1 //===--- FindTarget.cpp - What does an AST node refer to? -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "FindTarget.h"
10 #include "AST.h"
11 #include "support/Logger.h"
12 #include "clang/AST/ASTTypeTraits.h"
13 #include "clang/AST/Decl.h"
14 #include "clang/AST/DeclCXX.h"
15 #include "clang/AST/DeclTemplate.h"
16 #include "clang/AST/DeclVisitor.h"
17 #include "clang/AST/DeclarationName.h"
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/ExprConcepts.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/AST/NestedNameSpecifier.h"
23 #include "clang/AST/PrettyPrinter.h"
24 #include "clang/AST/RecursiveASTVisitor.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/AST/TemplateBase.h"
27 #include "clang/AST/Type.h"
28 #include "clang/AST/TypeLoc.h"
29 #include "clang/AST/TypeLocVisitor.h"
30 #include "clang/AST/TypeVisitor.h"
31 #include "clang/Basic/LangOptions.h"
32 #include "clang/Basic/OperatorKinds.h"
33 #include "clang/Basic/SourceLocation.h"
34 #include "clang/Basic/Specifiers.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <iterator>
41 #include <utility>
42 #include <vector>
43 
44 namespace clang {
45 namespace clangd {
46 namespace {
47 using ast_type_traits::DynTypedNode;
48 
49 LLVM_ATTRIBUTE_UNUSED std::string
nodeToString(const ast_type_traits::DynTypedNode & N)50 nodeToString(const ast_type_traits::DynTypedNode &N) {
51   std::string S = std::string(N.getNodeKind().asStringRef());
52   {
53     llvm::raw_string_ostream OS(S);
54     OS << ": ";
55     N.print(OS, PrintingPolicy(LangOptions()));
56   }
57   std::replace(S.begin(), S.end(), '\n', ' ');
58   return S;
59 }
60 
61 // Helper function for getMembersReferencedViaDependentName()
62 // which takes a dependent type `T` and heuristically
63 // resolves it to a CXXRecordDecl in which we can try name lookup.
resolveTypeToRecordDecl(const Type * T)64 CXXRecordDecl *resolveTypeToRecordDecl(const Type *T) {
65   assert(T);
66   if (const auto *ICNT = T->getAs<InjectedClassNameType>()) {
67     T = ICNT->getInjectedSpecializationType().getTypePtrOrNull();
68   }
69   const auto *TST = T->getAs<TemplateSpecializationType>();
70   if (!TST)
71     return nullptr;
72   const ClassTemplateDecl *TD = dyn_cast_or_null<ClassTemplateDecl>(
73       TST->getTemplateName().getAsTemplateDecl());
74   if (!TD)
75     return nullptr;
76   return TD->getTemplatedDecl();
77 }
78 
79 // Given a dependent type and a member name, heuristically resolve the
80 // name to one or more declarations.
81 // The current heuristic is simply to look up the name in the primary
82 // template. This is a heuristic because the template could potentially
83 // have specializations that declare different members.
84 // Multiple declarations could be returned if the name is overloaded
85 // (e.g. an overloaded method in the primary template).
86 // This heuristic will give the desired answer in many cases, e.g.
87 // for a call to vector<T>::size().
88 // The name to look up is provided in the form of a factory that takes
89 // an ASTContext, because an ASTContext may be needed to obtain the
90 // name (e.g. if it's an operator name), but the caller may not have
91 // access to an ASTContext.
getMembersReferencedViaDependentName(const Type * T,llvm::function_ref<DeclarationName (ASTContext &)> NameFactory,bool IsNonstaticMember)92 std::vector<const NamedDecl *> getMembersReferencedViaDependentName(
93     const Type *T,
94     llvm::function_ref<DeclarationName(ASTContext &)> NameFactory,
95     bool IsNonstaticMember) {
96   if (!T)
97     return {};
98   if (auto *ET = T->getAs<EnumType>()) {
99     auto Result =
100         ET->getDecl()->lookup(NameFactory(ET->getDecl()->getASTContext()));
101     return {Result.begin(), Result.end()};
102   }
103   if (auto *RD = resolveTypeToRecordDecl(T)) {
104     if (!RD->hasDefinition())
105       return {};
106     RD = RD->getDefinition();
107     DeclarationName Name = NameFactory(RD->getASTContext());
108     return RD->lookupDependentName(Name, [=](const NamedDecl *D) {
109       return IsNonstaticMember ? D->isCXXInstanceMember()
110                                : !D->isCXXInstanceMember();
111     });
112   }
113   return {};
114 }
115 
116 // Given the type T of a dependent expression that appears of the LHS of a "->",
117 // heuristically find a corresponding pointee type in whose scope we could look
118 // up the name appearing on the RHS.
getPointeeType(const Type * T)119 const Type *getPointeeType(const Type *T) {
120   if (!T)
121     return nullptr;
122 
123   if (T->isPointerType()) {
124     return T->getAs<PointerType>()->getPointeeType().getTypePtrOrNull();
125   }
126 
127   // Try to handle smart pointer types.
128 
129   // Look up operator-> in the primary template. If we find one, it's probably a
130   // smart pointer type.
131   auto ArrowOps = getMembersReferencedViaDependentName(
132       T,
133       [](ASTContext &Ctx) {
134         return Ctx.DeclarationNames.getCXXOperatorName(OO_Arrow);
135       },
136       /*IsNonStaticMember=*/true);
137   if (ArrowOps.empty())
138     return nullptr;
139 
140   // Getting the return type of the found operator-> method decl isn't useful,
141   // because we discarded template arguments to perform lookup in the primary
142   // template scope, so the return type would just have the form U* where U is a
143   // template parameter type.
144   // Instead, just handle the common case where the smart pointer type has the
145   // form of SmartPtr<X, ...>, and assume X is the pointee type.
