1 /*========================== begin_copyright_notice ============================
2 
3 Copyright (C) 2018-2021 Intel Corporation
4 
5 SPDX-License-Identifier: MIT
6 
7 ============================= end_copyright_notice ===========================*/
8 
9 /*========================== begin_copyright_notice ============================
10 
11 This file is distributed under the University of Illinois Open Source License.
12 See LICENSE.TXT for details.
13 
14 ============================= end_copyright_notice ===========================*/
15 
16 // This file implements the visit functions for add, fadd, sub, and fsub.
17 
18 #include "common/LLVMWarningsPush.hpp"
19 #include "InstCombineInternal.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "common/LLVMWarningsPop.hpp"
26 #include "Probe/Assertion.h"
27 
28 using namespace llvm;
29 using namespace PatternMatch;
30 using namespace IGCombiner;
31 
32 #define DEBUG_TYPE "instcombine"
33 
34 namespace {
35 
36   /// Class representing coefficient of floating-point addend.
37   /// This class needs to be highly efficient, which is especially true for
38   /// the constructor. As of I write this comment, the cost of the default
39   /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
40   /// perform write-merging).
41   ///
42   class FAddendCoef {
43   public:
44     // The constructor has to initialize a APFloat, which is unnecessary for
45     // most addends which have coefficient either 1 or -1. So, the constructor
46     // is expensive. In order to avoid the cost of the constructor, we should
47     // reuse some instances whenever possible. The pre-created instances
48     // FAddCombine::Add[0-5] embodies this idea.
49     //
FAddendCoef()50     FAddendCoef() : IsFp(false), BufHasFpVal(false), IntVal(0) {}
51     ~FAddendCoef();
52 
set(short C)53     void set(short C) {
54       IGC_ASSERT_MESSAGE(!insaneIntVal(C), "Insane coefficient");
55       IsFp = false; IntVal = C;
56     }
57 
58     void set(const APFloat& C);
59 
60     void negate();
61 
isZero() const62     bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
63     Value *getValue(Type *) const;
64 
65     // If possible, don't define operator+/operator- etc because these
66     // operators inevitably call FAddendCoef's constructor which is not cheap.
67     void operator=(const FAddendCoef &A);
68     void operator+=(const FAddendCoef &A);
69     void operator*=(const FAddendCoef &S);
70 
isOne() const71     bool isOne() const { return isInt() && IntVal == 1; }
isTwo() const72     bool isTwo() const { return isInt() && IntVal == 2; }
isMinusOne() const73     bool isMinusOne() const { return isInt() && IntVal == -1; }
isMinusTwo() const74     bool isMinusTwo() const { return isInt() && IntVal == -2; }
75 
76   private:
insaneIntVal(int V)77     bool insaneIntVal(int V) { return V > 4 || V < -4; }
getFpValPtr()78     APFloat *getFpValPtr()
79       { return reinterpret_cast<APFloat*>(&FpValBuf.buffer[0]); }
getFpValPtr() const80     const APFloat *getFpValPtr() const
81       { return reinterpret_cast<const APFloat*>(&FpValBuf.buffer[0]); }
82 
getFpVal() const83     const APFloat &getFpVal() const {
84       IGC_ASSERT_MESSAGE(IsFp, "Incorret state");
85       IGC_ASSERT_MESSAGE(BufHasFpVal, "Incorret state");
86       return *getFpValPtr();
87     }
88 
getFpVal()89     APFloat &getFpVal() {
90       IGC_ASSERT_MESSAGE(IsFp, "Incorret state");
91       IGC_ASSERT_MESSAGE(BufHasFpVal, "Incorret state");
92       return *getFpValPtr();
93     }
94 
isInt() const95     bool isInt() const { return !IsFp; }
96 
97     // If the coefficient is represented by an integer, promote it to a
98     // floating point.
99     void convertToFpType(const fltSemantics &Sem);
100 
101     // Construct an APFloat from a signed integer.
102     // TODO: We should get rid of this function when APFloat can be constructed
103     //       from an *SIGNED* integer.
104     APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
105 
106   private:
107     bool IsFp;
108 
109     // True iff FpValBuf contains an instance of APFloat.
110     bool BufHasFpVal;
111 
112     // The integer coefficient of an individual addend is either 1 or -1,
113     // and we try to simplify at most 4 addends from neighboring at most
114     // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
115     // is overkill of this end.
116     short IntVal;
117 
118     AlignedCharArrayUnion<APFloat> FpValBuf;
119   };
120 
121   /// FAddend is used to represent floating-point addend. An addend is
122   /// represented as <C, V>, where the V is a symbolic value, and C is a
123   /// constant coefficient. A constant addend is represented as <C, 0>.
124   ///
125   class FAddend {
126   public:
FAddend()127     FAddend() : Val(nullptr) {}
128 
getSymVal() const129     Value *getSymVal() const { return Val; }
getCoef() const130     const FAddendCoef &getCoef() const { return Coeff; }
131 
isConstant() const132     bool isConstant() const { return Val == nullptr; }
isZero() const133     bool isZero() const { return Coeff.isZero(); }
134 
set(short Coefficient,Value * V)135     void set(short Coefficient, Value *V) {
136       Coeff.set(Coefficient);
137       Val = V;
138     }
set(const APFloat & Coefficient,Value * V)139     void set(const APFloat &Coefficient, Value *V) {
140       Coeff.set(Coefficient);
141       Val = V;
142     }
set(const ConstantFP * Coefficient,Value * V)143     void set(const ConstantFP *Coefficient, Value *V) {
144       Coeff.set(Coefficient->getValueAPF());
145       Val = V;
146     }
147 
negate()148     void negate() { Coeff.negate(); }
149 
150     /// Drill down the U-D chain one step to find the definition of V, and
151     /// try to break the definition into one or two addends.
152     static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
153 
154     /// Similar to FAddend::drillDownOneStep() except that the value being
155     /// splitted is the addend itself.
156     unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
157 
operator +=(const FAddend & T)158     void operator+=(const FAddend &T) {
159       IGC_ASSERT_MESSAGE((Val == T.Val), "Symbolic-values disagree");
160       Coeff += T.Coeff;
161     }
162 
163   private:
Scale(const FAddendCoef & ScaleAmt)164     void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
165 
166     // This addend has the value of "Coeff * Val".
167     Value *Val;
168     FAddendCoef Coeff;
169   };
170 
171   /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
172   /// with its neighboring at most two instructions.
173   ///
174   class FAddCombine {
175   public:
FAddCombine(InstCombiner::BuilderTy * B)176     FAddCombine(InstCombiner::BuilderTy *B) : Builder(B), Instr(nullptr) {}
177     Value *simplify(Instruction *FAdd);
178 
179   private:
180     typedef SmallVector<const FAddend*, 4> AddendVect;
181 
182     Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
183 
184     Value *performFactorization(Instruction *I);
185 
186     /// Convert given addend to a Value
187     Value *createAddendVal(const FAddend &A, bool& NeedNeg);
188 
189     /// Return the number of instructions needed to emit the N-ary addition.
190     unsigned calcInstrNumber(const AddendVect& Vect);
191     Value *createFSub(Value *Opnd0, Value *Opnd1);
192     Value *createFAdd(Value *Opnd0, Value *Opnd1);
193     Value *createFMul(Value *Opnd0, Value *Opnd1);
194     Value *createFDiv(Value *Opnd0, Value *Opnd1);
195     Value *createFNeg(Value *V);
196     Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
197     void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
198 
199     InstCombiner::BuilderTy *Builder;
200     Instruction *Instr;
201 
202     unsigned InstructionCounter;
203   };
204 
205 } // anonymous namespace
206 
207 //===----------------------------------------------------------------------===//
208 //
209 // Implementation of
210 //    {FAddendCoef, FAddend, FAddition, FAddCombine}.
211 //
212 //===----------------------------------------------------------------------===//
~FAddendCoef()213 FAddendCoef::~FAddendCoef() {
214   if (BufHasFpVal)
215     getFpValPtr()->~APFloat();
216 }
217 
set(const APFloat & C)218 void FAddendCoef::set(const APFloat& C) {
219   APFloat *P = getFpValPtr();
220 
221   if (isInt()) {
222     // As the buffer is meanless byte stream, we cannot call
223     // APFloat::operator=().
