1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with C++ code generation of classes
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGBlocks.h"
14 #include "CGCXXABI.h"
15 #include "CGDebugInfo.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenFunction.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/CXXInheritance.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/Basic/CodeGenOptions.h"
26 #include "clang/Basic/TargetBuiltins.h"
27 #include "clang/CodeGen/CGFunctionInfo.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/Transforms/Utils/SanitizerStats.h"
31 
32 using namespace clang;
33 using namespace CodeGen;
34 
35 /// Return the best known alignment for an unknown pointer to a
36 /// particular class.
getClassPointerAlignment(const CXXRecordDecl * RD)37 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) {
38   if (!RD->hasDefinition())
39     return CharUnits::One(); // Hopefully won't be used anywhere.
40 
41   auto &layout = getContext().getASTRecordLayout(RD);
42 
43   // If the class is final, then we know that the pointer points to an
44   // object of that type and can use the full alignment.
45   if (RD->isEffectivelyFinal())
46     return layout.getAlignment();
47 
48   // Otherwise, we have to assume it could be a subclass.
49   return layout.getNonVirtualAlignment();
50 }
51 
52 /// Return the smallest possible amount of storage that might be allocated
53 /// starting from the beginning of an object of a particular class.
54 ///
55 /// This may be smaller than sizeof(RD) if RD has virtual base classes.
getMinimumClassObjectSize(const CXXRecordDecl * RD)56 CharUnits CodeGenModule::getMinimumClassObjectSize(const CXXRecordDecl *RD) {
57   if (!RD->hasDefinition())
58     return CharUnits::One();
59 
60   auto &layout = getContext().getASTRecordLayout(RD);
61 
62   // If the class is final, then we know that the pointer points to an
63   // object of that type and can use the full alignment.
64   if (RD->isEffectivelyFinal())
65     return layout.getSize();
66 
67   // Otherwise, we have to assume it could be a subclass.
68   return std::max(layout.getNonVirtualSize(), CharUnits::One());
69 }
70 
71 /// Return the best known alignment for a pointer to a virtual base,
72 /// given the alignment of a pointer to the derived class.
getVBaseAlignment(CharUnits actualDerivedAlign,const CXXRecordDecl * derivedClass,const CXXRecordDecl * vbaseClass)73 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign,
74                                            const CXXRecordDecl *derivedClass,
75                                            const CXXRecordDecl *vbaseClass) {
76   // The basic idea here is that an underaligned derived pointer might
77   // indicate an underaligned base pointer.
78 
79   assert(vbaseClass->isCompleteDefinition());
80   auto &baseLayout = getContext().getASTRecordLayout(vbaseClass);
81   CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment();
82 
83   return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass,
84                                    expectedVBaseAlign);
85 }
86 
87 CharUnits
getDynamicOffsetAlignment(CharUnits actualBaseAlign,const CXXRecordDecl * baseDecl,CharUnits expectedTargetAlign)88 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign,
89                                          const CXXRecordDecl *baseDecl,
90                                          CharUnits expectedTargetAlign) {
91   // If the base is an incomplete type (which is, alas, possible with
92   // member pointers), be pessimistic.
93   if (!baseDecl->isCompleteDefinition())
94     return std::min(actualBaseAlign, expectedTargetAlign);
95 
96   auto &baseLayout = getContext().getASTRecordLayout(baseDecl);
97   CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment();
98 
99   // If the class is properly aligned, assume the target offset is, too.
100   //
101   // This actually isn't necessarily the right thing to do --- if the
102   // class is a complete object, but it's only properly aligned for a
103   // base subobject, then the alignments of things relative to it are
104   // probably off as well.  (Note that this requires the alignment of
105   // the target to be greater than the NV alignment of the derived
106   // class.)
107   //
108   // However, our approach to this kind of under-alignment can only
109   // ever be best effort; after all, we're never going to propagate
110   // alignments through variables or parameters.  Note, in particular,
111   // that constructing a polymorphic type in an address that's less
112   // than pointer-aligned will generally trap in the constructor,
113   // unless we someday add some sort of attribute to change the
114   // assumed alignment of 'this'.  So our goal here is pretty much
115   // just to allow the user to explicitly say that a pointer is
116   // under-aligned and then safely access its fields and vtables.
117   if (actualBaseAlign >= expectedBaseAlign) {
118     return expectedTargetAlign;
119   }
120 
121   // Otherwise, we might be offset by an arbitrary multiple of the
122   // actual alignment.  The correct adjustment is to take the min of
123   // the two alignments.
124   return std::min(actualBaseAlign, expectedTargetAlign);
125 }
126 
LoadCXXThisAddress()127 Address CodeGenFunction::LoadCXXThisAddress() {
128   assert(CurFuncDecl && "loading 'this' without a func declaration?");
129   assert(isa<CXXMethodDecl>(CurFuncDecl));
130 
131   // Lazily compute CXXThisAlignment.
132   if (CXXThisAlignment.isZero()) {
133     // Just use the best known alignment for the parent.
134     // TODO: if we're currently emitting a complete-object ctor/dtor,
135     // we can always use the complete-object alignment.
136     auto RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent();
137     CXXThisAlignment = CGM.getClassPointerAlignment(RD);
138   }
139 
140   return Address(LoadCXXThis(), CXXThisAlignment);
141 }
142 
143 /// Emit the address of a field using a member data pointer.
144 ///
145 /// \param E Only used for emergency diagnostics
146 Address
EmitCXXMemberDataPointerAddress(const Expr * E,Address base,llvm::Value * memberPtr,const MemberPointerType * memberPtrType,LValueBaseInfo * BaseInfo,TBAAAccessInfo * TBAAInfo)147 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
148                                                  llvm::Value *memberPtr,
149                                       const MemberPointerType *memberPtrType,
150                                                  LValueBaseInfo *BaseInfo,
151                                                  TBAAAccessInfo *TBAAInfo) {
152   // Ask the ABI to compute the actual address.
153   llvm::Value *ptr =
154     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base,
155                                                  memberPtr, memberPtrType);
156 
157   QualType memberType = memberPtrType->getPointeeType();
158   CharUnits memberAlign =
159       CGM.getNaturalTypeAlignment(memberType, BaseInfo, TBAAInfo);
160   memberAlign =
161     CGM.getDynamicOffsetAlignment(base.getAlignment(),
162                             memberPtrType->getClass()->getAsCXXRecordDecl(),
163                                   memberAlign);
164   return Address(ptr, memberAlign);
165 }
166 
computeNonVirtualBaseClassOffset(const CXXRecordDecl * DerivedClass,CastExpr::path_const_iterator Start,CastExpr::path_const_iterator End)167 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset(
168     const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start,
169     CastExpr::path_const_iterator End) {
170   CharUnits Offset = CharUnits::Zero();
171 
172   const ASTContext &Context = getContext();
173   const CXXRecordDecl *RD = DerivedClass;
174 
175   for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
176     const CXXBaseSpecifier *Base = *I;
177     assert(!Base->isVirtual() && "Should not see virtual bases here!");
178 
179     // Get the layout.
180     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
181 
182     const auto *BaseDecl =
183         cast<CXXRecordDecl>(Base->getType()->castAs<RecordType>()->getDecl());
184 
185     // Add the offset.
186     Offset += Layout.getBaseClassOffset(BaseDecl);
187 
188     RD = BaseDecl;
189   }
190 
191   return Offset;
192 }
193 
194 llvm::Constant *
GetNonVirtualBaseClassOffset(const CXXRecordDecl * ClassDecl,CastExpr::path_const_iterator PathBegin,CastExpr::path_const_iterator PathEnd)195 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
196                                    CastExpr::path_const_iterator PathBegin,
197                                    CastExpr::path_const_iterator PathEnd) {
198   assert(PathBegin != PathEnd && "Base path should not be empty!");
199 
200   CharUnits Offset =
201       computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd);
202   if (Offset.isZero())
203     return nullptr;
204 
205   llvm::Type *PtrDiffTy =
206   Types.ConvertType(getContext().getPointerDiffType());
207 
208   return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
209 }
210 
211 /// Gets the address of a direct base class within a complete object.
212 /// This should only be used for (1) non-virtual bases or (2) virtual bases
213 /// when the type is known to be complete (e.g. in complete destructors).
214 ///
215 /// The object pointed to by 'This' is assumed to be non-null.
216 Address
GetAddressOfDirectBaseInCompleteClass(Address This,const CXXRecordDecl * Derived,const CXXRecordDecl * Base,bool BaseIsVirtual)217 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This,
218                                                    const CXXRecordDecl *Derived,
219                                                    const CXXRecordDecl *Base,
220                                                    bool BaseIsVirtual) {
221   // 'this' must be a pointer (in some address space) to Derived.
222   assert(This.getElementType() == ConvertType(Derived));
223 
224   // Compute the offset of the virtual base.
225   CharUnits Offset;
226   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
227   if (BaseIsVirtual)
228     Offset = Layout.getVBaseClassOffset(Base);
229   else
230     Offset = Layout.getBaseClassOffset(Base);
231 
232   // Shift and cast down to the base type.
233   // TODO: for complete types, this should be possible with a GEP.
234   Address V = This;
235   if (!Offset.isZero()) {
236     V = Builder.CreateElementBitCast(V, Int8Ty);
237     V = Builder.CreateConstInBoundsByteGEP(V, Offset);
238   }
239   V = Builder.CreateElementBitCast(V, ConvertType(Base));
240 
241   return V;
242 }
243 
244 static Address
ApplyNonVirtualAndVirtualOffset(CodeGenFunction & CGF,Address addr,CharUnits nonVirtualOffset,llvm::Value * virtualOffset,const CXXRecordDecl * derivedClass,const CXXRecordDecl * nearestVBase)245 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr,
246                                 CharUnits nonVirtualOffset,
247                                 llvm::Value *virtualOffset,
248                                 const CXXRecordDecl *derivedClass,
249                                 const CXXRecordDecl *nearestVBase) {
250   // Assert that we have something to do.
251   assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
252 
253   // Compute the offset from the static and dynamic components.
254   llvm::Value *baseOffset;
255   if (!nonVirtualOffset.isZero()) {
256     llvm::Type *OffsetType =
257         (CGF.CGM.getTarget().getCXXABI().isItaniumFamily() &&
258          CGF.CGM.getItaniumVTableContext().isRelativeLayout())
259             ? CGF.Int32Ty
260             : CGF.PtrDiffTy;
261     baseOffset =
262         llvm::ConstantInt::get(OffsetType, nonVirtualOffset.getQuantity());
263     if (virtualOffset) {
264       baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
265     }
266   } else {
267     baseOffset = virtualOffset;
268   }
269 
270   // Apply the base offset.
271   llvm::Value *ptr = addr.getPointer();
272   unsigned AddrSpace = ptr->getType()->getPointerAddressSpace();
273   ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8Ty->getPointerTo(AddrSpace));
274   ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr");
275 
276   // If we have a virtual component, the alignment of the result will
277   // be relative only to the known alignment of that vbase.
278   CharUnits alignment;
279   if (virtualOffset) {
280     assert(nearestVBase && "virtual offset without vbase?");
281     alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(),
282                                           derivedClass, nearestVBase);
283   } else {
284     alignment = addr.getAlignment();
285   }
286   alignment = alignment.alignmentAtOffset(nonVirtualOffset);
287 
288   return Address(ptr, alignment);
289 }
290 
GetAddressOfBaseClass(Address Value,const CXXRecordDecl * Derived,CastExpr::path_const_iterator PathBegin,CastExpr::path_const_iterator PathEnd,bool NullCheckValue,SourceLocation Loc)291 Address CodeGenFunction::GetAddressOfBaseClass(
292     Address Value, const CXXRecordDecl *Derived,
293     CastExpr::path_const_iterator PathBegin,
294     CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
295     SourceLocation Loc) {
296   assert(PathBegin != PathEnd && "Base path should not be empty!");
297 
298   CastExpr::path_const_iterator Start = PathBegin;
299   const CXXRecordDecl *VBase = nullptr;
300 
301   // Sema has done some convenient canonicalization here: if the
302   // access path involved any virtual steps, the conversion path will
303   // *start* with a step down to the correct virtual base subobject,
304   // and hence will not require any further steps.
305   if ((*Start)->isVirtual()) {
306     VBase = cast<CXXRecordDecl>(
307         (*Start)->getType()->castAs<RecordType>()->getDecl());
308     ++Start;
309   }
310 
311   // Compute the static offset of the ultimate destination within its
312   // allocating subobject (the virtual base, if there is one, or else
313   // the "complete" object that we see).
314   CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset(
315       VBase ? VBase : Derived, Start, PathEnd);
316 
317   // If there's a virtual step, we can sometimes "devirtualize" it.
318   // For now, that's limited to when the derived type is final.
319   // TODO: "devirtualize" this for accesses to known-complete objects.
320   if (VBase && Derived->hasAttr<FinalAttr>()) {
321     const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
322     CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
323     NonVirtualOffset += vBaseOffset;
324     VBase = nullptr; // we no longer have a virtual step
325   }
326 
327   // Get the base pointer type.
328   llvm::Type *BasePtrTy =
329       ConvertType((PathEnd[-1])->getType())
330           ->getPointerTo(Value.getType()->getPointerAddressSpace());
331 
332   QualType DerivedTy = getContext().getRecordType(Derived);
333   CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived);
334 
335   // If the static offset is zero and we don't have a virtual step,
336   // just do a bitcast; null checks are unnecessary.
337   if (NonVirtualOffset.isZero() && !VBase) {
338     if (sanitizePerformTypeCheck()) {
339       SanitizerSet SkippedChecks;
340       SkippedChecks.set(SanitizerKind::Null, !NullCheckValue);
341       EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(),
342                     DerivedTy, DerivedAlign, SkippedChecks);
343     }
344     return Builder.CreateBitCast(Value, BasePtrTy);
345   }
346 
347   llvm::BasicBlock *origBB = nullptr;
348   llvm::BasicBlock *endBB = nullptr;
349 
350   // Skip over the offset (and the vtable load) if we're supposed to
351   // null-check the pointer.
352   if (NullCheckValue) {
353     origBB = Builder.GetInsertBlock();
354     llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
355     endBB = createBasicBlock("cast.end");
356 
357     llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer());
358     Builder.CreateCondBr(isNull, endBB, notNullBB);
359     EmitBlock(notNullBB);
360   }
361 
362   if (sanitizePerformTypeCheck()) {
363     SanitizerSet SkippedChecks;
364     SkippedChecks.set(SanitizerKind::Null, true);
365     EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc,
366                   Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks);
367   }
368 
369   // Compute the virtual offset.
