /**
697  * g_random_double_range:
698  * @begin: lower closed bound of the interval
699  * @end: upper open bound of the interval
700  *
701  * Returns a random #gdouble equally distributed over the range
702  * [@begin..@end).
703  *
704  * Returns: a random number
705  */
706 gdouble
g_random_double_range(gdouble begin,gdouble end)707 g_random_double_range (gdouble begin,
708                        gdouble end)
709 {
710   double result;
711   G_LOCK (global_random);
712   result = g_rand_double_range (get_global_random (), begin, end);
713   G_UNLOCK (global_random);
714   return result;
715 }
716 
717 /**
718  * g_random_set_seed:
719  * @seed: a value to reinitialize the global random number generator
720  *
721  * Sets the seed for the global random number generator, which is used
722  * by the g_random_* functions, to @seed.
723  */
724 void
g_random_set_seed(guint32 seed)725 g_random_set_seed (guint32 seed)
726 {
727   G_LOCK (global_random);
728   g_rand_set_seed (get_global_random (), seed);
729   G_UNLOCK (global_random);
730 }
731