224     new(P) APFloat(C);
225   } else
226     *P = C;
227 
228   IsFp = BufHasFpVal = true;
229 }
230 
convertToFpType(const fltSemantics & Sem)231 void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
232   if (!isInt())
233     return;
234 
235   APFloat *P = getFpValPtr();
236   if (IntVal > 0)
237     new(P) APFloat(Sem, IntVal);
238   else {
239     new(P) APFloat(Sem, 0 - IntVal);
240     P->changeSign();
241   }
242   IsFp = BufHasFpVal = true;
243 }
244 
createAPFloatFromInt(const fltSemantics & Sem,int Val)245 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
246   if (Val >= 0)
247     return APFloat(Sem, Val);
248 
249   APFloat T(Sem, 0 - Val);
250   T.changeSign();
251 
252   return T;
253 }
254 
operator =(const FAddendCoef & That)255 void FAddendCoef::operator=(const FAddendCoef &That) {
256   if (That.isInt())
257     set(That.IntVal);
258   else
259     set(That.getFpVal());
260 }
261 
operator +=(const FAddendCoef & That)262 void FAddendCoef::operator+=(const FAddendCoef &That) {
263   enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
264   if (isInt() == That.isInt()) {
265     if (isInt())
266       IntVal += That.IntVal;
267     else
268       getFpVal().add(That.getFpVal(), RndMode);
269     return;
270   }
271 
272   if (isInt()) {
273     const APFloat &T = That.getFpVal();
274     convertToFpType(T.getSemantics());
275     getFpVal().add(T, RndMode);
276     return;
277   }
278 
279   APFloat &T = getFpVal();
280   T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
281 }
282 
operator *=(const FAddendCoef & That)283 void FAddendCoef::operator*=(const FAddendCoef &That) {
284   if (That.isOne())
285     return;
286 
287   if (That.isMinusOne()) {
288     negate();
289     return;
290   }
291 
292   if (isInt() && That.isInt()) {
293     int Res = IntVal * (int)That.IntVal;
294     IGC_ASSERT_MESSAGE(!insaneIntVal(Res), "Insane int value");
295     IntVal = Res;
296     return;
297   }
298 
299   const fltSemantics &Semantic =
300     isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
301 
302   if (isInt())
303     convertToFpType(Semantic);
304   APFloat &F0 = getFpVal();
305 
306   if (That.isInt())
307     F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
308                 APFloat::rmNearestTiesToEven);
309   else
310     F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
311 }
312 
negate()313 void FAddendCoef::negate() {
314   if (isInt())
315     IntVal = 0 - IntVal;
316   else
317     getFpVal().changeSign();
318 }
319 
getValue(Type * Ty) const320 Value *FAddendCoef::getValue(Type *Ty) const {
321   return isInt() ?
322     ConstantFP::get(Ty, float(IntVal)) :
323     ConstantFP::get(Ty->getContext(), getFpVal());
324 }
325 
326 // The definition of <Val>     Addends
327 // =========================================
328 //  A + B                     <1, A>, <1,B>
329 //  A - B                     <1, A>, <1,B>
330 //  0 - B                     <-1, B>
331 //  C * A,                    <C, A>
332 //  A + C                     <1, A> <C, NULL>
333 //  0 +/- 0                   <0, NULL> (corner case)
334 //
335 // Legend: A and B are not constant, C is constant
336 //
drillValueDownOneStep(Value * Val,FAddend & Addend0,FAddend & Addend1)337 unsigned FAddend::drillValueDownOneStep
338   (Value *Val, FAddend &Addend0, FAddend &Addend1) {
339   Instruction *I = nullptr;
340   if (!Val || !(I = dyn_cast<Instruction>(Val)))
341     return 0;
342 
343   unsigned Opcode = I->getOpcode();
344 
345   if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
346     ConstantFP *C0, *C1;
347     Value *Opnd0 = I->getOperand(0);
348     Value *Opnd1 = I->getOperand(1);
349     if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
350       Opnd0 = nullptr;
351 
352     if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
353       Opnd1 = nullptr;
354 
355     if (Opnd0) {
356       if (!C0)
357         Addend0.set(1, Opnd0);
358       else
359         Addend0.set(C0, nullptr);
360     }
361 
362     if (Opnd1) {
363       FAddend &Addend = Opnd0 ? Addend1 : Addend0;
364       if (!C1)
365         Addend.set(1, Opnd1);
366       else
367         Addend.set(C1, nullptr);
368       if (Opcode == Instruction::FSub)
369         Addend.negate();
370     }
371 
372     if (Opnd0 || Opnd1)
373       return Opnd0 && Opnd1 ? 2 : 1;
374 
375     // Both operands are zero. Weird!
376     Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
377     return 1;
378   }
379 
380   if (I->getOpcode() == Instruction::FMul) {
381     Value *V0 = I->getOperand(0);
382     Value *V1 = I->getOperand(1);
383     if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
384       Addend0.set(C, V1);
385       return 1;
386     }
387 
388     if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
389       Addend0.set(C, V0);
390       return 1;
391     }
392   }
393 
394   return 0;
395 }
396 
397 // Try to break *this* addend into two addends. e.g. Suppose this addend is
398 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
399 // i.e. <2.3, X> and <2.3, Y>.
400 //
drillAddendDownOneStep(FAddend & Addend0,FAddend & Addend1) const401 unsigned FAddend::drillAddendDownOneStep
402   (FAddend &Addend0, FAddend &Addend1) const {
403   if (isConstant())
404     return 0;
405 
406   unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
407   if (!BreakNum || Coeff.isOne())
408     return BreakNum;
409 
410   Addend0.Scale(Coeff);
411 
412   if (BreakNum == 2)
413     Addend1.Scale(Coeff);
414 
415   return BreakNum;
416 }
417 
418 // Try to perform following optimization on the input instruction I. Return the
419 // simplified expression if was successful; otherwise, return 0.
420 //
421 //   Instruction "I" is                Simplified into
422 // -------------------------------------------------------
423 //   (x * y) +/- (x * z)               x * (y +/- z)
424 //   (y / x) +/- (z / x)               (y +/- z) / x
425 //
performFactorization(Instruction * I)426 Value *FAddCombine::performFactorization(Instruction *I) {
427   IGC_ASSERT_MESSAGE((I->getOpcode() == Instruction::FAdd) || (I->getOpcode() == Instruction::FSub), "Expect add/sub");
428 
429   Instruction *I0 = dyn_cast<Instruction>(I->getOperand(0));
430   Instruction *I1 = dyn_cast<Instruction>(I->getOperand(1));
431 
432   if (!I0 || !I1 || I0->getOpcode() != I1->getOpcode())
433     return nullptr;
434 
435   bool isMpy = false;
436   if (I0->getOpcode() == Instruction::FMul)
437     isMpy = true;
438   else if (I0->getOpcode() != Instruction::FDiv)
439     return nullptr;
440 
441   Value *Opnd0_0 = I0->getOperand(0);
442   Value *Opnd0_1 = I0->getOperand(1);
443   Value *Opnd1_0 = I1->getOperand(0);
444   Value *Opnd1_1 = I1->getOperand(1);
445 
446   //  Input Instr I       Factor   AddSub0  AddSub1
447   //  ----------------------------------------------
448   // (x*y) +/- (x*z)        x        y         z
449   // (y/x) +/- (z/x)        x        y         z
450   //
451   Value *Factor = nullptr;
452   Value *AddSub0 = nullptr, *AddSub1 = nullptr;
453 
454   if (isMpy) {
455     if (Opnd0_0 == Opnd1_0 || Opnd0_0 == Opnd1_1)
456       Factor = Opnd0_0;
457     else if (Opnd0_1 == Opnd1_0 || Opnd0_1 == Opnd1_1)
458       Factor = Opnd0_1;
459 
460     if (Factor) {
461       AddSub0 = (Factor == Opnd0_0) ? Opnd0_1 : Opnd0_0;
462       AddSub1 = (Factor == Opnd1_0) ? Opnd1_1 : Opnd1_0;
463     }
464   } else if (Opnd0_1 == Opnd1_1) {
465     Factor = Opnd0_1;
466     AddSub0 = Opnd0_0;
467     AddSub1 = Opnd1_0;
468   }
469 
470   if (!Factor)
471     return nullptr;
472 
473   FastMathFlags Flags;
474   Flags.setFast();
475   if (I0) Flags &= I->getFastMathFlags();
476   if (I1) Flags &= I->getFastMathFlags();
477 
478   // Create expression "NewAddSub = AddSub0 +/- AddsSub1"
479   Value *NewAddSub = (I->getOpcode() == Instruction::FAdd) ?
480                       createFAdd(AddSub0, AddSub1) :
481                       createFSub(AddSub0, AddSub1);
482   if (ConstantFP *CFP = dyn_cast<ConstantFP>(NewAddSub)) {
483     const APFloat &F = CFP->getValueAPF();
484     if (!F.isNormal())
485       return nullptr;
486   } else if (Instruction *II = dyn_cast<Instruction>(NewAddSub))
487     II->setFastMathFlags(Flags);
488 
489   if (isMpy) {
490     Value *RI = createFMul(Factor, NewAddSub);
491     if (Instruction *II = dyn_cast<Instruction>(RI))
492       II->setFastMathFlags(Flags);
493     return RI;
494   }
495 
496   Value *RI = createFDiv(NewAddSub, Factor);
497   if (Instruction *II = dyn_cast<Instruction>(RI))
498     II->setFastMathFlags(Flags);
499   return RI;
500 }
501 
simplify(Instruction * I)502 Value *FAddCombine::simplify(Instruction *I) {
503   IGC_ASSERT_MESSAGE(I->isFast(), "Expected 'fast' instruction");
504 
505   // Currently we are not able to handle vector type.
