1 //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains some functions that are useful for math stuff.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_SUPPORT_MATHEXTRAS_H
14 #define LLVM_SUPPORT_MATHEXTRAS_H
15 
16 #include "llvm/Support/Compiler.h"
17 #include <algorithm>
18 #include <cassert>
19 #include <climits>
20 #include <cmath>
21 #include <cstdint>
22 #include <cstring>
23 #include <limits>
24 #include <type_traits>
25 
26 #ifdef __ANDROID_NDK__
27 #include <android/api-level.h>
28 #endif
29 
30 #ifdef _MSC_VER
31 // Declare these intrinsics manually rather including intrin.h. It's very
32 // expensive, and MathExtras.h is popular.
33 // #include <intrin.h>
34 extern "C" {
35 unsigned char _BitScanForward(unsigned long *_Index, unsigned long _Mask);
36 unsigned char _BitScanForward64(unsigned long *_Index, unsigned __int64 _Mask);
37 unsigned char _BitScanReverse(unsigned long *_Index, unsigned long _Mask);
38 unsigned char _BitScanReverse64(unsigned long *_Index, unsigned __int64 _Mask);
39 }
40 #endif
41 
42 namespace llvm {
43 
44 /// The behavior an operation has on an input of 0.
45 enum ZeroBehavior {
46   /// The returned value is undefined.
47   ZB_Undefined,
48   /// The returned value is numeric_limits<T>::max()
49   ZB_Max,
50   /// The returned value is numeric_limits<T>::digits
51   ZB_Width
52 };
53 
54 /// Mathematical constants.
55 namespace numbers {
56 // TODO: Track C++20 std::numbers.
57 // TODO: Favor using the hexadecimal FP constants (requires C++17).
58 constexpr double e          = 2.7182818284590452354, // (0x1.5bf0a8b145749P+1) https://oeis.org/A001113
59                  egamma     = .57721566490153286061, // (0x1.2788cfc6fb619P-1) https://oeis.org/A001620
60                  ln2        = .69314718055994530942, // (0x1.62e42fefa39efP-1) https://oeis.org/A002162
61                  ln10       = 2.3025850929940456840, // (0x1.24bb1bbb55516P+1) https://oeis.org/A002392
62                  log2e      = 1.4426950408889634074, // (0x1.71547652b82feP+0)
63                  log10e     = .43429448190325182765, // (0x1.bcb7b1526e50eP-2)
64                  pi         = 3.1415926535897932385, // (0x1.921fb54442d18P+1) https://oeis.org/A000796
65                  inv_pi     = .31830988618379067154, // (0x1.45f306bc9c883P-2) https://oeis.org/A049541
66                  sqrtpi     = 1.7724538509055160273, // (0x1.c5bf891b4ef6bP+0) https://oeis.org/A002161
67                  inv_sqrtpi = .56418958354775628695, // (0x1.20dd750429b6dP-1) https://oeis.org/A087197
68                  sqrt2      = 1.4142135623730950488, // (0x1.6a09e667f3bcdP+0) https://oeis.org/A00219
69                  inv_sqrt2  = .70710678118654752440, // (0x1.6a09e667f3bcdP-1)
70                  sqrt3      = 1.7320508075688772935, // (0x1.bb67ae8584caaP+0) https://oeis.org/A002194
71                  inv_sqrt3  = .57735026918962576451, // (0x1.279a74590331cP-1)
72                  phi        = 1.6180339887498948482; // (0x1.9e3779b97f4a8P+0) https://oeis.org/A001622
73 constexpr float ef          = 2.71828183F, // (0x1.5bf0a8P+1) https://oeis.org/A001113
74                 egammaf     = .577215665F, // (0x1.2788d0P-1) https://oeis.org/A001620
75                 ln2f        = .693147181F, // (0x1.62e430P-1) https://oeis.org/A002162
76                 ln10f       = 2.30258509F, // (0x1.26bb1cP+1) https://oeis.org/A002392
77                 log2ef      = 1.44269504F, // (0x1.715476P+0)
78                 log10ef     = .434294482F, // (0x1.bcb7b2P-2)
79                 pif         = 3.14159265F, // (0x1.921fb6P+1) https://oeis.org/A000796
80                 inv_pif     = .318309886F, // (0x1.45f306P-2) https://oeis.org/A049541
81                 sqrtpif     = 1.77245385F, // (0x1.c5bf8aP+0) https://oeis.org/A002161
82                 inv_sqrtpif = .564189584F, // (0x1.20dd76P-1) https://oeis.org/A087197
83                 sqrt2f      = 1.41421356F, // (0x1.6a09e6P+0) https://oeis.org/A002193
84                 inv_sqrt2f  = .707106781F, // (0x1.6a09e6P-1)
85                 sqrt3f      = 1.73205081F, // (0x1.bb67aeP+0) https://oeis.org/A002194
86                 inv_sqrt3f  = .577350269F, // (0x1.279a74P-1)
87                 phif        = 1.61803399F; // (0x1.9e377aP+0) https://oeis.org/A001622
88 } // namespace numbers
89 
90 namespace detail {
91 template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter {
countTrailingZerosCounter92   static unsigned count(T Val, ZeroBehavior) {
93     if (!Val)
94       return std::numeric_limits<T>::digits;
95     if (Val & 0x1)
96       return 0;
97 
98     // Bisection method.