146   auto *TST = T->getAs<TemplateSpecializationType>();
147   if (!TST)
148     return nullptr;
149   if (TST->getNumArgs() == 0)
150     return nullptr;
151   const TemplateArgument &FirstArg = TST->getArg(0);
152   if (FirstArg.getKind() != TemplateArgument::Type)
153     return nullptr;
154   return FirstArg.getAsType().getTypePtrOrNull();
155 }
156 
157 // Try to heuristically resolve a dependent expression `E` to one
158 // or more declarations that it likely references.
resolveDependentExprToDecls(const Expr * E)159 std::vector<const NamedDecl *> resolveDependentExprToDecls(const Expr *E) {
160   assert(E->isTypeDependent());
161   if (const auto *ME = dyn_cast<CXXDependentScopeMemberExpr>(E)) {
162     const Type *BaseType = ME->getBaseType().getTypePtrOrNull();
163     if (ME->isArrow()) {
164       BaseType = getPointeeType(BaseType);
165     }
166     return getMembersReferencedViaDependentName(
167         BaseType, [ME](ASTContext &) { return ME->getMember(); },
168         /*IsNonstaticMember=*/true);
169   }
170   if (const auto *RE = dyn_cast<DependentScopeDeclRefExpr>(E)) {
171     return getMembersReferencedViaDependentName(
172         RE->getQualifier()->getAsType(),
173         [RE](ASTContext &) { return RE->getDeclName(); },
174         /*IsNonstaticMember=*/false);
175   }
176   return {};
177 }
178 
getTemplatePattern(const NamedDecl * D)179 const NamedDecl *getTemplatePattern(const NamedDecl *D) {
180   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
181     if (const auto *Result = CRD->getTemplateInstantiationPattern())
182       return Result;
183     // getTemplateInstantiationPattern returns null if the Specialization is
184     // incomplete (e.g. the type didn't need to be complete), fall back to the
185     // primary template.
186     if (CRD->getTemplateSpecializationKind() == TSK_Undeclared)
187       if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(CRD))
188         return Spec->getSpecializedTemplate()->getTemplatedDecl();
189   } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
190     return FD->getTemplateInstantiationPattern();
191   } else if (auto *VD = dyn_cast<VarDecl>(D)) {
192     // Hmm: getTIP returns its arg if it's not an instantiation?!
193     VarDecl *T = VD->getTemplateInstantiationPattern();
194     return (T == D) ? nullptr : T;
195   } else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
196     return ED->getInstantiatedFromMemberEnum();
197   } else if (isa<FieldDecl>(D) || isa<TypedefNameDecl>(D)) {
198     if (const auto *Parent = llvm::dyn_cast<NamedDecl>(D->getDeclContext()))
199       if (const DeclContext *ParentPat =
200               dyn_cast_or_null<DeclContext>(getTemplatePattern(Parent)))
201         for (const NamedDecl *BaseND : ParentPat->lookup(D->getDeclName()))
202           if (!BaseND->isImplicit() && BaseND->getKind() == D->getKind())
203             return BaseND;
204   } else if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
205     if (const auto *ED = dyn_cast<EnumDecl>(ECD->getDeclContext())) {
206       if (const EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
207         for (const NamedDecl *BaseECD : Pattern->lookup(ECD->getDeclName()))
208           return BaseECD;
209       }
210     }
211   }
212   return nullptr;
213 }
214 
215 // TargetFinder locates the entities that an AST node refers to.
216 //
217 // Typically this is (possibly) one declaration and (possibly) one type, but
218 // may be more:
219 //  - for ambiguous nodes like OverloadExpr
220 //  - if we want to include e.g. both typedefs and the underlying type
221 //
222 // This is organized as a set of mutually recursive helpers for particular node
223 // types, but for most nodes this is a short walk rather than a deep traversal.
224 //
225 // It's tempting to do e.g. typedef resolution as a second normalization step,
226 // after finding the 'primary' decl etc. But we do this monolithically instead
227 // because:
228 //  - normalization may require these traversals again (e.g. unwrapping a
229 //    typedef reveals a decltype which must be traversed)
230 //  - it doesn't simplify that much, e.g. the first stage must still be able
231 //    to yield multiple decls to handle OverloadExpr
232 //  - there are cases where it's required for correctness. e.g:
233 //      template<class X> using pvec = vector<x*>; pvec<int> x;
234 //    There's no Decl `pvec<int>`, we must choose `pvec<X>` or `vector<int*>`
235 //    and both are lossy. We must know upfront what the caller ultimately wants.
236 //
237 // FIXME: improve common dependent scope using name lookup in primary templates.
238 // e.g. template<typename T> int foo() { return std::vector<T>().size(); }
239 // formally size() is unresolved, but the primary template is a good guess.
240 // This affects:
241 //  - DependentTemplateSpecializationType,
242 //  - DependentNameType
243 //  - UnresolvedUsingValueDecl
244 //  - UnresolvedUsingTypenameDecl
245 struct TargetFinder {
246   using RelSet = DeclRelationSet;
247   using Rel = DeclRelation;
248 
249 private:
250   llvm::SmallDenseMap<const NamedDecl *,
251                       std::pair<RelSet, /*InsertionOrder*/ size_t>>
252       Decls;
253   RelSet Flags;
254 
debugclang::clangd::__anon3a901ad10111::TargetFinder255   template <typename T> void debug(T &Node, RelSet Flags) {
256     dlog("visit [{0}] {1}", Flags,
257          nodeToString(ast_type_traits::DynTypedNode::create(Node)));
258   }
259 
reportclang::clangd::__anon3a901ad10111::TargetFinder260   void report(const NamedDecl *D, RelSet Flags) {
261     dlog("--> [{0}] {1}", Flags,
262          nodeToString(ast_type_traits::DynTypedNode::create(*D)));
263     auto It = Decls.try_emplace(D, std::make_pair(Flags, Decls.size()));
264     // If already exists, update the flags.