506   if (I->getType()->isVectorTy())
507     return nullptr;
508 
509   IGC_ASSERT_MESSAGE((I->getOpcode() == Instruction::FAdd) || (I->getOpcode() == Instruction::FSub), "Expect add/sub");
510 
511   // Save the instruction before calling other member-functions.
512   Instr = I;
513 
514   FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
515 
516   unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
517 
518   // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
519   unsigned Opnd0_ExpNum = 0;
520   unsigned Opnd1_ExpNum = 0;
521 
522   if (!Opnd0.isConstant())
523     Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
524 
525   // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
526   if (OpndNum == 2 && !Opnd1.isConstant())
527     Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
528 
529   // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
530   if (Opnd0_ExpNum && Opnd1_ExpNum) {
531     AddendVect AllOpnds;
532     AllOpnds.push_back(&Opnd0_0);
533     AllOpnds.push_back(&Opnd1_0);
534     if (Opnd0_ExpNum == 2)
535       AllOpnds.push_back(&Opnd0_1);
536     if (Opnd1_ExpNum == 2)
537       AllOpnds.push_back(&Opnd1_1);
538 
539     // Compute instruction quota. We should save at least one instruction.
540     unsigned InstQuota = 0;
541 
542     Value *V0 = I->getOperand(0);
543     Value *V1 = I->getOperand(1);
544     InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
545                  (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
546 
547     if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
548       return R;
549   }
550 
551   if (OpndNum != 2) {
552     // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
553     // splitted into two addends, say "V = X - Y", the instruction would have
554     // been optimized into "I = Y - X" in the previous steps.
555     //
556     const FAddendCoef &CE = Opnd0.getCoef();
557     return CE.isOne() ? Opnd0.getSymVal() : nullptr;
558   }
559 
560   // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
561   if (Opnd1_ExpNum) {
562     AddendVect AllOpnds;
563     AllOpnds.push_back(&Opnd0);
564     AllOpnds.push_back(&Opnd1_0);
565     if (Opnd1_ExpNum == 2)
566       AllOpnds.push_back(&Opnd1_1);
567 
568     if (Value *R = simplifyFAdd(AllOpnds, 1))
569       return R;
570   }
571 
572   // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
573   if (Opnd0_ExpNum) {
574     AddendVect AllOpnds;
575     AllOpnds.push_back(&Opnd1);
576     AllOpnds.push_back(&Opnd0_0);
577     if (Opnd0_ExpNum == 2)
578       AllOpnds.push_back(&Opnd0_1);
579 
580     if (Value *R = simplifyFAdd(AllOpnds, 1))
581       return R;
582   }
583 
584   // step 6: Try factorization as the last resort,
585   return performFactorization(I);
586 }
587 
simplifyFAdd(AddendVect & Addends,unsigned InstrQuota)588 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
589   unsigned AddendNum = Addends.size();
590   IGC_ASSERT_MESSAGE(AddendNum <= 4, "Too many addends");
591 
592   // For saving intermediate results;
593   unsigned NextTmpIdx = 0;
594   FAddend TmpResult[3];
595 
596   // Points to the constant addend of the resulting simplified expression.
597   // If the resulting expr has constant-addend, this constant-addend is
598   // desirable to reside at the top of the resulting expression tree. Placing
599   // constant close to supper-expr(s) will potentially reveal some optimization
600   // opportunities in super-expr(s).
601   //
602   const FAddend *ConstAdd = nullptr;
603 
604   // Simplified addends are placed <SimpVect>.
605   AddendVect SimpVect;
606 
607   // The outer loop works on one symbolic-value at a time. Suppose the input
608   // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
609   // The symbolic-values will be processed in this order: x, y, z.
610   //
611   for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
612 
613     const FAddend *ThisAddend = Addends[SymIdx];
614     if (!ThisAddend) {
615       // This addend was processed before.
616       continue;
617     }
618 
619     Value *Val = ThisAddend->getSymVal();
620     unsigned StartIdx = SimpVect.size();
621     SimpVect.push_back(ThisAddend);
622 
623     // The inner loop collects addends sharing same symbolic-value, and these
624     // addends will be later on folded into a single addend. Following above
625     // example, if the symbolic value "y" is being processed, the inner loop
626     // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
627     // be later on folded into "<b1+b2, y>".
628     //
629     for (unsigned SameSymIdx = SymIdx + 1;
630          SameSymIdx < AddendNum; SameSymIdx++) {
631       const FAddend *T = Addends[SameSymIdx];
632       if (T && T->getSymVal() == Val) {
633         // Set null such that next iteration of the outer loop will not process
634         // this addend again.
635         Addends[SameSymIdx] = nullptr;
636         SimpVect.push_back(T);
637       }
638     }
639 
640     // If multiple addends share same symbolic value, fold them together.
641     if (StartIdx + 1 != SimpVect.size()) {
642       FAddend &R = TmpResult[NextTmpIdx ++];
643       R = *SimpVect[StartIdx];
644       for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
645         R += *SimpVect[Idx];
646 
647       // Pop all addends being folded and push the resulting folded addend.
648       SimpVect.resize(StartIdx);
649       if (Val) {
650         if (!R.isZero()) {
651           SimpVect.push_back(&R);
652         }
653       } else {
654         // Don't push constant addend at this time. It will be the last element
655         // of <SimpVect>.
656         ConstAdd = &R;
657       }
658     }
659   }
660 
661   IGC_ASSERT_MESSAGE((NextTmpIdx <= array_lengthof(TmpResult) + 1), "out-of-bound access");
662 
663   if (ConstAdd)
664     SimpVect.push_back(ConstAdd);
665 
666   Value *Result;
667   if (!SimpVect.empty())
668     Result = createNaryFAdd(SimpVect, InstrQuota);
669   else {
670     // The addition is folded to 0.0.
671     Result = ConstantFP::get(Instr->getType(), 0.0);
672   }
673 
674   return Result;
675 }
676 
createNaryFAdd(const AddendVect & Opnds,unsigned InstrQuota)677 Value *FAddCombine::createNaryFAdd
678   (const AddendVect &Opnds, unsigned InstrQuota) {
679   IGC_ASSERT_MESSAGE(!Opnds.empty(), "Expect at least one addend");
680 
681   // Step 1: Check if the # of instructions needed exceeds the quota.
682   //
683   unsigned InstrNeeded = calcInstrNumber(Opnds);
684   if (InstrNeeded > InstrQuota)
685     return nullptr;
686 
687   InstructionCounter = 0;
688 
689   // step 2: Emit the N-ary addition.
690   // Note that at most three instructions are involved in Fadd-InstCombine: the
691   // addition in question, and at most two neighboring instructions.
692   // The resulting optimized addition should have at least one less instruction
693   // than the original addition expression tree. This implies that the resulting
694   // N-ary addition has at most two instructions, and we don't need to worry
695   // about tree-height when constructing the N-ary addition.
696 
697   Value *LastVal = nullptr;
698   bool LastValNeedNeg = false;
699 
700   // Iterate the addends, creating fadd/fsub using adjacent two addends.
701   for (const FAddend *Opnd : Opnds) {
702     bool NeedNeg;
703     Value *V = createAddendVal(*Opnd, NeedNeg);
704     if (!LastVal) {
705       LastVal = V;
706       LastValNeedNeg = NeedNeg;
707       continue;
708     }
709 
710     if (LastValNeedNeg == NeedNeg) {
711       LastVal = createFAdd(LastVal, V);
712       continue;
713     }
714 
715     if (LastValNeedNeg)
716       LastVal = createFSub(V, LastVal);
717     else
718       LastVal = createFSub(LastVal, V);
719 
720     LastValNeedNeg = false;
721   }
722 
723   if (LastValNeedNeg) {
724     LastVal = createFNeg(LastVal);
725   }
726 
727   IGC_ASSERT_MESSAGE((InstructionCounter == InstrNeeded), "Inconsistent in instruction numbers");
728 
729   return LastVal;
730 }
731 
createFSub(Value * Opnd0,Value * Opnd1)732 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
733   Value *V = Builder->CreateFSub(Opnd0, Opnd1);
734   if (Instruction *I = dyn_cast<Instruction>(V))
735     createInstPostProc(I);
736   return V;
737 }
738 
createFNeg(Value * V)739 Value *FAddCombine::createFNeg(Value *V) {
740   Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType()));
741   Value *NewV = createFSub(Zero, V);
742   if (Instruction *I = dyn_cast<Instruction>(NewV))
743     createInstPostProc(I, true); // fneg's don't receive instruction numbers.
