1 //===-- Twine.h - Fast Temporary String Concatenation -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #ifndef LLVM_ADT_TWINE_H
11 #define LLVM_ADT_TWINE_H
12 
13 #include "llvm/ADT/StringRef.h"
14 #include "llvm/Support/DataTypes.h"
15 #include "llvm/Support/ErrorHandling.h"
16 #include <cassert>
17 #include <string>
18 
19 namespace llvm {
20   template <typename T>
21   class SmallVectorImpl;
22   class StringRef;
23   class raw_ostream;
24 
25   /// Twine - A lightweight data structure for efficiently representing the
26   /// concatenation of temporary values as strings.
27   ///
28   /// A Twine is a kind of rope, it represents a concatenated string using a
29   /// binary-tree, where the string is the preorder of the nodes. Since the
30   /// Twine can be efficiently rendered into a buffer when its result is used,
31   /// it avoids the cost of generating temporary values for intermediate string
32   /// results -- particularly in cases when the Twine result is never
33   /// required. By explicitly tracking the type of leaf nodes, we can also avoid
34   /// the creation of temporary strings for conversions operations (such as
35   /// appending an integer to a string).
36   ///
37   /// A Twine is not intended for use directly and should not be stored, its
38   /// implementation relies on the ability to store pointers to temporary stack
39   /// objects which may be deallocated at the end of a statement. Twines should
40   /// only be used accepted as const references in arguments, when an API wishes
41   /// to accept possibly-concatenated strings.
42   ///
43   /// Twines support a special 'null' value, which always concatenates to form
44   /// itself, and renders as an empty string. This can be returned from APIs to
45   /// effectively nullify any concatenations performed on the result.
46   ///
47   /// \b Implementation
48   ///
49   /// Given the nature of a Twine, it is not possible for the Twine's
50   /// concatenation method to construct interior nodes; the result must be
51   /// represented inside the returned value. For this reason a Twine object
52   /// actually holds two values, the left- and right-hand sides of a
53   /// concatenation. We also have nullary Twine objects, which are effectively
54   /// sentinel values that represent empty strings.
55   ///
56   /// Thus, a Twine can effectively have zero, one, or two children. The \see
57   /// isNullary(), \see isUnary(), and \see isBinary() predicates exist for
58   /// testing the number of children.
59   ///
60   /// We maintain a number of invariants on Twine objects (FIXME: Why):
61   ///  - Nullary twines are always represented with their Kind on the left-hand
62   ///    side, and the Empty kind on the right-hand side.
63   ///  - Unary twines are always represented with the value on the left-hand
64   ///    side, and the Empty kind on the right-hand side.
65   ///  - If a Twine has another Twine as a child, that child should always be
66   ///    binary (otherwise it could have been folded into the parent).
67   ///
68   /// These invariants are check by \see isValid().
69   ///
70   /// \b Efficiency Considerations
71   ///
72   /// The Twine is designed to yield efficient and small code for common
73   /// situations. For this reason, the concat() method is inlined so that
74   /// concatenations of leaf nodes can be optimized into stores directly into a
75   /// single stack allocated object.
76   ///
77   /// In practice, not all compilers can be trusted to optimize concat() fully,
78   /// so we provide two additional methods (and accompanying operator+
79   /// overloads) to guarantee that particularly important cases (cstring plus
80   /// StringRef) codegen as desired.
81   class Twine {
82     /// NodeKind - Represent the type of an argument.
83     enum NodeKind : unsigned char {
84       /// An empty string; the result of concatenating anything with it is also
85       /// empty.
86       NullKind,
87 
88       /// The empty string.
89       EmptyKind,
90 
91       /// A pointer to a Twine instance.
92       TwineKind,
93 
94       /// A pointer to a C string instance.
95       CStringKind,
96 
97       /// A pointer to an std::string instance.
98       StdStringKind,
99 
100       /// A pointer to a StringRef instance.
101       StringRefKind,
102 
103       /// A char value reinterpreted as a pointer, to render as a character.