99     unsigned ZeroBits = 0;
100     T Shift = std::numeric_limits<T>::digits >> 1;
101     T Mask = std::numeric_limits<T>::max() >> Shift;
102     while (Shift) {
103       if ((Val & Mask) == 0) {
104         Val >>= Shift;
105         ZeroBits |= Shift;
106       }
107       Shift >>= 1;
108       Mask >>= Shift;
109     }
110     return ZeroBits;
111   }
112 };
113 
114 #if defined(__GNUC__) || defined(_MSC_VER)
115 template <typename T> struct TrailingZerosCounter<T, 4> {
116   static unsigned count(T Val, ZeroBehavior ZB) {
117     if (ZB != ZB_Undefined && Val == 0)
118       return 32;
119 
120 #if __has_builtin(__builtin_ctz) || defined(__GNUC__)
121     return __builtin_ctz(Val);
122 #elif defined(_MSC_VER)
123     unsigned long Index;
124     _BitScanForward(&Index, Val);
125     return Index;
126 #endif
127   }
128 };
129 
130 #if !defined(_MSC_VER) || defined(_M_X64)
131 template <typename T> struct TrailingZerosCounter<T, 8> {
132   static unsigned count(T Val, ZeroBehavior ZB) {
133     if (ZB != ZB_Undefined && Val == 0)
134       return 64;
135 
136 #if __has_builtin(__builtin_ctzll) || defined(__GNUC__)
137     return __builtin_ctzll(Val);
138 #elif defined(_MSC_VER)
139     unsigned long Index;
140     _BitScanForward64(&Index, Val);
141     return Index;
142 #endif
143   }
144 };
145 #endif
146 #endif
147 } // namespace detail
148 
149 /// Count number of 0's from the least significant bit to the most
150 ///   stopping at the first 1.
151 ///
152 /// Only unsigned integral types are allowed.
153 ///
154 /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
155 ///   valid arguments.
156 template <typename T>
157 unsigned countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
158   static_assert(std::numeric_limits<T>::is_integer &&
159                     !std::numeric_limits<T>::is_signed,
160                 "Only unsigned integral types are allowed.");
161   return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB);
162 }
163 
164 namespace detail {
165 template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter {
166   static unsigned count(T Val, ZeroBehavior) {
167     if (!Val)
168       return std::numeric_limits<T>::digits;
169 
170     // Bisection method.
171     unsigned ZeroBits = 0;
172     for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
173       T Tmp = Val >> Shift;
174       if (Tmp)
175         Val = Tmp;
176       else
177         ZeroBits |= Shift;
178     }
179     return ZeroBits;
180   }
181 };
182 
183 #if defined(__GNUC__) || defined(_MSC_VER)
184 template <typename T> struct LeadingZerosCounter<T, 4> {
185   static unsigned count(T Val, ZeroBehavior ZB) {
186     if (ZB != ZB_Undefined && Val == 0)
187       return 32;
188 
189 #if __has_builtin(__builtin_clz) || defined(__GNUC__)
190     return __builtin_clz(Val);
191 #elif defined(_MSC_VER)
192     unsigned long Index;
193     _BitScanReverse(&Index, Val);
194     return Index ^ 31;
195 #endif
196   }
197 };
198 
199 #if !defined(_MSC_VER) || defined(_M_X64)
200 template <typename T> struct LeadingZerosCounter<T, 8> {
201   static unsigned count(T Val, ZeroBehavior ZB) {
202     if (ZB != ZB_Undefined && Val == 0)
203       return 64;
204 
205 #if __has_builtin(__builtin_clzll) || defined(__GNUC__)
206     return __builtin_clzll(Val);
207 #elif defined(_MSC_VER)
208     unsigned long Index;
209     _BitScanReverse64(&Index, Val);
210     return Index ^ 63;
211 #endif
212   }
213 };
214 #endif
215 #endif
216 } // namespace detail
217 
218 /// Count number of 0's from the most significant bit to the least
219 ///   stopping at the first 1.
220 ///
221 /// Only unsigned integral types are allowed.
222 ///
223 /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
224 ///   valid arguments.