744   return NewV;
745 }
746 
createFAdd(Value * Opnd0,Value * Opnd1)747 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
748   Value *V = Builder->CreateFAdd(Opnd0, Opnd1);
749   if (Instruction *I = dyn_cast<Instruction>(V))
750     createInstPostProc(I);
751   return V;
752 }
753 
createFMul(Value * Opnd0,Value * Opnd1)754 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
755   Value *V = Builder->CreateFMul(Opnd0, Opnd1);
756   if (Instruction *I = dyn_cast<Instruction>(V))
757     createInstPostProc(I);
758   return V;
759 }
760 
createFDiv(Value * Opnd0,Value * Opnd1)761 Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) {
762   Value *V = Builder->CreateFDiv(Opnd0, Opnd1);
763   if (Instruction *I = dyn_cast<Instruction>(V))
764     createInstPostProc(I);
765   return V;
766 }
767 
createInstPostProc(Instruction * NewInstr,bool NoNumber)768 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
769   NewInstr->setDebugLoc(Instr->getDebugLoc());
770 
771   // Keep track of the number of instruction created.
772   if (!NoNumber)
773     ++InstructionCounter;
774 
775   // Propagate fast-math flags
776   NewInstr->setFastMathFlags(Instr->getFastMathFlags());
777 }
778 
779 // Return the number of instruction needed to emit the N-ary addition.
780 // NOTE: Keep this function in sync with createAddendVal().
calcInstrNumber(const AddendVect & Opnds)781 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
782   unsigned OpndNum = Opnds.size();
783   unsigned InstrNeeded = OpndNum - 1;
784 
785   // The number of addends in the form of "(-1)*x".
786   unsigned NegOpndNum = 0;
787 
788   // Adjust the number of instructions needed to emit the N-ary add.
789   for (const FAddend *Opnd : Opnds) {
790     if (Opnd->isConstant())
791       continue;
792 
793     const FAddendCoef &CE = Opnd->getCoef();
794     if (CE.isMinusOne() || CE.isMinusTwo())
795       NegOpndNum++;
796 
797     // Let the addend be "c * x". If "c == +/-1", the value of the addend
798     // is immediately available; otherwise, it needs exactly one instruction
799     // to evaluate the value.
800     if (!CE.isMinusOne() && !CE.isOne())
801       InstrNeeded++;
802   }
803   if (NegOpndNum == OpndNum)
804     InstrNeeded++;
805   return InstrNeeded;
806 }
807 
808 // Input Addend        Value           NeedNeg(output)
809 // ================================================================
810 // Constant C          C               false
811 // <+/-1, V>           V               coefficient is -1
812 // <2/-2, V>          "fadd V, V"      coefficient is -2
813 // <C, V>             "fmul V, C"      false
814 //
815 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
createAddendVal(const FAddend & Opnd,bool & NeedNeg)816 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
817   const FAddendCoef &Coeff = Opnd.getCoef();
818 
819   if (Opnd.isConstant()) {
820     NeedNeg = false;
821     return Coeff.getValue(Instr->getType());
822   }
823 
824   Value *OpndVal = Opnd.getSymVal();
825 
826   if (Coeff.isMinusOne() || Coeff.isOne()) {
827     NeedNeg = Coeff.isMinusOne();
828     return OpndVal;
829   }
830 
831   if (Coeff.isTwo() || Coeff.isMinusTwo()) {
832     NeedNeg = Coeff.isMinusTwo();
833     return createFAdd(OpndVal, OpndVal);
834   }
835 
836   NeedNeg = false;
837   return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
838 }
839 
840 // If one of the operands only has one non-zero bit, and if the other
841 // operand has a known-zero bit in a more significant place than it (not
842 // including the sign bit) the ripple may go up to and fill the zero, but
843 // won't change the sign. For example, (X & ~4) + 1.
checkRippleForAdd(const APInt & Op0KnownZero,const APInt & Op1KnownZero)844 static bool checkRippleForAdd(const APInt &Op0KnownZero,
845                               const APInt &Op1KnownZero) {
846   APInt Op1MaybeOne = ~Op1KnownZero;
847   // Make sure that one of the operand has at most one bit set to 1.
848   if (Op1MaybeOne.countPopulation() != 1)
849     return false;
850 
851   // Find the most significant known 0 other than the sign bit.
852   int BitWidth = Op0KnownZero.getBitWidth();
853   APInt Op0KnownZeroTemp(Op0KnownZero);
854   Op0KnownZeroTemp.clearBit(BitWidth - 1);
855   int Op0ZeroPosition = BitWidth - Op0KnownZeroTemp.countLeadingZeros() - 1;
856 
857   int Op1OnePosition = BitWidth - Op1MaybeOne.countLeadingZeros() - 1;
858   IGC_ASSERT(Op1OnePosition >= 0);
859 
860   // This also covers the case of no known zero, since in that case
861   // Op0ZeroPosition is -1.
862   return Op0ZeroPosition >= Op1OnePosition;
863 }
864 
865 
866 /// Return true if we can prove that:
867 ///    (sext (add LHS, RHS))  === (add (sext LHS), (sext RHS))
868 /// This basically requires proving that the add in the original type would not
869 /// overflow to change the sign bit or have a carry out.
WillNotOverflowSignedAdd(Value * LHS,Value * RHS,Instruction & CxtI)870 bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS,
871                                             Instruction &CxtI) {
872   // There are different heuristics we can use for this.  Here are some simple
873   // ones.
874 
875   // If LHS and RHS each have at least two sign bits, the addition will look
876   // like
877   //
878   // XX..... +
879   // YY.....
880   //
881   // If the carry into the most significant position is 0, X and Y can't both
882   // be 1 and therefore the carry out of the addition is also 0.
883   //
884   // If the carry into the most significant position is 1, X and Y can't both
885   // be 0 and therefore the carry out of the addition is also 1.
886   //
887   // Since the carry into the most significant position is always equal to
888   // the carry out of the addition, there is no signed overflow.
889   if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 &&
890       ComputeNumSignBits(RHS, 0, &CxtI) > 1)
891     return true;
892 
893   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
894   APInt LHSKnownZero(BitWidth, 0);
895   APInt LHSKnownOne(BitWidth, 0);
896   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &CxtI);
897 
898   APInt RHSKnownZero(BitWidth, 0);
899   APInt RHSKnownOne(BitWidth, 0);
900   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &CxtI);
901 
902   // Addition of two 2's compliment numbers having opposite signs will never
903   // overflow.
904   if ((LHSKnownOne[BitWidth - 1] && RHSKnownZero[BitWidth - 1]) ||
905       (LHSKnownZero[BitWidth - 1] && RHSKnownOne[BitWidth - 1]))
906     return true;
907 
908   // Check if carry bit of addition will not cause overflow.
909   if (checkRippleForAdd(LHSKnownZero, RHSKnownZero))
910     return true;
911   if (checkRippleForAdd(RHSKnownZero, LHSKnownZero))
912     return true;
913 
914   return false;
915 }
916 
917 /// \brief Return true if we can prove that:
918 ///    (sub LHS, RHS)  === (sub nsw LHS, RHS)
919 /// This basically requires proving that the add in the original type would not
920 /// overflow to change the sign bit or have a carry out.
921 /// TODO: Handle this for Vectors.
WillNotOverflowSignedSub(Value * LHS,Value * RHS,Instruction & CxtI)922 bool InstCombiner::WillNotOverflowSignedSub(Value *LHS, Value *RHS,
923                                             Instruction &CxtI) {
924   // If LHS and RHS each have at least two sign bits, the subtraction
925   // cannot overflow.
926   if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 &&
927       ComputeNumSignBits(RHS, 0, &CxtI) > 1)
928     return true;
929 
930   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
931   APInt LHSKnownZero(BitWidth, 0);
932   APInt LHSKnownOne(BitWidth, 0);
933   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &CxtI);
934 
935   APInt RHSKnownZero(BitWidth, 0);
936   APInt RHSKnownOne(BitWidth, 0);
937   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &CxtI);
938 
939   // Subtraction of two 2's compliment numbers having identical signs will
940   // never overflow.
