1 //===-- lib/Semantics/expression.cpp --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "flang/Semantics/expression.h"
10 #include "check-call.h"
11 #include "pointer-assignment.h"
12 #include "resolve-names.h"
13 #include "flang/Common/idioms.h"
14 #include "flang/Evaluate/common.h"
15 #include "flang/Evaluate/fold.h"
16 #include "flang/Evaluate/tools.h"
17 #include "flang/Parser/characters.h"
18 #include "flang/Parser/dump-parse-tree.h"
19 #include "flang/Parser/parse-tree-visitor.h"
20 #include "flang/Parser/parse-tree.h"
21 #include "flang/Semantics/scope.h"
22 #include "flang/Semantics/semantics.h"
23 #include "flang/Semantics/symbol.h"
24 #include "flang/Semantics/tools.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <algorithm>
27 #include <functional>
28 #include <optional>
29 #include <set>
30 
31 // Typedef for optional generic expressions (ubiquitous in this file)
32 using MaybeExpr =
33     std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>;
34 
35 // Much of the code that implements semantic analysis of expressions is
36 // tightly coupled with their typed representations in lib/Evaluate,
37 // and appears here in namespace Fortran::evaluate for convenience.
38 namespace Fortran::evaluate {
39 
40 using common::LanguageFeature;
41 using common::NumericOperator;
42 using common::TypeCategory;
43 
ToUpperCase(const std::string & str)44 static inline std::string ToUpperCase(const std::string &str) {
45   return parser::ToUpperCaseLetters(str);
46 }
47 
48 struct DynamicTypeWithLength : public DynamicType {
DynamicTypeWithLengthFortran::evaluate::DynamicTypeWithLength49   explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {}
50   std::optional<Expr<SubscriptInteger>> LEN() const;
51   std::optional<Expr<SubscriptInteger>> length;
52 };
53 
LEN() const54 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const {
55   if (length) {
56     return length;
57   }
58   if (auto *lengthParam{charLength()}) {
59     if (const auto &len{lengthParam->GetExplicit()}) {
60       return ConvertToType<SubscriptInteger>(common::Clone(*len));
61     }
62   }
63   return std::nullopt; // assumed or deferred length
64 }
65 
AnalyzeTypeSpec(const std::optional<parser::TypeSpec> & spec)66 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec(
67     const std::optional<parser::TypeSpec> &spec) {
68   if (spec) {
69     if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) {
70       // Name resolution sets TypeSpec::declTypeSpec only when it's valid
71       // (viz., an intrinsic type with valid known kind or a non-polymorphic
72       // & non-ABSTRACT derived type).
73       if (const semantics::IntrinsicTypeSpec *
74           intrinsic{typeSpec->AsIntrinsic()}) {
75         TypeCategory category{intrinsic->category()};
76         if (auto optKind{ToInt64(intrinsic->kind())}) {
77           int kind{static_cast<int>(*optKind)};
78           if (category == TypeCategory::Character) {
79             const semantics::CharacterTypeSpec &cts{
80                 typeSpec->characterTypeSpec()};
81             const semantics::ParamValue &len{cts.length()};
82             // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() &
83             // type guards, but not in array constructors.
84             return DynamicTypeWithLength{DynamicType{kind, len}};
85           } else {
86             return DynamicTypeWithLength{DynamicType{category, kind}};
87           }
88         }
89       } else if (const semantics::DerivedTypeSpec *
90           derived{typeSpec->AsDerived()}) {
91         return DynamicTypeWithLength{DynamicType{*derived}};
92       }
93     }
94   }
95   return std::nullopt;
96 }
97 
98 class ArgumentAnalyzer {
99 public:
ArgumentAnalyzer(ExpressionAnalyzer & context)100   explicit ArgumentAnalyzer(ExpressionAnalyzer &context)
101       : context_{context}, allowAssumedType_{false} {}
ArgumentAnalyzer(ExpressionAnalyzer & context,parser::CharBlock source,bool allowAssumedType=false)102   ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source,
103       bool allowAssumedType = false)
104       : context_{context}, source_{source}, allowAssumedType_{
105                                                 allowAssumedType} {}
fatalErrors() const106   bool fatalErrors() const { return fatalErrors_; }
GetActuals()107   ActualArguments &&GetActuals() {
108     CHECK(!fatalErrors_);
109     return std::move(actuals_);
110   }
GetExpr(std::size_t i) const111   const Expr<SomeType> &GetExpr(std::size_t i) const {
112     return DEREF(actuals_.at(i).value().UnwrapExpr());
113   }
MoveExpr(std::size_t i)114   Expr<SomeType> &&MoveExpr(std::size_t i) {
115     return std::move(DEREF(actuals_.at(i).value().UnwrapExpr()));
116   }
Analyze(const common::Indirection<parser::Expr> & x)117   void Analyze(const common::Indirection<parser::Expr> &x) {
118     Analyze(x.value());
119   }
Analyze(const parser::Expr & x)120   void Analyze(const parser::Expr &x) {
121     actuals_.emplace_back(AnalyzeExpr(x));
122     fatalErrors_ |= !actuals_.back();
123   }
124   void Analyze(const parser::Variable &);
125   void Analyze(const parser::ActualArgSpec &, bool isSubroutine);
126 
127   bool IsIntrinsicRelational(RelationalOperator) const;
128   bool IsIntrinsicLogical() const;
129   bool IsIntrinsicNumeric(NumericOperator) const;
130   bool IsIntrinsicConcat() const;
131 
132   // Find and return a user-defined operator or report an error.
133   // The provided message is used if there is no such operator.