104       CharKind,
105 
106       /// An unsigned int value reinterpreted as a pointer, to render as an
107       /// unsigned decimal integer.
108       DecUIKind,
109 
110       /// An int value reinterpreted as a pointer, to render as a signed
111       /// decimal integer.
112       DecIKind,
113 
114       /// A pointer to an unsigned long value, to render as an unsigned decimal
115       /// integer.
116       DecULKind,
117 
118       /// A pointer to a long value, to render as a signed decimal integer.
119       DecLKind,
120 
121       /// A pointer to an unsigned long long value, to render as an unsigned
122       /// decimal integer.
123       DecULLKind,
124 
125       /// A pointer to a long long value, to render as a signed decimal integer.
126       DecLLKind,
127 
128       /// A pointer to a uint64_t value, to render as an unsigned hexadecimal
129       /// integer.
130       UHexKind
131     };
132 
133     union Child
134     {
135       const Twine *twine;
136       const char *cString;
137       const std::string *stdString;
138       const StringRef *stringRef;
139       char character;
140       unsigned int decUI;
141       int decI;
142       const unsigned long *decUL;
143       const long *decL;
144       const unsigned long long *decULL;
145       const long long *decLL;
146       const uint64_t *uHex;
147     };
148 
149   private:
150     /// LHS - The prefix in the concatenation, which may be uninitialized for
151     /// Null or Empty kinds.
152     Child LHS;
153     /// RHS - The suffix in the concatenation, which may be uninitialized for
154     /// Null or Empty kinds.
155     Child RHS;
156     /// LHSKind - The NodeKind of the left hand side, \see getLHSKind().
157     NodeKind LHSKind;
158     /// RHSKind - The NodeKind of the right hand side, \see getRHSKind().
159     NodeKind RHSKind;
160 
161   private:
162     /// Construct a nullary twine; the kind must be NullKind or EmptyKind.
Twine(NodeKind Kind)163     explicit Twine(NodeKind Kind)
164       : LHSKind(Kind), RHSKind(EmptyKind) {
165       assert(isNullary() && "Invalid kind!");
166     }
167 
168     /// Construct a binary twine.
Twine(const Twine & LHS,const Twine & RHS)169     explicit Twine(const Twine &LHS, const Twine &RHS)
170         : LHSKind(TwineKind), RHSKind(TwineKind) {
171       this->LHS.twine = &LHS;
172       this->RHS.twine = &RHS;
173       assert(isValid() && "Invalid twine!");
174     }
175 
176     /// Construct a twine from explicit values.
Twine(Child LHS,NodeKind LHSKind,Child RHS,NodeKind RHSKind)177     explicit Twine(Child LHS, NodeKind LHSKind, Child RHS, NodeKind RHSKind)
178         : LHS(LHS), RHS(RHS), LHSKind(LHSKind), RHSKind(RHSKind) {
179       assert(isValid() && "Invalid twine!");
180     }
181 
182     /// Since the intended use of twines is as temporary objects, assignments
183     /// when concatenating might cause undefined behavior or stack corruptions
184     Twine &operator=(const Twine &Other) = delete;
185 
186     /// isNull - Check for the null twine.
isNull()187     bool isNull() const {
188       return getLHSKind() == NullKind;
189     }
190 
191     /// isEmpty - Check for the empty twine.
isEmpty()192     bool isEmpty() const {
193       return getLHSKind() == EmptyKind;
194     }
195 
196     /// isNullary - Check if this is a nullary twine (null or empty).
isNullary()197     bool isNullary() const {
198       return isNull() || isEmpty();
199     }
200 
201     /// isUnary - Check if this is a unary twine.
isUnary()202     bool isUnary() const {
203       return getRHSKind() == EmptyKind && !isNullary();
204     }
205 
206     /// isBinary - Check if this is a binary twine.
isBinary()207     bool isBinary() const {
208       return getLHSKind() != NullKind && getRHSKind() != EmptyKind;
209     }
210 
211     /// isValid - Check if this is a valid twine (satisfying the invariants on
212     /// order and number of arguments).
isValid()213     bool isValid() const {
214       // Nullary twines always have Empty on the RHS.