225 template <typename T>
226 unsigned countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
227   static_assert(std::numeric_limits<T>::is_integer &&
228                     !std::numeric_limits<T>::is_signed,
229                 "Only unsigned integral types are allowed.");
230   return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB);
231 }
232 
233 /// Get the index of the first set bit starting from the least
234 ///   significant bit.
235 ///
236 /// Only unsigned integral types are allowed.
237 ///
238 /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
239 ///   valid arguments.
240 template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
241   if (ZB == ZB_Max && Val == 0)
242     return std::numeric_limits<T>::max();
243 
244   return countTrailingZeros(Val, ZB_Undefined);
245 }
246 
247 /// Create a bitmask with the N right-most bits set to 1, and all other
248 /// bits set to 0.  Only unsigned types are allowed.
249 template <typename T> T maskTrailingOnes(unsigned N) {
250   static_assert(std::is_unsigned<T>::value, "Invalid type!");
251   const unsigned Bits = CHAR_BIT * sizeof(T);
252   assert(N <= Bits && "Invalid bit index");
253   return N == 0 ? 0 : (T(-1) >> (Bits - N));
254 }
255 
256 /// Create a bitmask with the N left-most bits set to 1, and all other
257 /// bits set to 0.  Only unsigned types are allowed.
258 template <typename T> T maskLeadingOnes(unsigned N) {
259   return ~maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N);
260 }
261 
262 /// Create a bitmask with the N right-most bits set to 0, and all other
263 /// bits set to 1.  Only unsigned types are allowed.
264 template <typename T> T maskTrailingZeros(unsigned N) {
265   return maskLeadingOnes<T>(CHAR_BIT * sizeof(T) - N);
266 }
267 
268 /// Create a bitmask with the N left-most bits set to 0, and all other
269 /// bits set to 1.  Only unsigned types are allowed.
270 template <typename T> T maskLeadingZeros(unsigned N) {
271   return maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N);
272 }
273 
274 /// Get the index of the last set bit starting from the least
275 ///   significant bit.
276 ///
277 /// Only unsigned integral types are allowed.
278 ///
279 /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
280 ///   valid arguments.
281 template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
282   if (ZB == ZB_Max && Val == 0)
283     return std::numeric_limits<T>::max();
284 
285   // Use ^ instead of - because both gcc and llvm can remove the associated ^
286   // in the __builtin_clz intrinsic on x86.
287   return countLeadingZeros(Val, ZB_Undefined) ^
288          (std::numeric_limits<T>::digits - 1);
289 }
290 
291 /// Macro compressed bit reversal table for 256 bits.
292 ///
293 /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
294 static const unsigned char BitReverseTable256[256] = {
295 #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
296 #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
297 #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
298   R6(0), R6(2), R6(1), R6(3)
299 #undef R2
300 #undef R4
301 #undef R6
302 };
303 
304 /// Reverse the bits in \p Val.
305 template <typename T>
306 T reverseBits(T Val) {
307   unsigned char in[sizeof(Val)];
308   unsigned char out[sizeof(Val)];
309   std::memcpy(in, &Val, sizeof(Val));
310   for (unsigned i = 0; i < sizeof(Val); ++i)
311     out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
312   std::memcpy(&Val, out, sizeof(Val));
313   return Val;
314 }
315 
316 #if __has_builtin(__builtin_bitreverse8)
317 template<>
318 inline uint8_t reverseBits<uint8_t>(uint8_t Val) {
319   return __builtin_bitreverse8(Val);
320 }
321 #endif
322 
323 #if __has_builtin(__builtin_bitreverse16)
324 template<>
325 inline uint16_t reverseBits<uint16_t>(uint16_t Val) {
326   return __builtin_bitreverse16(Val);
327 }
328 #endif
329 
330 #if __has_builtin(__builtin_bitreverse32)
331 template<>
332 inline uint32_t reverseBits<uint32_t>(uint32_t Val) {
333   return __builtin_bitreverse32(Val);
334 }
335 #endif
336 
337 #if __has_builtin(__builtin_bitreverse64)
338 template<>
339 inline uint64_t reverseBits<uint64_t>(uint64_t Val) {
340   return __builtin_bitreverse64(Val);
341 }
342 #endif
343 
344 // NOTE: The following support functions use the _32/_64 extensions instead of
345 // type overloading so that signed and unsigned integers can be used without
346 // ambiguity.
347 
348 /// Return the high 32 bits of a 64 bit value.
349 constexpr inline uint32_t Hi_32(uint64_t Value) {
350   return static_cast<uint32_t>(Value >> 32);
351 }
352 
353 /// Return the low 32 bits of a 64 bit value.