265     if (!It.second)
266       It.first->second.first |= Flags;
267   }
268 
269 public:
takeDeclsclang::clangd::__anon3a901ad10111::TargetFinder270   llvm::SmallVector<std::pair<const NamedDecl *, RelSet>, 1> takeDecls() const {
271     using ValTy = std::pair<const NamedDecl *, RelSet>;
272     llvm::SmallVector<ValTy, 1> Result;
273     Result.resize(Decls.size());
274     for (const auto &Elem : Decls)
275       Result[Elem.second.second] = {Elem.first, Elem.second.first};
276     return Result;
277   }
278 
addclang::clangd::__anon3a901ad10111::TargetFinder279   void add(const Decl *Dcl, RelSet Flags) {
280     const NamedDecl *D = llvm::dyn_cast_or_null<NamedDecl>(Dcl);
281     if (!D)
282       return;
283     debug(*D, Flags);
284     if (const UsingDirectiveDecl *UDD = llvm::dyn_cast<UsingDirectiveDecl>(D))
285       D = UDD->getNominatedNamespaceAsWritten();
286 
287     if (const TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(D)) {
288       add(TND->getUnderlyingType(), Flags | Rel::Underlying);
289       Flags |= Rel::Alias; // continue with the alias.
290     } else if (const UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
291       for (const UsingShadowDecl *S : UD->shadows())
292         add(S->getUnderlyingDecl(), Flags | Rel::Underlying);
293       Flags |= Rel::Alias; // continue with the alias.
294     } else if (const auto *NAD = dyn_cast<NamespaceAliasDecl>(D)) {
295       add(NAD->getUnderlyingDecl(), Flags | Rel::Underlying);
296       Flags |= Rel::Alias; // continue with the alias
297     } else if (const UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D)) {
298       // Include the using decl, but don't traverse it. This may end up
299       // including *all* shadows, which we don't want.
300       report(USD->getUsingDecl(), Flags | Rel::Alias);
301       // Shadow decls are synthetic and not themselves interesting.
302       // Record the underlying decl instead, if allowed.
303       D = USD->getTargetDecl();
304       Flags |= Rel::Underlying; // continue with the underlying decl.
305     }
306 
307     if (const Decl *Pat = getTemplatePattern(D)) {
308       assert(Pat != D);
309       add(Pat, Flags | Rel::TemplatePattern);
310       // Now continue with the instantiation.
311       Flags |= Rel::TemplateInstantiation;
312     }
313 
314     report(D, Flags);
315   }
316 
addclang::clangd::__anon3a901ad10111::TargetFinder317   void add(const Stmt *S, RelSet Flags) {
318     if (!S)
319       return;
320     debug(*S, Flags);
321     struct Visitor : public ConstStmtVisitor<Visitor> {
322       TargetFinder &Outer;
323       RelSet Flags;
324       Visitor(TargetFinder &Outer, RelSet Flags) : Outer(Outer), Flags(Flags) {}
325 
326       void VisitCallExpr(const CallExpr *CE) {
327         Outer.add(CE->getCalleeDecl(), Flags);
328       }
329       void VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
330         Outer.add(E->getNamedConcept(), Flags);
331       }
332       void VisitDeclRefExpr(const DeclRefExpr *DRE) {
333         const Decl *D = DRE->getDecl();
334         // UsingShadowDecl allows us to record the UsingDecl.
335         // getFoundDecl() returns the wrong thing in other cases (templates).
336         if (auto *USD = llvm::dyn_cast<UsingShadowDecl>(DRE->getFoundDecl()))
337           D = USD;
338         Outer.add(D, Flags);
339       }
340       void VisitMemberExpr(const MemberExpr *ME) {
341         const Decl *D = ME->getMemberDecl();
342         if (auto *USD =
343                 llvm::dyn_cast<UsingShadowDecl>(ME->getFoundDecl().getDecl()))
344           D = USD;
345         Outer.add(D, Flags);
346       }
347       void VisitOverloadExpr(const OverloadExpr *OE) {
348         for (auto *D : OE->decls())
349           Outer.add(D, Flags);
350       }
351       void VisitSizeOfPackExpr(const SizeOfPackExpr *SE) {
352         Outer.add(SE->getPack(), Flags);
353       }
354       void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
355         Outer.add(CCE->getConstructor(), Flags);
356       }
357       void VisitDesignatedInitExpr(const DesignatedInitExpr *DIE) {
358         for (const DesignatedInitExpr::Designator &D :
359              llvm::reverse(DIE->designators()))
360           if (D.isFieldDesignator()) {
361             Outer.add(D.getField(), Flags);
362             // We don't know which designator was intended, we assume the outer.
363             break;
364           }
365       }
366       void VisitGotoStmt(const GotoStmt *Goto) {
367         if (auto *LabelDecl = Goto->getLabel())
368           Outer.add(LabelDecl, Flags);
369       }
370       void VisitLabelStmt(const LabelStmt *Label) {
371         if (auto *LabelDecl = Label->getDecl())
372           Outer.add(LabelDecl, Flags);
373       }
374       void
375       VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E) {
376         for (const NamedDecl *D : resolveDependentExprToDecls(E)) {
377           Outer.add(D, Flags);
378         }
379       }
380       void VisitDependentScopeDeclRefExpr(const DependentScopeDeclRefExpr *E) {
381         for (const NamedDecl *D : resolveDependentExprToDecls(E)) {
382           Outer.add(D, Flags);
383         }
384       }
385       void VisitObjCIvarRefExpr(const ObjCIvarRefExpr *OIRE) {
386         Outer.add(OIRE->getDecl(), Flags);
387       }
388       void VisitObjCMessageExpr(const ObjCMessageExpr *OME) {
389         Outer.add(OME->getMethodDecl(), Flags);
390       }
391       void VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *OPRE) {
392         if (OPRE->isExplicitProperty())
393           Outer.add(OPRE->getExplicitProperty(), Flags);
394         else {
395           if (OPRE->isMessagingGetter())
396             Outer.add(OPRE->getImplicitPropertyGetter(), Flags);
397           if (OPRE->isMessagingSetter())
398             Outer.add(OPRE->getImplicitPropertySetter(), Flags);
399         }
400       }
401       void VisitObjCProtocolExpr(const ObjCProtocolExpr *OPE) {
402         Outer.add(OPE->getProtocol(), Flags);
403       }
404       void VisitOpaqueValueExpr(const OpaqueValueExpr *OVE) {
405         Outer.add(OVE->getSourceExpr(), Flags);
406       }
407       void VisitPseudoObjectExpr(const PseudoObjectExpr *POE) {
408         Outer.add(POE->getSyntacticForm(), Flags);
409       }
410     };
411     Visitor(*this, Flags).Visit(S);
412   }
413 
addclang::clangd::__anon3a901ad10111::TargetFinder414   void add(QualType T, RelSet Flags) {
415     if (T.isNull())
416       return;
417     debug(T, Flags);
418     struct Visitor : public TypeVisitor<Visitor> {
419       TargetFinder &Outer;
420       RelSet Flags;
421       Visitor(TargetFinder &Outer, RelSet Flags) : Outer(Outer), Flags(Flags) {}
422 
423       void VisitTagType(const TagType *TT) {
424         Outer.add(TT->getAsTagDecl(), Flags);
425       }
426 
427       void VisitElaboratedType(const ElaboratedType *ET) {
428         Outer.add(ET->desugar(), Flags);
429       }
430 
431       void VisitInjectedClassNameType(const InjectedClassNameType *ICNT) {
432         Outer.add(ICNT->getDecl(), Flags);
433       }
434 
435       void VisitDecltypeType(const DecltypeType *DTT) {
436         Outer.add(DTT->getUnderlyingType(), Flags | Rel::Underlying);
437       }
438       void VisitDeducedType(const DeducedType *DT) {
439         // FIXME: In practice this doesn't work: the AutoType you find inside
440         // TypeLoc never has a deduced type. https://llvm.org/PR42914
441         Outer.add(DT->getDeducedType(), Flags | Rel::Underlying);
442       }
443       void VisitDeducedTemplateSpecializationType(
444           const DeducedTemplateSpecializationType *DTST) {
445         // FIXME: This is a workaround for https://llvm.org/PR42914,
446         // which is causing DTST->getDeducedType() to be empty. We
447         // fall back to the template pattern and miss the instantiation
448         // even when it's known in principle. Once that bug is fixed,
449         // this method can be removed (the existing handling in
450         // VisitDeducedType() is sufficient).