370   llvm::Value *VirtualOffset = nullptr;
371   if (VBase) {
372     VirtualOffset =
373       CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
374   }
375 
376   // Apply both offsets.
377   Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset,
378                                           VirtualOffset, Derived, VBase);
379 
380   // Cast to the destination type.
381   Value = Builder.CreateBitCast(Value, BasePtrTy);
382 
383   // Build a phi if we needed a null check.
384   if (NullCheckValue) {
385     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
386     Builder.CreateBr(endBB);
387     EmitBlock(endBB);
388 
389     llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
390     PHI->addIncoming(Value.getPointer(), notNullBB);
391     PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
392     Value = Address(PHI, Value.getAlignment());
393   }
394 
395   return Value;
396 }
397 
398 Address
GetAddressOfDerivedClass(Address BaseAddr,const CXXRecordDecl * Derived,CastExpr::path_const_iterator PathBegin,CastExpr::path_const_iterator PathEnd,bool NullCheckValue)399 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr,
400                                           const CXXRecordDecl *Derived,
401                                         CastExpr::path_const_iterator PathBegin,
402                                           CastExpr::path_const_iterator PathEnd,
403                                           bool NullCheckValue) {
404   assert(PathBegin != PathEnd && "Base path should not be empty!");
405 
406   QualType DerivedTy =
407     getContext().getCanonicalType(getContext().getTagDeclType(Derived));
408   unsigned AddrSpace =
409     BaseAddr.getPointer()->getType()->getPointerAddressSpace();
410   llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo(AddrSpace);
411 
412   llvm::Value *NonVirtualOffset =
413     CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
414 
415   if (!NonVirtualOffset) {
416     // No offset, we can just cast back.
417     return Builder.CreateBitCast(BaseAddr, DerivedPtrTy);
418   }
419 
420   llvm::BasicBlock *CastNull = nullptr;
421   llvm::BasicBlock *CastNotNull = nullptr;
422   llvm::BasicBlock *CastEnd = nullptr;
423 
424   if (NullCheckValue) {
425     CastNull = createBasicBlock("cast.null");
426     CastNotNull = createBasicBlock("cast.notnull");
427     CastEnd = createBasicBlock("cast.end");
428 
429     llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer());
430     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
431     EmitBlock(CastNotNull);
432   }
433 
434   // Apply the offset.
435   llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy);
436   Value = Builder.CreateInBoundsGEP(Value, Builder.CreateNeg(NonVirtualOffset),
437                                     "sub.ptr");
438 
439   // Just cast.
440   Value = Builder.CreateBitCast(Value, DerivedPtrTy);
441 
442   // Produce a PHI if we had a null-check.
443   if (NullCheckValue) {
444     Builder.CreateBr(CastEnd);
445     EmitBlock(CastNull);
446     Builder.CreateBr(CastEnd);
447     EmitBlock(CastEnd);
448 
449     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
450     PHI->addIncoming(Value, CastNotNull);
451     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
452     Value = PHI;
453   }
454 
455   return Address(Value, CGM.getClassPointerAlignment(Derived));
456 }
457 
GetVTTParameter(GlobalDecl GD,bool ForVirtualBase,bool Delegating)458 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
459                                               bool ForVirtualBase,
460                                               bool Delegating) {
461   if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
462     // This constructor/destructor does not need a VTT parameter.
463     return nullptr;
464   }
465 
466   const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
467   const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
468 
469   llvm::Value *VTT;
470 
471   uint64_t SubVTTIndex;
472 
473   if (Delegating) {
474     // If this is a delegating constructor call, just load the VTT.
475     return LoadCXXVTT();
476   } else if (RD == Base) {
477     // If the record matches the base, this is the complete ctor/dtor
478     // variant calling the base variant in a class with virtual bases.
479     assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
480            "doing no-op VTT offset in base dtor/ctor?");
481     assert(!ForVirtualBase && "Can't have same class as virtual base!");
482     SubVTTIndex = 0;
483   } else {
484     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
485     CharUnits BaseOffset = ForVirtualBase ?
486       Layout.getVBaseClassOffset(Base) :
487       Layout.getBaseClassOffset(Base);
488 
489     SubVTTIndex =
490       CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
491     assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
492   }
493 
494   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
495     // A VTT parameter was passed to the constructor, use it.
496     VTT = LoadCXXVTT();
497     VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
498   } else {
499     // We're the complete constructor, so get the VTT by name.
500     VTT = CGM.getVTables().GetAddrOfVTT(RD);
501     VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
502   }
503 
504   return VTT;
505 }
506 
507 namespace {
508   /// Call the destructor for a direct base class.
509   struct CallBaseDtor final : EHScopeStack::Cleanup {
510     const CXXRecordDecl *BaseClass;
511     bool BaseIsVirtual;
CallBaseDtor__anon03c1798c0111::CallBaseDtor512     CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
513       : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
514 
Emit__anon03c1798c0111::CallBaseDtor515     void Emit(CodeGenFunction &CGF, Flags flags) override {
516       const CXXRecordDecl *DerivedClass =
517         cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
518 
519       const CXXDestructorDecl *D = BaseClass->getDestructor();
520       // We are already inside a destructor, so presumably the object being
521       // destroyed should have the expected type.
522       QualType ThisTy = D->getThisObjectType();
523       Address Addr =
524         CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(),
525                                                   DerivedClass, BaseClass,
526                                                   BaseIsVirtual);
527       CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
528                                 /*Delegating=*/false, Addr, ThisTy);
529     }
530   };
531 
532   /// A visitor which checks whether an initializer uses 'this' in a
533   /// way which requires the vtable to be properly set.
534   struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> {
535     typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super;
536 
537     bool UsesThis;
538 
DynamicThisUseChecker__anon03c1798c0111::DynamicThisUseChecker539     DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {}
540 
541     // Black-list all explicit and implicit references to 'this'.
542     //
543     // Do we need to worry about external references to 'this' derived
544     // from arbitrary code?  If so, then anything which runs arbitrary
545     // external code might potentially access the vtable.
VisitCXXThisExpr__anon03c1798c0111::DynamicThisUseChecker546     void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; }
547   };
548 } // end anonymous namespace
549 
BaseInitializerUsesThis(ASTContext & C,const Expr * Init)550 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
551   DynamicThisUseChecker Checker(C);
552   Checker.Visit(Init);
553   return Checker.UsesThis;
554 }
555 
EmitBaseInitializer(CodeGenFunction & CGF,const CXXRecordDecl * ClassDecl,CXXCtorInitializer * BaseInit)556 static void EmitBaseInitializer(CodeGenFunction &CGF,
557                                 const CXXRecordDecl *ClassDecl,
558                                 CXXCtorInitializer *BaseInit) {
559   assert(BaseInit->isBaseInitializer() &&
560          "Must have base initializer!");
561 
562   Address ThisPtr = CGF.LoadCXXThisAddress();
563 
564   const Type *BaseType = BaseInit->getBaseClass();
565   const auto *BaseClassDecl =
566       cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
567 
568   bool isBaseVirtual = BaseInit->isBaseVirtual();
569 
570   // If the initializer for the base (other than the constructor
571   // itself) accesses 'this' in any way, we need to initialize the
572   // vtables.
573   if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
574     CGF.InitializeVTablePointers(ClassDecl);
575 
576   // We can pretend to be a complete class because it only matters for
577   // virtual bases, and we only do virtual bases for complete ctors.
578   Address V =
579     CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
580                                               BaseClassDecl,
581                                               isBaseVirtual);
582   AggValueSlot AggSlot =
583       AggValueSlot::forAddr(
584           V, Qualifiers(),
585           AggValueSlot::IsDestructed,
586           AggValueSlot::DoesNotNeedGCBarriers,
587           AggValueSlot::IsNotAliased,
588           CGF.getOverlapForBaseInit(ClassDecl, BaseClassDecl, isBaseVirtual));
589 
590   CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
591 
592   if (CGF.CGM.getLangOpts().Exceptions &&
593       !BaseClassDecl->hasTrivialDestructor())
594     CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
595                                           isBaseVirtual);
596 }
597 
isMemcpyEquivalentSpecialMember(const CXXMethodDecl * D)598 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) {
599   auto *CD = dyn_cast<CXXConstructorDecl>(D);
600   if (!(CD && CD->isCopyOrMoveConstructor()) &&
601       !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator())
602     return false;
603 
604   // We can emit a memcpy for a trivial copy or move constructor/assignment.
605   if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding())
606     return true;
607 
608   // We *must* emit a memcpy for a defaulted union copy or move op.
609   if (D->getParent()->isUnion() && D->isDefaulted())
610     return true;
611 
612   return false;
613 }
614 
EmitLValueForAnyFieldInitialization(CodeGenFunction & CGF,CXXCtorInitializer * MemberInit,LValue & LHS)615 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF,
616                                                 CXXCtorInitializer *MemberInit,
617                                                 LValue &LHS) {
618   FieldDecl *Field = MemberInit->getAnyMember();
619   if (MemberInit->isIndirectMemberInitializer()) {
620     // If we are initializing an anonymous union field, drill down to the field.
621     IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
622     for (const auto *I : IndirectField->chain())
623       LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
624   } else {
625     LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
626   }
627 }
628 
EmitMemberInitializer(CodeGenFunction & CGF,const CXXRecordDecl * ClassDecl,CXXCtorInitializer * MemberInit,const CXXConstructorDecl * Constructor,FunctionArgList & Args)629 static void EmitMemberInitializer(CodeGenFunction &CGF,
630                                   const CXXRecordDecl *ClassDecl,
631                                   CXXCtorInitializer *MemberInit,
632                                   const CXXConstructorDecl *Constructor,
633                                   FunctionArgList &Args) {
634   ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
635   assert(MemberInit->isAnyMemberInitializer() &&
636          "Must have member initializer!");
637   assert(MemberInit->getInit() && "Must have initializer!");
638 
639   // non-static data member initializers.
640   FieldDecl *Field = MemberInit->getAnyMember();
641   QualType FieldType = Field->getType();
642 
643   llvm::Value *ThisPtr = CGF.LoadCXXThis();
644   QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
645   LValue LHS;
646 
647   // If a base constructor is being emitted, create an LValue that has the
648   // non-virtual alignment.
649   if (CGF.CurGD.getCtorType() == Ctor_Base)
650     LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy);
651   else
652     LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
653 
654   EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS);
655 
656   // Special case: if we are in a copy or move constructor, and we are copying
657   // an array of PODs or classes with trivial copy constructors, ignore the
658   // AST and perform the copy we know is equivalent.
659   // FIXME: This is hacky at best... if we had a bit more explicit information
660   // in the AST, we could generalize it more easily.
661   const ConstantArrayType *Array
662     = CGF.getContext().getAsConstantArrayType(FieldType);
663   if (Array && Constructor->isDefaulted() &&
664       Constructor->isCopyOrMoveConstructor()) {
665     QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
666     CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
667     if (BaseElementTy.isPODType(CGF.getContext()) ||
668         (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) {
669       unsigned SrcArgIndex =
670           CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
671       llvm::Value *SrcPtr
672         = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
673       LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
674       LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
675 
676       // Copy the aggregate.
677       CGF.EmitAggregateCopy(LHS, Src, FieldType, CGF.getOverlapForFieldInit(Field),
678                             LHS.isVolatileQualified());
679       // Ensure that we destroy the objects if an exception is thrown later in
680       // the constructor.
681       QualType::DestructionKind dtorKind = FieldType.isDestructedType();
682       if (CGF.needsEHCleanup(dtorKind))
683         CGF.pushEHDestroy(dtorKind, LHS.getAddress(CGF), FieldType);
684       return;
685     }
686   }
687 
688   CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit());
689 }
690 
EmitInitializerForField(FieldDecl * Field,LValue LHS,Expr * Init)691 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS,
692                                               Expr *Init) {
693   QualType FieldType = Field->getType();
694   switch (getEvaluationKind(FieldType)) {
695   case TEK_Scalar:
696     if (LHS.isSimple()) {
697       EmitExprAsInit(Init, Field, LHS, false);
698     } else {
699       RValue RHS = RValue::get(EmitScalarExpr(Init));
700       EmitStoreThroughLValue(RHS, LHS);
701     }
702     break;
703   case TEK_Complex:
704     EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
705     break;
706   case TEK_Aggregate: {
707     AggValueSlot Slot = AggValueSlot::forLValue(
708         LHS, *this, AggValueSlot::IsDestructed,
709         AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
710         getOverlapForFieldInit(Field), AggValueSlot::IsNotZeroed,
711         // Checks are made by the code that calls constructor.
712         AggValueSlot::IsSanitizerChecked);
713     EmitAggExpr(Init, Slot);
714     break;
715   }
716   }
717 
718   // Ensure that we destroy this object if an exception is thrown
719   // later in the constructor.
720   QualType::DestructionKind dtorKind = FieldType.isDestructedType();
721   if (needsEHCleanup(dtorKind))
722     pushEHDestroy(dtorKind, LHS.getAddress(*this), FieldType);
723 }
724 
725 /// Checks whether the given constructor is a valid subject for the
726 /// complete-to-base constructor delegation optimization, i.e.
727 /// emitting the complete constructor as a simple call to the base
728 /// constructor.
IsConstructorDelegationValid(const CXXConstructorDecl * Ctor)729 bool CodeGenFunction::IsConstructorDelegationValid(
730     const CXXConstructorDecl *Ctor) {
731 
732   // Currently we disable the optimization for classes with virtual
733   // bases because (1) the addresses of parameter variables need to be
734   // consistent across all initializers but (2) the delegate function
735   // call necessarily creates a second copy of the parameter variable.
736   //
737   // The limiting example (purely theoretical AFAIK):
738   //   struct A { A(int &c) { c++; } };
739   //   struct B : virtual A {
740   //     B(int count) : A(count) { printf("%d\n", count); }
741   //   };
742   // ...although even this example could in principle be emitted as a
743   // delegation since the address of the parameter doesn't escape.
744   if (Ctor->getParent()->getNumVBases()) {
745     // TODO: white-list trivial vbase initializers.  This case wouldn't
746     // be subject to the restrictions below.