354 constexpr inline uint32_t Lo_32(uint64_t Value) {
355   return static_cast<uint32_t>(Value);
356 }
357 
358 /// Make a 64-bit integer from a high / low pair of 32-bit integers.
359 constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) {
360   return ((uint64_t)High << 32) | (uint64_t)Low;
361 }
362 
363 /// Checks if an integer fits into the given bit width.
364 template <unsigned N> constexpr inline bool isInt(int64_t x) {
365   return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
366 }
367 // Template specializations to get better code for common cases.
368 template <> constexpr inline bool isInt<8>(int64_t x) {
369   return static_cast<int8_t>(x) == x;
370 }
371 template <> constexpr inline bool isInt<16>(int64_t x) {
372   return static_cast<int16_t>(x) == x;
373 }
374 template <> constexpr inline bool isInt<32>(int64_t x) {
375   return static_cast<int32_t>(x) == x;
376 }
377 
378 /// Checks if a signed integer is an N bit number shifted left by S.
379 template <unsigned N, unsigned S>
380 constexpr inline bool isShiftedInt(int64_t x) {
381   static_assert(
382       N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number.");
383   static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide.");
384   return isInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0);
385 }
386 
387 /// Checks if an unsigned integer fits into the given bit width.
388 ///
389 /// This is written as two functions rather than as simply
390 ///
391 ///   return N >= 64 || X < (UINT64_C(1) << N);
392 ///
393 /// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting
394 /// left too many places.
395 template <unsigned N>
396 constexpr inline std::enable_if_t<(N < 64), bool> isUInt(uint64_t X) {
397   static_assert(N > 0, "isUInt<0> doesn't make sense");
398   return X < (UINT64_C(1) << (N));
399 }
400 template <unsigned N>
401 constexpr inline std::enable_if_t<N >= 64, bool> isUInt(uint64_t X) {
402   return true;
403 }
404 
405 // Template specializations to get better code for common cases.
406 template <> constexpr inline bool isUInt<8>(uint64_t x) {
407   return static_cast<uint8_t>(x) == x;
408 }
409 template <> constexpr inline bool isUInt<16>(uint64_t x) {
410   return static_cast<uint16_t>(x) == x;
411 }
412 template <> constexpr inline bool isUInt<32>(uint64_t x) {
413   return static_cast<uint32_t>(x) == x;
414 }
415 
416 /// Checks if a unsigned integer is an N bit number shifted left by S.
417 template <unsigned N, unsigned S>
418 constexpr inline bool isShiftedUInt(uint64_t x) {
419   static_assert(
420       N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)");
421   static_assert(N + S <= 64,
422                 "isShiftedUInt<N, S> with N + S > 64 is too wide.");
423   // Per the two static_asserts above, S must be strictly less than 64.  So
424   // 1 << S is not undefined behavior.
425   return isUInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0);
426 }
427 
428 /// Gets the maximum value for a N-bit unsigned integer.
429 inline uint64_t maxUIntN(uint64_t N) {
430   assert(N > 0 && N <= 64 && "integer width out of range");
431 
432   // uint64_t(1) << 64 is undefined behavior, so we can't do
433   //   (uint64_t(1) << N) - 1
434   // without checking first that N != 64.  But this works and doesn't have a
435   // branch.
436   return UINT64_MAX >> (64 - N);
437 }
438 
439 /// Gets the minimum value for a N-bit signed integer.
440 inline int64_t minIntN(int64_t N) {
441   assert(N > 0 && N <= 64 && "integer width out of range");
442 
443   return -(UINT64_C(1)<<(N-1));
444 }
445 
446 /// Gets the maximum value for a N-bit signed integer.
447 inline int64_t maxIntN(int64_t N) {
448   assert(N > 0 && N <= 64 && "integer width out of range");
449 
450   // This relies on two's complement wraparound when N == 64, so we convert to
451   // int64_t only at the very end to avoid UB.
452   return (UINT64_C(1) << (N - 1)) - 1;
453 }
454 
455 /// Checks if an unsigned integer fits into the given (dynamic) bit width.
456 inline bool isUIntN(unsigned N, uint64_t x) {
457   return N >= 64 || x <= maxUIntN(N);
458 }
459 
460 /// Checks if an signed integer fits into the given (dynamic) bit width.
461 inline bool isIntN(unsigned N, int64_t x) {
462   return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N));
463 }
464 
465 /// Return true if the argument is a non-empty sequence of ones starting at the
466 /// least significant bit with the remainder zero (32 bit version).
467 /// Ex. isMask_32(0x0000FFFFU) == true.
468 constexpr inline bool isMask_32(uint32_t Value) {
469   return Value && ((Value + 1) & Value) == 0;
470 }
471 
472 /// Return true if the argument is a non-empty sequence of ones starting at the
473 /// least significant bit with the remainder zero (64 bit version).