215       if (isNullary() && getRHSKind() != EmptyKind)
216         return false;
217 
218       // Null should never appear on the RHS.
219       if (getRHSKind() == NullKind)
220         return false;
221 
222       // The RHS cannot be non-empty if the LHS is empty.
223       if (getRHSKind() != EmptyKind && getLHSKind() == EmptyKind)
224         return false;
225 
226       // A twine child should always be binary.
227       if (getLHSKind() == TwineKind &&
228           !LHS.twine->isBinary())
229         return false;
230       if (getRHSKind() == TwineKind &&
231           !RHS.twine->isBinary())
232         return false;
233 
234       return true;
235     }
236 
237     /// getLHSKind - Get the NodeKind of the left-hand side.
getLHSKind()238     NodeKind getLHSKind() const { return LHSKind; }
239 
240     /// getRHSKind - Get the NodeKind of the right-hand side.
getRHSKind()241     NodeKind getRHSKind() const { return RHSKind; }
242 
243     /// printOneChild - Print one child from a twine.
244     void printOneChild(raw_ostream &OS, Child Ptr, NodeKind Kind) const;
245 
246     /// printOneChildRepr - Print the representation of one child from a twine.
247     void printOneChildRepr(raw_ostream &OS, Child Ptr,
248                            NodeKind Kind) const;
249 
250   public:
251     /// @name Constructors
252     /// @{
253 
254     /// Construct from an empty string.
Twine()255     /*implicit*/ Twine() : LHSKind(EmptyKind), RHSKind(EmptyKind) {
256       assert(isValid() && "Invalid twine!");
257     }
258 
259     Twine(const Twine &) = default;
260 
261     /// Construct from a C string.
262     ///
263     /// We take care here to optimize "" into the empty twine -- this will be
264     /// optimized out for string constants. This allows Twine arguments have
265     /// default "" values, without introducing unnecessary string constants.
Twine(const char * Str)266     /*implicit*/ Twine(const char *Str)
267       : RHSKind(EmptyKind) {
268       if (Str[0] != '\0') {
269         LHS.cString = Str;
270         LHSKind = CStringKind;
271       } else
272         LHSKind = EmptyKind;
273 
274       assert(isValid() && "Invalid twine!");
275     }
276 
277     /// Construct from an std::string.
Twine(const std::string & Str)278     /*implicit*/ Twine(const std::string &Str)
279       : LHSKind(StdStringKind), RHSKind(EmptyKind) {
280       LHS.stdString = &Str;
281       assert(isValid() && "Invalid twine!");
282     }
283 
284     /// Construct from a StringRef.
Twine(const StringRef & Str)285     /*implicit*/ Twine(const StringRef &Str)
286       : LHSKind(StringRefKind), RHSKind(EmptyKind) {
287       LHS.stringRef = &Str;
288       assert(isValid() && "Invalid twine!");
289     }
290 
291     /// Construct from a char.
Twine(char Val)292     explicit Twine(char Val)
293       : LHSKind(CharKind), RHSKind(EmptyKind) {
294       LHS.character = Val;
295     }
296 
297     /// Construct from a signed char.
Twine(signed char Val)298     explicit Twine(signed char Val)
299       : LHSKind(CharKind), RHSKind(EmptyKind) {
300       LHS.character = static_cast<char>(Val);
301     }
302 
303     /// Construct from an unsigned char.
Twine(unsigned char Val)304     explicit Twine(unsigned char Val)
305       : LHSKind(CharKind), RHSKind(EmptyKind) {
306       LHS.character = static_cast<char>(Val);
307     }
308 
309     /// Construct a twine to print \p Val as an unsigned decimal integer.
Twine(unsigned Val)310     explicit Twine(unsigned Val)
311       : LHSKind(DecUIKind), RHSKind(EmptyKind) {
312       LHS.decUI = Val;
313     }
314 
315     /// Construct a twine to print \p Val as a signed decimal integer.