451         if (auto *TD = DTST->getTemplateName().getAsTemplateDecl())
452           Outer.add(TD->getTemplatedDecl(), Flags | Rel::TemplatePattern);
453       }
454       void VisitTypedefType(const TypedefType *TT) {
455         Outer.add(TT->getDecl(), Flags);
456       }
457       void
458       VisitTemplateSpecializationType(const TemplateSpecializationType *TST) {
459         // Have to handle these case-by-case.
460 
461         // templated type aliases: there's no specialized/instantiated using
462         // decl to point to. So try to find a decl for the underlying type
463         // (after substitution), and failing that point to the (templated) using
464         // decl.
465         if (TST->isTypeAlias()) {
466           Outer.add(TST->getAliasedType(), Flags | Rel::Underlying);
467           // Don't *traverse* the alias, which would result in traversing the
468           // template of the underlying type.
469           Outer.report(
470               TST->getTemplateName().getAsTemplateDecl()->getTemplatedDecl(),
471               Flags | Rel::Alias | Rel::TemplatePattern);
472         }
473         // specializations of template template parameters aren't instantiated
474         // into decls, so they must refer to the parameter itself.
475         else if (const auto *Parm =
476                      llvm::dyn_cast_or_null<TemplateTemplateParmDecl>(
477                          TST->getTemplateName().getAsTemplateDecl()))
478           Outer.add(Parm, Flags);
479         // class template specializations have a (specialized) CXXRecordDecl.
480         else if (const CXXRecordDecl *RD = TST->getAsCXXRecordDecl())
481           Outer.add(RD, Flags); // add(Decl) will despecialize if needed.
482         else {
483           // fallback: the (un-specialized) declaration from primary template.
484           if (auto *TD = TST->getTemplateName().getAsTemplateDecl())
485             Outer.add(TD->getTemplatedDecl(), Flags | Rel::TemplatePattern);
486         }
487       }
488       void VisitTemplateTypeParmType(const TemplateTypeParmType *TTPT) {
489         Outer.add(TTPT->getDecl(), Flags);
490       }
491       void VisitObjCInterfaceType(const ObjCInterfaceType *OIT) {
492         Outer.add(OIT->getDecl(), Flags);
493       }
494       void VisitObjCObjectType(const ObjCObjectType *OOT) {
495         // FIXME: ObjCObjectTypeLoc has no children for the protocol list, so
496         // there is no node in id<Foo> that refers to ObjCProtocolDecl Foo.
497         if (OOT->isObjCQualifiedId() && OOT->getNumProtocols() == 1)
498           Outer.add(OOT->getProtocol(0), Flags);
499       }
500     };
501     Visitor(*this, Flags).Visit(T.getTypePtr());
502   }
503 
addclang::clangd::__anon3a901ad10111::TargetFinder504   void add(const NestedNameSpecifier *NNS, RelSet Flags) {
505     if (!NNS)
506       return;
507     debug(*NNS, Flags);
508     switch (NNS->getKind()) {
509     case NestedNameSpecifier::Identifier:
510       return;
511     case NestedNameSpecifier::Namespace:
512       add(NNS->getAsNamespace(), Flags);
513       return;
514     case NestedNameSpecifier::NamespaceAlias:
515       add(NNS->getAsNamespaceAlias(), Flags);
516       return;
517     case NestedNameSpecifier::TypeSpec:
518     case NestedNameSpecifier::TypeSpecWithTemplate:
519       add(QualType(NNS->getAsType(), 0), Flags);
520       return;
521     case NestedNameSpecifier::Global:
522       // This should be TUDecl, but we can't get a pointer to it!
523       return;
524     case NestedNameSpecifier::Super:
525       add(NNS->getAsRecordDecl(), Flags);
526       return;
527     }
528     llvm_unreachable("unhandled NestedNameSpecifier::SpecifierKind");
529   }
530 
addclang::clangd::__anon3a901ad10111::TargetFinder531   void add(const CXXCtorInitializer *CCI, RelSet Flags) {
532     if (!CCI)
533       return;
534     debug(*CCI, Flags);
535 
536     if (CCI->isAnyMemberInitializer())
537       add(CCI->getAnyMember(), Flags);
538     // Constructor calls contain a TypeLoc node, so we don't handle them here.