134   MaybeExpr TryDefinedOp(
135       const char *, parser::MessageFixedText &&, bool isUserOp = false);
136   template <typename E>
TryDefinedOp(E opr,parser::MessageFixedText && msg)137   MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText &&msg) {
138     return TryDefinedOp(
139         context_.context().languageFeatures().GetNames(opr), std::move(msg));
140   }
141   // Find and return a user-defined assignment
142   std::optional<ProcedureRef> TryDefinedAssignment();
143   std::optional<ProcedureRef> GetDefinedAssignmentProc();
144   void Dump(llvm::raw_ostream &);
145 
146 private:
147   MaybeExpr TryDefinedOp(
148       std::vector<const char *>, parser::MessageFixedText &&);
149   MaybeExpr TryBoundOp(const Symbol &, int passIndex);
150   std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &);
151   bool AreConformable() const;
152   const Symbol *FindBoundOp(parser::CharBlock, int passIndex);
153   void AddAssignmentConversion(
154       const DynamicType &lhsType, const DynamicType &rhsType);
155   bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs);
156   std::optional<DynamicType> GetType(std::size_t) const;
157   int GetRank(std::size_t) const;
IsBOZLiteral(std::size_t i) const158   bool IsBOZLiteral(std::size_t i) const {
159     return std::holds_alternative<BOZLiteralConstant>(GetExpr(i).u);
160   }
161   void SayNoMatch(const std::string &, bool isAssignment = false);
162   std::string TypeAsFortran(std::size_t);
163   bool AnyUntypedOperand();
164 
165   ExpressionAnalyzer &context_;
166   ActualArguments actuals_;
167   parser::CharBlock source_;
168   bool fatalErrors_{false};
169   const bool allowAssumedType_;
170   const Symbol *sawDefinedOp_{nullptr};
171 };
172 
173 // Wraps a data reference in a typed Designator<>, and a procedure
174 // or procedure pointer reference in a ProcedureDesignator.
Designate(DataRef && ref)175 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) {
176   const Symbol &symbol{ref.GetLastSymbol().GetUltimate()};
177   if (semantics::IsProcedure(symbol)) {
178     if (auto *component{std::get_if<Component>(&ref.u)}) {
179       return Expr<SomeType>{ProcedureDesignator{std::move(*component)}};
180     } else if (!std::holds_alternative<SymbolRef>(ref.u)) {
181       DIE("unexpected alternative in DataRef");
182     } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) {
183       return Expr<SomeType>{ProcedureDesignator{symbol}};
184     } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction(
185                    symbol.name().ToString())}) {
186       SpecificIntrinsic intrinsic{
187           symbol.name().ToString(), std::move(*interface)};
188       intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific;
189       return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}};
190     } else {
191       Say("'%s' is not a specific intrinsic procedure"_err_en_US,
192           symbol.name());
193       return std::nullopt;
194     }
195   } else if (auto dyType{DynamicType::From(symbol)}) {
196     return TypedWrapper<Designator, DataRef>(*dyType, std::move(ref));
197   }
198   return std::nullopt;
199 }
200 
201 // Some subscript semantic checks must be deferred until all of the
202 // subscripts are in hand.
CompleteSubscripts(ArrayRef && ref)203 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) {
204   const Symbol &symbol{ref.GetLastSymbol().GetUltimate()};
205   const auto *object{symbol.detailsIf<semantics::ObjectEntityDetails>()};
206   int symbolRank{symbol.Rank()};
207   int subscripts{static_cast<int>(ref.size())};
208   if (subscripts == 0) {
209     // nothing to check
210   } else if (subscripts != symbolRank) {
211     if (symbolRank != 0) {
212       Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US,
213           symbolRank, symbol.name(), subscripts);
214     }
215     return std::nullopt;
216   } else if (Component * component{ref.base().UnwrapComponent()}) {
217     int baseRank{component->base().Rank()};
218     if (baseRank > 0) {
219       int subscriptRank{0};
220       for (const auto &expr : ref.subscript()) {
221         subscriptRank += expr.Rank();
222       }
223       if (subscriptRank > 0) {
224         Say("Subscripts of component '%s' of rank-%d derived type "
225             "array have rank %d but must all be scalar"_err_en_US,
226             symbol.name(), baseRank, subscriptRank);
227         return std::nullopt;
228       }
229     }
230   } else if (object) {
231     // C928 & C1002
232     if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) {
233       if (!last->upper() && object->IsAssumedSize()) {
234         Say("Assumed-size array '%s' must have explicit final "
235             "subscript upper bound value"_err_en_US,
236             symbol.name());
237         return std::nullopt;
238       }
239     }
240   }
241   return Designate(DataRef{std::move(ref)});
242 }
243 
244 // Applies subscripts to a data reference.
ApplySubscripts(DataRef && dataRef,std::vector<Subscript> && subscripts)245 MaybeExpr ExpressionAnalyzer::ApplySubscripts(
246     DataRef &&dataRef, std::vector<Subscript> &&subscripts) {
247   return std::visit(
248       common::visitors{
249           [&](SymbolRef &&symbol) {
250             return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)});
251           },
252           [&](Component &&c) {
253             return CompleteSubscripts(
254                 ArrayRef{std::move(c), std::move(subscripts)});
255           },
256           [&](auto &&) -> MaybeExpr {
257             DIE("bad base for ArrayRef");
258             return std::nullopt;
259           },
260       },
261       std::move(dataRef.u));
262 }
263 
264 // Top-level checks for data references.
TopLevelChecks(DataRef && dataRef)265 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) {
266   if (Component * component{std::get_if<Component>(&dataRef.u)}) {
267     const Symbol &symbol{component->GetLastSymbol()};
268     int componentRank{symbol.Rank()};
269     if (componentRank > 0) {
270       int baseRank{component->base().Rank()};
271       if (baseRank > 0) {
272         Say("Reference to whole rank-%d component '%%%s' of "
273             "rank-%d array of derived type is not allowed"_err_en_US,
274             componentRank, symbol.name(), baseRank);
275       }
276     }
277   }
278   return Designate(std::move(dataRef));
279 }
280 
281 // Parse tree correction after a substring S(j:k) was misparsed as an
282 // array section.  N.B. Fortran substrings have to have a range, not a
283 // single index.
FixMisparsedSubstring(const parser::Designator & d)284 static void FixMisparsedSubstring(const parser::Designator &d) {
285   auto &mutate{const_cast<parser::Designator &>(d)};
286   if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) {
287     if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>(
288             &dataRef->u)}) {
289       parser::ArrayElement &arrElement{ae->value()};
290       if (!arrElement.subscripts.empty()) {
291         auto iter{arrElement.subscripts.begin()};
292         if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) {
293           if (!std::get<2>(triplet->t) /* no stride */ &&
294               ++iter == arrElement.subscripts.end() /* one subscript */) {
295             if (Symbol *
296                 symbol{std::visit(
297                     common::visitors{
298                         [](parser::Name &n) { return n.symbol; },
299                         [](common::Indirection<parser::StructureComponent>
300                                 &sc) { return sc.value().component.symbol; },
301                         [](auto &) -> Symbol * { return nullptr; },
302                     },
303                     arrElement.base.u)}) {
304               const Symbol &ultimate{symbol->GetUltimate()};
305               if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) {
306                 if (!ultimate.IsObjectArray() &&
307                     type->category() == semantics::DeclTypeSpec::Character) {
308                   // The ambiguous S(j:k) was parsed as an array section
309                   // reference, but it's now clear that it's a substring.