941   if ((LHSKnownOne[BitWidth - 1] && RHSKnownOne[BitWidth - 1]) ||
942       (LHSKnownZero[BitWidth - 1] && RHSKnownZero[BitWidth - 1]))
943     return true;
944 
945   // TODO: implement logic similar to checkRippleForAdd
946   return false;
947 }
948 
949 /// \brief Return true if we can prove that:
950 ///    (sub LHS, RHS)  === (sub nuw LHS, RHS)
WillNotOverflowUnsignedSub(Value * LHS,Value * RHS,Instruction & CxtI)951 bool InstCombiner::WillNotOverflowUnsignedSub(Value *LHS, Value *RHS,
952                                               Instruction &CxtI) {
953   // If the LHS is negative and the RHS is non-negative, no unsigned wrap.
954   bool LHSKnownNonNegative, LHSKnownNegative;
955   bool RHSKnownNonNegative, RHSKnownNegative;
956   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, /*Depth=*/0,
957                  &CxtI);
958   ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, /*Depth=*/0,
959                  &CxtI);
960   if (LHSKnownNegative && RHSKnownNonNegative)
961     return true;
962 
963   return false;
964 }
965 
966 // Checks if any operand is negative and we can convert add to sub.
967 // This function checks for following negative patterns
968 //   ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
969 //   ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
970 //   XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
checkForNegativeOperand(BinaryOperator & I,InstCombiner::BuilderTy * Builder)971 static Value *checkForNegativeOperand(BinaryOperator &I,
972                                       InstCombiner::BuilderTy *Builder) {
973   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
974 
975   // This function creates 2 instructions to replace ADD, we need at least one
976   // of LHS or RHS to have one use to ensure benefit in transform.
977   if (!LHS->hasOneUse() && !RHS->hasOneUse())
978     return nullptr;
979 
980   Value *X = nullptr, *Y = nullptr, *Z = nullptr;
981   const APInt *C1 = nullptr, *C2 = nullptr;
982 
983   // if ONE is on other side, swap
984   if (match(RHS, m_Add(m_Value(X), m_One())))
985     std::swap(LHS, RHS);
986 
987   if (match(LHS, m_Add(m_Value(X), m_One()))) {
988     // if XOR on other side, swap
989     if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
990       std::swap(X, RHS);
991 
992     if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
993       // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
994       // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
995       if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
996         Value *NewAnd = Builder->CreateAnd(Z, *C1);
997         return Builder->CreateSub(RHS, NewAnd, "sub");
998       } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
999         // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
1000         // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
1001         Value *NewOr = Builder->CreateOr(Z, ~(*C1));
1002         return Builder->CreateSub(RHS, NewOr, "sub");
1003       }
1004     }
1005   }
1006 
1007   // Restore LHS and RHS
1008   LHS = I.getOperand(0);
1009   RHS = I.getOperand(1);
1010 
1011   // if XOR is on other side, swap
1012   if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
1013     std::swap(LHS, RHS);
1014 
1015   // C2 is ODD
1016   // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
1017   // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
1018   if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
1019     if (C1->countTrailingZeros() == 0)
1020       if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
1021         Value *NewOr = Builder->CreateOr(Z, ~(*C2));
1022         return Builder->CreateSub(RHS, NewOr, "sub");
1023       }
1024   return nullptr;
1025 }
1026 
visitAdd(BinaryOperator & I)1027 Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1028   bool Changed = SimplifyAssociativeOrCommutative(I);
1029   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1030 
1031   if (Value *V = SimplifyVectorOp(I))
1032     return replaceInstUsesWith(I, V);
1033 
1034   if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
1035                                  I.hasNoUnsignedWrap(), DL, &TLI, &DT, &AC))
1036     return replaceInstUsesWith(I, V);
1037 
1038    // (A*B)+(A*C) -> A*(B+C) etc
1039   if (Value *V = SimplifyUsingDistributiveLaws(I))
1040     return replaceInstUsesWith(I, V);
1041 
1042   const APInt *Val = nullptr;
1043   if (match(RHS, m_APInt(Val))) {
1044     // X + (signbit) --> X ^ signbit
1045     if (Val->isSignBit())
1046       return BinaryOperator::CreateXor(LHS, RHS);
1047 
1048     // Is this add the last step in a convoluted sext?
1049     Value *X = nullptr;
1050     const APInt *C = nullptr;
1051     if (match(LHS, m_ZExt(m_Xor(m_Value(X), m_APInt(C)))) &&
1052         C->isMinSignedValue() &&
1053         C->sext(LHS->getType()->getScalarSizeInBits()) == *Val) {
1054       // add(zext(xor i16 X, -32768), -32768) --> sext X
1055       return CastInst::Create(Instruction::SExt, X, LHS->getType());
1056     }
1057 
1058     if (Val->isNegative() &&
1059         match(LHS, m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C)))) &&
1060         Val->sge(-C->sext(Val->getBitWidth()))) {
1061       // (add (zext (add nuw X, C)), Val) -> (zext (add nuw X, C+Val))
1062       return CastInst::Create(
1063           Instruction::ZExt,
1064           Builder->CreateNUWAdd(
1065               X, Constant::getIntegerValue(X->getType(),
1066                                            *C + Val->trunc(C->getBitWidth()))),
1067           I.getType());
1068     }
1069   }
1070 
1071   // FIXME: Use the match above instead of dyn_cast to allow these transforms
1072   // for splat vectors.
1073   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1074     // See if SimplifyDemandedBits can simplify this.  This handles stuff like
1075     // (X & 254)+1 -> (X&254)|1
1076     if (SimplifyDemandedInstructionBits(I))
1077       return &I;
1078 
1079     // zext(bool) + C -> bool ? C + 1 : C
1080     if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
1081       if (ZI->getSrcTy()->isIntegerTy(1))
1082         return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
1083 
1084     Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr;
1085     if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
1086       uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
1087       const APInt &RHSVal = CI->getValue();
1088       unsigned ExtendAmt = 0;
1089       // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
1090       // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
1091       if (XorRHS->getValue() == -RHSVal) {
1092         if (RHSVal.isPowerOf2())
1093           ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
1094         else if (XorRHS->getValue().isPowerOf2())
1095           ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
1096       }
1097 
1098       if (ExtendAmt) {
1099         APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
1100         if (!MaskedValueIsZero(XorLHS, Mask, 0, &I))
1101           ExtendAmt = 0;
1102       }
1103 
1104       if (ExtendAmt) {
1105         Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
1106         Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
1107         return BinaryOperator::CreateAShr(NewShl, ShAmt);
1108       }
1109 
1110       // If this is a xor that was canonicalized from a sub, turn it back into
1111       // a sub and fuse this add with it.
1112       if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
1113         IntegerType *IT = cast<IntegerType>(I.getType());
1114         APInt LHSKnownOne(IT->getBitWidth(), 0);
1115         APInt LHSKnownZero(IT->getBitWidth(), 0);
1116         computeKnownBits(XorLHS, LHSKnownZero, LHSKnownOne, 0, &I);
1117         if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue())
1118           return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
1119                                            XorLHS);
1120       }
1121       // (X + signbit) + C could have gotten canonicalized to (X ^ signbit) + C,
1122       // transform them into (X + (signbit ^ C))
1123       if (XorRHS->getValue().isSignBit())
1124         return BinaryOperator::CreateAdd(XorLHS,
1125                                          ConstantExpr::getXor(XorRHS, CI));
1126     }
1127   }
1128 
1129   if (isa<Constant>(RHS) && isa<PHINode>(LHS))
1130     if (Instruction *NV = FoldOpIntoPhi(I))
1131       return NV;
1132 
1133   if (I.getType()->getScalarType()->isIntegerTy(1))
1134     return BinaryOperator::CreateXor(LHS, RHS);
1135 
1136   // X + X --> X << 1
1137   if (LHS == RHS) {
1138     BinaryOperator *New =
1139       BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
1140     New->setHasNoSignedWrap(I.hasNoSignedWrap());
1141     New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1142     return New;
1143   }
1144 
1145   // -A + B  -->  B - A
1146   // -A + -B  -->  -(A + B)
1147   if (Value *LHSV = dyn_castNegVal(LHS)) {
1148     if (!isa<Constant>(RHS))
1149       if (Value *RHSV = dyn_castNegVal(RHS)) {
1150         Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
1151         return BinaryOperator::CreateNeg(NewAdd);
1152       }
1153 
1154     return BinaryOperator::CreateSub(RHS, LHSV);
1155   }
1156 
1157   // A + -B  -->  A - B
1158   if (!isa<Constant>(RHS))
1159     if (Value *V = dyn_castNegVal(RHS))
1160       return BinaryOperator::CreateSub(LHS, V);
1161 
1162   if (Value *V = checkForNegativeOperand(I, Builder))
1163     return replaceInstUsesWith(I, V);
1164 
1165   // A+B --> A|B iff A and B have no bits set in common.