747 
748     // TODO: white-list cases where:
749     //  - there are no non-reference parameters to the constructor
750     //  - the initializers don't access any non-reference parameters
751     //  - the initializers don't take the address of non-reference
752     //    parameters
753     //  - etc.
754     // If we ever add any of the above cases, remember that:
755     //  - function-try-blocks will always exclude this optimization
756     //  - we need to perform the constructor prologue and cleanup in
757     //    EmitConstructorBody.
758 
759     return false;
760   }
761 
762   // We also disable the optimization for variadic functions because
763   // it's impossible to "re-pass" varargs.
764   if (Ctor->getType()->castAs<FunctionProtoType>()->isVariadic())
765     return false;
766 
767   // FIXME: Decide if we can do a delegation of a delegating constructor.
768   if (Ctor->isDelegatingConstructor())
769     return false;
770 
771   return true;
772 }
773 
774 // Emit code in ctor (Prologue==true) or dtor (Prologue==false)
775 // to poison the extra field paddings inserted under
776 // -fsanitize-address-field-padding=1|2.
EmitAsanPrologueOrEpilogue(bool Prologue)777 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
778   ASTContext &Context = getContext();
779   const CXXRecordDecl *ClassDecl =
780       Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
781                : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
782   if (!ClassDecl->mayInsertExtraPadding()) return;
783 
784   struct SizeAndOffset {
785     uint64_t Size;
786     uint64_t Offset;
787   };
788 
789   unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits(
790       CGM.getTargetCodeGenInfo().getDefaultAS());
791   const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
792 
793   // Populate sizes and offsets of fields.
794   SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
795   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
796     SSV[i].Offset =
797         Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
798 
799   size_t NumFields = 0;
800   for (const auto *Field : ClassDecl->fields()) {
801     const FieldDecl *D = Field;
802     std::pair<CharUnits, CharUnits> FieldInfo =
803         Context.getTypeInfoInChars(D->getType());
804     CharUnits FieldSize = FieldInfo.first;
805     assert(NumFields < SSV.size());
806     SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
807     NumFields++;
808   }
809   assert(NumFields == SSV.size());
810   if (SSV.size() <= 1) return;
811 
812   // We will insert calls to __asan_* run-time functions.
813   // LLVM AddressSanitizer pass may decide to inline them later.
814   llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
815   llvm::FunctionType *FTy =
816       llvm::FunctionType::get(CGM.VoidTy, Args, false);
817   llvm::FunctionCallee F = CGM.CreateRuntimeFunction(
818       FTy, Prologue ? "__asan_poison_intra_object_redzone"
819                     : "__asan_unpoison_intra_object_redzone");
820 
821   llvm::Value *ThisPtr = LoadCXXThis();
822   ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
823   uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
824   // For each field check if it has sufficient padding,
825   // if so (un)poison it with a call.
826   for (size_t i = 0; i < SSV.size(); i++) {
827     uint64_t AsanAlignment = 8;
828     uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
829     uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
830     uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
831     if (PoisonSize < AsanAlignment || !SSV[i].Size ||
832         (NextField % AsanAlignment) != 0)
833       continue;
834     Builder.CreateCall(
835         F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
836             Builder.getIntN(PtrSize, PoisonSize)});
837   }
838 }
839 
840 /// EmitConstructorBody - Emits the body of the current constructor.
EmitConstructorBody(FunctionArgList & Args)841 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
842   EmitAsanPrologueOrEpilogue(true);
843   const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
844   CXXCtorType CtorType = CurGD.getCtorType();
845 
846   assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
847           CtorType == Ctor_Complete) &&
848          "can only generate complete ctor for this ABI");
849 
850   // Before we go any further, try the complete->base constructor
851   // delegation optimization.
852   if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
853       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
854     EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getEndLoc());
855     return;
856   }
857 
858   const FunctionDecl *Definition = nullptr;
859   Stmt *Body = Ctor->getBody(Definition);
860   assert(Definition == Ctor && "emitting wrong constructor body");
861 
862   // Enter the function-try-block before the constructor prologue if
863   // applicable.
864   bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
865   if (IsTryBody)
866     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
867 
868   incrementProfileCounter(Body);
869 
870   RunCleanupsScope RunCleanups(*this);
871 
872   // TODO: in restricted cases, we can emit the vbase initializers of
873   // a complete ctor and then delegate to the base ctor.
874 
875   // Emit the constructor prologue, i.e. the base and member
876   // initializers.
877   EmitCtorPrologue(Ctor, CtorType, Args);
878 
879   // Emit the body of the statement.
880   if (IsTryBody)
881     EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
882   else if (Body)
883     EmitStmt(Body);
884 
885   // Emit any cleanup blocks associated with the member or base
886   // initializers, which includes (along the exceptional path) the
887   // destructors for those members and bases that were fully
888   // constructed.
889   RunCleanups.ForceCleanup();
890 
891   if (IsTryBody)
892     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
893 }
894 
895 namespace {
896   /// RAII object to indicate that codegen is copying the value representation
897   /// instead of the object representation. Useful when copying a struct or
898   /// class which has uninitialized members and we're only performing
899   /// lvalue-to-rvalue conversion on the object but not its members.
900   class CopyingValueRepresentation {
901   public:
CopyingValueRepresentation(CodeGenFunction & CGF)902     explicit CopyingValueRepresentation(CodeGenFunction &CGF)
903         : CGF(CGF), OldSanOpts(CGF.SanOpts) {
904       CGF.SanOpts.set(SanitizerKind::Bool, false);
905       CGF.SanOpts.set(SanitizerKind::Enum, false);
906     }
~CopyingValueRepresentation()907     ~CopyingValueRepresentation() {
908       CGF.SanOpts = OldSanOpts;
909     }
910   private:
911     CodeGenFunction &CGF;
912     SanitizerSet OldSanOpts;
913   };
914 } // end anonymous namespace
915 
916 namespace {
917   class FieldMemcpyizer {
918   public:
FieldMemcpyizer(CodeGenFunction & CGF,const CXXRecordDecl * ClassDecl,const VarDecl * SrcRec)919     FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
920                     const VarDecl *SrcRec)
921       : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
922         RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
923         FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
924         LastFieldOffset(0), LastAddedFieldIndex(0) {}
925 
isMemcpyableField(FieldDecl * F) const926     bool isMemcpyableField(FieldDecl *F) const {
927       // Never memcpy fields when we are adding poisoned paddings.
928       if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
929         return false;
930       Qualifiers Qual = F->getType().getQualifiers();
931       if (Qual.hasVolatile() || Qual.hasObjCLifetime())
932         return false;
933       return true;
934     }
935 
addMemcpyableField(FieldDecl * F)936     void addMemcpyableField(FieldDecl *F) {
937       if (F->isZeroSize(CGF.getContext()))
938         return;
939       if (!FirstField)
940         addInitialField(F);
941       else
942         addNextField(F);
943     }
944 
getMemcpySize(uint64_t FirstByteOffset) const945     CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
946       ASTContext &Ctx = CGF.getContext();
947       unsigned LastFieldSize =
948           LastField->isBitField()
949               ? LastField->getBitWidthValue(Ctx)
950               : Ctx.toBits(
951                     Ctx.getTypeInfoDataSizeInChars(LastField->getType()).first);
952       uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize -
953                                 FirstByteOffset + Ctx.getCharWidth() - 1;
954       CharUnits MemcpySize = Ctx.toCharUnitsFromBits(MemcpySizeBits);
955       return MemcpySize;
956     }
957 
emitMemcpy()958     void emitMemcpy() {
959       // Give the subclass a chance to bail out if it feels the memcpy isn't
960       // worth it (e.g. Hasn't aggregated enough data).
961       if (!FirstField) {
962         return;
963       }
964 
965       uint64_t FirstByteOffset;
966       if (FirstField->isBitField()) {
967         const CGRecordLayout &RL =
968           CGF.getTypes().getCGRecordLayout(FirstField->getParent());
969         const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
970         // FirstFieldOffset is not appropriate for bitfields,
971         // we need to use the storage offset instead.
972         FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset);
973       } else {
974         FirstByteOffset = FirstFieldOffset;
975       }
976 
977       CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
978       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
979       Address ThisPtr = CGF.LoadCXXThisAddress();
980       LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy);
981       LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
982       llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
983       LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
984       LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
985 
986       emitMemcpyIR(
987           Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(CGF),
988           Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(CGF),
989           MemcpySize);
990       reset();
991     }
992 
reset()993     void reset() {
994       FirstField = nullptr;
995     }
996 
997   protected:
998     CodeGenFunction &CGF;
999     const CXXRecordDecl *ClassDecl;
1000 
1001   private:
emitMemcpyIR(Address DestPtr,Address SrcPtr,CharUnits Size)1002     void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) {
1003       llvm::PointerType *DPT = DestPtr.getType();
1004       llvm::Type *DBP =
1005         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace());
1006       DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP);
1007 
1008       llvm::PointerType *SPT = SrcPtr.getType();
1009       llvm::Type *SBP =
1010         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace());
1011       SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP);
1012 
1013       CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity());
1014     }
1015 
addInitialField(FieldDecl * F)1016     void addInitialField(FieldDecl *F) {
1017       FirstField = F;
1018       LastField = F;
1019       FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1020       LastFieldOffset = FirstFieldOffset;
1021       LastAddedFieldIndex = F->getFieldIndex();
1022     }
1023 
addNextField(FieldDecl * F)1024     void addNextField(FieldDecl *F) {
1025       // For the most part, the following invariant will hold:
1026       //   F->getFieldIndex() == LastAddedFieldIndex + 1
1027       // The one exception is that Sema won't add a copy-initializer for an
1028       // unnamed bitfield, which will show up here as a gap in the sequence.
1029       assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
1030              "Cannot aggregate fields out of order.");
1031       LastAddedFieldIndex = F->getFieldIndex();
1032 
1033       // The 'first' and 'last' fields are chosen by offset, rather than field
1034       // index. This allows the code to support bitfields, as well as regular
1035       // fields.
1036       uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1037       if (FOffset < FirstFieldOffset) {
1038         FirstField = F;
1039         FirstFieldOffset = FOffset;
1040       } else if (FOffset >= LastFieldOffset) {
1041         LastField = F;
1042         LastFieldOffset = FOffset;
1043       }
1044     }
1045 
1046     const VarDecl *SrcRec;
1047     const ASTRecordLayout &RecLayout;
1048     FieldDecl *FirstField;
1049     FieldDecl *LastField;
1050     uint64_t FirstFieldOffset, LastFieldOffset;
1051     unsigned LastAddedFieldIndex;
1052   };
1053 
1054   class ConstructorMemcpyizer : public FieldMemcpyizer {
1055   private:
1056     /// Get source argument for copy constructor. Returns null if not a copy
1057     /// constructor.
getTrivialCopySource(CodeGenFunction & CGF,const CXXConstructorDecl * CD,FunctionArgList & Args)1058     static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
1059                                                const CXXConstructorDecl *CD,
1060                                                FunctionArgList &Args) {
1061       if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
1062         return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
1063       return nullptr;
1064     }
1065 
1066     // Returns true if a CXXCtorInitializer represents a member initialization
1067     // that can be rolled into a memcpy.
isMemberInitMemcpyable(CXXCtorInitializer * MemberInit) const1068     bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
1069       if (!MemcpyableCtor)
1070         return false;
1071       FieldDecl *Field = MemberInit->getMember();
1072       assert(Field && "No field for member init.");
1073       QualType FieldType = Field->getType();
1074       CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
1075 
1076       // Bail out on non-memcpyable, not-trivially-copyable members.
1077       if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) &&
1078           !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
1079             FieldType->isReferenceType()))
1080         return false;
1081 
1082       // Bail out on volatile fields.
1083       if (!isMemcpyableField(Field))
1084         return false;
1085 
1086       // Otherwise we're good.
1087       return true;
1088     }
1089 
1090   public:
ConstructorMemcpyizer(CodeGenFunction & CGF,const CXXConstructorDecl * CD,FunctionArgList & Args)1091     ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
1092                           FunctionArgList &Args)
1093       : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
1094         ConstructorDecl(CD),
1095         MemcpyableCtor(CD->isDefaulted() &&
1096                        CD->isCopyOrMoveConstructor() &&
1097                        CGF.getLangOpts().getGC() == LangOptions::NonGC),
1098         Args(Args) { }
1099 
addMemberInitializer(CXXCtorInitializer * MemberInit)1100     void addMemberInitializer(CXXCtorInitializer *MemberInit) {
1101       if (isMemberInitMemcpyable(MemberInit)) {
1102         AggregatedInits.push_back(MemberInit);
1103         addMemcpyableField(MemberInit->getMember());
1104       } else {
1105         emitAggregatedInits();
1106         EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
1107                               ConstructorDecl, Args);
1108       }
1109     }
1110 
emitAggregatedInits()1111     void emitAggregatedInits() {
1112       if (AggregatedInits.size() <= 1) {
1113         // This memcpy is too small to be worthwhile. Fall back on default
1114         // codegen.
1115         if (!AggregatedInits.empty()) {
1116           CopyingValueRepresentation CVR(CGF);
1117           EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
1118                                 AggregatedInits[0], ConstructorDecl, Args);
1119           AggregatedInits.clear();
1120         }
1121         reset();
1122         return;
1123       }
1124 
1125       pushEHDestructors();
1126       emitMemcpy();
1127       AggregatedInits.clear();
1128     }
1129 
pushEHDestructors()1130     void pushEHDestructors() {
1131       Address ThisPtr = CGF.LoadCXXThisAddress();
1132       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1133       LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy);
1134 
1135       for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
1136         CXXCtorInitializer *MemberInit = AggregatedInits[i];
1137         QualType FieldType = MemberInit->getAnyMember()->getType();
1138         QualType::DestructionKind dtorKind = FieldType.isDestructedType();
1139         if (!CGF.needsEHCleanup(dtorKind))
1140           continue;
1141         LValue FieldLHS = LHS;
1142         EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS);
1143         CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(CGF), FieldType);
1144       }
1145     }
1146 
finish()1147     void finish() {
1148       emitAggregatedInits();
1149     }
1150 
1151   private:
1152     const CXXConstructorDecl *ConstructorDecl;
1153     bool MemcpyableCtor;
1154     FunctionArgList &Args;
1155     SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
1156   };
1157 
1158   class AssignmentMemcpyizer : public FieldMemcpyizer {
1159   private:
1160     // Returns the memcpyable field copied by the given statement, if one
1161     // exists. Otherwise returns null.
getMemcpyableField(Stmt * S)1162     FieldDecl *getMemcpyableField(Stmt *S) {
1163       if (!AssignmentsMemcpyable)
1164         return nullptr;
1165       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
1166         // Recognise trivial assignments.