310                   // Fix the parse tree in situ.
311                   mutate.u = arrElement.ConvertToSubstring();
312                 }
313               }
314             }
315           }
316         }
317       }
318     }
319   }
320 }
321 
Analyze(const parser::Designator & d)322 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) {
323   auto restorer{GetContextualMessages().SetLocation(d.source)};
324   FixMisparsedSubstring(d);
325   // These checks have to be deferred to these "top level" data-refs where
326   // we can be sure that there are no following subscripts (yet).
327   // Substrings have already been run through TopLevelChecks() and
328   // won't be returned by ExtractDataRef().
329   if (MaybeExpr result{Analyze(d.u)}) {
330     if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) {
331       return TopLevelChecks(std::move(*dataRef));
332     }
333     return result;
334   }
335   return std::nullopt;
336 }
337 
338 // A utility subroutine to repackage optional expressions of various levels
339 // of type specificity as fully general MaybeExpr values.
AsMaybeExpr(A && x)340 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) {
341   return AsGenericExpr(std::move(x));
342 }
AsMaybeExpr(std::optional<A> && x)343 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) {
344   if (x) {
345     return AsMaybeExpr(std::move(*x));
346   }
347   return std::nullopt;
348 }
349 
350 // Type kind parameter values for literal constants.
AnalyzeKindParam(const std::optional<parser::KindParam> & kindParam,int defaultKind)351 int ExpressionAnalyzer::AnalyzeKindParam(
352     const std::optional<parser::KindParam> &kindParam, int defaultKind) {
353   if (!kindParam) {
354     return defaultKind;
355   }
356   return std::visit(
357       common::visitors{
358           [](std::uint64_t k) { return static_cast<int>(k); },
359           [&](const parser::Scalar<
360               parser::Integer<parser::Constant<parser::Name>>> &n) {
361             if (MaybeExpr ie{Analyze(n)}) {
362               if (std::optional<std::int64_t> i64{ToInt64(*ie)}) {
363                 int iv = *i64;
364                 if (iv == *i64) {
365                   return iv;
366                 }
367               }
368             }
369             return defaultKind;
370           },
371       },
372       kindParam->u);
373 }
374 
375 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant
376 struct IntTypeVisitor {
377   using Result = MaybeExpr;
378   using Types = IntegerTypes;
TestFortran::evaluate::IntTypeVisitor379   template <typename T> Result Test() {
380     if (T::kind >= kind) {
381       const char *p{digits.begin()};
382       auto value{T::Scalar::Read(p, 10, true /*signed*/)};
383       if (!value.overflow) {
384         if (T::kind > kind) {
385           if (!isDefaultKind ||
386               !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) {
387             return std::nullopt;
388           } else if (analyzer.context().ShouldWarn(
389                          LanguageFeature::BigIntLiterals)) {
390             analyzer.Say(digits,
391                 "Integer literal is too large for default INTEGER(KIND=%d); "
392                 "assuming INTEGER(KIND=%d)"_en_US,
393                 kind, T::kind);
394           }
395         }
396         return Expr<SomeType>{
397             Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}};
398       }
399     }
400     return std::nullopt;
401   }
402   ExpressionAnalyzer &analyzer;
403   parser::CharBlock digits;
404   int kind;
405   bool isDefaultKind;
406 };
407 
408 template <typename PARSED>
IntLiteralConstant(const PARSED & x)409 MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) {
410   const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)};
411   bool isDefaultKind{!kindParam};
412   int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))};
413   if (CheckIntrinsicKind(TypeCategory::Integer, kind)) {
414     auto digits{std::get<parser::CharBlock>(x.t)};
415     if (MaybeExpr result{common::SearchTypes(
416             IntTypeVisitor{*this, digits, kind, isDefaultKind})}) {
417       return result;
418     } else if (isDefaultKind) {
419       Say(digits,
420           "Integer literal is too large for any allowable "
421           "kind of INTEGER"_err_en_US);
422     } else {
423       Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US,
424           kind);
425     }
426   }
427   return std::nullopt;
428 }
429 
Analyze(const parser::IntLiteralConstant & x)430 MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) {
431   auto restorer{
432       GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))};
433   return IntLiteralConstant(x);
434 }
435 
Analyze(const parser::SignedIntLiteralConstant & x)436 MaybeExpr ExpressionAnalyzer::Analyze(
437     const parser::SignedIntLiteralConstant &x) {
438   auto restorer{GetContextualMessages().SetLocation(x.source)};
439   return IntLiteralConstant(x);
440 }
441 
442 template <typename TYPE>
ReadRealLiteral(parser::CharBlock source,FoldingContext & context)443 Constant<TYPE> ReadRealLiteral(
444     parser::CharBlock source, FoldingContext &context) {
445   const char *p{source.begin()};
446   auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())};
447   CHECK(p == source.end());
448   RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal");
449   auto value{valWithFlags.value};
450   if (context.flushSubnormalsToZero()) {
451     value = value.FlushSubnormalToZero();
452   }
453   return {value};
454 }
455 
456 struct RealTypeVisitor {
457   using Result = std::optional<Expr<SomeReal>>;
458   using Types = RealTypes;
459 
RealTypeVisitorFortran::evaluate::RealTypeVisitor460   RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx)
461       : kind{k}, literal{lit}, context{ctx} {}
462 
TestFortran::evaluate::RealTypeVisitor463   template <typename T> Result Test() {
464     if (kind == T::kind) {
465       return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))};
466     }
467     return std::nullopt;
468   }
469 
470   int kind;
471   parser::CharBlock literal;
472   FoldingContext &context;
473 };
474 
475 // Reads a real literal constant and encodes it with the right kind.
Analyze(const parser::RealLiteralConstant & x)476 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) {
477   // Use a local message context around the real literal for better
478   // provenance on any messages.
479   auto restorer{GetContextualMessages().SetLocation(x.real.source)};
480   // If a kind parameter appears, it defines the kind of the literal and the
481   // letter used in an exponent part must be 'E' (e.g., the 'E' in
482   // "6.02214E+23").  In the absence of an explicit kind parameter, any
483   // exponent letter determines the kind.  Otherwise, defaults apply.