474 constexpr inline bool isMask_64(uint64_t Value) {
475   return Value && ((Value + 1) & Value) == 0;
476 }
477 
478 /// Return true if the argument contains a non-empty sequence of ones with the
479 /// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true.
480 constexpr inline bool isShiftedMask_32(uint32_t Value) {
481   return Value && isMask_32((Value - 1) | Value);
482 }
483 
484 /// Return true if the argument contains a non-empty sequence of ones with the
485 /// remainder zero (64 bit version.)
486 constexpr inline bool isShiftedMask_64(uint64_t Value) {
487   return Value && isMask_64((Value - 1) | Value);
488 }
489 
490 /// Return true if the argument is a power of two > 0.
491 /// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
492 constexpr inline bool isPowerOf2_32(uint32_t Value) {
493   return Value && !(Value & (Value - 1));
494 }
495 
496 /// Return true if the argument is a power of two > 0 (64 bit edition.)
497 constexpr inline bool isPowerOf2_64(uint64_t Value) {
498   return Value && !(Value & (Value - 1));
499 }
500 
501 /// Count the number of ones from the most significant bit to the first
502 /// zero bit.
503 ///
504 /// Ex. countLeadingOnes(0xFF0FFF00) == 8.
505 /// Only unsigned integral types are allowed.
506 ///
507 /// \param ZB the behavior on an input of all ones. Only ZB_Width and
508 /// ZB_Undefined are valid arguments.
509 template <typename T>
510 unsigned countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
511   static_assert(std::numeric_limits<T>::is_integer &&
512                     !std::numeric_limits<T>::is_signed,
513                 "Only unsigned integral types are allowed.");
514   return countLeadingZeros<T>(~Value, ZB);
515 }
516 
517 /// Count the number of ones from the least significant bit to the first
518 /// zero bit.
519 ///
520 /// Ex. countTrailingOnes(0x00FF00FF) == 8.
521 /// Only unsigned integral types are allowed.
522 ///
523 /// \param ZB the behavior on an input of all ones. Only ZB_Width and
524 /// ZB_Undefined are valid arguments.
525 template <typename T>
526 unsigned countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
527   static_assert(std::numeric_limits<T>::is_integer &&
528                     !std::numeric_limits<T>::is_signed,
529                 "Only unsigned integral types are allowed.");
530   return countTrailingZeros<T>(~Value, ZB);
531 }
532 
533 namespace detail {
534 template <typename T, std::size_t SizeOfT> struct PopulationCounter {
535   static unsigned count(T Value) {
536     // Generic version, forward to 32 bits.
537     static_assert(SizeOfT <= 4, "Not implemented!");
538 #if defined(__GNUC__)
539     return __builtin_popcount(Value);
540 #else
541     uint32_t v = Value;
542     v = v - ((v >> 1) & 0x55555555);
543     v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
544     return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
545 #endif
546   }
547 };
548 
549 template <typename T> struct PopulationCounter<T, 8> {
550   static unsigned count(T Value) {
551 #if defined(__GNUC__)
552     return __builtin_popcountll(Value);
553 #else
554     uint64_t v = Value;
555     v = v - ((v >> 1) & 0x5555555555555555ULL);
556     v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
557     v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
558     return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
559 #endif
560   }
561 };
562 } // namespace detail
563 
564 /// Count the number of set bits in a value.
565 /// Ex. countPopulation(0xF000F000) = 8
566 /// Returns 0 if the word is zero.
567 template <typename T>
568 inline unsigned countPopulation(T Value) {
569   static_assert(std::numeric_limits<T>::is_integer &&
570                     !std::numeric_limits<T>::is_signed,
571                 "Only unsigned integral types are allowed.");
572   return detail::PopulationCounter<T, sizeof(T)>::count(Value);
573 }
574 
575 /// Compile time Log2.
576 /// Valid only for positive powers of two.
577 template <size_t kValue> constexpr inline size_t CTLog2() {
578   static_assert(kValue > 0 && llvm::isPowerOf2_64(kValue),
579                 "Value is not a valid power of 2");
580   return 1 + CTLog2<kValue / 2>();
581 }
582 
583 template <> constexpr inline size_t CTLog2<1>() { return 0; }
584 
585 /// Return the log base 2 of the specified value.
586 inline double Log2(double Value) {
587 #if defined(__ANDROID_API__) && __ANDROID_API__ < 18
588   return __builtin_log(Value) / __builtin_log(2.0);
589 #else
590   return log2(Value);
591 #endif
592 }
593 
594 /// Return the floor log base 2 of the specified value, -1 if the value is zero.
595 /// (32 bit edition.)