1167         if (BO->getOpcode() != BO_Assign)
1168           return nullptr;
1169         MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
1170         if (!ME)
1171           return nullptr;
1172         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1173         if (!Field || !isMemcpyableField(Field))
1174           return nullptr;
1175         Stmt *RHS = BO->getRHS();
1176         if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
1177           RHS = EC->getSubExpr();
1178         if (!RHS)
1179           return nullptr;
1180         if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) {
1181           if (ME2->getMemberDecl() == Field)
1182             return Field;
1183         }
1184         return nullptr;
1185       } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1186         CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1187         if (!(MD && isMemcpyEquivalentSpecialMember(MD)))
1188           return nullptr;
1189         MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1190         if (!IOA)
1191           return nullptr;
1192         FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1193         if (!Field || !isMemcpyableField(Field))
1194           return nullptr;
1195         MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1196         if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1197           return nullptr;
1198         return Field;
1199       } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1200         FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1201         if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1202           return nullptr;
1203         Expr *DstPtr = CE->getArg(0);
1204         if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1205           DstPtr = DC->getSubExpr();
1206         UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1207         if (!DUO || DUO->getOpcode() != UO_AddrOf)
1208           return nullptr;
1209         MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1210         if (!ME)
1211           return nullptr;
1212         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1213         if (!Field || !isMemcpyableField(Field))
1214           return nullptr;
1215         Expr *SrcPtr = CE->getArg(1);
1216         if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1217           SrcPtr = SC->getSubExpr();
1218         UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1219         if (!SUO || SUO->getOpcode() != UO_AddrOf)
1220           return nullptr;
1221         MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1222         if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1223           return nullptr;
1224         return Field;
1225       }
1226 
1227       return nullptr;
1228     }
1229 
1230     bool AssignmentsMemcpyable;
1231     SmallVector<Stmt*, 16> AggregatedStmts;
1232 
1233   public:
AssignmentMemcpyizer(CodeGenFunction & CGF,const CXXMethodDecl * AD,FunctionArgList & Args)1234     AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1235                          FunctionArgList &Args)
1236       : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1237         AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1238       assert(Args.size() == 2);
1239     }
1240 
emitAssignment(Stmt * S)1241     void emitAssignment(Stmt *S) {
1242       FieldDecl *F = getMemcpyableField(S);
1243       if (F) {
1244         addMemcpyableField(F);
1245         AggregatedStmts.push_back(S);
1246       } else {
1247         emitAggregatedStmts();
1248         CGF.EmitStmt(S);
1249       }
1250     }
1251 
emitAggregatedStmts()1252     void emitAggregatedStmts() {
1253       if (AggregatedStmts.size() <= 1) {
1254         if (!AggregatedStmts.empty()) {
1255           CopyingValueRepresentation CVR(CGF);
1256           CGF.EmitStmt(AggregatedStmts[0]);
1257         }
1258         reset();
1259       }
1260 
1261       emitMemcpy();
1262       AggregatedStmts.clear();
1263     }
1264 
finish()1265     void finish() {
1266       emitAggregatedStmts();
1267     }
1268   };
1269 } // end anonymous namespace
1270 
isInitializerOfDynamicClass(const CXXCtorInitializer * BaseInit)1271 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) {
1272   const Type *BaseType = BaseInit->getBaseClass();
1273   const auto *BaseClassDecl =
1274       cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
1275   return BaseClassDecl->isDynamicClass();
1276 }
1277 
1278 /// EmitCtorPrologue - This routine generates necessary code to initialize
1279 /// base classes and non-static data members belonging to this constructor.
EmitCtorPrologue(const CXXConstructorDecl * CD,CXXCtorType CtorType,FunctionArgList & Args)1280 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1281                                        CXXCtorType CtorType,
1282                                        FunctionArgList &Args) {
1283   if (CD->isDelegatingConstructor())
1284     return EmitDelegatingCXXConstructorCall(CD, Args);
1285 
1286   const CXXRecordDecl *ClassDecl = CD->getParent();
1287 
1288   CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1289                                           E = CD->init_end();
1290 
1291   // Virtual base initializers first, if any. They aren't needed if:
1292   // - This is a base ctor variant
1293   // - There are no vbases
1294   // - The class is abstract, so a complete object of it cannot be constructed
1295   //
1296   // The check for an abstract class is necessary because sema may not have
1297   // marked virtual base destructors referenced.
1298   bool ConstructVBases = CtorType != Ctor_Base &&
1299                          ClassDecl->getNumVBases() != 0 &&
1300                          !ClassDecl->isAbstract();
1301 
1302   // In the Microsoft C++ ABI, there are no constructor variants. Instead, the
1303   // constructor of a class with virtual bases takes an additional parameter to
1304   // conditionally construct the virtual bases. Emit that check here.
1305   llvm::BasicBlock *BaseCtorContinueBB = nullptr;
1306   if (ConstructVBases &&
1307       !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1308     BaseCtorContinueBB =
1309         CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
1310     assert(BaseCtorContinueBB);
1311   }
1312 
1313   llvm::Value *const OldThis = CXXThisValue;
1314   for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1315     if (!ConstructVBases)
1316       continue;
1317     if (CGM.getCodeGenOpts().StrictVTablePointers &&
1318         CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1319         isInitializerOfDynamicClass(*B))
1320       CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1321     EmitBaseInitializer(*this, ClassDecl, *B);
1322   }
1323 
1324   if (BaseCtorContinueBB) {
1325     // Complete object handler should continue to the remaining initializers.
1326     Builder.CreateBr(BaseCtorContinueBB);
1327     EmitBlock(BaseCtorContinueBB);
1328   }
1329 
1330   // Then, non-virtual base initializers.
1331   for (; B != E && (*B)->isBaseInitializer(); B++) {
1332     assert(!(*B)->isBaseVirtual());
1333 
1334     if (CGM.getCodeGenOpts().StrictVTablePointers &&
1335         CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1336         isInitializerOfDynamicClass(*B))
1337       CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1338     EmitBaseInitializer(*this, ClassDecl, *B);
1339   }
1340 
1341   CXXThisValue = OldThis;
1342 
1343   InitializeVTablePointers(ClassDecl);
1344 
1345   // And finally, initialize class members.
1346   FieldConstructionScope FCS(*this, LoadCXXThisAddress());
1347   ConstructorMemcpyizer CM(*this, CD, Args);
1348   for (; B != E; B++) {
1349     CXXCtorInitializer *Member = (*B);
1350     assert(!Member->isBaseInitializer());
1351     assert(Member->isAnyMemberInitializer() &&
1352            "Delegating initializer on non-delegating constructor");
1353     CM.addMemberInitializer(Member);
1354   }
1355   CM.finish();
1356 }
1357 
1358 static bool
1359 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1360 
1361 static bool
HasTrivialDestructorBody(ASTContext & Context,const CXXRecordDecl * BaseClassDecl,const CXXRecordDecl * MostDerivedClassDecl)1362 HasTrivialDestructorBody(ASTContext &Context,
1363                          const CXXRecordDecl *BaseClassDecl,
1364                          const CXXRecordDecl *MostDerivedClassDecl)
1365 {
1366   // If the destructor is trivial we don't have to check anything else.
1367   if (BaseClassDecl->hasTrivialDestructor())
1368     return true;
1369 
1370   if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1371     return false;
1372 
1373   // Check fields.
1374   for (const auto *Field : BaseClassDecl->fields())
1375     if (!FieldHasTrivialDestructorBody(Context, Field))
1376       return false;
1377 
1378   // Check non-virtual bases.
1379   for (const auto &I : BaseClassDecl->bases()) {
1380     if (I.isVirtual())
1381       continue;
1382 
1383     const CXXRecordDecl *NonVirtualBase =
1384       cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1385     if (!HasTrivialDestructorBody(Context, NonVirtualBase,
1386                                   MostDerivedClassDecl))
1387       return false;
1388   }
1389 
1390   if (BaseClassDecl == MostDerivedClassDecl) {
1391     // Check virtual bases.
1392     for (const auto &I : BaseClassDecl->vbases()) {
1393       const CXXRecordDecl *VirtualBase =
1394         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1395       if (!HasTrivialDestructorBody(Context, VirtualBase,
1396                                     MostDerivedClassDecl))
1397         return false;
1398     }
1399   }
1400 
1401   return true;
1402 }
1403 
1404 static bool
FieldHasTrivialDestructorBody(ASTContext & Context,const FieldDecl * Field)1405 FieldHasTrivialDestructorBody(ASTContext &Context,
1406                                           const FieldDecl *Field)
1407 {
1408   QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1409 
1410   const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1411   if (!RT)
1412     return true;
1413 
1414   CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1415 
1416   // The destructor for an implicit anonymous union member is never invoked.
1417   if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
1418     return false;
1419 
1420   return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1421 }
1422 
1423 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
1424 /// any vtable pointers before calling this destructor.
CanSkipVTablePointerInitialization(CodeGenFunction & CGF,const CXXDestructorDecl * Dtor)1425 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF,
1426                                                const CXXDestructorDecl *Dtor) {
1427   const CXXRecordDecl *ClassDecl = Dtor->getParent();
1428   if (!ClassDecl->isDynamicClass())
1429     return true;
1430 
1431   if (!Dtor->hasTrivialBody())
1432     return false;
1433 
1434   // Check the fields.
1435   for (const auto *Field : ClassDecl->fields())
1436     if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field))
1437       return false;
1438 
1439   return true;
1440 }
1441 
1442 /// EmitDestructorBody - Emits the body of the current destructor.
EmitDestructorBody(FunctionArgList & Args)1443 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1444   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1445   CXXDtorType DtorType = CurGD.getDtorType();
1446 
1447   // For an abstract class, non-base destructors are never used (and can't
1448   // be emitted in general, because vbase dtors may not have been validated
1449   // by Sema), but the Itanium ABI doesn't make them optional and Clang may
1450   // in fact emit references to them from other compilations, so emit them
1451   // as functions containing a trap instruction.
1452   if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) {
1453     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
1454     TrapCall->setDoesNotReturn();
1455     TrapCall->setDoesNotThrow();
1456     Builder.CreateUnreachable();
1457     Builder.ClearInsertionPoint();
1458     return;
1459   }
1460 
1461   Stmt *Body = Dtor->getBody();
1462   if (Body)
1463     incrementProfileCounter(Body);
1464 
1465   // The call to operator delete in a deleting destructor happens
1466   // outside of the function-try-block, which means it's always
1467   // possible to delegate the destructor body to the complete
1468   // destructor.  Do so.
1469   if (DtorType == Dtor_Deleting) {
1470     RunCleanupsScope DtorEpilogue(*this);
1471     EnterDtorCleanups(Dtor, Dtor_Deleting);
1472     if (HaveInsertPoint()) {
1473       QualType ThisTy = Dtor->getThisObjectType();
1474       EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1475                             /*Delegating=*/false, LoadCXXThisAddress(), ThisTy);
1476     }
1477     return;
1478   }
1479 
1480   // If the body is a function-try-block, enter the try before
1481   // anything else.
1482   bool isTryBody = (Body && isa<CXXTryStmt>(Body));
1483   if (isTryBody)
1484     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1485   EmitAsanPrologueOrEpilogue(false);
1486 
1487   // Enter the epilogue cleanups.
1488   RunCleanupsScope DtorEpilogue(*this);
1489 
1490   // If this is the complete variant, just invoke the base variant;
1491   // the epilogue will destruct the virtual bases.  But we can't do
1492   // this optimization if the body is a function-try-block, because
1493   // we'd introduce *two* handler blocks.  In the Microsoft ABI, we
1494   // always delegate because we might not have a definition in this TU.
1495   switch (DtorType) {
1496   case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT");
1497   case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1498 
1499   case Dtor_Complete:
1500     assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1501            "can't emit a dtor without a body for non-Microsoft ABIs");
1502 
1503     // Enter the cleanup scopes for virtual bases.
1504     EnterDtorCleanups(Dtor, Dtor_Complete);
1505 
1506     if (!isTryBody) {
1507       QualType ThisTy = Dtor->getThisObjectType();
1508       EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1509                             /*Delegating=*/false, LoadCXXThisAddress(), ThisTy);
1510       break;
1511     }
1512 
1513     // Fallthrough: act like we're in the base variant.
1514     LLVM_FALLTHROUGH;
1515 
1516   case Dtor_Base:
1517     assert(Body);
1518 
1519     // Enter the cleanup scopes for fields and non-virtual bases.
1520     EnterDtorCleanups(Dtor, Dtor_Base);
1521 
1522     // Initialize the vtable pointers before entering the body.
1523     if (!CanSkipVTablePointerInitialization(*this, Dtor)) {
1524       // Insert the llvm.launder.invariant.group intrinsic before initializing
1525       // the vptrs to cancel any previous assumptions we might have made.
1526       if (CGM.getCodeGenOpts().StrictVTablePointers &&
1527           CGM.getCodeGenOpts().OptimizationLevel > 0)
1528         CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1529       InitializeVTablePointers(Dtor->getParent());
1530     }
1531 
1532     if (isTryBody)
1533       EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1534     else if (Body)
1535       EmitStmt(Body);
1536     else {
1537       assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1538       // nothing to do besides what's in the epilogue
1539     }
1540     // -fapple-kext must inline any call to this dtor into
1541     // the caller's body.
1542     if (getLangOpts().AppleKext)
1543       CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1544 
1545     break;
1546   }
1547 
1548   // Jump out through the epilogue cleanups.
1549   DtorEpilogue.ForceCleanup();
1550 
1551   // Exit the try if applicable.
1552   if (isTryBody)
1553     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1554 }
1555 
emitImplicitAssignmentOperatorBody(FunctionArgList & Args)1556 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1557   const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1558   const Stmt *RootS = AssignOp->getBody();
1559   assert(isa<CompoundStmt>(RootS) &&
1560          "Body of an implicit assignment operator should be compound stmt.");
1561   const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1562 
1563   LexicalScope Scope(*this, RootCS->getSourceRange());
1564 
1565   incrementProfileCounter(RootCS);
1566   AssignmentMemcpyizer AM(*this, AssignOp, Args);
1567   for (auto *I : RootCS->body())
1568     AM.emitAssignment(I);
1569   AM.finish();
1570 }
1571 
1572 namespace {
LoadThisForDtorDelete(CodeGenFunction & CGF,const CXXDestructorDecl * DD)1573   llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF,
1574                                      const CXXDestructorDecl *DD) {
1575     if (Expr *ThisArg = DD->getOperatorDeleteThisArg())
1576       return CGF.EmitScalarExpr(ThisArg);
1577     return CGF.LoadCXXThis();
1578   }
1579 
1580   /// Call the operator delete associated with the current destructor.