484   auto &defaults{context_.defaultKinds()};
485   int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)};
486   const char *end{x.real.source.end()};
487   char expoLetter{' '};
488   std::optional<int> letterKind;
489   for (const char *p{x.real.source.begin()}; p < end; ++p) {
490     if (parser::IsLetter(*p)) {
491       expoLetter = *p;
492       switch (expoLetter) {
493       case 'e':
494         letterKind = defaults.GetDefaultKind(TypeCategory::Real);
495         break;
496       case 'd':
497         letterKind = defaults.doublePrecisionKind();
498         break;
499       case 'q':
500         letterKind = defaults.quadPrecisionKind();
501         break;
502       default:
503         Say("Unknown exponent letter '%c'"_err_en_US, expoLetter);
504       }
505       break;
506     }
507   }
508   if (letterKind) {
509     defaultKind = *letterKind;
510   }
511   // C716 requires 'E' as an exponent, but this is more useful
512   auto kind{AnalyzeKindParam(x.kind, defaultKind)};
513   if (letterKind && kind != *letterKind && expoLetter != 'e') {
514     Say("Explicit kind parameter on real constant disagrees with "
515         "exponent letter '%c'"_en_US,
516         expoLetter);
517   }
518   auto result{common::SearchTypes(
519       RealTypeVisitor{kind, x.real.source, GetFoldingContext()})};
520   if (!result) { // C717
521     Say("Unsupported REAL(KIND=%d)"_err_en_US, kind);
522   }
523   return AsMaybeExpr(std::move(result));
524 }
525 
Analyze(const parser::SignedRealLiteralConstant & x)526 MaybeExpr ExpressionAnalyzer::Analyze(
527     const parser::SignedRealLiteralConstant &x) {
528   if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) {
529     auto &realExpr{std::get<Expr<SomeReal>>(result->u)};
530     if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) {
531       if (sign == parser::Sign::Negative) {
532         return AsGenericExpr(-std::move(realExpr));
533       }
534     }
535     return result;
536   }
537   return std::nullopt;
538 }
539 
Analyze(const parser::SignedComplexLiteralConstant & x)540 MaybeExpr ExpressionAnalyzer::Analyze(
541     const parser::SignedComplexLiteralConstant &x) {
542   auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))};
543   if (!result) {
544     return std::nullopt;
545   } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) {
546     return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u)));
547   } else {
548     return result;
549   }
550 }
551 
Analyze(const parser::ComplexPart & x)552 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) {
553   return Analyze(x.u);
554 }
555 
Analyze(const parser::ComplexLiteralConstant & z)556 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) {
557   return AsMaybeExpr(
558       ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)),
559           Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real)));
560 }
561 
562 // CHARACTER literal processing.
AnalyzeString(std::string && string,int kind)563 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) {
564   if (!CheckIntrinsicKind(TypeCategory::Character, kind)) {
565     return std::nullopt;
566   }
567   switch (kind) {
568   case 1:
569     return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{
570         parser::DecodeString<std::string, parser::Encoding::LATIN_1>(
571             string, true)});
572   case 2:
573     return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{
574         parser::DecodeString<std::u16string, parser::Encoding::UTF_8>(
575             string, true)});
576   case 4:
577     return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{
578         parser::DecodeString<std::u32string, parser::Encoding::UTF_8>(
579             string, true)});
580   default:
581     CRASH_NO_CASE;
582   }
583 }
584 
Analyze(const parser::CharLiteralConstant & x)585 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) {
586   int kind{
587       AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)};
588   auto value{std::get<std::string>(x.t)};
589   return AnalyzeString(std::move(value), kind);
590 }
591 
Analyze(const parser::HollerithLiteralConstant & x)592 MaybeExpr ExpressionAnalyzer::Analyze(
593     const parser::HollerithLiteralConstant &x) {
594   int kind{GetDefaultKind(TypeCategory::Character)};
595   auto value{x.v};
596   return AnalyzeString(std::move(value), kind);
597 }
598 
599 // .TRUE. and .FALSE. of various kinds
Analyze(const parser::LogicalLiteralConstant & x)600 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) {
601   auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t),
602       GetDefaultKind(TypeCategory::Logical))};
603   bool value{std::get<bool>(x.t)};
604   auto result{common::SearchTypes(
605       TypeKindVisitor<TypeCategory::Logical, Constant, bool>{
606           kind, std::move(value)})};
607   if (!result) {
608     Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728
609   }
610   return result;
611 }
612 
613 // BOZ typeless literals
Analyze(const parser::BOZLiteralConstant & x)614 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) {
615   const char *p{x.v.c_str()};
616   std::uint64_t base{16};
617   switch (*p++) {
618   case 'b':
619     base = 2;
620     break;
621   case 'o':
622     base = 8;
623     break;
624   case 'z':
625     break;
626   case 'x':
627     break;
628   default:
629     CRASH_NO_CASE;
630   }
631   CHECK(*p == '"');
632   ++p;
633   auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)};
634   if (*p != '"') {
635     Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p, x.v);
636     return std::nullopt;
637   }
638   if (value.overflow) {
639     Say("BOZ literal '%s' too large"_err_en_US, x.v);
640     return std::nullopt;
641   }
642   return AsGenericExpr(std::move(value.value));
643 }
644 
645 // For use with SearchTypes to create a TypeParamInquiry with the
646 // right integer kind.