1166   if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT))
1167     return BinaryOperator::CreateOr(LHS, RHS);
1168 
1169   if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
1170     Value *X = nullptr;
1171     if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
1172       return BinaryOperator::CreateSub(SubOne(CRHS), X);
1173   }
1174 
1175   // FIXME: We already did a check for ConstantInt RHS above this.
1176   // FIXME: Is this pattern covered by another fold? No regression tests fail on
1177   // removal.
1178   if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
1179     // (X & FF00) + xx00  -> (X+xx00) & FF00
1180     Value *X = nullptr;
1181     ConstantInt *C2 = nullptr;
1182     if (LHS->hasOneUse() &&
1183         match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
1184         CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
1185       // See if all bits from the first bit set in the Add RHS up are included
1186       // in the mask.  First, get the rightmost bit.
1187       const APInt &AddRHSV = CRHS->getValue();
1188 
1189       // Form a mask of all bits from the lowest bit added through the top.
1190       APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
1191 
1192       // See if the and mask includes all of these bits.
1193       APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
1194 
1195       if (AddRHSHighBits == AddRHSHighBitsAnd) {
1196         // Okay, the xform is safe.  Insert the new add pronto.
1197         Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
1198         return BinaryOperator::CreateAnd(NewAdd, C2);
1199       }
1200     }
1201 
1202     // Try to fold constant add into select arguments.
1203     if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
1204       if (Instruction *R = FoldOpIntoSelect(I, SI))
1205         return R;
1206   }
1207 
1208   // add (select X 0 (sub n A)) A  -->  select X A n
1209   {
1210     SelectInst *SI = dyn_cast<SelectInst>(LHS);
1211     Value *A = RHS;
1212     if (!SI) {
1213       SI = dyn_cast<SelectInst>(RHS);
1214       A = LHS;
1215     }
1216     if (SI && SI->hasOneUse()) {
1217       Value *TV = SI->getTrueValue();
1218       Value *FV = SI->getFalseValue();
1219       Value *N = nullptr;
1220 
1221       // Can we fold the add into the argument of the select?
1222       // We check both true and false select arguments for a matching subtract.
1223       if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
1224         // Fold the add into the true select value.
1225         return SelectInst::Create(SI->getCondition(), N, A);
1226 
1227       if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
1228         // Fold the add into the false select value.
1229         return SelectInst::Create(SI->getCondition(), A, N);
1230     }
1231   }
1232 
1233   // Check for (add (sext x), y), see if we can merge this into an
1234   // integer add followed by a sext.
1235   if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
1236     // (add (sext x), cst) --> (sext (add x, cst'))
1237     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
1238       if (LHSConv->hasOneUse()) {
1239         Constant *CI =
1240             ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
1241         if (ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
1242             WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) {
1243           // Insert the new, smaller add.
1244           Value *NewAdd =
1245               Builder->CreateNSWAdd(LHSConv->getOperand(0), CI, "addconv");
1246           return new SExtInst(NewAdd, I.getType());
1247         }
1248       }
1249     }
1250 
1251     // (add (sext x), (sext y)) --> (sext (add int x, y))
1252     if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
1253       // Only do this if x/y have the same type, if at last one of them has a
1254       // single use (so we don't increase the number of sexts), and if the
1255       // integer add will not overflow.
1256       if (LHSConv->getOperand(0)->getType() ==
1257               RHSConv->getOperand(0)->getType() &&
1258           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1259           WillNotOverflowSignedAdd(LHSConv->getOperand(0),
1260                                    RHSConv->getOperand(0), I)) {
1261         // Insert the new integer add.
1262         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1263                                              RHSConv->getOperand(0), "addconv");
1264         return new SExtInst(NewAdd, I.getType());
1265       }
1266     }
1267   }
1268 
1269   // Check for (add (zext x), y), see if we can merge this into an
1270   // integer add followed by a zext.
1271   if (auto *LHSConv = dyn_cast<ZExtInst>(LHS)) {
1272     // (add (zext x), cst) --> (zext (add x, cst'))
1273     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
1274       if (LHSConv->hasOneUse()) {
1275         Constant *CI =
1276             ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
1277         if (ConstantExpr::getZExt(CI, I.getType()) == RHSC &&
1278             computeOverflowForUnsignedAdd(LHSConv->getOperand(0), CI, &I) ==
1279                 OverflowResult::NeverOverflows) {
1280           // Insert the new, smaller add.
1281           Value *NewAdd =
1282               Builder->CreateNUWAdd(LHSConv->getOperand(0), CI, "addconv");
1283           return new ZExtInst(NewAdd, I.getType());
1284         }
1285       }
1286     }
1287 
1288     // (add (zext x), (zext y)) --> (zext (add int x, y))
1289     if (auto *RHSConv = dyn_cast<ZExtInst>(RHS)) {
1290       // Only do this if x/y have the same type, if at last one of them has a
1291       // single use (so we don't increase the number of zexts), and if the
1292       // integer add will not overflow.
1293       if (LHSConv->getOperand(0)->getType() ==
1294               RHSConv->getOperand(0)->getType() &&
1295           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1296           computeOverflowForUnsignedAdd(LHSConv->getOperand(0),
1297                                         RHSConv->getOperand(0),
1298                                         &I) == OverflowResult::NeverOverflows) {
1299         // Insert the new integer add.
1300         Value *NewAdd = Builder->CreateNUWAdd(
1301             LHSConv->getOperand(0), RHSConv->getOperand(0), "addconv");
1302         return new ZExtInst(NewAdd, I.getType());
1303       }
1304     }
1305   }
1306 
1307   // (add (xor A, B) (and A, B)) --> (or A, B)
1308   {
1309     Value *A = nullptr, *B = nullptr;
1310     if (match(RHS, m_Xor(m_Value(A), m_Value(B))) &&
1311         (match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
1312          match(LHS, m_And(m_Specific(B), m_Specific(A)))))
1313       return BinaryOperator::CreateOr(A, B);
1314 
1315     if (match(LHS, m_Xor(m_Value(A), m_Value(B))) &&
1316         (match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
1317          match(RHS, m_And(m_Specific(B), m_Specific(A)))))
1318       return BinaryOperator::CreateOr(A, B);
1319   }
1320 
1321   // (add (or A, B) (and A, B)) --> (add A, B)
1322   {
1323     Value *A = nullptr, *B = nullptr;
1324     if (match(RHS, m_Or(m_Value(A), m_Value(B))) &&
1325         (match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
1326          match(LHS, m_And(m_Specific(B), m_Specific(A))))) {
1327       auto *New = BinaryOperator::CreateAdd(A, B);
1328       New->setHasNoSignedWrap(I.hasNoSignedWrap());
1329       New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1330       return New;
1331     }
1332 
1333     if (match(LHS, m_Or(m_Value(A), m_Value(B))) &&
1334         (match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
1335          match(RHS, m_And(m_Specific(B), m_Specific(A))))) {
1336       auto *New = BinaryOperator::CreateAdd(A, B);
1337       New->setHasNoSignedWrap(I.hasNoSignedWrap());
1338       New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1339       return New;
1340     }
1341   }
1342 
1343   // TODO(jingyue): Consider WillNotOverflowSignedAdd and
1344   // WillNotOverflowUnsignedAdd to reduce the number of invocations of
1345   // computeKnownBits.
1346   if (!I.hasNoSignedWrap() && WillNotOverflowSignedAdd(LHS, RHS, I)) {
1347     Changed = true;
1348     I.setHasNoSignedWrap(true);
1349   }
1350   if (!I.hasNoUnsignedWrap() &&
1351       computeOverflowForUnsignedAdd(LHS, RHS, &I) ==
1352           OverflowResult::NeverOverflows) {
1353     Changed = true;
1354     I.setHasNoUnsignedWrap(true);
1355   }
1356 
1357   return Changed ? &I : nullptr;
1358 }
1359 
visitFAdd(BinaryOperator & I)1360 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
1361   bool Changed = SimplifyAssociativeOrCommutative(I);
1362   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1363 
1364   if (Value *V = SimplifyVectorOp(I))
1365     return replaceInstUsesWith(I, V);
1366 
1367   if (Value *V =
1368           SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), DL, &TLI, &DT, &AC))
1369     return replaceInstUsesWith(I, V);
1370 
1371   if (isa<Constant>(RHS))
1372     if (Instruction *FoldedFAdd = foldOpWithConstantIntoOperand(I))
1373       return FoldedFAdd;
1374 
1375   // -A + B  -->  B - A
1376   // -A + -B  -->  -(A + B)
1377   if (Value *LHSV = dyn_castFNegVal(LHS)) {
1378     Instruction *RI = BinaryOperator::CreateFSub(RHS, LHSV);
1379     RI->copyFastMathFlags(&I);
1380     return RI;
1381   }
1382 
1383   // A + -B  -->  A - B
1384   if (!isa<Constant>(RHS))
1385     if (Value *V = dyn_castFNegVal(RHS)) {
1386       Instruction *RI = BinaryOperator::CreateFSub(LHS, V);
1387       RI->copyFastMathFlags(&I);
1388       return RI;
1389     }
1390 
1391   // Check for (fadd double (sitofp x), y), see if we can merge this into an
1392   // integer add followed by a promotion.