596 /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
597 inline unsigned Log2_32(uint32_t Value) {
598   return 31 - countLeadingZeros(Value);
599 }
600 
601 /// Return the floor log base 2 of the specified value, -1 if the value is zero.
602 /// (64 bit edition.)
603 inline unsigned Log2_64(uint64_t Value) {
604   return 63 - countLeadingZeros(Value);
605 }
606 
607 /// Return the ceil log base 2 of the specified value, 32 if the value is zero.
608 /// (32 bit edition).
609 /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
610 inline unsigned Log2_32_Ceil(uint32_t Value) {
611   return 32 - countLeadingZeros(Value - 1);
612 }
613 
614 /// Return the ceil log base 2 of the specified value, 64 if the value is zero.
615 /// (64 bit edition.)
616 inline unsigned Log2_64_Ceil(uint64_t Value) {
617   return 64 - countLeadingZeros(Value - 1);
618 }
619 
620 /// Return the greatest common divisor of the values using Euclid's algorithm.
621 template <typename T>
622 inline T greatestCommonDivisor(T A, T B) {
623   while (B) {
624     T Tmp = B;
625     B = A % B;
626     A = Tmp;
627   }
628   return A;
629 }
630 
631 inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
632   return greatestCommonDivisor<uint64_t>(A, B);
633 }
634 
635 /// This function takes a 64-bit integer and returns the bit equivalent double.
636 inline double BitsToDouble(uint64_t Bits) {
637   double D;
638   static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
639   memcpy(&D, &Bits, sizeof(Bits));
640   return D;
641 }
642 
643 /// This function takes a 32-bit integer and returns the bit equivalent float.
644 inline float BitsToFloat(uint32_t Bits) {
645   float F;
646   static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
647   memcpy(&F, &Bits, sizeof(Bits));
648   return F;
649 }
650 
651 /// This function takes a double and returns the bit equivalent 64-bit integer.
652 /// Note that copying doubles around changes the bits of NaNs on some hosts,
653 /// notably x86, so this routine cannot be used if these bits are needed.
654 inline uint64_t DoubleToBits(double Double) {
655   uint64_t Bits;
656   static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
657   memcpy(&Bits, &Double, sizeof(Double));
658   return Bits;
659 }
660 
661 /// This function takes a float and returns the bit equivalent 32-bit integer.
662 /// Note that copying floats around changes the bits of NaNs on some hosts,
663 /// notably x86, so this routine cannot be used if these bits are needed.
664 inline uint32_t FloatToBits(float Float) {
665   uint32_t Bits;
666   static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
667   memcpy(&Bits, &Float, sizeof(Float));
668   return Bits;
669 }
670 
671 /// A and B are either alignments or offsets. Return the minimum alignment that
672 /// may be assumed after adding the two together.
673 constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) {
674   // The largest power of 2 that divides both A and B.
675   //
676   // Replace "-Value" by "1+~Value" in the following commented code to avoid
677   // MSVC warning C4146
678   //    return (A | B) & -(A | B);
679   return (A | B) & (1 + ~(A | B));
680 }
681 
682 /// Returns the next power of two (in 64-bits) that is strictly greater than A.
683 /// Returns zero on overflow.
684 inline uint64_t NextPowerOf2(uint64_t A) {
685   A |= (A >> 1);
686   A |= (A >> 2);
687   A |= (A >> 4);
688   A |= (A >> 8);
689   A |= (A >> 16);
690   A |= (A >> 32);
691   return A + 1;
692 }
693 
694 /// Returns the power of two which is less than or equal to the given value.
695 /// Essentially, it is a floor operation across the domain of powers of two.
696 inline uint64_t PowerOf2Floor(uint64_t A) {
697   if (!A) return 0;
698   return 1ull << (63 - countLeadingZeros(A, ZB_Undefined));
699 }
700 
701 /// Returns the power of two which is greater than or equal to the given value.
702 /// Essentially, it is a ceil operation across the domain of powers of two.
703 inline uint64_t PowerOf2Ceil(uint64_t A) {
704   if (!A)
705     return 0;
706   return NextPowerOf2(A - 1);
707 }
708 
709 /// Returns the next integer (mod 2**64) that is greater than or equal to
710 /// \p Value and is a multiple of \p Align. \p Align must be non-zero.
711 ///
712 /// If non-zero \p Skew is specified, the return value will be a minimal
713 /// integer that is greater than or equal to \p Value and equal to
714 /// \p Align * N + \p Skew for some integer N. If \p Skew is larger than
715 /// \p Align, its value is adjusted to '\p Skew mod \p Align'.