1581   struct CallDtorDelete final : EHScopeStack::Cleanup {
CallDtorDelete__anon03c1798c0411::CallDtorDelete1582     CallDtorDelete() {}
1583 
Emit__anon03c1798c0411::CallDtorDelete1584     void Emit(CodeGenFunction &CGF, Flags flags) override {
1585       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1586       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1587       CGF.EmitDeleteCall(Dtor->getOperatorDelete(),
1588                          LoadThisForDtorDelete(CGF, Dtor),
1589                          CGF.getContext().getTagDeclType(ClassDecl));
1590     }
1591   };
1592 
EmitConditionalDtorDeleteCall(CodeGenFunction & CGF,llvm::Value * ShouldDeleteCondition,bool ReturnAfterDelete)1593   void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF,
1594                                      llvm::Value *ShouldDeleteCondition,
1595                                      bool ReturnAfterDelete) {
1596     llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1597     llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1598     llvm::Value *ShouldCallDelete
1599       = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
1600     CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1601 
1602     CGF.EmitBlock(callDeleteBB);
1603     const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1604     const CXXRecordDecl *ClassDecl = Dtor->getParent();
1605     CGF.EmitDeleteCall(Dtor->getOperatorDelete(),
1606                        LoadThisForDtorDelete(CGF, Dtor),
1607                        CGF.getContext().getTagDeclType(ClassDecl));
1608     assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() ==
1609                ReturnAfterDelete &&
1610            "unexpected value for ReturnAfterDelete");
1611     if (ReturnAfterDelete)
1612       CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
1613     else
1614       CGF.Builder.CreateBr(continueBB);
1615 
1616     CGF.EmitBlock(continueBB);
1617   }
1618 
1619   struct CallDtorDeleteConditional final : EHScopeStack::Cleanup {
1620     llvm::Value *ShouldDeleteCondition;
1621 
1622   public:
CallDtorDeleteConditional__anon03c1798c0411::CallDtorDeleteConditional1623     CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1624         : ShouldDeleteCondition(ShouldDeleteCondition) {
1625       assert(ShouldDeleteCondition != nullptr);
1626     }
1627 
Emit__anon03c1798c0411::CallDtorDeleteConditional1628     void Emit(CodeGenFunction &CGF, Flags flags) override {
1629       EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition,
1630                                     /*ReturnAfterDelete*/false);
1631     }
1632   };
1633 
1634   class DestroyField  final : public EHScopeStack::Cleanup {
1635     const FieldDecl *field;
1636     CodeGenFunction::Destroyer *destroyer;
1637     bool useEHCleanupForArray;
1638 
1639   public:
DestroyField(const FieldDecl * field,CodeGenFunction::Destroyer * destroyer,bool useEHCleanupForArray)1640     DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1641                  bool useEHCleanupForArray)
1642         : field(field), destroyer(destroyer),
1643           useEHCleanupForArray(useEHCleanupForArray) {}
1644 
Emit(CodeGenFunction & CGF,Flags flags)1645     void Emit(CodeGenFunction &CGF, Flags flags) override {
1646       // Find the address of the field.
1647       Address thisValue = CGF.LoadCXXThisAddress();
1648       QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1649       LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1650       LValue LV = CGF.EmitLValueForField(ThisLV, field);
1651       assert(LV.isSimple());
1652 
1653       CGF.emitDestroy(LV.getAddress(CGF), field->getType(), destroyer,
1654                       flags.isForNormalCleanup() && useEHCleanupForArray);
1655     }
1656   };
1657 
EmitSanitizerDtorCallback(CodeGenFunction & CGF,llvm::Value * Ptr,CharUnits::QuantityType PoisonSize)1658  static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr,
1659              CharUnits::QuantityType PoisonSize) {
1660    CodeGenFunction::SanitizerScope SanScope(&CGF);
1661    // Pass in void pointer and size of region as arguments to runtime
1662    // function
1663    llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy),
1664                           llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)};
1665 
1666    llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy};
1667 
1668    llvm::FunctionType *FnType =
1669        llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false);
1670    llvm::FunctionCallee Fn =
1671        CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback");
1672    CGF.EmitNounwindRuntimeCall(Fn, Args);
1673  }
1674 
1675   class SanitizeDtorMembers final : public EHScopeStack::Cleanup {
1676     const CXXDestructorDecl *Dtor;
1677 
1678   public:
SanitizeDtorMembers(const CXXDestructorDecl * Dtor)1679     SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1680 
1681     // Generate function call for handling object poisoning.
1682     // Disables tail call elimination, to prevent the current stack frame
1683     // from disappearing from the stack trace.
Emit(CodeGenFunction & CGF,Flags flags)1684     void Emit(CodeGenFunction &CGF, Flags flags) override {
1685       const ASTRecordLayout &Layout =
1686           CGF.getContext().getASTRecordLayout(Dtor->getParent());
1687 
1688       // Nothing to poison.
1689       if (Layout.getFieldCount() == 0)
1690         return;
1691 
1692       // Prevent the current stack frame from disappearing from the stack trace.
1693       CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1694 
1695       // Construct pointer to region to begin poisoning, and calculate poison
1696       // size, so that only members declared in this class are poisoned.
1697       ASTContext &Context = CGF.getContext();
1698       unsigned fieldIndex = 0;
1699       int startIndex = -1;
1700       // RecordDecl::field_iterator Field;
1701       for (const FieldDecl *Field : Dtor->getParent()->fields()) {
1702         // Poison field if it is trivial
1703         if (FieldHasTrivialDestructorBody(Context, Field)) {
1704           // Start sanitizing at this field
1705           if (startIndex < 0)
1706             startIndex = fieldIndex;
1707 
1708           // Currently on the last field, and it must be poisoned with the
1709           // current block.
1710           if (fieldIndex == Layout.getFieldCount() - 1) {
1711             PoisonMembers(CGF, startIndex, Layout.getFieldCount());
1712           }
1713         } else if (startIndex >= 0) {
1714           // No longer within a block of memory to poison, so poison the block
1715           PoisonMembers(CGF, startIndex, fieldIndex);
1716           // Re-set the start index
1717           startIndex = -1;
1718         }
1719         fieldIndex += 1;
1720       }
1721     }
1722 
1723   private:
1724     /// \param layoutStartOffset index of the ASTRecordLayout field to
1725     ///     start poisoning (inclusive)
1726     /// \param layoutEndOffset index of the ASTRecordLayout field to
1727     ///     end poisoning (exclusive)
PoisonMembers(CodeGenFunction & CGF,unsigned layoutStartOffset,unsigned layoutEndOffset)1728     void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset,
1729                      unsigned layoutEndOffset) {
1730       ASTContext &Context = CGF.getContext();
1731       const ASTRecordLayout &Layout =
1732           Context.getASTRecordLayout(Dtor->getParent());
1733 
1734       llvm::ConstantInt *OffsetSizePtr = llvm::ConstantInt::get(
1735           CGF.SizeTy,
1736           Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset))
1737               .getQuantity());
1738 
1739       llvm::Value *OffsetPtr = CGF.Builder.CreateGEP(
1740           CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy),
1741           OffsetSizePtr);
1742 
1743       CharUnits::QuantityType PoisonSize;
1744       if (layoutEndOffset >= Layout.getFieldCount()) {
1745         PoisonSize = Layout.getNonVirtualSize().getQuantity() -
1746                      Context.toCharUnitsFromBits(
1747                                 Layout.getFieldOffset(layoutStartOffset))
1748                          .getQuantity();
1749       } else {
1750         PoisonSize = Context.toCharUnitsFromBits(
1751                                 Layout.getFieldOffset(layoutEndOffset) -
1752                                 Layout.getFieldOffset(layoutStartOffset))
1753                          .getQuantity();
1754       }
1755 
1756       if (PoisonSize == 0)
1757         return;
1758 
1759       EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize);
1760     }
1761   };
1762 
1763  class SanitizeDtorVTable final : public EHScopeStack::Cleanup {
1764     const CXXDestructorDecl *Dtor;
1765 
1766   public:
SanitizeDtorVTable(const CXXDestructorDecl * Dtor)1767     SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1768 
1769     // Generate function call for handling vtable pointer poisoning.
Emit(CodeGenFunction & CGF,Flags flags)1770     void Emit(CodeGenFunction &CGF, Flags flags) override {
1771       assert(Dtor->getParent()->isDynamicClass());
1772       (void)Dtor;
1773       ASTContext &Context = CGF.getContext();
1774       // Poison vtable and vtable ptr if they exist for this class.
1775       llvm::Value *VTablePtr = CGF.LoadCXXThis();
1776 
1777       CharUnits::QuantityType PoisonSize =
1778           Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity();
1779       // Pass in void pointer and size of region as arguments to runtime
1780       // function
1781       EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize);
1782     }
1783  };
1784 } // end anonymous namespace
1785 
1786 /// Emit all code that comes at the end of class's
1787 /// destructor. This is to call destructors on members and base classes
1788 /// in reverse order of their construction.
1789 ///
1790 /// For a deleting destructor, this also handles the case where a destroying
1791 /// operator delete completely overrides the definition.
EnterDtorCleanups(const CXXDestructorDecl * DD,CXXDtorType DtorType)1792 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1793                                         CXXDtorType DtorType) {
1794   assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
1795          "Should not emit dtor epilogue for non-exported trivial dtor!");
1796 
1797   // The deleting-destructor phase just needs to call the appropriate
1798   // operator delete that Sema picked up.
1799   if (DtorType == Dtor_Deleting) {
1800     assert(DD->getOperatorDelete() &&
1801            "operator delete missing - EnterDtorCleanups");
1802     if (CXXStructorImplicitParamValue) {
1803       // If there is an implicit param to the deleting dtor, it's a boolean
1804       // telling whether this is a deleting destructor.
1805       if (DD->getOperatorDelete()->isDestroyingOperatorDelete())
1806         EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue,
1807                                       /*ReturnAfterDelete*/true);
1808       else
1809         EHStack.pushCleanup<CallDtorDeleteConditional>(
1810             NormalAndEHCleanup, CXXStructorImplicitParamValue);
1811     } else {
1812       if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) {
1813         const CXXRecordDecl *ClassDecl = DD->getParent();
1814         EmitDeleteCall(DD->getOperatorDelete(),
1815                        LoadThisForDtorDelete(*this, DD),
1816                        getContext().getTagDeclType(ClassDecl));
1817         EmitBranchThroughCleanup(ReturnBlock);
1818       } else {
1819         EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1820       }
1821     }
1822     return;
1823   }
1824 
1825   const CXXRecordDecl *ClassDecl = DD->getParent();
1826 
1827   // Unions have no bases and do not call field destructors.
1828   if (ClassDecl->isUnion())
1829     return;
1830 
1831   // The complete-destructor phase just destructs all the virtual bases.
1832   if (DtorType == Dtor_Complete) {
1833     // Poison the vtable pointer such that access after the base
1834     // and member destructors are invoked is invalid.
1835     if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1836         SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() &&
1837         ClassDecl->isPolymorphic())
1838       EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1839 
1840     // We push them in the forward order so that they'll be popped in
1841     // the reverse order.
1842     for (const auto &Base : ClassDecl->vbases()) {
1843       auto *BaseClassDecl =
1844           cast<CXXRecordDecl>(Base.getType()->castAs<RecordType>()->getDecl());
1845 
1846       // Ignore trivial destructors.
1847       if (BaseClassDecl->hasTrivialDestructor())
1848         continue;
1849 
1850       EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1851                                         BaseClassDecl,
1852                                         /*BaseIsVirtual*/ true);
1853     }
1854 
1855     return;
1856   }
1857 
1858   assert(DtorType == Dtor_Base);
1859   // Poison the vtable pointer if it has no virtual bases, but inherits
1860   // virtual functions.
1861   if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1862       SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() &&
1863       ClassDecl->isPolymorphic())
1864     EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1865 
1866   // Destroy non-virtual bases.
1867   for (const auto &Base : ClassDecl->bases()) {
1868     // Ignore virtual bases.
1869     if (Base.isVirtual())
1870       continue;
1871 
1872     CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1873 
1874     // Ignore trivial destructors.
1875     if (BaseClassDecl->hasTrivialDestructor())
1876       continue;
1877 
1878     EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1879                                       BaseClassDecl,
1880                                       /*BaseIsVirtual*/ false);
1881   }
1882 
1883   // Poison fields such that access after their destructors are
1884   // invoked, and before the base class destructor runs, is invalid.
1885   if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1886       SanOpts.has(SanitizerKind::Memory))
1887     EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD);
1888 
1889   // Destroy direct fields.
1890   for (const auto *Field : ClassDecl->fields()) {
1891     QualType type = Field->getType();
1892     QualType::DestructionKind dtorKind = type.isDestructedType();
1893     if (!dtorKind) continue;
1894 
1895     // Anonymous union members do not have their destructors called.
1896     const RecordType *RT = type->getAsUnionType();
1897     if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
1898 
1899     CleanupKind cleanupKind = getCleanupKind(dtorKind);
1900     EHStack.pushCleanup<DestroyField>(cleanupKind, Field,
1901                                       getDestroyer(dtorKind),
1902                                       cleanupKind & EHCleanup);
1903   }
1904 }
1905 
1906 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1907 /// constructor for each of several members of an array.
1908 ///
1909 /// \param ctor the constructor to call for each element
1910 /// \param arrayType the type of the array to initialize
1911 /// \param arrayBegin an arrayType*
1912 /// \param zeroInitialize true if each element should be
1913 ///   zero-initialized before it is constructed
EmitCXXAggrConstructorCall(const CXXConstructorDecl * ctor,const ArrayType * arrayType,Address arrayBegin,const CXXConstructExpr * E,bool NewPointerIsChecked,bool zeroInitialize)1914 void CodeGenFunction::EmitCXXAggrConstructorCall(
1915     const CXXConstructorDecl *ctor, const ArrayType *arrayType,
1916     Address arrayBegin, const CXXConstructExpr *E, bool NewPointerIsChecked,
1917     bool zeroInitialize) {
1918   QualType elementType;
1919   llvm::Value *numElements =
1920     emitArrayLength(arrayType, elementType, arrayBegin);
1921 
1922   EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E,
1923                              NewPointerIsChecked, zeroInitialize);
1924 }
1925 
1926 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1927 /// constructor for each of several members of an array.