1393   if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
1394     // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1395     // ... if the constant fits in the integer value.  This is useful for things
1396     // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1397     // requires a constant pool load, and generally allows the add to be better
1398     // instcombined.
1399     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
1400       Constant *CI =
1401       ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
1402       if (LHSConv->hasOneUse() &&
1403           ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
1404           WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) {
1405         // Insert the new integer add.
1406         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1407                                               CI, "addconv");
1408         return new SIToFPInst(NewAdd, I.getType());
1409       }
1410     }
1411 
1412     // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1413     if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1414       // Only do this if x/y have the same type, if at last one of them has a
1415       // single use (so we don't increase the number of int->fp conversions),
1416       // and if the integer add will not overflow.
1417       if (LHSConv->getOperand(0)->getType() ==
1418               RHSConv->getOperand(0)->getType() &&
1419           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1420           WillNotOverflowSignedAdd(LHSConv->getOperand(0),
1421                                    RHSConv->getOperand(0), I)) {
1422         // Insert the new integer add.
1423         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1424                                               RHSConv->getOperand(0),"addconv");
1425         return new SIToFPInst(NewAdd, I.getType());
1426       }
1427     }
1428   }
1429 
1430   // select C, 0, B + select C, A, 0 -> select C, A, B
1431   {
1432       Value *A1 = nullptr, *B1 = nullptr, *C1 = nullptr;
1433       Value *A2 = nullptr, *B2 = nullptr, *C2 = nullptr;
1434     if (match(LHS, m_Select(m_Value(C1), m_Value(A1), m_Value(B1))) &&
1435         match(RHS, m_Select(m_Value(C2), m_Value(A2), m_Value(B2)))) {
1436       if (C1 == C2) {
1437         Constant *Z1=nullptr, *Z2=nullptr;
1438         Value *A = nullptr, *B = nullptr, *C=C1;
1439         if (match(A1, m_AnyZero()) && match(B2, m_AnyZero())) {
1440             Z1 = dyn_cast<Constant>(A1); A = A2;
1441             Z2 = dyn_cast<Constant>(B2); B = B1;
1442         } else if (match(B1, m_AnyZero()) && match(A2, m_AnyZero())) {
1443             Z1 = dyn_cast<Constant>(B1); B = B2;
1444             Z2 = dyn_cast<Constant>(A2); A = A1;
1445         }
1446 
1447         if (Z1 && Z2 &&
1448             (I.hasNoSignedZeros() ||
1449              (Z1->isNegativeZeroValue() && Z2->isNegativeZeroValue()))) {
1450           return SelectInst::Create(C, A, B);
1451         }
1452       }
1453     }
1454   }
1455 
1456   if (I.isFast()) {
1457     if (Value *V = FAddCombine(Builder).simplify(&I))
1458       return replaceInstUsesWith(I, V);
1459   }
1460 
1461   return Changed ? &I : nullptr;
1462 }
1463 
1464 /// Optimize pointer differences into the same array into a size.  Consider:
1465 ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
1466 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1467 ///
OptimizePointerDifference(Value * LHS,Value * RHS,Type * Ty)1468 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
1469                                                Type *Ty) {
1470   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1471   // this.
1472   bool Swapped = false;
1473   GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
1474 
1475   // For now we require one side to be the base pointer "A" or a constant
1476   // GEP derived from it.
1477   if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1478     // (gep X, ...) - X
1479     if (LHSGEP->getOperand(0) == RHS) {
1480       GEP1 = LHSGEP;
1481       Swapped = false;
1482     } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1483       // (gep X, ...) - (gep X, ...)
1484       if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1485             RHSGEP->getOperand(0)->stripPointerCasts()) {
1486         GEP2 = RHSGEP;
1487         GEP1 = LHSGEP;
1488         Swapped = false;
1489       }
1490     }
1491   }
1492 
1493   if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1494     // X - (gep X, ...)
1495     if (RHSGEP->getOperand(0) == LHS) {
1496       GEP1 = RHSGEP;
1497       Swapped = true;
1498     } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1499       // (gep X, ...) - (gep X, ...)
1500       if (RHSGEP->getOperand(0)->stripPointerCasts() ==
1501             LHSGEP->getOperand(0)->stripPointerCasts()) {
1502         GEP2 = LHSGEP;
1503         GEP1 = RHSGEP;
1504         Swapped = true;
1505       }
1506     }
1507   }
1508 
1509   // Avoid duplicating the arithmetic if GEP2 has non-constant indices and
1510   // multiple users.
1511   if (!GEP1 ||
1512       (GEP2 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse()))
1513     return nullptr;
1514 
1515   // Emit the offset of the GEP and an intptr_t.
1516   Value *Result = EmitGEPOffset(GEP1);
1517 
1518   // If we had a constant expression GEP on the other side offsetting the
1519   // pointer, subtract it from the offset we have.
1520   if (GEP2) {
1521     Value *Offset = EmitGEPOffset(GEP2);
1522     Result = Builder->CreateSub(Result, Offset);
1523   }
1524 
1525   // If we have p - gep(p, ...)  then we have to negate the result.
1526   if (Swapped)
1527     Result = Builder->CreateNeg(Result, "diff.neg");
1528 
1529   return Builder->CreateIntCast(Result, Ty, true);
1530 }
1531 
visitSub(BinaryOperator & I)1532 Instruction *InstCombiner::visitSub(BinaryOperator &I) {
1533   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1534 
1535   if (Value *V = SimplifyVectorOp(I))
1536     return replaceInstUsesWith(I, V);
1537 
1538   if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(),
1539                                  I.hasNoUnsignedWrap(), DL, &TLI, &DT, &AC))
1540     return replaceInstUsesWith(I, V);
1541 
1542   // (A*B)-(A*C) -> A*(B-C) etc
1543   if (Value *V = SimplifyUsingDistributiveLaws(I))
1544     return replaceInstUsesWith(I, V);
1545 
1546   // If this is a 'B = x-(-A)', change to B = x+A.
1547   if (Value *V = dyn_castNegVal(Op1)) {
1548     BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
1549 
1550     if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
1551       IGC_ASSERT_MESSAGE(BO->getOpcode() == Instruction::Sub, "Expected a subtraction operator!");
1552       if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
1553         Res->setHasNoSignedWrap(true);
1554     } else {
1555       if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
1556         Res->setHasNoSignedWrap(true);
1557     }
1558 
1559     return Res;
1560   }
1561 
1562   if (I.getType()->isIntegerTy(1))
1563     return BinaryOperator::CreateXor(Op0, Op1);
1564 
1565   // Replace (-1 - A) with (~A).
1566   if (match(Op0, m_AllOnes()))
1567     return BinaryOperator::CreateNot(Op1);
1568 
1569   if (Constant *C = dyn_cast<Constant>(Op0)) {
1570     // C - ~X == X + (1+C)
1571     Value *X = nullptr;
1572     if (match(Op1, m_Not(m_Value(X))))
1573       return BinaryOperator::CreateAdd(X, AddOne(C));
1574 
1575     // Try to fold constant sub into select arguments.