716 ///
717 /// Examples:
718 /// \code
719 ///   alignTo(5, 8) = 8
720 ///   alignTo(17, 8) = 24
721 ///   alignTo(~0LL, 8) = 0
722 ///   alignTo(321, 255) = 510
723 ///
724 ///   alignTo(5, 8, 7) = 7
725 ///   alignTo(17, 8, 1) = 17
726 ///   alignTo(~0LL, 8, 3) = 3
727 ///   alignTo(321, 255, 42) = 552
728 /// \endcode
729 inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
730   assert(Align != 0u && "Align can't be 0.");
731   Skew %= Align;
732   return (Value + Align - 1 - Skew) / Align * Align + Skew;
733 }
734 
735 /// Returns the next integer (mod 2**64) that is greater than or equal to
736 /// \p Value and is a multiple of \c Align. \c Align must be non-zero.
737 template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) {
738   static_assert(Align != 0u, "Align must be non-zero");
739   return (Value + Align - 1) / Align * Align;
740 }
741 
742 /// Returns the integer ceil(Numerator / Denominator).
743 inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) {
744   return alignTo(Numerator, Denominator) / Denominator;
745 }
746 
747 /// Returns the integer nearest(Numerator / Denominator).
748 inline uint64_t divideNearest(uint64_t Numerator, uint64_t Denominator) {
749   return (Numerator + (Denominator / 2)) / Denominator;
750 }
751 
752 /// Returns the largest uint64_t less than or equal to \p Value and is
753 /// \p Skew mod \p Align. \p Align must be non-zero
754 inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
755   assert(Align != 0u && "Align can't be 0.");
756   Skew %= Align;
757   return (Value - Skew) / Align * Align + Skew;
758 }
759 
760 /// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
761 /// Requires 0 < B <= 32.
762 template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) {
763   static_assert(B > 0, "Bit width can't be 0.");
764   static_assert(B <= 32, "Bit width out of range.");
765   return int32_t(X << (32 - B)) >> (32 - B);
766 }
767 
768 /// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
769 /// Requires 0 < B < 32.
770 inline int32_t SignExtend32(uint32_t X, unsigned B) {
771   assert(B > 0 && "Bit width can't be 0.");
772   assert(B <= 32 && "Bit width out of range.");
773   return int32_t(X << (32 - B)) >> (32 - B);
774 }
775 
776 /// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
777 /// Requires 0 < B < 64.
778 template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) {
779   static_assert(B > 0, "Bit width can't be 0.");
780   static_assert(B <= 64, "Bit width out of range.");
781   return int64_t(x << (64 - B)) >> (64 - B);
782 }
783 
784 /// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
785 /// Requires 0 < B < 64.
786 inline int64_t SignExtend64(uint64_t X, unsigned B) {
787   assert(B > 0 && "Bit width can't be 0.");
788   assert(B <= 64 && "Bit width out of range.");
789   return int64_t(X << (64 - B)) >> (64 - B);
790 }
791 
792 /// Subtract two unsigned integers, X and Y, of type T and return the absolute
793 /// value of the result.
794 template <typename T>
795 std::enable_if_t<std::is_unsigned<T>::value, T> AbsoluteDifference(T X, T Y) {
796   return std::max(X, Y) - std::min(X, Y);
797 }
798 
799 /// Add two unsigned integers, X and Y, of type T.  Clamp the result to the
800 /// maximum representable value of T on overflow.  ResultOverflowed indicates if
801 /// the result is larger than the maximum representable value of type T.
802 template <typename T>
803 std::enable_if_t<std::is_unsigned<T>::value, T>
804 SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) {
805   bool Dummy;
806   bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
807   // Hacker's Delight, p. 29
808   T Z = X + Y;
809   Overflowed = (Z < X || Z < Y);
810   if (Overflowed)
811     return std::numeric_limits<T>::max();
812   else
813     return Z;
814 }
815 
816 /// Multiply two unsigned integers, X and Y, of type T.  Clamp the result to the
817 /// maximum representable value of T on overflow.  ResultOverflowed indicates if
818 /// the result is larger than the maximum representable value of type T.
819 template <typename T>
820 std::enable_if_t<std::is_unsigned<T>::value, T>
821 SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) {
822   bool Dummy;
823   bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
824 
825   // Hacker's Delight, p. 30 has a different algorithm, but we don't use that
826   // because it fails for uint16_t (where multiplication can have undefined
827   // behavior due to promotion to int), and requires a division in addition
828   // to the multiplication.
829 
830   Overflowed = false;
831 
832   // Log2(Z) would be either Log2Z or Log2Z + 1.
833   // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z
834   // will necessarily be less than Log2Max as desired.