647 struct TypeParamInquiryVisitor {
648   using Result = std::optional<Expr<SomeInteger>>;
649   using Types = IntegerTypes;
TypeParamInquiryVisitorFortran::evaluate::TypeParamInquiryVisitor650   TypeParamInquiryVisitor(int k, NamedEntity &&b, const Symbol &param)
651       : kind{k}, base{std::move(b)}, parameter{param} {}
TypeParamInquiryVisitorFortran::evaluate::TypeParamInquiryVisitor652   TypeParamInquiryVisitor(int k, const Symbol &param)
653       : kind{k}, parameter{param} {}
TestFortran::evaluate::TypeParamInquiryVisitor654   template <typename T> Result Test() {
655     if (kind == T::kind) {
656       return Expr<SomeInteger>{
657           Expr<T>{TypeParamInquiry<T::kind>{std::move(base), parameter}}};
658     }
659     return std::nullopt;
660   }
661   int kind;
662   std::optional<NamedEntity> base;
663   const Symbol &parameter;
664 };
665 
MakeBareTypeParamInquiry(const Symbol * symbol)666 static std::optional<Expr<SomeInteger>> MakeBareTypeParamInquiry(
667     const Symbol *symbol) {
668   if (std::optional<DynamicType> dyType{DynamicType::From(symbol)}) {
669     if (dyType->category() == TypeCategory::Integer) {
670       return common::SearchTypes(
671           TypeParamInquiryVisitor{dyType->kind(), *symbol});
672     }
673   }
674   return std::nullopt;
675 }
676 
677 // Names and named constants
Analyze(const parser::Name & n)678 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) {
679   if (std::optional<int> kind{IsImpliedDo(n.source)}) {
680     return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>(
681         *kind, AsExpr(ImpliedDoIndex{n.source})));
682   } else if (context_.HasError(n) || !n.symbol) {
683     return std::nullopt;
684   } else {
685     const Symbol &ultimate{n.symbol->GetUltimate()};
686     if (ultimate.has<semantics::TypeParamDetails>()) {
687       // A bare reference to a derived type parameter (within a parameterized
688       // derived type definition)
689       return AsMaybeExpr(MakeBareTypeParamInquiry(&ultimate));
690     } else {
691       if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) {
692         if (const semantics::Scope *
693             pure{semantics::FindPureProcedureContaining(
694                 context_.FindScope(n.source))}) {
695           SayAt(n,
696               "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US,
697               n.source, DEREF(pure->symbol()).name());
698           n.symbol->attrs().reset(semantics::Attr::VOLATILE);
699         }
700       }
701       return Designate(DataRef{*n.symbol});
702     }
703   }
704 }
705 
Analyze(const parser::NamedConstant & n)706 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) {
707   if (MaybeExpr value{Analyze(n.v)}) {
708     Expr<SomeType> folded{Fold(std::move(*value))};
709     if (IsConstantExpr(folded)) {
710       return folded;
711     }
712     Say(n.v.source, "must be a constant"_err_en_US); // C718
713   }
714   return std::nullopt;
715 }
716 
Analyze(const parser::NullInit & x)717 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &x) {
718   return Expr<SomeType>{NullPointer{}};
719 }
720 
Analyze(const parser::InitialDataTarget & x)721 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) {
722   return Analyze(x.value());
723 }
724 
Analyze(const parser::DataStmtValue & x)725 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) {
726   if (const auto &repeat{
727           std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) {
728     x.repetitions = -1;
729     if (MaybeExpr expr{Analyze(repeat->u)}) {
730       Expr<SomeType> folded{Fold(std::move(*expr))};
731       if (auto value{ToInt64(folded)}) {
732         if (*value >= 0) { // C882
733           x.repetitions = *value;
734         } else {
735           Say(FindSourceLocation(repeat),
736               "Repeat count (%jd) for data value must not be negative"_err_en_US,
737               *value);
738         }
739       }
740     }
741   }
742   return Analyze(std::get<parser::DataStmtConstant>(x.t));
743 }
744 
745 // Substring references
GetSubstringBound(const std::optional<parser::ScalarIntExpr> & bound)746 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound(
747     const std::optional<parser::ScalarIntExpr> &bound) {
748   if (bound) {
749     if (MaybeExpr expr{Analyze(*bound)}) {
750       if (expr->Rank() > 1) {
751         Say("substring bound expression has rank %d"_err_en_US, expr->Rank());
752       }
753       if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) {
754         if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) {
755           return {std::move(*ssIntExpr)};
756         }
757         return {Expr<SubscriptInteger>{
758             Convert<SubscriptInteger, TypeCategory::Integer>{
759                 std::move(*intExpr)}}};
760       } else {
761         Say("substring bound expression is not INTEGER"_err_en_US);
762       }
763     }
764   }
765   return std::nullopt;
766 }
767 
Analyze(const parser::Substring & ss)768 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) {
769   if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) {
770     if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) {
771       if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) {
772         if (std::optional<DataRef> checked{
773                 ExtractDataRef(std::move(*newBaseExpr))}) {
774           const parser::SubstringRange &range{
775               std::get<parser::SubstringRange>(ss.t)};
776           std::optional<Expr<SubscriptInteger>> first{
777               GetSubstringBound(std::get<0>(range.t))};
778           std::optional<Expr<SubscriptInteger>> last{
779               GetSubstringBound(std::get<1>(range.t))};
780           const Symbol &symbol{checked->GetLastSymbol()};
781           if (std::optional<DynamicType> dynamicType{
782                   DynamicType::From(symbol)}) {
783             if (dynamicType->category() == TypeCategory::Character) {
784               return WrapperHelper<TypeCategory::Character, Designator,
785                   Substring>(dynamicType->kind(),
786                   Substring{std::move(checked.value()), std::move(first),
787                       std::move(last)});
788             }
789           }
790           Say("substring may apply only to CHARACTER"_err_en_US);
791         }
792       }
793     }
794   }
795   return std::nullopt;
796 }
797 
798 // CHARACTER literal substrings
Analyze(const parser::CharLiteralConstantSubstring & x)799 MaybeExpr ExpressionAnalyzer::Analyze(
800     const parser::CharLiteralConstantSubstring &x) {
801   const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)};
802   std::optional<Expr<SubscriptInteger>> lower{
803       GetSubstringBound(std::get<0>(range.t))};
804   std::optional<Expr<SubscriptInteger>> upper{
805       GetSubstringBound(std::get<1>(range.t))};
806   if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) {
807     if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) {
808       Expr<SubscriptInteger> length{
809           std::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); },
810               charExpr->u)};
811       if (!lower) {
812         lower = Expr<SubscriptInteger>{1};
813       }
814       if (!upper) {
815         upper = Expr<SubscriptInteger>{
816             static_cast<std::int64_t>(ToInt64(length).value())};
817       }
818       return std::visit(
819           [&](auto &&ckExpr) -> MaybeExpr {
820             using Result = ResultType<decltype(ckExpr)>;
821             auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)};
822             CHECK(DEREF(cp).size() == 1);
823             StaticDataObject::Pointer staticData{StaticDataObject::Create()};
824             staticData->set_alignment(Result::kind)
825                 .set_itemBytes(Result::kind)
826                 .Push(cp->GetScalarValue().value());