1576     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1577       if (Instruction *R = FoldOpIntoSelect(I, SI))
1578         return R;
1579 
1580     // C-(X+C2) --> (C-C2)-X
1581     Constant *C2 = nullptr;
1582     if (match(Op1, m_Add(m_Value(X), m_Constant(C2))))
1583       return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
1584 
1585     if (SimplifyDemandedInstructionBits(I))
1586       return &I;
1587 
1588     // Fold (sub 0, (zext bool to B)) --> (sext bool to B)
1589     if (C->isNullValue() && match(Op1, m_ZExt(m_Value(X))))
1590       if (X->getType()->getScalarType()->isIntegerTy(1))
1591         return CastInst::CreateSExtOrBitCast(X, Op1->getType());
1592 
1593     // Fold (sub 0, (sext bool to B)) --> (zext bool to B)
1594     if (C->isNullValue() && match(Op1, m_SExt(m_Value(X))))
1595       if (X->getType()->getScalarType()->isIntegerTy(1))
1596         return CastInst::CreateZExtOrBitCast(X, Op1->getType());
1597   }
1598 
1599   const APInt *Op0C = nullptr;
1600   if (match(Op0, m_APInt(Op0C))) {
1601     unsigned BitWidth = I.getType()->getScalarSizeInBits();
1602 
1603     // -(X >>u 31) -> (X >>s 31)
1604     // -(X >>s 31) -> (X >>u 31)
1605     if (*Op0C == 0) {
1606       Value *X;
1607       const APInt *ShAmt;
1608       if (match(Op1, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
1609           *ShAmt == BitWidth - 1) {
1610         Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1);
1611         return BinaryOperator::CreateAShr(X, ShAmtOp);
1612       }
1613       if (match(Op1, m_AShr(m_Value(X), m_APInt(ShAmt))) &&
1614           *ShAmt == BitWidth - 1) {
1615         Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1);
1616         return BinaryOperator::CreateLShr(X, ShAmtOp);
1617       }
1618     }
1619 
1620     // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
1621     // zero.
1622     if ((*Op0C + 1).isPowerOf2()) {
1623       APInt KnownZero(BitWidth, 0);
1624       APInt KnownOne(BitWidth, 0);
1625       computeKnownBits(&I, KnownZero, KnownOne, 0, &I);
1626       if ((*Op0C | KnownZero).isAllOnesValue())
1627         return BinaryOperator::CreateXor(Op1, Op0);
1628     }
1629   }
1630 
1631   {
1632     Value *Y = nullptr;
1633     // X-(X+Y) == -Y    X-(Y+X) == -Y
1634     if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) ||
1635         match(Op1, m_Add(m_Value(Y), m_Specific(Op0))))
1636       return BinaryOperator::CreateNeg(Y);
1637 
1638     // (X-Y)-X == -Y
1639     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
1640       return BinaryOperator::CreateNeg(Y);
1641   }
1642 
1643   // (sub (or A, B) (xor A, B)) --> (and A, B)
1644   {
1645     Value *A = nullptr, *B = nullptr;
1646     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
1647         (match(Op0, m_Or(m_Specific(A), m_Specific(B))) ||
1648          match(Op0, m_Or(m_Specific(B), m_Specific(A)))))
1649       return BinaryOperator::CreateAnd(A, B);
1650   }
1651 
1652   if (Op0->hasOneUse()) {
1653     Value *Y = nullptr;
1654     // ((X | Y) - X) --> (~X & Y)
1655     if (match(Op0, m_Or(m_Value(Y), m_Specific(Op1))) ||
1656         match(Op0, m_Or(m_Specific(Op1), m_Value(Y))))
1657       return BinaryOperator::CreateAnd(
1658           Y, Builder->CreateNot(Op1, Op1->getName() + ".not"));
1659   }
1660 
1661   if (Op1->hasOneUse()) {
1662     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
1663     Constant *C = nullptr;
1664     Constant *CI = nullptr;
1665 
1666     // (X - (Y - Z))  -->  (X + (Z - Y)).
1667     if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
1668       return BinaryOperator::CreateAdd(Op0,
1669                                       Builder->CreateSub(Z, Y, Op1->getName()));
1670 
1671     // (X - (X & Y))   -->   (X & ~Y)
1672     //
1673     if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) ||
1674         match(Op1, m_And(m_Specific(Op0), m_Value(Y))))
1675       return BinaryOperator::CreateAnd(Op0,
1676                                   Builder->CreateNot(Y, Y->getName() + ".not"));
1677 
1678     // 0 - (X sdiv C)  -> (X sdiv -C)  provided the negation doesn't overflow.
1679     if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && match(Op0, m_Zero()) &&
1680         C->isNotMinSignedValue() && !C->isOneValue())
1681       return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
1682 
1683     // 0 - (X << Y)  -> (-X << Y)   when X is freely negatable.
1684     if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
1685       if (Value *XNeg = dyn_castNegVal(X))
1686         return BinaryOperator::CreateShl(XNeg, Y);
1687 
1688     // Subtracting -1/0 is the same as adding 1/0:
1689     // sub [nsw] Op0, sext(bool Y) -> add [nsw] Op0, zext(bool Y)
1690     // 'nuw' is dropped in favor of the canonical form.
1691     if (match(Op1, m_SExt(m_Value(Y))) &&
1692         Y->getType()->getScalarSizeInBits() == 1) {
1693       Value *Zext = Builder->CreateZExt(Y, I.getType());
1694       BinaryOperator *Add = BinaryOperator::CreateAdd(Op0, Zext);
1695       Add->setHasNoSignedWrap(I.hasNoSignedWrap());
1696       return Add;
1697     }
1698 
1699     // X - A*-B -> X + A*B
1700     // X - -A*B -> X + A*B
1701     Value *A = nullptr, *B = nullptr;
1702     if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) ||
1703         match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B))))
1704       return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B));
1705 
1706     // X - A*CI -> X + A*-CI
1707     // X - CI*A -> X + A*-CI
1708     if (match(Op1, m_Mul(m_Value(A), m_Constant(CI))) ||
1709         match(Op1, m_Mul(m_Constant(CI), m_Value(A)))) {
1710       Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI));
1711       return BinaryOperator::CreateAdd(Op0, NewMul);
1712     }
1713   }
1714 
1715   // Optimize pointer differences into the same array into a size.  Consider:
1716   //  &A[10] - &A[0]: we should compile this to "10".
1717   Value *LHSOp = nullptr, *RHSOp = nullptr;
1718   if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
1719       match(Op1, m_PtrToInt(m_Value(RHSOp))))
1720     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1721       return replaceInstUsesWith(I, Res);
1722 
1723   // trunc(p)-trunc(q) -> trunc(p-q)
1724   if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
1725       match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
1726     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1727       return replaceInstUsesWith(I, Res);
1728 
1729   bool Changed = false;
1730   if (!I.hasNoSignedWrap() && WillNotOverflowSignedSub(Op0, Op1, I)) {
1731     Changed = true;
1732     I.setHasNoSignedWrap(true);
1733   }
1734   if (!I.hasNoUnsignedWrap() && WillNotOverflowUnsignedSub(Op0, Op1, I)) {
1735     Changed = true;
1736     I.setHasNoUnsignedWrap(true);
1737   }
1738 
1739   return Changed ? &I : nullptr;
1740 }
1741 
visitFSub(BinaryOperator & I)1742 Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
1743   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1744 
1745   if (Value *V = SimplifyVectorOp(I))
1746     return replaceInstUsesWith(I, V);
1747 
1748   if (Value *V =
1749           SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), DL, &TLI, &DT, &AC))
1750     return replaceInstUsesWith(I, V);
1751 
1752   // fsub nsz 0, X ==> fsub nsz -0.0, X
1753   if (I.getFastMathFlags().noSignedZeros() && match(Op0, m_Zero())) {
1754     // Subtraction from -0.0 is the canonical form of fneg.
1755     Instruction *NewI = BinaryOperator::CreateFNeg(Op1);
1756     NewI->copyFastMathFlags(&I);
1757     return NewI;
1758   }
1759 
1760   if (isa<Constant>(Op0))
1761     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1762       if (Instruction *NV = FoldOpIntoSelect(I, SI))
1763         return NV;
1764 
1765   // If this is a 'B = x-(-A)', change to B = x+A, potentially looking
1766   // through FP extensions/truncations along the way.
1767   if (Value *V = dyn_castFNegVal(Op1)) {
1768     Instruction *NewI = BinaryOperator::CreateFAdd(Op0, V);
1769     NewI->copyFastMathFlags(&I);
1770     return NewI;
1771   }
1772   if (FPTruncInst *FPTI = dyn_cast<FPTruncInst>(Op1)) {
1773     if (Value *V = dyn_castFNegVal(FPTI->getOperand(0))) {
1774       Value *NewTrunc = Builder->CreateFPTrunc(V, I.getType());
1775       Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewTrunc);
1776       NewI->copyFastMathFlags(&I);
1777       return NewI;
1778     }
1779   } else if (FPExtInst *FPEI = dyn_cast<FPExtInst>(Op1)) {
1780     if (Value *V = dyn_castFNegVal(FPEI->getOperand(0))) {
1781       Value *NewExt = Builder->CreateFPExt(V, I.getType());
1782       Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewExt);
1783       NewI->copyFastMathFlags(&I);
1784       return NewI;
1785     }
1786   }
1787 
1788   if (I.isFast()) {
1789     if (Value *V = FAddCombine(Builder).simplify(&I))
1790       return replaceInstUsesWith(I, V);
1791   }
1792 
1793   return nullptr;
1794 }
1795