1928 ///
1929 /// \param ctor the constructor to call for each element
1930 /// \param numElements the number of elements in the array;
1931 ///   may be zero
1932 /// \param arrayBase a T*, where T is the type constructed by ctor
1933 /// \param zeroInitialize true if each element should be
1934 ///   zero-initialized before it is constructed
EmitCXXAggrConstructorCall(const CXXConstructorDecl * ctor,llvm::Value * numElements,Address arrayBase,const CXXConstructExpr * E,bool NewPointerIsChecked,bool zeroInitialize)1935 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1936                                                  llvm::Value *numElements,
1937                                                  Address arrayBase,
1938                                                  const CXXConstructExpr *E,
1939                                                  bool NewPointerIsChecked,
1940                                                  bool zeroInitialize) {
1941   // It's legal for numElements to be zero.  This can happen both
1942   // dynamically, because x can be zero in 'new A[x]', and statically,
1943   // because of GCC extensions that permit zero-length arrays.  There
1944   // are probably legitimate places where we could assume that this
1945   // doesn't happen, but it's not clear that it's worth it.
1946   llvm::BranchInst *zeroCheckBranch = nullptr;
1947 
1948   // Optimize for a constant count.
1949   llvm::ConstantInt *constantCount
1950     = dyn_cast<llvm::ConstantInt>(numElements);
1951   if (constantCount) {
1952     // Just skip out if the constant count is zero.
1953     if (constantCount->isZero()) return;
1954 
1955   // Otherwise, emit the check.
1956   } else {
1957     llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
1958     llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
1959     zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
1960     EmitBlock(loopBB);
1961   }
1962 
1963   // Find the end of the array.
1964   llvm::Value *arrayBegin = arrayBase.getPointer();
1965   llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
1966                                                     "arrayctor.end");
1967 
1968   // Enter the loop, setting up a phi for the current location to initialize.
1969   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1970   llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
1971   EmitBlock(loopBB);
1972   llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
1973                                          "arrayctor.cur");
1974   cur->addIncoming(arrayBegin, entryBB);
1975 
1976   // Inside the loop body, emit the constructor call on the array element.
1977 
1978   // The alignment of the base, adjusted by the size of a single element,
1979   // provides a conservative estimate of the alignment of every element.
1980   // (This assumes we never start tracking offsetted alignments.)
1981   //
1982   // Note that these are complete objects and so we don't need to
1983   // use the non-virtual size or alignment.
1984   QualType type = getContext().getTypeDeclType(ctor->getParent());
1985   CharUnits eltAlignment =
1986     arrayBase.getAlignment()
1987              .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
1988   Address curAddr = Address(cur, eltAlignment);
1989 
1990   // Zero initialize the storage, if requested.
1991   if (zeroInitialize)
1992     EmitNullInitialization(curAddr, type);
1993 
1994   // C++ [class.temporary]p4:
1995   // There are two contexts in which temporaries are destroyed at a different
1996   // point than the end of the full-expression. The first context is when a
1997   // default constructor is called to initialize an element of an array.
1998   // If the constructor has one or more default arguments, the destruction of
1999   // every temporary created in a default argument expression is sequenced
2000   // before the construction of the next array element, if any.
2001 
2002   {
2003     RunCleanupsScope Scope(*this);
2004 
2005     // Evaluate the constructor and its arguments in a regular
2006     // partial-destroy cleanup.
2007     if (getLangOpts().Exceptions &&
2008         !ctor->getParent()->hasTrivialDestructor()) {
2009       Destroyer *destroyer = destroyCXXObject;
2010       pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment,
2011                                      *destroyer);
2012     }
2013     auto currAVS = AggValueSlot::forAddr(
2014         curAddr, type.getQualifiers(), AggValueSlot::IsDestructed,
2015         AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
2016         AggValueSlot::DoesNotOverlap, AggValueSlot::IsNotZeroed,
2017         NewPointerIsChecked ? AggValueSlot::IsSanitizerChecked
2018                             : AggValueSlot::IsNotSanitizerChecked);
2019     EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
2020                            /*Delegating=*/false, currAVS, E);
2021   }
2022 
2023   // Go to the next element.
2024   llvm::Value *next =
2025     Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
2026                               "arrayctor.next");
2027   cur->addIncoming(next, Builder.GetInsertBlock());
2028 
2029   // Check whether that's the end of the loop.
2030   llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
2031   llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
2032   Builder.CreateCondBr(done, contBB, loopBB);
2033 
2034   // Patch the earlier check to skip over the loop.
2035   if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
2036 
2037   EmitBlock(contBB);
2038 }
2039 
destroyCXXObject(CodeGenFunction & CGF,Address addr,QualType type)2040 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
2041                                        Address addr,
2042                                        QualType type) {
2043   const RecordType *rtype = type->castAs<RecordType>();
2044   const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
2045   const CXXDestructorDecl *dtor = record->getDestructor();
2046   assert(!dtor->isTrivial());
2047   CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
2048                             /*Delegating=*/false, addr, type);
2049 }
2050 
EmitCXXConstructorCall(const CXXConstructorDecl * D,CXXCtorType Type,bool ForVirtualBase,bool Delegating,AggValueSlot ThisAVS,const CXXConstructExpr * E)2051 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2052                                              CXXCtorType Type,
2053                                              bool ForVirtualBase,
2054                                              bool Delegating,
2055                                              AggValueSlot ThisAVS,
2056                                              const CXXConstructExpr *E) {
2057   CallArgList Args;
2058   Address This = ThisAVS.getAddress();
2059   LangAS SlotAS = ThisAVS.getQualifiers().getAddressSpace();
2060   QualType ThisType = D->getThisType();
2061   LangAS ThisAS = ThisType.getTypePtr()->getPointeeType().getAddressSpace();
2062   llvm::Value *ThisPtr = This.getPointer();
2063 
2064   if (SlotAS != ThisAS) {
2065     unsigned TargetThisAS = getContext().getTargetAddressSpace(ThisAS);
2066     llvm::Type *NewType =
2067         ThisPtr->getType()->getPointerElementType()->getPointerTo(TargetThisAS);
2068     ThisPtr = getTargetHooks().performAddrSpaceCast(*this, This.getPointer(),
2069                                                     ThisAS, SlotAS, NewType);
2070   }
2071 
2072   // Push the this ptr.
2073   Args.add(RValue::get(ThisPtr), D->getThisType());
2074 
2075   // If this is a trivial constructor, emit a memcpy now before we lose
2076   // the alignment information on the argument.
2077   // FIXME: It would be better to preserve alignment information into CallArg.
2078   if (isMemcpyEquivalentSpecialMember(D)) {
2079     assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
2080 
2081     const Expr *Arg = E->getArg(0);
2082     LValue Src = EmitLValue(Arg);
2083     QualType DestTy = getContext().getTypeDeclType(D->getParent());
2084     LValue Dest = MakeAddrLValue(This, DestTy);
2085     EmitAggregateCopyCtor(Dest, Src, ThisAVS.mayOverlap());
2086     return;
2087   }
2088 
2089   // Add the rest of the user-supplied arguments.
2090   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2091   EvaluationOrder Order = E->isListInitialization()
2092                               ? EvaluationOrder::ForceLeftToRight
2093                               : EvaluationOrder::Default;
2094   EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(),
2095                /*ParamsToSkip*/ 0, Order);
2096 
2097   EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args,
2098                          ThisAVS.mayOverlap(), E->getExprLoc(),
2099                          ThisAVS.isSanitizerChecked());
2100 }
2101 
canEmitDelegateCallArgs(CodeGenFunction & CGF,const CXXConstructorDecl * Ctor,CXXCtorType Type,CallArgList & Args)2102 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF,
2103                                     const CXXConstructorDecl *Ctor,
2104                                     CXXCtorType Type, CallArgList &Args) {
2105   // We can't forward a variadic call.
2106   if (Ctor->isVariadic())
2107     return false;
2108 
2109   if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2110     // If the parameters are callee-cleanup, it's not safe to forward.
2111     for (auto *P : Ctor->parameters())
2112       if (P->needsDestruction(CGF.getContext()))
2113         return false;
2114 
2115     // Likewise if they're inalloca.
2116     const CGFunctionInfo &Info =
2117         CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0);
2118     if (Info.usesInAlloca())
2119       return false;
2120   }
2121 
2122   // Anything else should be OK.
2123   return true;
2124 }
2125 
EmitCXXConstructorCall(const CXXConstructorDecl * D,CXXCtorType Type,bool ForVirtualBase,bool Delegating,Address This,CallArgList & Args,AggValueSlot::Overlap_t Overlap,SourceLocation Loc,bool NewPointerIsChecked)2126 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2127                                              CXXCtorType Type,
2128                                              bool ForVirtualBase,
2129                                              bool Delegating,
2130                                              Address This,
2131                                              CallArgList &Args,
2132                                              AggValueSlot::Overlap_t Overlap,
2133                                              SourceLocation Loc,
2134                                              bool NewPointerIsChecked) {
2135   const CXXRecordDecl *ClassDecl = D->getParent();
2136 
2137   if (!NewPointerIsChecked)
2138     EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, Loc, This.getPointer(),
2139                   getContext().getRecordType(ClassDecl), CharUnits::Zero());
2140 
2141   if (D->isTrivial() && D->isDefaultConstructor()) {
2142     assert(Args.size() == 1 && "trivial default ctor with args");
2143     return;
2144   }
2145 
2146   // If this is a trivial constructor, just emit what's needed. If this is a
2147   // union copy constructor, we must emit a memcpy, because the AST does not
2148   // model that copy.
2149   if (isMemcpyEquivalentSpecialMember(D)) {
2150     assert(Args.size() == 2 && "unexpected argcount for trivial ctor");
2151 
2152     QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType();
2153     Address Src(Args[1].getRValue(*this).getScalarVal(),
2154                 CGM.getNaturalTypeAlignment(SrcTy));
2155     LValue SrcLVal = MakeAddrLValue(Src, SrcTy);
2156     QualType DestTy = getContext().getTypeDeclType(ClassDecl);
2157     LValue DestLVal = MakeAddrLValue(This, DestTy);
2158     EmitAggregateCopyCtor(DestLVal, SrcLVal, Overlap);
2159     return;
2160   }
2161 
2162   bool PassPrototypeArgs = true;
2163   // Check whether we can actually emit the constructor before trying to do so.
2164   if (auto Inherited = D->getInheritedConstructor()) {
2165     PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type);
2166     if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) {
2167       EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase,
2168                                               Delegating, Args);
2169       return;
2170     }
2171   }
2172 
2173   // Insert any ABI-specific implicit constructor arguments.
2174   CGCXXABI::AddedStructorArgCounts ExtraArgs =
2175       CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase,
2176                                                  Delegating, Args);
2177 
2178   // Emit the call.
2179   llvm::Constant *CalleePtr = CGM.getAddrOfCXXStructor(GlobalDecl(D, Type));
2180   const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall(
2181       Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs);
2182   CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(D, Type));
2183   EmitCall(Info, Callee, ReturnValueSlot(), Args, nullptr, Loc);
2184 
2185   // Generate vtable assumptions if we're constructing a complete object
2186   // with a vtable.  We don't do this for base subobjects for two reasons:
2187   // first, it's incorrect for classes with virtual bases, and second, we're
2188   // about to overwrite the vptrs anyway.
2189   // We also have to make sure if we can refer to vtable:
2190   // - Otherwise we can refer to vtable if it's safe to speculatively emit.
2191   // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are
2192   // sure that definition of vtable is not hidden,
2193   // then we are always safe to refer to it.
2194   // FIXME: It looks like InstCombine is very inefficient on dealing with
2195   // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily.
2196   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2197       ClassDecl->isDynamicClass() && Type != Ctor_Base &&
2198       CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) &&
2199       CGM.getCodeGenOpts().StrictVTablePointers)
2200     EmitVTableAssumptionLoads(ClassDecl, This);
2201 }
2202 
EmitInheritedCXXConstructorCall(const CXXConstructorDecl * D,bool ForVirtualBase,Address This,bool InheritedFromVBase,const CXXInheritedCtorInitExpr * E)2203 void CodeGenFunction::EmitInheritedCXXConstructorCall(
2204     const CXXConstructorDecl *D, bool ForVirtualBase, Address This,
2205     bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) {
2206   CallArgList Args;
2207   CallArg ThisArg(
2208       RValue::get(This.getPointer(), This.getAlignment().getQuantity()),
2209       D->getThisType());
2210 
2211   // Forward the parameters.
2212   if (InheritedFromVBase &&
2213       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
2214     // Nothing to do; this construction is not responsible for constructing
2215     // the base class containing the inherited constructor.
2216     // FIXME: Can we just pass undef's for the remaining arguments if we don't
2217     // have constructor variants?
2218     Args.push_back(ThisArg);
2219   } else if (!CXXInheritedCtorInitExprArgs.empty()) {
2220     // The inheriting constructor was inlined; just inject its arguments.
2221     assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() &&
2222            "wrong number of parameters for inherited constructor call");
2223     Args = CXXInheritedCtorInitExprArgs;
2224     Args[0] = ThisArg;
2225   } else {
2226     // The inheriting constructor was not inlined. Emit delegating arguments.
2227     Args.push_back(ThisArg);
2228     const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl);
2229     assert(OuterCtor->getNumParams() == D->getNumParams());
2230     assert(!OuterCtor->isVariadic() && "should have been inlined");
2231 
2232     for (const auto *Param : OuterCtor->parameters()) {
2233       assert(getContext().hasSameUnqualifiedType(
2234           OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(),
2235           Param->getType()));
2236       EmitDelegateCallArg(Args, Param, E->getLocation());
2237 
2238       // Forward __attribute__(pass_object_size).