827             Substring substring{std::move(staticData), std::move(lower.value()),
828                 std::move(upper.value())};
829             return AsGenericExpr(
830                 Expr<Result>{Designator<Result>{std::move(substring)}});
831           },
832           std::move(charExpr->u));
833     }
834   }
835   return std::nullopt;
836 }
837 
838 // Subscripted array references
AsSubscript(MaybeExpr && expr)839 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript(
840     MaybeExpr &&expr) {
841   if (expr) {
842     if (expr->Rank() > 1) {
843       Say("Subscript expression has rank %d greater than 1"_err_en_US,
844           expr->Rank());
845     }
846     if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) {
847       if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) {
848         return std::move(*ssIntExpr);
849       } else {
850         return Expr<SubscriptInteger>{
851             Convert<SubscriptInteger, TypeCategory::Integer>{
852                 std::move(*intExpr)}};
853       }
854     } else {
855       Say("Subscript expression is not INTEGER"_err_en_US);
856     }
857   }
858   return std::nullopt;
859 }
860 
TripletPart(const std::optional<parser::Subscript> & s)861 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart(
862     const std::optional<parser::Subscript> &s) {
863   if (s) {
864     return AsSubscript(Analyze(*s));
865   } else {
866     return std::nullopt;
867   }
868 }
869 
AnalyzeSectionSubscript(const parser::SectionSubscript & ss)870 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript(
871     const parser::SectionSubscript &ss) {
872   return std::visit(common::visitors{
873                         [&](const parser::SubscriptTriplet &t) {
874                           return std::make_optional<Subscript>(
875                               Triplet{TripletPart(std::get<0>(t.t)),
876                                   TripletPart(std::get<1>(t.t)),
877                                   TripletPart(std::get<2>(t.t))});
878                         },
879                         [&](const auto &s) -> std::optional<Subscript> {
880                           if (auto subscriptExpr{AsSubscript(Analyze(s))}) {
881                             return Subscript{std::move(*subscriptExpr)};
882                           } else {
883                             return std::nullopt;
884                           }
885                         },
886                     },
887       ss.u);
888 }
889 
890 // Empty result means an error occurred
AnalyzeSectionSubscripts(const std::list<parser::SectionSubscript> & sss)891 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts(
892     const std::list<parser::SectionSubscript> &sss) {
893   bool error{false};
894   std::vector<Subscript> subscripts;
895   for (const auto &s : sss) {
896     if (auto subscript{AnalyzeSectionSubscript(s)}) {
897       subscripts.emplace_back(std::move(*subscript));
898     } else {
899       error = true;
900     }
901   }
902   return !error ? subscripts : std::vector<Subscript>{};
903 }
904 
Analyze(const parser::ArrayElement & ae)905 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) {
906   if (MaybeExpr baseExpr{Analyze(ae.base)}) {
907     if (ae.subscripts.empty()) {
908       // will be converted to function call later or error reported
909       return std::nullopt;
910     } else if (baseExpr->Rank() == 0) {
911       if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) {
912         if (!context_.HasError(symbol)) {
913           Say("'%s' is not an array"_err_en_US, symbol->name());
914           context_.SetError(const_cast<Symbol &>(*symbol));
915         }
916       }
917     } else if (std::optional<DataRef> dataRef{
918                    ExtractDataRef(std::move(*baseExpr))}) {
919       return ApplySubscripts(
920           std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts));
921     } else {
922       Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US);
923     }
924   }
925   // error was reported: analyze subscripts without reporting more errors
926   auto restorer{GetContextualMessages().DiscardMessages()};
927   AnalyzeSectionSubscripts(ae.subscripts);
928   return std::nullopt;
929 }
930 
931 // Type parameter inquiries apply to data references, but don't depend
932 // on any trailing (co)subscripts.
IgnoreAnySubscripts(Designator<SomeDerived> && designator)933 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) {
934   return std::visit(
935       common::visitors{
936           [](SymbolRef &&symbol) { return NamedEntity{symbol}; },
937           [](Component &&component) {
938             return NamedEntity{std::move(component)};
939           },
940           [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); },
941           [](CoarrayRef &&coarrayRef) {
942             return NamedEntity{coarrayRef.GetLastSymbol()};
943           },
944       },
945       std::move(designator.u));
946 }
947 
948 // Components of parent derived types are explicitly represented as such.
CreateComponent(DataRef && base,const Symbol & component,const semantics::Scope & scope)949 static std::optional<Component> CreateComponent(
950     DataRef &&base, const Symbol &component, const semantics::Scope &scope) {
951   if (&component.owner() == &scope) {
952     return Component{std::move(base), component};
953   }
954   if (const semantics::Scope * parentScope{scope.GetDerivedTypeParent()}) {
955     if (const Symbol * parentComponent{parentScope->GetSymbol()}) {
956       return CreateComponent(
957           DataRef{Component{std::move(base), *parentComponent}}, component,
958           *parentScope);
959     }
960   }
961   return std::nullopt;
962 }
963 
964 // Derived type component references and type parameter inquiries
Analyze(const parser::StructureComponent & sc)965 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) {
966   MaybeExpr base{Analyze(sc.base)};
967   if (!base) {
968     return std::nullopt;
969   }
970   Symbol *sym{sc.component.symbol};
971   if (context_.HasError(sym)) {
972     return std::nullopt;
973   }
974   const auto &name{sc.component.source};
975   if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) {
976     const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())};
977     if (sym->detailsIf<semantics::TypeParamDetails>()) {
978       if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) {
979         if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) {
980           if (dyType->category() == TypeCategory::Integer) {
981             return AsMaybeExpr(
982                 common::SearchTypes(TypeParamInquiryVisitor{dyType->kind(),
983                     IgnoreAnySubscripts(std::move(*designator)), *sym}));
984           }
985         }
986         Say(name, "Type parameter is not INTEGER"_err_en_US);
987       } else {
988         Say(name,
989             "A type parameter inquiry must be applied to "
990             "a designator"_err_en_US);
991       }
992     } else if (!dtSpec || !dtSpec->scope()) {
993       CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty());
994       return std::nullopt;
995     } else if (std::optional<DataRef> dataRef{
996                    ExtractDataRef(std::move(*dtExpr))}) {
997       if (auto component{
998               CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) {
999         return Designate(DataRef{std::move(*component)});
1000       } else {
1001         Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US,
1002             dtSpec->typeSymbol().name());
1003       }
1004     } else {
1005       Say(name,
1006           "Base of component reference must be a data reference"_err_en_US);
1007     }
1008   } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) {
1009     // special part-ref: %re, %im, %kind, %len
1010     // Type errors are detected and reported in semantics.