Twine(int Val)316     explicit Twine(int Val)
317       : LHSKind(DecIKind), RHSKind(EmptyKind) {
318       LHS.decI = Val;
319     }
320 
321     /// Construct a twine to print \p Val as an unsigned decimal integer.
Twine(const unsigned long & Val)322     explicit Twine(const unsigned long &Val)
323       : LHSKind(DecULKind), RHSKind(EmptyKind) {
324       LHS.decUL = &Val;
325     }
326 
327     /// Construct a twine to print \p Val as a signed decimal integer.
Twine(const long & Val)328     explicit Twine(const long &Val)
329       : LHSKind(DecLKind), RHSKind(EmptyKind) {
330       LHS.decL = &Val;
331     }
332 
333     /// Construct a twine to print \p Val as an unsigned decimal integer.
Twine(const unsigned long long & Val)334     explicit Twine(const unsigned long long &Val)
335       : LHSKind(DecULLKind), RHSKind(EmptyKind) {
336       LHS.decULL = &Val;
337     }
338 
339     /// Construct a twine to print \p Val as a signed decimal integer.
Twine(const long long & Val)340     explicit Twine(const long long &Val)
341       : LHSKind(DecLLKind), RHSKind(EmptyKind) {
342       LHS.decLL = &Val;
343     }
344 
345     // FIXME: Unfortunately, to make sure this is as efficient as possible we
346     // need extra binary constructors from particular types. We can't rely on
347     // the compiler to be smart enough to fold operator+()/concat() down to the
348     // right thing. Yet.
349 
350     /// Construct as the concatenation of a C string and a StringRef.
Twine(const char * LHS,const StringRef & RHS)351     /*implicit*/ Twine(const char *LHS, const StringRef &RHS)
352         : LHSKind(CStringKind), RHSKind(StringRefKind) {
353       this->LHS.cString = LHS;
354       this->RHS.stringRef = &RHS;
355       assert(isValid() && "Invalid twine!");
356     }
357 
358     /// Construct as the concatenation of a StringRef and a C string.
Twine(const StringRef & LHS,const char * RHS)359     /*implicit*/ Twine(const StringRef &LHS, const char *RHS)
360         : LHSKind(StringRefKind), RHSKind(CStringKind) {
361       this->LHS.stringRef = &LHS;
362       this->RHS.cString = RHS;
363       assert(isValid() && "Invalid twine!");
364     }
365 
366     /// Create a 'null' string, which is an empty string that always
367     /// concatenates to form another empty string.
createNull()368     static Twine createNull() {
369       return Twine(NullKind);
370     }
371 
372     /// @}
373     /// @name Numeric Conversions
374     /// @{
375 
376     // Construct a twine to print \p Val as an unsigned hexadecimal integer.
utohexstr(const uint64_t & Val)377     static Twine utohexstr(const uint64_t &Val) {
378       Child LHS, RHS;
379       LHS.uHex = &Val;
380       RHS.twine = nullptr;
381       return Twine(LHS, UHexKind, RHS, EmptyKind);
382     }
383 
384     /// @}
385     /// @name Predicate Operations
386     /// @{
387 
388     /// isTriviallyEmpty - Check if this twine is trivially empty; a false
389     /// return value does not necessarily mean the twine is empty.
isTriviallyEmpty()390     bool isTriviallyEmpty() const {
391       return isNullary();
392     }
393 
394     /// isSingleStringRef - Return true if this twine can be dynamically
395     /// accessed as a single StringRef value with getSingleStringRef().
isSingleStringRef()396     bool isSingleStringRef() const {
397       if (getRHSKind() != EmptyKind) return false;
398 
399       switch (getLHSKind()) {
400       case EmptyKind:
401       case CStringKind:
402       case StdStringKind:
403       case StringRefKind:
404         return true;
405       default:
406         return false;
407       }
408     }
409 
410     /// @}
411     /// @name String Operations
412     /// @{
413 
414     Twine concat(const Twine &Suffix) const;
415 
416     /// @}
417     /// @name Output & Conversion.