539   }
540 };
541 
542 } // namespace
543 
544 llvm::SmallVector<std::pair<const NamedDecl *, DeclRelationSet>, 1>
allTargetDecls(const ast_type_traits::DynTypedNode & N)545 allTargetDecls(const ast_type_traits::DynTypedNode &N) {
546   dlog("allTargetDecls({0})", nodeToString(N));
547   TargetFinder Finder;
548   DeclRelationSet Flags;
549   if (const Decl *D = N.get<Decl>())
550     Finder.add(D, Flags);
551   else if (const Stmt *S = N.get<Stmt>())
552     Finder.add(S, Flags);
553   else if (const NestedNameSpecifierLoc *NNSL = N.get<NestedNameSpecifierLoc>())
554     Finder.add(NNSL->getNestedNameSpecifier(), Flags);
555   else if (const NestedNameSpecifier *NNS = N.get<NestedNameSpecifier>())
556     Finder.add(NNS, Flags);
557   else if (const TypeLoc *TL = N.get<TypeLoc>())
558     Finder.add(TL->getType(), Flags);
559   else if (const QualType *QT = N.get<QualType>())
560     Finder.add(*QT, Flags);
561   else if (const CXXCtorInitializer *CCI = N.get<CXXCtorInitializer>())
562     Finder.add(CCI, Flags);
563 
564   return Finder.takeDecls();
565 }
566 
567 llvm::SmallVector<const NamedDecl *, 1>
targetDecl(const ast_type_traits::DynTypedNode & N,DeclRelationSet Mask)568 targetDecl(const ast_type_traits::DynTypedNode &N, DeclRelationSet Mask) {
569   llvm::SmallVector<const NamedDecl *, 1> Result;
570   for (const auto &Entry : allTargetDecls(N)) {
571     if (!(Entry.second & ~Mask))
572       Result.push_back(Entry.first);
573   }
574   return Result;
575 }
576 
577 llvm::SmallVector<const NamedDecl *, 1>
explicitReferenceTargets(DynTypedNode N,DeclRelationSet Mask)578 explicitReferenceTargets(DynTypedNode N, DeclRelationSet Mask) {
579   assert(!(Mask & (DeclRelation::TemplatePattern |
580                    DeclRelation::TemplateInstantiation)) &&
581          "explicitReferenceTargets handles templates on its own");
582   auto Decls = allTargetDecls(N);
583 
584   // We prefer to return template instantiation, but fallback to template
585   // pattern if instantiation is not available.
586   Mask |= DeclRelation::TemplatePattern | DeclRelation::TemplateInstantiation;
587 
588   llvm::SmallVector<const NamedDecl *, 1> TemplatePatterns;
589   llvm::SmallVector<const NamedDecl *, 1> Targets;
590   bool SeenTemplateInstantiations = false;
591   for (auto &D : Decls) {
592     if (D.second & ~Mask)
593       continue;
594     if (D.second & DeclRelation::TemplatePattern) {
595       TemplatePatterns.push_back(D.first);
596       continue;
597     }
598     if (D.second & DeclRelation::TemplateInstantiation)
599       SeenTemplateInstantiations = true;
600     Targets.push_back(D.first);
601   }
602   if (!SeenTemplateInstantiations)
603     Targets.insert(Targets.end(), TemplatePatterns.begin(),
604                    TemplatePatterns.end());
605   return Targets;
606 }
607 
608 namespace {
refInDecl(const Decl * D)609 llvm::SmallVector<ReferenceLoc, 2> refInDecl(const Decl *D) {
610   struct Visitor : ConstDeclVisitor<Visitor> {
611     llvm::SmallVector<ReferenceLoc, 2> Refs;
612 
613     void VisitUsingDirectiveDecl(const UsingDirectiveDecl *D) {
614       // We want to keep it as non-declaration references, as the
615       // "using namespace" declaration doesn't have a name.
616       Refs.push_back(ReferenceLoc{D->getQualifierLoc(),
617                                   D->getIdentLocation(),
618                                   /*IsDecl=*/false,
619                                   {D->getNominatedNamespaceAsWritten()}});
620     }
621 
622     void VisitUsingDecl(const UsingDecl *D) {
623       // "using ns::identifier;" is a non-declaration reference.
624       Refs.push_back(
625           ReferenceLoc{D->getQualifierLoc(), D->getLocation(), /*IsDecl=*/false,
626                        explicitReferenceTargets(DynTypedNode::create(*D),
627                                                 DeclRelation::Underlying)});
628     }
629 
630     void VisitNamespaceAliasDecl(const NamespaceAliasDecl *D) {
631       // For namespace alias, "namespace Foo = Target;", we add two references.
632       // Add a declaration reference for Foo.
633       VisitNamedDecl(D);
634       // Add a non-declaration reference for Target.
635       Refs.push_back(ReferenceLoc{D->getQualifierLoc(),
636                                   D->getTargetNameLoc(),
637                                   /*IsDecl=*/false,
638                                   {D->getAliasedNamespace()}});
639     }
640 
641     void VisitNamedDecl(const NamedDecl *ND) {
642       // We choose to ignore {Class, Function, Var, TypeAlias}TemplateDecls. As
643       // as their underlying decls, covering the same range, will be visited.
644       if (llvm::isa<ClassTemplateDecl>(ND) ||
645           llvm::isa<FunctionTemplateDecl>(ND) ||
646           llvm::isa<VarTemplateDecl>(ND) ||
647           llvm::isa<TypeAliasTemplateDecl>(ND))
648         return;
649       // FIXME: decide on how to surface destructors when we need them.
650       if (llvm::isa<CXXDestructorDecl>(ND))
651         return;
652       // Filter anonymous decls, name location will point outside the name token
653       // and the clients are not prepared to handle that.
654       if (ND->getDeclName().isIdentifier() &&
655           !ND->getDeclName().getAsIdentifierInfo())
656         return;
657       Refs.push_back(ReferenceLoc{getQualifierLoc(*ND),
658                                   ND->getLocation(),
659                                   /*IsDecl=*/true,
660                                   {ND}});
661     }
662   };
663 
664   Visitor V;
665   V.Visit(D);
666   return V.Refs;
667 }
668 
refInStmt(const Stmt * S)669 llvm::SmallVector<ReferenceLoc, 2> refInStmt(const Stmt *S) {
670   struct Visitor : ConstStmtVisitor<Visitor> {
671     // FIXME: handle more complicated cases: more ObjC, designated initializers.