1011     using MiscKind = semantics::MiscDetails::Kind;
1012     MiscKind kind{details->kind()};
1013     if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) {
1014       if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) {
1015         if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) {
1016           Expr<SomeReal> realExpr{std::visit(
1017               [&](const auto &z) {
1018                 using PartType = typename ResultType<decltype(z)>::Part;
1019                 auto part{kind == MiscKind::ComplexPartRe
1020                         ? ComplexPart::Part::RE
1021                         : ComplexPart::Part::IM};
1022                 return AsCategoryExpr(Designator<PartType>{
1023                     ComplexPart{std::move(*dataRef), part}});
1024               },
1025               zExpr->u)};
1026           return AsGenericExpr(std::move(realExpr));
1027         }
1028       }
1029     } else if (kind == MiscKind::KindParamInquiry ||
1030         kind == MiscKind::LenParamInquiry) {
1031       // Convert x%KIND -> intrinsic KIND(x), x%LEN -> intrinsic LEN(x)
1032       return MakeFunctionRef(
1033           name, ActualArguments{ActualArgument{std::move(*base)}});
1034     } else {
1035       DIE("unexpected MiscDetails::Kind");
1036     }
1037   } else {
1038     Say(name, "derived type required before component reference"_err_en_US);
1039   }
1040   return std::nullopt;
1041 }
1042 
Analyze(const parser::CoindexedNamedObject & x)1043 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) {
1044   if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) {
1045     DataRef *dataRef{&*maybeDataRef};
1046     std::vector<Subscript> subscripts;
1047     SymbolVector reversed;
1048     if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) {
1049       subscripts = std::move(aRef->subscript());
1050       reversed.push_back(aRef->GetLastSymbol());
1051       if (Component * component{aRef->base().UnwrapComponent()}) {
1052         dataRef = &component->base();
1053       } else {
1054         dataRef = nullptr;
1055       }
1056     }
1057     if (dataRef) {
1058       while (auto *component{std::get_if<Component>(&dataRef->u)}) {
1059         reversed.push_back(component->GetLastSymbol());
1060         dataRef = &component->base();
1061       }
1062       if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) {
1063         reversed.push_back(*baseSym);
1064       } else {
1065         Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US);
1066       }
1067     }
1068     std::vector<Expr<SubscriptInteger>> cosubscripts;
1069     bool cosubsOk{true};
1070     for (const auto &cosub :
1071         std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) {
1072       MaybeExpr coex{Analyze(cosub)};
1073       if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) {
1074         cosubscripts.push_back(
1075             ConvertToType<SubscriptInteger>(std::move(*intExpr)));
1076       } else {
1077         cosubsOk = false;
1078       }
1079     }
1080     if (cosubsOk && !reversed.empty()) {
1081       int numCosubscripts{static_cast<int>(cosubscripts.size())};
1082       const Symbol &symbol{reversed.front()};
1083       if (numCosubscripts != symbol.Corank()) {
1084         Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US,
1085             symbol.name(), symbol.Corank(), numCosubscripts);
1086       }
1087     }
1088     for (const auto &imageSelSpec :
1089         std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) {
1090       std::visit(
1091           common::visitors{
1092               [&](const auto &x) { Analyze(x.v); },
1093           },
1094           imageSelSpec.u);
1095     }
1096     // Reverse the chain of symbols so that the base is first and coarray
1097     // ultimate component is last.
1098     if (cosubsOk) {
1099       return Designate(
1100           DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()},
1101               std::move(subscripts), std::move(cosubscripts)}});
1102     }
1103   }
1104   return std::nullopt;
1105 }
1106 
IntegerTypeSpecKind(const parser::IntegerTypeSpec & spec)1107 int ExpressionAnalyzer::IntegerTypeSpecKind(
1108     const parser::IntegerTypeSpec &spec) {
1109   Expr<SubscriptInteger> value{
1110       AnalyzeKindSelector(TypeCategory::Integer, spec.v)};
1111   if (auto kind{ToInt64(value)}) {
1112     return static_cast<int>(*kind);
1113   }
1114   SayAt(spec, "Constant INTEGER kind value required here"_err_en_US);
1115   return GetDefaultKind(TypeCategory::Integer);
1116 }
1117 
1118 // Array constructors
1119 
1120 // Inverts a collection of generic ArrayConstructorValues<SomeType> that
1121 // all happen to have the same actual type T into one ArrayConstructor<T>.
1122 template <typename T>
MakeSpecific(ArrayConstructorValues<SomeType> && from)1123 ArrayConstructorValues<T> MakeSpecific(
1124     ArrayConstructorValues<SomeType> &&from) {
1125   ArrayConstructorValues<T> to;
1126   for (ArrayConstructorValue<SomeType> &x : from) {
1127     std::visit(
1128         common::visitors{
1129             [&](common::CopyableIndirection<Expr<SomeType>> &&expr) {
1130               auto *typed{UnwrapExpr<Expr<T>>(expr.value())};
1131               to.Push(std::move(DEREF(typed)));
1132             },
1133             [&](ImpliedDo<SomeType> &&impliedDo) {
1134               to.Push(ImpliedDo<T>{impliedDo.name(),
1135                   std::move(impliedDo.lower()), std::move(impliedDo.upper()),
1136                   std::move(impliedDo.stride()),
1137                   MakeSpecific<T>(std::move(impliedDo.values()))});
1138             },
1139         },
1140         std::move(x.u));
1141   }
1142   return to;
1143 }
1144 
1145 class ArrayConstructorContext {
1146 public:
ArrayConstructorContext(ExpressionAnalyzer & c,std::optional<DynamicTypeWithLength> && t)1147   ArrayConstructorContext(
1148       ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t)
1149       : exprAnalyzer_{c}, type_{std::move(t)} {}
1150 
1151   void Add(const parser::AcValue &);
1152   MaybeExpr ToExpr();
1153 
1154   // These interfaces allow *this to be used as a type visitor argument to
1155   // common::SearchTypes() to convert the array constructor to a typed
1156   // expression in ToExpr().
1157   using Result = MaybeExpr;
1158   using Types = AllTypes;
Test()1159   template <typename T> Result Test() {
1160     if (type_ && type_->category() == T::category) {
1161       if constexpr (T::category == TypeCategory::Derived) {
1162         if (type_->IsUnlimitedPolymorphic()) {
1163           return std::nullopt;
1164         } else {
1165           return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(),
1166               MakeSpecific<T>(std::move(values_))});
1167         }
1168       } else if (type_->kind() == T::kind) {
1169         if constexpr (T::category == TypeCategory::Character) {
1170           if (auto len{type_->LEN()}) {
1171             return AsMaybeExpr(ArrayConstructor<T>{
1172                 *std::move(len), MakeSpecific<T>(std::move(values_))});
1173           }
1174         } else {
1175           return AsMaybeExpr(
1176               ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))});
1177         }
1178       }
1179     }
1180     return std::nullopt;
1181   }
1182 
1183 private:
1184   void Push(MaybeExpr &&);
1185 
1186   template <int KIND, typename A>
GetSpecificIntExpr(const A & x)1187   std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr(
1188       const A &x) {
1189     if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) {
1190       Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)};
1191       return ConvertToType<Type<TypeCategory::Integer, KIND>>(
1192           std::move(DEREF(intExpr)));
1193     }
1194     return std::nullopt;
1195   }
1196 
1197   // Nested array constructors all reference the same ExpressionAnalyzer,
1198   // which represents the nest of active implied DO loop indices.