835   int Log2Z = Log2_64(X) + Log2_64(Y);
836   const T Max = std::numeric_limits<T>::max();
837   int Log2Max = Log2_64(Max);
838   if (Log2Z < Log2Max) {
839     return X * Y;
840   }
841   if (Log2Z > Log2Max) {
842     Overflowed = true;
843     return Max;
844   }
845 
846   // We're going to use the top bit, and maybe overflow one
847   // bit past it. Multiply all but the bottom bit then add
848   // that on at the end.
849   T Z = (X >> 1) * Y;
850   if (Z & ~(Max >> 1)) {
851     Overflowed = true;
852     return Max;
853   }
854   Z <<= 1;
855   if (X & 1)
856     return SaturatingAdd(Z, Y, ResultOverflowed);
857 
858   return Z;
859 }
860 
861 /// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to
862 /// the product. Clamp the result to the maximum representable value of T on
863 /// overflow. ResultOverflowed indicates if the result is larger than the
864 /// maximum representable value of type T.
865 template <typename T>
866 std::enable_if_t<std::is_unsigned<T>::value, T>
867 SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) {
868   bool Dummy;
869   bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
870 
871   T Product = SaturatingMultiply(X, Y, &Overflowed);
872   if (Overflowed)
873     return Product;
874 
875   return SaturatingAdd(A, Product, &Overflowed);
876 }
877 
878 /// Use this rather than HUGE_VALF; the latter causes warnings on MSVC.
879 extern const float huge_valf;
880 
881 
882 /// Add two signed integers, computing the two's complement truncated result,
883 /// returning true if overflow occured.
884 template <typename T>
885 std::enable_if_t<std::is_signed<T>::value, T> AddOverflow(T X, T Y, T &Result) {
886 #if __has_builtin(__builtin_add_overflow)
887   return __builtin_add_overflow(X, Y, &Result);
888 #else
889   // Perform the unsigned addition.
890   using U = std::make_unsigned_t<T>;
891   const U UX = static_cast<U>(X);
892   const U UY = static_cast<U>(Y);
893   const U UResult = UX + UY;
894 
895   // Convert to signed.
896   Result = static_cast<T>(UResult);
897 
898   // Adding two positive numbers should result in a positive number.
899   if (X > 0 && Y > 0)
900     return Result <= 0;
901   // Adding two negatives should result in a negative number.
902   if (X < 0 && Y < 0)
903     return Result >= 0;
904   return false;
905 #endif
906 }
907 
908 /// Subtract two signed integers, computing the two's complement truncated
909 /// result, returning true if an overflow ocurred.
910 template <typename T>
911 std::enable_if_t<std::is_signed<T>::value, T> SubOverflow(T X, T Y, T &Result) {
912 #if __has_builtin(__builtin_sub_overflow)
913   return __builtin_sub_overflow(X, Y, &Result);
914 #else
915   // Perform the unsigned addition.
916   using U = std::make_unsigned_t<T>;
917   const U UX = static_cast<U>(X);
918   const U UY = static_cast<U>(Y);
919   const U UResult = UX - UY;
920 
921   // Convert to signed.
922   Result = static_cast<T>(UResult);
923 
924   // Subtracting a positive number from a negative results in a negative number.
925   if (X <= 0 && Y > 0)
926     return Result >= 0;
927   // Subtracting a negative number from a positive results in a positive number.
928   if (X >= 0 && Y < 0)
929     return Result <= 0;
930   return false;
931 #endif
932 }
933 
934 /// Multiply two signed integers, computing the two's complement truncated
935 /// result, returning true if an overflow ocurred.
936 template <typename T>
937 std::enable_if_t<std::is_signed<T>::value, T> MulOverflow(T X, T Y, T &Result) {
938   // Perform the unsigned multiplication on absolute values.
939   using U = std::make_unsigned_t<T>;
940   const U UX = X < 0 ? (0 - static_cast<U>(X)) : static_cast<U>(X);
941   const U UY = Y < 0 ? (0 - static_cast<U>(Y)) : static_cast<U>(Y);
942   const U UResult = UX * UY;
943 
944   // Convert to signed.
945   const bool IsNegative = (X < 0) ^ (Y < 0);
946   Result = IsNegative ? (0 - UResult) : UResult;
947 
948   // If any of the args was 0, result is 0 and no overflow occurs.
949   if (UX == 0 || UY == 0)
950     return false;
951 
952   // UX and UY are in [1, 2^n], where n is the number of digits.
953   // Check how the max allowed absolute value (2^n for negative, 2^(n-1) for
954   // positive) divided by an argument compares to the other.
955   if (IsNegative)
956     return UX > (static_cast<U>(std::numeric_limits<T>::max()) + U(1)) / UY;
957   else
958     return UX > (static_cast<U>(std::numeric_limits<T>::max())) / UY;
959 }
960 
961 } // End llvm namespace
962 
963 #endif
964