2239       if (Param->hasAttr<PassObjectSizeAttr>()) {
2240         auto *POSParam = SizeArguments[Param];
2241         assert(POSParam && "missing pass_object_size value for forwarding");
2242         EmitDelegateCallArg(Args, POSParam, E->getLocation());
2243       }
2244     }
2245   }
2246 
2247   EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false,
2248                          This, Args, AggValueSlot::MayOverlap,
2249                          E->getLocation(), /*NewPointerIsChecked*/true);
2250 }
2251 
EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl * Ctor,CXXCtorType CtorType,bool ForVirtualBase,bool Delegating,CallArgList & Args)2252 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall(
2253     const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase,
2254     bool Delegating, CallArgList &Args) {
2255   GlobalDecl GD(Ctor, CtorType);
2256   InlinedInheritingConstructorScope Scope(*this, GD);
2257   ApplyInlineDebugLocation DebugScope(*this, GD);
2258   RunCleanupsScope RunCleanups(*this);
2259 
2260   // Save the arguments to be passed to the inherited constructor.
2261   CXXInheritedCtorInitExprArgs = Args;
2262 
2263   FunctionArgList Params;
2264   QualType RetType = BuildFunctionArgList(CurGD, Params);
2265   FnRetTy = RetType;
2266 
2267   // Insert any ABI-specific implicit constructor arguments.
2268   CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType,
2269                                              ForVirtualBase, Delegating, Args);
2270 
2271   // Emit a simplified prolog. We only need to emit the implicit params.
2272   assert(Args.size() >= Params.size() && "too few arguments for call");
2273   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
2274     if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) {
2275       const RValue &RV = Args[I].getRValue(*this);
2276       assert(!RV.isComplex() && "complex indirect params not supported");
2277       ParamValue Val = RV.isScalar()
2278                            ? ParamValue::forDirect(RV.getScalarVal())
2279                            : ParamValue::forIndirect(RV.getAggregateAddress());
2280       EmitParmDecl(*Params[I], Val, I + 1);
2281     }
2282   }
2283 
2284   // Create a return value slot if the ABI implementation wants one.
2285   // FIXME: This is dumb, we should ask the ABI not to try to set the return
2286   // value instead.
2287   if (!RetType->isVoidType())
2288     ReturnValue = CreateIRTemp(RetType, "retval.inhctor");
2289 
2290   CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
2291   CXXThisValue = CXXABIThisValue;
2292 
2293   // Directly emit the constructor initializers.
2294   EmitCtorPrologue(Ctor, CtorType, Params);
2295 }
2296 
EmitVTableAssumptionLoad(const VPtr & Vptr,Address This)2297 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) {
2298   llvm::Value *VTableGlobal =
2299       CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass);
2300   if (!VTableGlobal)
2301     return;
2302 
2303   // We can just use the base offset in the complete class.
2304   CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset();
2305 
2306   if (!NonVirtualOffset.isZero())
2307     This =
2308         ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr,
2309                                         Vptr.VTableClass, Vptr.NearestVBase);
2310 
2311   llvm::Value *VPtrValue =
2312       GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass);
2313   llvm::Value *Cmp =
2314       Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables");
2315   Builder.CreateAssumption(Cmp);
2316 }
2317 
EmitVTableAssumptionLoads(const CXXRecordDecl * ClassDecl,Address This)2318 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl,
2319                                                 Address This) {
2320   if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl))
2321     for (const VPtr &Vptr : getVTablePointers(ClassDecl))
2322       EmitVTableAssumptionLoad(Vptr, This);
2323 }
2324 
2325 void
EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl * D,Address This,Address Src,const CXXConstructExpr * E)2326 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2327                                                 Address This, Address Src,
2328                                                 const CXXConstructExpr *E) {
2329   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2330 
2331   CallArgList Args;
2332 
2333   // Push the this ptr.
2334   Args.add(RValue::get(This.getPointer(), This.getAlignment().getQuantity()),
2335            D->getThisType());
2336 
2337   // Push the src ptr.
2338   QualType QT = *(FPT->param_type_begin());
2339   llvm::Type *t = CGM.getTypes().ConvertType(QT);
2340   Src = Builder.CreateBitCast(Src, t);
2341   Args.add(RValue::get(Src.getPointer(), Src.getAlignment().getQuantity()), QT);
2342 
2343   // Skip over first argument (Src).
2344   EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(),
2345                /*ParamsToSkip*/ 1);
2346 
2347   EmitCXXConstructorCall(D, Ctor_Complete, /*ForVirtualBase*/false,
2348                          /*Delegating*/false, This, Args,
2349                          AggValueSlot::MayOverlap, E->getExprLoc(),
2350                          /*NewPointerIsChecked*/false);
2351 }
2352 
2353 void
EmitDelegateCXXConstructorCall(const CXXConstructorDecl * Ctor,CXXCtorType CtorType,const FunctionArgList & Args,SourceLocation Loc)2354 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2355                                                 CXXCtorType CtorType,
2356                                                 const FunctionArgList &Args,
2357                                                 SourceLocation Loc) {
2358   CallArgList DelegateArgs;
2359 
2360   FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
2361   assert(I != E && "no parameters to constructor");
2362 
2363   // this
2364   Address This = LoadCXXThisAddress();
2365   DelegateArgs.add(
2366       RValue::get(This.getPointer(), This.getAlignment().getQuantity()),
2367       (*I)->getType());
2368   ++I;
2369 
2370   // FIXME: The location of the VTT parameter in the parameter list is
2371   // specific to the Itanium ABI and shouldn't be hardcoded here.
2372   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
2373     assert(I != E && "cannot skip vtt parameter, already done with args");
2374     assert((*I)->getType()->isPointerType() &&
2375            "skipping parameter not of vtt type");
2376     ++I;
2377   }
2378 
2379   // Explicit arguments.
2380   for (; I != E; ++I) {
2381     const VarDecl *param = *I;
2382     // FIXME: per-argument source location
2383     EmitDelegateCallArg(DelegateArgs, param, Loc);
2384   }
2385 
2386   EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false,
2387                          /*Delegating=*/true, This, DelegateArgs,
2388                          AggValueSlot::MayOverlap, Loc,
2389                          /*NewPointerIsChecked=*/true);
2390 }
2391 
2392 namespace {
2393   struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup {
2394     const CXXDestructorDecl *Dtor;
2395     Address Addr;
2396     CXXDtorType Type;
2397 
CallDelegatingCtorDtor__anon03c1798c0511::CallDelegatingCtorDtor2398     CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr,
2399                            CXXDtorType Type)
2400       : Dtor(D), Addr(Addr), Type(Type) {}
2401 
Emit__anon03c1798c0511::CallDelegatingCtorDtor2402     void Emit(CodeGenFunction &CGF, Flags flags) override {
2403       // We are calling the destructor from within the constructor.
2404       // Therefore, "this" should have the expected type.
2405       QualType ThisTy = Dtor->getThisObjectType();
2406       CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
2407                                 /*Delegating=*/true, Addr, ThisTy);
2408     }
2409   };
2410 } // end anonymous namespace
2411 
2412 void
EmitDelegatingCXXConstructorCall(const CXXConstructorDecl * Ctor,const FunctionArgList & Args)2413 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2414                                                   const FunctionArgList &Args) {
2415   assert(Ctor->isDelegatingConstructor());
2416 
2417   Address ThisPtr = LoadCXXThisAddress();
2418 
2419   AggValueSlot AggSlot =
2420     AggValueSlot::forAddr(ThisPtr, Qualifiers(),
2421                           AggValueSlot::IsDestructed,
2422                           AggValueSlot::DoesNotNeedGCBarriers,
2423                           AggValueSlot::IsNotAliased,
2424                           AggValueSlot::MayOverlap,
2425                           AggValueSlot::IsNotZeroed,
2426                           // Checks are made by the code that calls constructor.
2427                           AggValueSlot::IsSanitizerChecked);
2428 
2429   EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
2430 
2431   const CXXRecordDecl *ClassDecl = Ctor->getParent();
2432   if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
2433     CXXDtorType Type =
2434       CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
2435 
2436     EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
2437                                                 ClassDecl->getDestructor(),
2438                                                 ThisPtr, Type);
2439   }
2440 }
2441 
EmitCXXDestructorCall(const CXXDestructorDecl * DD,CXXDtorType Type,bool ForVirtualBase,bool Delegating,Address This,QualType ThisTy)2442 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
2443                                             CXXDtorType Type,
2444                                             bool ForVirtualBase,
2445                                             bool Delegating, Address This,
2446                                             QualType ThisTy) {
2447   CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
2448                                      Delegating, This, ThisTy);
2449 }
2450 
2451 namespace {
2452   struct CallLocalDtor final : EHScopeStack::Cleanup {
2453     const CXXDestructorDecl *Dtor;
2454     Address Addr;
2455     QualType Ty;
2456 
CallLocalDtor__anon03c1798c0611::CallLocalDtor2457     CallLocalDtor(const CXXDestructorDecl *D, Address Addr, QualType Ty)
2458         : Dtor(D), Addr(Addr), Ty(Ty) {}
2459 
Emit__anon03c1798c0611::CallLocalDtor2460     void Emit(CodeGenFunction &CGF, Flags flags) override {
2461       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
2462                                 /*ForVirtualBase=*/false,
2463                                 /*Delegating=*/false, Addr, Ty);
2464     }
2465   };
2466 } // end anonymous namespace
2467 
PushDestructorCleanup(const CXXDestructorDecl * D,QualType T,Address Addr)2468 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
2469                                             QualType T, Address Addr) {
2470   EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr, T);
2471 }
2472 
PushDestructorCleanup(QualType T,Address Addr)2473 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) {
2474   CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
2475   if (!ClassDecl) return;
2476   if (ClassDecl->hasTrivialDestructor()) return;
2477 
2478   const CXXDestructorDecl *D = ClassDecl->getDestructor();
2479   assert(D && D->isUsed() && "destructor not marked as used!");
2480   PushDestructorCleanup(D, T, Addr);
2481 }
2482 
InitializeVTablePointer(const VPtr & Vptr)2483 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) {
2484   // Compute the address point.
2485   llvm::Value *VTableAddressPoint =
2486       CGM.getCXXABI().getVTableAddressPointInStructor(
2487           *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase);
2488 
2489   if (!VTableAddressPoint)
2490     return;
2491 
2492   // Compute where to store the address point.
2493   llvm::Value *VirtualOffset = nullptr;
2494   CharUnits NonVirtualOffset = CharUnits::Zero();
2495 
2496   if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) {
2497     // We need to use the virtual base offset offset because the virtual base
2498     // might have a different offset in the most derived class.
2499 
2500     VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(
2501         *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase);
2502     NonVirtualOffset = Vptr.OffsetFromNearestVBase;
2503   } else {
2504     // We can just use the base offset in the complete class.
2505     NonVirtualOffset = Vptr.Base.getBaseOffset();
2506   }
2507 
2508   // Apply the offsets.
2509   Address VTableField = LoadCXXThisAddress();
2510 
2511   if (!NonVirtualOffset.isZero() || VirtualOffset)
2512     VTableField = ApplyNonVirtualAndVirtualOffset(
2513         *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass,
2514         Vptr.NearestVBase);
2515 
2516   // Finally, store the address point. Use the same LLVM types as the field to
2517   // support optimization.
2518   unsigned DefaultAS = CGM.getTargetCodeGenInfo().getDefaultAS();
2519   llvm::Type *VTablePtrTy =
2520       llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true)
2521           ->getPointerTo(DefaultAS)
2522           ->getPointerTo(DefaultAS);
2523   VTableField = Builder.CreateBitCast(VTableField,
2524                                       VTablePtrTy->getPointerTo(DefaultAS));
2525   VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy);
2526 
2527   llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
2528   TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTablePtrTy);
2529   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
2530   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2531       CGM.getCodeGenOpts().StrictVTablePointers)
2532     CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass);
2533 }
2534 
2535 CodeGenFunction::VPtrsVector
getVTablePointers(const CXXRecordDecl * VTableClass)2536 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) {
2537   CodeGenFunction::VPtrsVector VPtrsResult;
2538   VisitedVirtualBasesSetTy VBases;
2539   getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()),
2540                     /*NearestVBase=*/nullptr,
2541                     /*OffsetFromNearestVBase=*/CharUnits::Zero(),
2542                     /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases,
2543                     VPtrsResult);
2544   return VPtrsResult;
2545 }
2546 
getVTablePointers(BaseSubobject Base,const CXXRecordDecl * NearestVBase,CharUnits OffsetFromNearestVBase,bool BaseIsNonVirtualPrimaryBase,const CXXRecordDecl * VTableClass,VisitedVirtualBasesSetTy & VBases,VPtrsVector & Vptrs)2547 void CodeGenFunction::getVTablePointers(BaseSubobject Base,
2548                                         const CXXRecordDecl *NearestVBase,
2549                                         CharUnits OffsetFromNearestVBase,
2550                                         bool BaseIsNonVirtualPrimaryBase,
2551                                         const CXXRecordDecl *VTableClass,
2552                                         VisitedVirtualBasesSetTy &VBases,
2553                                         VPtrsVector &Vptrs) {
2554   // If this base is a non-virtual primary base the address point has already
2555   // been set.
2556   if (!BaseIsNonVirtualPrimaryBase) {
2557     // Initialize the vtable pointer for this base.
2558     VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass};
2559     Vptrs.push_back(Vptr);
2560   }
2561 
2562   const CXXRecordDecl *RD = Base.getBase();
2563 
2564   // Traverse bases.
2565   for (const auto &I : RD->bases()) {
2566     auto *BaseDecl =
2567         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2568 
2569     // Ignore classes without a vtable.
2570     if (!BaseDecl->isDynamicClass())
2571       continue;
2572 
2573     CharUnits BaseOffset;
2574     CharUnits BaseOffsetFromNearestVBase;
2575     bool BaseDeclIsNonVirtualPrimaryBase;
2576 
2577     if (I.isVirtual()) {
2578       // Check if we've visited this virtual base before.
2579       if (!VBases.insert(BaseDecl).second)
2580         continue;
2581 
2582       const ASTRecordLayout &Layout =
2583         getContext().getASTRecordLayout(VTableClass);
2584 
2585       BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
2586       BaseOffsetFromNearestVBase = CharUnits::Zero();
2587       BaseDeclIsNonVirtualPrimaryBase = false;
2588     } else {
2589       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2590 
2591       BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
2592       BaseOffsetFromNearestVBase =
2593         OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
2594       BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
2595     }
2596 
2597     getVTablePointers(
2598         BaseSubobject(BaseDecl, BaseOffset),
2599         I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase,
2600         BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs);
2601   }
2602 }
2603 
InitializeVTablePointers(const CXXRecordDecl * RD)2604 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
2605   // Ignore classes without a vtable.