672     llvm::SmallVector<ReferenceLoc, 2> Refs;
673 
674     void VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
675       Refs.push_back(ReferenceLoc{E->getNestedNameSpecifierLoc(),
676                                   E->getConceptNameLoc(),
677                                   /*IsDecl=*/false,
678                                   {E->getNamedConcept()}});
679     }
680 
681     void VisitDeclRefExpr(const DeclRefExpr *E) {
682       Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
683                                   E->getNameInfo().getLoc(),
684                                   /*IsDecl=*/false,
685                                   {E->getFoundDecl()}});
686     }
687 
688     void VisitDependentScopeDeclRefExpr(const DependentScopeDeclRefExpr *E) {
689       Refs.push_back(ReferenceLoc{
690           E->getQualifierLoc(), E->getNameInfo().getLoc(), /*IsDecl=*/false,
691           explicitReferenceTargets(DynTypedNode::create(*E), {})});
692     }
693 
694     void VisitMemberExpr(const MemberExpr *E) {
695       // Skip destructor calls to avoid duplication: TypeLoc within will be
696       // visited separately.
697       if (llvm::dyn_cast<CXXDestructorDecl>(E->getFoundDecl().getDecl()))
698         return;
699       Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
700                                   E->getMemberNameInfo().getLoc(),
701                                   /*IsDecl=*/false,
702                                   {E->getFoundDecl()}});
703     }
704 
705     void
706     VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E) {
707       Refs.push_back(
708           ReferenceLoc{E->getQualifierLoc(), E->getMemberNameInfo().getLoc(),
709                        /*IsDecl=*/false,
710                        explicitReferenceTargets(DynTypedNode::create(*E), {})});
711     }
712 
713     void VisitOverloadExpr(const OverloadExpr *E) {
714       Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
715                                   E->getNameInfo().getLoc(),
716                                   /*IsDecl=*/false,
717                                   llvm::SmallVector<const NamedDecl *, 1>(
718                                       E->decls().begin(), E->decls().end())});
719     }
720 
721     void VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
722       Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
723                                   E->getPackLoc(),
724                                   /*IsDecl=*/false,
725                                   {E->getPack()}});
726     }
727 
728     void VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *E) {
729       Refs.push_back(ReferenceLoc{
730           NestedNameSpecifierLoc(), E->getLocation(),
731           /*IsDecl=*/false,
732           // Select the getter, setter, or @property depending on the call.
733           explicitReferenceTargets(DynTypedNode::create(*E), {})});
734     }
735 
736     void VisitDesignatedInitExpr(const DesignatedInitExpr *DIE) {
737       for (const DesignatedInitExpr::Designator &D : DIE->designators()) {
738         if (!D.isFieldDesignator())
739           continue;
740 
741         llvm::SmallVector<const NamedDecl *, 1> Targets;
742         if (D.getField())
743           Targets.push_back(D.getField());
744         Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(), D.getFieldLoc(),
745                                     /*IsDecl=*/false, std::move(Targets)});
746       }
747     }
748 
749     void VisitGotoStmt(const GotoStmt *GS) {
750       llvm::SmallVector<const NamedDecl *, 1> Targets;
751       if (const auto *L = GS->getLabel())
752         Targets.push_back(L);
753       Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(), GS->getLabelLoc(),
754                                   /*IsDecl=*/false, std::move(Targets)});
755     }
756 
757     void VisitLabelStmt(const LabelStmt *LS) {
758       Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
759                                   LS->getIdentLoc(),
760                                   /*IsDecl=*/true,
761                                   {LS->getDecl()}});
762     }
763   };
764 
765   Visitor V;
766   V.Visit(S);
767   return V.Refs;
768 }
769 
refInTypeLoc(TypeLoc L)770 llvm::SmallVector<ReferenceLoc, 2> refInTypeLoc(TypeLoc L) {
771   struct Visitor : TypeLocVisitor<Visitor> {
772     llvm::Optional<ReferenceLoc> Ref;
773 
774     void VisitElaboratedTypeLoc(ElaboratedTypeLoc L) {
775       // We only know about qualifier, rest if filled by inner locations.
776       Visit(L.getNamedTypeLoc().getUnqualifiedLoc());
777       // Fill in the qualifier.
778       if (!Ref)
779         return;
780       assert(!Ref->Qualifier.hasQualifier() && "qualifier already set");
781       Ref->Qualifier = L.getQualifierLoc();
782     }
783 
784     void VisitTagTypeLoc(TagTypeLoc L) {
785       Ref = ReferenceLoc{NestedNameSpecifierLoc(),
786                          L.getNameLoc(),
787                          /*IsDecl=*/false,
788                          {L.getDecl()}};
789     }
790 
791     void VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc L) {
792       Ref = ReferenceLoc{NestedNameSpecifierLoc(),
793                          L.getNameLoc(),
794                          /*IsDecl=*/false,
795                          {L.getDecl()}};
796     }
797 
798     void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc L) {
799       // We must ensure template type aliases are included in results if they
800       // were written in the source code, e.g. in
801       //    template <class T> using valias = vector<T>;
802       //    ^valias<int> x;
803       // 'explicitReferenceTargets' will return:
804       //    1. valias with mask 'Alias'.
805       //    2. 'vector<int>' with mask 'Underlying'.
806       //  we want to return only #1 in this case.