418     /// @{
419 
420     /// str - Return the twine contents as a std::string.
421     std::string str() const;
422 
423     /// toVector - Write the concatenated string into the given SmallString or
424     /// SmallVector.
425     void toVector(SmallVectorImpl<char> &Out) const;
426 
427     /// getSingleStringRef - This returns the twine as a single StringRef.  This
428     /// method is only valid if isSingleStringRef() is true.
getSingleStringRef()429     StringRef getSingleStringRef() const {
430       assert(isSingleStringRef() &&"This cannot be had as a single stringref!");
431       switch (getLHSKind()) {
432       default: llvm_unreachable("Out of sync with isSingleStringRef");
433       case EmptyKind:      return StringRef();
434       case CStringKind:    return StringRef(LHS.cString);
435       case StdStringKind:  return StringRef(*LHS.stdString);
436       case StringRefKind:  return *LHS.stringRef;
437       }
438     }
439 
440     /// toStringRef - This returns the twine as a single StringRef if it can be
441     /// represented as such. Otherwise the twine is written into the given
442     /// SmallVector and a StringRef to the SmallVector's data is returned.
443     StringRef toStringRef(SmallVectorImpl<char> &Out) const;
444 
445     /// toNullTerminatedStringRef - This returns the twine as a single null
446     /// terminated StringRef if it can be represented as such. Otherwise the
447     /// twine is written into the given SmallVector and a StringRef to the
448     /// SmallVector's data is returned.
449     ///
450     /// The returned StringRef's size does not include the null terminator.
451     StringRef toNullTerminatedStringRef(SmallVectorImpl<char> &Out) const;
452 
453     /// Write the concatenated string represented by this twine to the
454     /// stream \p OS.
455     void print(raw_ostream &OS) const;
456 
457     /// Dump the concatenated string represented by this twine to stderr.
458     void dump() const;
459 
460     /// Write the representation of this twine to the stream \p OS.
461     void printRepr(raw_ostream &OS) const;
462 
463     /// Dump the representation of this twine to stderr.
464     void dumpRepr() const;
465 
466     /// @}
467   };
468 
469   /// @name Twine Inline Implementations
470   /// @{
471 
concat(const Twine & Suffix)472   inline Twine Twine::concat(const Twine &Suffix) const {
473     // Concatenation with null is null.
474     if (isNull() || Suffix.isNull())
475       return Twine(NullKind);
476 
477     // Concatenation with empty yields the other side.
478     if (isEmpty())
479       return Suffix;
480     if (Suffix.isEmpty())
481       return *this;
482 
483     // Otherwise we need to create a new node, taking care to fold in unary
484     // twines.
485     Child NewLHS, NewRHS;
486     NewLHS.twine = this;
487     NewRHS.twine = &Suffix;
488     NodeKind NewLHSKind = TwineKind, NewRHSKind = TwineKind;
489     if (isUnary()) {
490       NewLHS = LHS;
491       NewLHSKind = getLHSKind();
492     }
493     if (Suffix.isUnary()) {
494       NewRHS = Suffix.LHS;
495       NewRHSKind = Suffix.getLHSKind();
496     }
497 
498     return Twine(NewLHS, NewLHSKind, NewRHS, NewRHSKind);
499   }
500 
501   inline Twine operator+(const Twine &LHS, const Twine &RHS) {
502     return LHS.concat(RHS);
503   }
504 
505   /// Additional overload to guarantee simplified codegen; this is equivalent to
506   /// concat().
507 
508   inline Twine operator+(const char *LHS, const StringRef &RHS) {
509     return Twine(LHS, RHS);
510   }
511 
512   /// Additional overload to guarantee simplified codegen; this is equivalent to
513   /// concat().
514 
515   inline Twine operator+(const StringRef &LHS, const char *RHS) {
516     return Twine(LHS, RHS);
517   }
518 
519   inline raw_ostream &operator<<(raw_ostream &OS, const Twine &RHS) {
520     RHS.print(OS);
521     return OS;
522   }
523 
524   /// @}
525 }
526 
527 #endif
528