2606   if (!RD->isDynamicClass())
2607     return;
2608 
2609   // Initialize the vtable pointers for this class and all of its bases.
2610   if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD))
2611     for (const VPtr &Vptr : getVTablePointers(RD))
2612       InitializeVTablePointer(Vptr);
2613 
2614   if (RD->getNumVBases())
2615     CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
2616 }
2617 
GetVTablePtr(Address This,llvm::Type * VTableTy,const CXXRecordDecl * RD)2618 llvm::Value *CodeGenFunction::GetVTablePtr(Address This,
2619                                            llvm::Type *VTableTy,
2620                                            const CXXRecordDecl *RD) {
2621   Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy);
2622   llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
2623   TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy);
2624   CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo);
2625 
2626   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2627       CGM.getCodeGenOpts().StrictVTablePointers)
2628     CGM.DecorateInstructionWithInvariantGroup(VTable, RD);
2629 
2630   return VTable;
2631 }
2632 
2633 // If a class has a single non-virtual base and does not introduce or override
2634 // virtual member functions or fields, it will have the same layout as its base.
2635 // This function returns the least derived such class.
2636 //
2637 // Casting an instance of a base class to such a derived class is technically
2638 // undefined behavior, but it is a relatively common hack for introducing member
2639 // functions on class instances with specific properties (e.g. llvm::Operator)
2640 // that works under most compilers and should not have security implications, so
2641 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
2642 static const CXXRecordDecl *
LeastDerivedClassWithSameLayout(const CXXRecordDecl * RD)2643 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) {
2644   if (!RD->field_empty())
2645     return RD;
2646 
2647   if (RD->getNumVBases() != 0)
2648     return RD;
2649 
2650   if (RD->getNumBases() != 1)
2651     return RD;
2652 
2653   for (const CXXMethodDecl *MD : RD->methods()) {
2654     if (MD->isVirtual()) {
2655       // Virtual member functions are only ok if they are implicit destructors
2656       // because the implicit destructor will have the same semantics as the
2657       // base class's destructor if no fields are added.
2658       if (isa<CXXDestructorDecl>(MD) && MD->isImplicit())
2659         continue;
2660       return RD;
2661     }
2662   }
2663 
2664   return LeastDerivedClassWithSameLayout(
2665       RD->bases_begin()->getType()->getAsCXXRecordDecl());
2666 }
2667 
EmitTypeMetadataCodeForVCall(const CXXRecordDecl * RD,llvm::Value * VTable,SourceLocation Loc)2668 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2669                                                    llvm::Value *VTable,
2670                                                    SourceLocation Loc) {
2671   if (SanOpts.has(SanitizerKind::CFIVCall))
2672     EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc);
2673   else if (CGM.getCodeGenOpts().WholeProgramVTables &&
2674            // Don't insert type test assumes if we are forcing public std
2675            // visibility.
2676            !CGM.HasLTOVisibilityPublicStd(RD)) {
2677     llvm::Metadata *MD =
2678         CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2679     llvm::Value *TypeId =
2680         llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2681 
2682     llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2683     llvm::Value *TypeTest =
2684         Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
2685                            {CastedVTable, TypeId});
2686     Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest);
2687   }
2688 }
2689 
EmitVTablePtrCheckForCall(const CXXRecordDecl * RD,llvm::Value * VTable,CFITypeCheckKind TCK,SourceLocation Loc)2690 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD,
2691                                                 llvm::Value *VTable,
2692                                                 CFITypeCheckKind TCK,
2693                                                 SourceLocation Loc) {
2694   if (!SanOpts.has(SanitizerKind::CFICastStrict))
2695     RD = LeastDerivedClassWithSameLayout(RD);
2696 
2697   EmitVTablePtrCheck(RD, VTable, TCK, Loc);
2698 }
2699 
EmitVTablePtrCheckForCast(QualType T,llvm::Value * Derived,bool MayBeNull,CFITypeCheckKind TCK,SourceLocation Loc)2700 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T,
2701                                                 llvm::Value *Derived,
2702                                                 bool MayBeNull,
2703                                                 CFITypeCheckKind TCK,
2704                                                 SourceLocation Loc) {
2705   if (!getLangOpts().CPlusPlus)
2706     return;
2707 
2708   auto *ClassTy = T->getAs<RecordType>();
2709   if (!ClassTy)
2710     return;
2711 
2712   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl());
2713 
2714   if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass())
2715     return;
2716 
2717   if (!SanOpts.has(SanitizerKind::CFICastStrict))
2718     ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
2719 
2720   llvm::BasicBlock *ContBlock = nullptr;
2721 
2722   if (MayBeNull) {
2723     llvm::Value *DerivedNotNull =
2724         Builder.CreateIsNotNull(Derived, "cast.nonnull");
2725 
2726     llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check");
2727     ContBlock = createBasicBlock("cast.cont");
2728 
2729     Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock);
2730 
2731     EmitBlock(CheckBlock);
2732   }
2733 
2734   llvm::Value *VTable;
2735   std::tie(VTable, ClassDecl) = CGM.getCXXABI().LoadVTablePtr(
2736       *this, Address(Derived, getPointerAlign()), ClassDecl);
2737 
2738   EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
2739 
2740   if (MayBeNull) {
2741     Builder.CreateBr(ContBlock);
2742     EmitBlock(ContBlock);
2743   }
2744 }
2745 
EmitVTablePtrCheck(const CXXRecordDecl * RD,llvm::Value * VTable,CFITypeCheckKind TCK,SourceLocation Loc)2746 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD,
2747                                          llvm::Value *VTable,
2748                                          CFITypeCheckKind TCK,
2749                                          SourceLocation Loc) {
2750   if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso &&
2751       !CGM.HasHiddenLTOVisibility(RD))
2752     return;
2753 
2754   SanitizerMask M;
2755   llvm::SanitizerStatKind SSK;
2756   switch (TCK) {
2757   case CFITCK_VCall:
2758     M = SanitizerKind::CFIVCall;
2759     SSK = llvm::SanStat_CFI_VCall;
2760     break;
2761   case CFITCK_NVCall:
2762     M = SanitizerKind::CFINVCall;
2763     SSK = llvm::SanStat_CFI_NVCall;
2764     break;
2765   case CFITCK_DerivedCast:
2766     M = SanitizerKind::CFIDerivedCast;
2767     SSK = llvm::SanStat_CFI_DerivedCast;
2768     break;
2769   case CFITCK_UnrelatedCast:
2770     M = SanitizerKind::CFIUnrelatedCast;
2771     SSK = llvm::SanStat_CFI_UnrelatedCast;
2772     break;
2773   case CFITCK_ICall:
2774   case CFITCK_NVMFCall:
2775   case CFITCK_VMFCall:
2776     llvm_unreachable("unexpected sanitizer kind");
2777   }
2778 
2779   std::string TypeName = RD->getQualifiedNameAsString();
2780   if (getContext().getSanitizerBlacklist().isBlacklistedType(M, TypeName))
2781     return;
2782 
2783   SanitizerScope SanScope(this);
2784   EmitSanitizerStatReport(SSK);
2785 
2786   llvm::Metadata *MD =
2787       CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2788   llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
2789 
2790   llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2791   llvm::Value *TypeTest = Builder.CreateCall(
2792       CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId});
2793 
2794   llvm::Constant *StaticData[] = {
2795       llvm::ConstantInt::get(Int8Ty, TCK),
2796       EmitCheckSourceLocation(Loc),
2797       EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)),
2798   };
2799 
2800   auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
2801   if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
2802     EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData);
2803     return;
2804   }
2805 
2806   if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) {
2807     EmitTrapCheck(TypeTest);
2808     return;
2809   }
2810 
2811   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
2812       CGM.getLLVMContext(),
2813       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
2814   llvm::Value *ValidVtable = Builder.CreateCall(
2815       CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables});
2816   EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail,
2817             StaticData, {CastedVTable, ValidVtable});
2818 }
2819 
ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl * RD)2820 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) {
2821   if (!CGM.getCodeGenOpts().WholeProgramVTables ||
2822       !CGM.HasHiddenLTOVisibility(RD))
2823     return false;
2824 
2825   if (CGM.getCodeGenOpts().VirtualFunctionElimination)
2826     return true;
2827 
2828   if (!SanOpts.has(SanitizerKind::CFIVCall) ||
2829       !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall))
2830     return false;
2831 
2832   std::string TypeName = RD->getQualifiedNameAsString();
2833   return !getContext().getSanitizerBlacklist().isBlacklistedType(
2834       SanitizerKind::CFIVCall, TypeName);
2835 }
2836 
EmitVTableTypeCheckedLoad(const CXXRecordDecl * RD,llvm::Value * VTable,uint64_t VTableByteOffset)2837 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad(
2838     const CXXRecordDecl *RD, llvm::Value *VTable, uint64_t VTableByteOffset) {
2839   SanitizerScope SanScope(this);
2840 
2841   EmitSanitizerStatReport(llvm::SanStat_CFI_VCall);
2842 
2843   llvm::Metadata *MD =
2844       CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2845   llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2846 
2847   llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2848   llvm::Value *CheckedLoad = Builder.CreateCall(
2849       CGM.getIntrinsic(llvm::Intrinsic::type_checked_load),
2850       {CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset),
2851        TypeId});
2852   llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1);
2853 
2854   std::string TypeName = RD->getQualifiedNameAsString();
2855   if (SanOpts.has(SanitizerKind::CFIVCall) &&
2856       !getContext().getSanitizerBlacklist().isBlacklistedType(
2857           SanitizerKind::CFIVCall, TypeName)) {
2858     EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall),
2859               SanitizerHandler::CFICheckFail, {}, {});
2860   }
2861 
2862   return Builder.CreateBitCast(
2863       Builder.CreateExtractValue(CheckedLoad, 0),
2864       cast<llvm::PointerType>(VTable->getType())->getElementType());
2865 }
2866 
EmitForwardingCallToLambda(const CXXMethodDecl * callOperator,CallArgList & callArgs)2867 void CodeGenFunction::EmitForwardingCallToLambda(
2868                                       const CXXMethodDecl *callOperator,
2869                                       CallArgList &callArgs) {
2870   // Get the address of the call operator.
2871   const CGFunctionInfo &calleeFnInfo =
2872     CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
2873   llvm::Constant *calleePtr =
2874     CGM.GetAddrOfFunction(GlobalDecl(callOperator),
2875                           CGM.getTypes().GetFunctionType(calleeFnInfo));
2876 
2877   // Prepare the return slot.
2878   const FunctionProtoType *FPT =
2879     callOperator->getType()->castAs<FunctionProtoType>();
2880   QualType resultType = FPT->getReturnType();
2881   ReturnValueSlot returnSlot;
2882   if (!resultType->isVoidType() &&
2883       calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2884       !hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
2885     returnSlot =
2886         ReturnValueSlot(ReturnValue, resultType.isVolatileQualified(),
2887                         /*IsUnused=*/false, /*IsExternallyDestructed=*/true);
2888 
2889   // We don't need to separately arrange the call arguments because
2890   // the call can't be variadic anyway --- it's impossible to forward
2891   // variadic arguments.
2892 
2893   // Now emit our call.
2894   auto callee = CGCallee::forDirect(calleePtr, GlobalDecl(callOperator));
2895   RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, callArgs);
2896 
2897   // If necessary, copy the returned value into the slot.
2898   if (!resultType->isVoidType() && returnSlot.isNull()) {
2899     if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) {
2900       RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal()));
2901     }
2902     EmitReturnOfRValue(RV, resultType);
2903   } else
2904     EmitBranchThroughCleanup(ReturnBlock);
2905 }
2906 
EmitLambdaBlockInvokeBody()2907 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2908   const BlockDecl *BD = BlockInfo->getBlockDecl();
2909   const VarDecl *variable = BD->capture_begin()->getVariable();
2910   const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
2911   const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
2912 
2913   if (CallOp->isVariadic()) {
2914     // FIXME: Making this work correctly is nasty because it requires either
2915     // cloning the body of the call operator or making the call operator
2916     // forward.
2917     CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
2918     return;
2919   }
2920 
2921   // Start building arguments for forwarding call
2922   CallArgList CallArgs;
2923 
2924   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2925   Address ThisPtr = GetAddrOfBlockDecl(variable);
2926   CallArgs.add(
2927       RValue::get(ThisPtr.getPointer(), ThisPtr.getAlignment().getQuantity()),
2928       ThisType);
2929 
2930   // Add the rest of the parameters.
2931   for (auto param : BD->parameters())
2932     EmitDelegateCallArg(CallArgs, param, param->getBeginLoc());
2933 
2934   assert(!Lambda->isGenericLambda() &&
2935             "generic lambda interconversion to block not implemented");
2936   EmitForwardingCallToLambda(CallOp, CallArgs);
2937 }
2938 
EmitLambdaDelegatingInvokeBody(const CXXMethodDecl * MD)2939 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
2940   const CXXRecordDecl *Lambda = MD->getParent();
2941 
2942   // Start building arguments for forwarding call
2943   CallArgList CallArgs;
2944 
2945   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2946   llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
2947   CallArgs.add(RValue::get(ThisPtr), ThisType);
2948 
2949   // Add the rest of the parameters.
2950   for (auto Param : MD->parameters())
2951     EmitDelegateCallArg(CallArgs, Param, Param->getBeginLoc());
2952 
2953   const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
2954   // For a generic lambda, find the corresponding call operator specialization
2955   // to which the call to the static-invoker shall be forwarded.
2956   if (Lambda->isGenericLambda()) {
2957     assert(MD->isFunctionTemplateSpecialization());
2958     const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
2959     FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
2960     void *InsertPos = nullptr;
2961     FunctionDecl *CorrespondingCallOpSpecialization =
2962         CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
2963     assert(CorrespondingCallOpSpecialization);
2964     CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
2965   }
2966   EmitForwardingCallToLambda(CallOp, CallArgs);
2967 }
2968 
EmitLambdaStaticInvokeBody(const CXXMethodDecl * MD)2969 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) {
2970   if (MD->isVariadic()) {
2971     // FIXME: Making this work correctly is nasty because it requires either
2972     // cloning the body of the call operator or making the call operator forward.
2973     CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
2974     return;
2975   }
2976 
2977   EmitLambdaDelegatingInvokeBody(MD);
2978 }
2979