807       Ref = ReferenceLoc{
808           NestedNameSpecifierLoc(), L.getTemplateNameLoc(), /*IsDecl=*/false,
809           explicitReferenceTargets(DynTypedNode::create(L.getType()),
810                                    DeclRelation::Alias)};
811     }
812     void VisitDeducedTemplateSpecializationTypeLoc(
813         DeducedTemplateSpecializationTypeLoc L) {
814       Ref = ReferenceLoc{
815           NestedNameSpecifierLoc(), L.getNameLoc(), /*IsDecl=*/false,
816           explicitReferenceTargets(DynTypedNode::create(L.getType()),
817                                    DeclRelation::Alias)};
818     }
819 
820     void VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc TL) {
821       Ref = ReferenceLoc{NestedNameSpecifierLoc(),
822                          TL.getNameLoc(),
823                          /*IsDecl=*/false,
824                          {TL.getDecl()}};
825     }
826 
827     void VisitDependentTemplateSpecializationTypeLoc(
828         DependentTemplateSpecializationTypeLoc L) {
829       Ref = ReferenceLoc{
830           L.getQualifierLoc(), L.getTemplateNameLoc(), /*IsDecl=*/false,
831           explicitReferenceTargets(DynTypedNode::create(L.getType()), {})};
832     }
833 
834     void VisitDependentNameTypeLoc(DependentNameTypeLoc L) {
835       Ref = ReferenceLoc{
836           L.getQualifierLoc(), L.getNameLoc(), /*IsDecl=*/false,
837           explicitReferenceTargets(DynTypedNode::create(L.getType()), {})};
838     }
839 
840     void VisitTypedefTypeLoc(TypedefTypeLoc L) {
841       Ref = ReferenceLoc{NestedNameSpecifierLoc(),
842                          L.getNameLoc(),
843                          /*IsDecl=*/false,
844                          {L.getTypedefNameDecl()}};
845     }
846   };
847 
848   Visitor V;
849   V.Visit(L.getUnqualifiedLoc());
850   if (!V.Ref)
851     return {};
852   return {*V.Ref};
853 }
854 
855 class ExplicitReferenceCollector
856     : public RecursiveASTVisitor<ExplicitReferenceCollector> {
857 public:
ExplicitReferenceCollector(llvm::function_ref<void (ReferenceLoc)> Out)858   ExplicitReferenceCollector(llvm::function_ref<void(ReferenceLoc)> Out)
859       : Out(Out) {
860     assert(Out);
861   }
862 
VisitTypeLoc(TypeLoc TTL)863   bool VisitTypeLoc(TypeLoc TTL) {
864     if (TypeLocsToSkip.count(TTL.getBeginLoc().getRawEncoding()))
865       return true;
866     visitNode(DynTypedNode::create(TTL));
867     return true;
868   }
869 
TraverseElaboratedTypeLoc(ElaboratedTypeLoc L)870   bool TraverseElaboratedTypeLoc(ElaboratedTypeLoc L) {
871     // ElaboratedTypeLoc will reports information for its inner type loc.
872     // Otherwise we loose information about inner types loc's qualifier.
873     TypeLoc Inner = L.getNamedTypeLoc().getUnqualifiedLoc();
874     TypeLocsToSkip.insert(Inner.getBeginLoc().getRawEncoding());
875     return RecursiveASTVisitor::TraverseElaboratedTypeLoc(L);
876   }
877 
VisitStmt(Stmt * S)878   bool VisitStmt(Stmt *S) {
879     visitNode(DynTypedNode::create(*S));
880     return true;
881   }
882 
TraverseOpaqueValueExpr(OpaqueValueExpr * OVE)883   bool TraverseOpaqueValueExpr(OpaqueValueExpr *OVE) {
884     visitNode(DynTypedNode::create(*OVE));
885     // Not clear why the source expression is skipped by default...
886     // FIXME: can we just make RecursiveASTVisitor do this?
887     return RecursiveASTVisitor::TraverseStmt(OVE->getSourceExpr());
888   }
889 
TraversePseudoObjectExpr(PseudoObjectExpr * POE)890   bool TraversePseudoObjectExpr(PseudoObjectExpr *POE) {
891     visitNode(DynTypedNode::create(*POE));
892     // Traverse only the syntactic form to find the *written* references.
893     // (The semantic form also contains lots of duplication)
894     return RecursiveASTVisitor::TraverseStmt(POE->getSyntacticForm());
895   }
896 
897   // We re-define Traverse*, since there's no corresponding Visit*.
898   // TemplateArgumentLoc is the only way to get locations for references to
899   // template template parameters.
TraverseTemplateArgumentLoc(TemplateArgumentLoc A)900   bool TraverseTemplateArgumentLoc(TemplateArgumentLoc A) {
901     llvm::SmallVector<const NamedDecl *, 1> Targets;
902     switch (A.getArgument().getKind()) {
903     case TemplateArgument::Template:
904     case TemplateArgument::TemplateExpansion:
905       if (const auto *D = A.getArgument()
906                               .getAsTemplateOrTemplatePattern()
907                               .getAsTemplateDecl())
908         Targets.push_back(D);
909       reportReference(ReferenceLoc{A.getTemplateQualifierLoc(),
910                                    A.getTemplateNameLoc(),
911                                    /*IsDecl=*/false, Targets},
912                       DynTypedNode::create(A.getArgument()));
913       break;
914     case TemplateArgument::Declaration:
915       break; // FIXME: can this actually happen in TemplateArgumentLoc?
916     case TemplateArgument::Integral:
917     case TemplateArgument::Null:
918     case TemplateArgument::NullPtr:
919       break; // no references.
920     case TemplateArgument::Pack:
921     case TemplateArgument::Type:
922     case TemplateArgument::Expression:
923       break; // Handled by VisitType and VisitExpression.
924     };
925     return RecursiveASTVisitor::TraverseTemplateArgumentLoc(A);
926   }
927 
VisitDecl(Decl * D)928   bool VisitDecl(Decl *D) {
929     visitNode(DynTypedNode::create(*D));
930     return true;
931   }
932 
933   // We have to use Traverse* because there is no corresponding Visit*.
TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc L)934   bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc L) {
935     if (!L.getNestedNameSpecifier())
936       return true;
937     visitNode(DynTypedNode::create(L));
938     // Inner type is missing information about its qualifier, skip it.
939     if (auto TL = L.getTypeLoc())
940       TypeLocsToSkip.insert(TL.getBeginLoc().getRawEncoding());
941     return RecursiveASTVisitor::TraverseNestedNameSpecifierLoc(L);
942   }
943 
TraverseConstructorInitializer(CXXCtorInitializer * Init)944   bool TraverseConstructorInitializer(CXXCtorInitializer *Init) {
945     visitNode(DynTypedNode::create(*Init));
946     return RecursiveASTVisitor::TraverseConstructorInitializer(Init);
947   }
948 
949 private:
950   /// Obtain information about a reference directly defined in \p N. Does not
951   /// recurse into child nodes, e.g. do not expect references for constructor
952   /// initializers
953   ///
954   /// Any of the fields in the returned structure can be empty, but not all of
955   /// them, e.g.
956   ///   - for implicitly generated nodes (e.g. MemberExpr from range-based-for),
957   ///     source location information may be missing,
958   ///   - for dependent code, targets may be empty.
959   ///
960   /// (!) For the purposes of this function declarations are not considered to
961   ///     be references. However, declarations can have references inside them,
962   ///     e.g. 'namespace foo = std' references namespace 'std' and this
963   ///     function will return the corresponding reference.
explicitReference(DynTypedNode N)964   llvm::SmallVector<ReferenceLoc, 2> explicitReference(DynTypedNode N) {
965     if (auto *D = N.get<Decl>())
966       return refInDecl(D);
967     if (auto *S = N.get<Stmt>())
968       return refInStmt(S);
969     if (auto *NNSL = N.get<NestedNameSpecifierLoc>()) {
970       // (!) 'DeclRelation::Alias' ensures we do not loose namespace aliases.
971       return {ReferenceLoc{
972           NNSL->getPrefix(), NNSL->getLocalBeginLoc(), false,
973           explicitReferenceTargets(
974               DynTypedNode::create(*NNSL->getNestedNameSpecifier()),
975               DeclRelation::Alias)}};
976     }
977     if (const TypeLoc *TL = N.get<TypeLoc>())
978       return refInTypeLoc(*TL);
979     if (const CXXCtorInitializer *CCI = N.get<CXXCtorInitializer>()) {
980       // Other type initializers (e.g. base initializer) are handled by visiting
981       // the typeLoc.
982       if (CCI->isAnyMemberInitializer()) {
983         return {ReferenceLoc{NestedNameSpecifierLoc(),
984                              CCI->getMemberLocation(),
985                              /*IsDecl=*/false,
986                              {CCI->getAnyMember()}}};
987       }
988     }
989     // We do not have location information for other nodes (QualType, etc)
990     return {};
991   }
992 
visitNode(DynTypedNode N)993   void visitNode(DynTypedNode N) {
994     for (const auto &R : explicitReference(N))
995       reportReference(R, N);
996   }
997 
reportReference(const ReferenceLoc & Ref,DynTypedNode N)998   void reportReference(const ReferenceLoc &Ref, DynTypedNode N) {
999     // Our promise is to return only references from the source code. If we lack
1000     // location information, skip these nodes.
1001     // Normally this should not happen in practice, unless there are bugs in the
1002     // traversals or users started the traversal at an implicit node.
1003     if (Ref.NameLoc.isInvalid()) {
1004       dlog("invalid location at node {0}", nodeToString(N));
1005       return;
1006     }
1007     Out(Ref);
1008   }
1009 
1010   llvm::function_ref<void(ReferenceLoc)> Out;
1011   /// TypeLocs starting at these locations must be skipped, see
1012   /// TraverseElaboratedTypeSpecifierLoc for details.
1013   llvm::DenseSet</*SourceLocation*/ unsigned> TypeLocsToSkip;
1014 };
1015 } // namespace
1016 
findExplicitReferences(const Stmt * S,llvm::function_ref<void (ReferenceLoc)> Out)1017 void findExplicitReferences(const Stmt *S,
1018                             llvm::function_ref<void(ReferenceLoc)> Out) {
1019   assert(S);
1020   ExplicitReferenceCollector(Out).TraverseStmt(const_cast<Stmt *>(S));
1021 }
findExplicitReferences(const Decl * D,llvm::function_ref<void (ReferenceLoc)> Out)1022 void findExplicitReferences(const Decl *D,
1023                             llvm::function_ref<void(ReferenceLoc)> Out) {
1024   assert(D);
1025   ExplicitReferenceCollector(Out).TraverseDecl(const_cast<Decl *>(D));
1026 }
findExplicitReferences(const ASTContext & AST,llvm::function_ref<void (ReferenceLoc)> Out)1027 void findExplicitReferences(const ASTContext &AST,
1028                             llvm::function_ref<void(ReferenceLoc)> Out) {
1029   ExplicitReferenceCollector(Out).TraverseAST(const_cast<ASTContext &>(AST));
1030 }
1031 
operator <<(llvm::raw_ostream & OS,DeclRelation R)1032 llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, DeclRelation R) {
1033   switch (R) {
1034 #define REL_CASE(X)                                                            \
1035   case DeclRelation::X:                                                        \
1036     return OS << #X;
1037     REL_CASE(Alias);
1038     REL_CASE(Underlying);
1039     REL_CASE(TemplateInstantiation);
1040     REL_CASE(TemplatePattern);
1041 #undef REL_CASE
1042   }
1043   llvm_unreachable("Unhandled DeclRelation enum");
1044 }
operator <<(llvm::raw_ostream & OS,DeclRelationSet RS)1045 llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, DeclRelationSet RS) {
1046   const char *Sep = "";
1047   for (unsigned I = 0; I < RS.S.size(); ++I) {
1048     if (RS.S.test(I)) {
1049       OS << Sep << static_cast<DeclRelation>(I);
1050       Sep = "|";
1051     }
1052   }
1053   return OS;
1054 }
1055 
operator <<(llvm::raw_ostream & OS,ReferenceLoc R)1056 llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, ReferenceLoc R) {
1057   // note we cannot print R.NameLoc without a source manager.
1058   OS << "targets = {";
1059   bool First = true;
1060   for (const NamedDecl *T : R.Targets) {
1061     if (!First)
1062       OS << ", ";
1063     else
1064       First = false;
1065     OS << printQualifiedName(*T) << printTemplateSpecializationArgs(*T);
1066   }
1067   OS << "}";
1068   if (R.Qualifier) {
1069     OS << ", qualifier = '";
1070     R.Qualifier.getNestedNameSpecifier()->print(OS,
1071                                                 PrintingPolicy(LangOptions()));
1072     OS << "'";
1073   }
1074   if (R.IsDecl)
1075     OS << ", decl";
1076   return OS;
1077 }
1078 
1079 } // namespace clangd
1080 } // namespace clang
1081