1199   ExpressionAnalyzer &exprAnalyzer_;
1200   std::optional<DynamicTypeWithLength> type_;
1201   bool explicitType_{type_.has_value()};
1202   std::optional<std::int64_t> constantLength_;
1203   ArrayConstructorValues<SomeType> values_;
1204 };
1205 
Push(MaybeExpr && x)1206 void ArrayConstructorContext::Push(MaybeExpr &&x) {
1207   if (!x) {
1208     return;
1209   }
1210   if (auto dyType{x->GetType()}) {
1211     DynamicTypeWithLength xType{*dyType};
1212     if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) {
1213       CHECK(xType.category() == TypeCategory::Character);
1214       xType.length =
1215           std::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u);
1216     }
1217     if (!type_) {
1218       // If there is no explicit type-spec in an array constructor, the type
1219       // of the array is the declared type of all of the elements, which must
1220       // be well-defined and all match.
1221       // TODO: Possible language extension: use the most general type of
1222       // the values as the type of a numeric constructed array, convert all
1223       // of the other values to that type.  Alternative: let the first value
1224       // determine the type, and convert the others to that type.
1225       CHECK(!explicitType_);
1226       type_ = std::move(xType);
1227       constantLength_ = ToInt64(type_->length);
1228       values_.Push(std::move(*x));
1229     } else if (!explicitType_) {
1230       if (static_cast<const DynamicType &>(*type_) ==
1231           static_cast<const DynamicType &>(xType)) {
1232         values_.Push(std::move(*x));
1233         if (auto thisLen{ToInt64(xType.LEN())}) {
1234           if (constantLength_) {
1235             if (exprAnalyzer_.context().warnOnNonstandardUsage() &&
1236                 *thisLen != *constantLength_) {
1237               exprAnalyzer_.Say(
1238                   "Character literal in array constructor without explicit "
1239                   "type has different length than earlier element"_en_US);
1240             }
1241             if (*thisLen > *constantLength_) {
1242               // Language extension: use the longest literal to determine the
1243               // length of the array constructor's character elements, not the
1244               // first, when there is no explicit type.
1245               *constantLength_ = *thisLen;
1246               type_->length = xType.LEN();
1247             }
1248           } else {
1249             constantLength_ = *thisLen;
1250             type_->length = xType.LEN();
1251           }
1252         }
1253       } else {
1254         exprAnalyzer_.Say(
1255             "Values in array constructor must have the same declared type "
1256             "when no explicit type appears"_err_en_US);
1257       }
1258     } else {
1259       if (auto cast{ConvertToType(*type_, std::move(*x))}) {
1260         values_.Push(std::move(*cast));
1261       } else {
1262         exprAnalyzer_.Say(
1263             "Value in array constructor could not be converted to the type "
1264             "of the array"_err_en_US);
1265       }
1266     }
1267   }
1268 }
1269 
Add(const parser::AcValue & x)1270 void ArrayConstructorContext::Add(const parser::AcValue &x) {
1271   using IntType = ResultType<ImpliedDoIndex>;
1272   std::visit(
1273       common::visitors{
1274           [&](const parser::AcValue::Triplet &triplet) {
1275             // Transform l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_'
1276             std::optional<Expr<IntType>> lower{
1277                 GetSpecificIntExpr<IntType::kind>(std::get<0>(triplet.t))};
1278             std::optional<Expr<IntType>> upper{
1279                 GetSpecificIntExpr<IntType::kind>(std::get<1>(triplet.t))};
1280             std::optional<Expr<IntType>> stride{
1281                 GetSpecificIntExpr<IntType::kind>(std::get<2>(triplet.t))};
1282             if (lower && upper) {
1283               if (!stride) {
1284                 stride = Expr<IntType>{1};
1285               }
1286               if (!type_) {
1287                 type_ = DynamicTypeWithLength{IntType::GetType()};
1288               }
1289               auto v{std::move(values_)};
1290               parser::CharBlock anonymous;
1291               Push(Expr<SomeType>{
1292                   Expr<SomeInteger>{Expr<IntType>{ImpliedDoIndex{anonymous}}}});
1293               std::swap(v, values_);
1294               values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower),
1295                   std::move(*upper), std::move(*stride), std::move(v)});
1296             }
1297           },
1298           [&](const common::Indirection<parser::Expr> &expr) {
1299             auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation(
1300                 expr.value().source)};
1301             if (MaybeExpr v{exprAnalyzer_.Analyze(expr.value())}) {
1302               if (auto exprType{v->GetType()}) {
1303                 if (exprType->IsUnlimitedPolymorphic()) {
1304                   exprAnalyzer_.Say(
1305                       "Cannot have an unlimited polymorphic value in an "
1306                       "array constructor"_err_en_US);
1307                 }
1308               }
1309               Push(std::move(*v));
1310             }
1311           },
1312           [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) {
1313             const auto &control{
1314                 std::get<parser::AcImpliedDoControl>(impliedDo.value().t)};
1315             const auto &bounds{
1316                 std::get<parser::AcImpliedDoControl::Bounds>(control.t)};
1317             exprAnalyzer_.Analyze(bounds.name);
1318             parser::CharBlock name{bounds.name.thing.thing.source};
1319             const Symbol *symbol{bounds.name.thing.thing.symbol};
1320             int kind{IntType::kind};
1321             if (const auto dynamicType{DynamicType::From(symbol)}) {
1322               kind = dynamicType->kind();
1323             }
1324             if (exprAnalyzer_.AddImpliedDo(name, kind)) {
1325               std::optional<Expr<IntType>> lower{
1326                   GetSpecificIntExpr<IntType::kind>(bounds.lower)};
1327               std::optional<Expr<IntType>> upper{
1328                   GetSpecificIntExpr<IntType::kind>(bounds.upper)};
1329               if (lower && upper) {
1330                 std::optional<Expr<IntType>> stride{
1331                     GetSpecificIntExpr<IntType::kind>(bounds.step)};
1332                 auto v{std::move(values_)};
1333                 for (const auto &value :
1334                     std::get<std::list<parser::AcValue>>(impliedDo.value().t)) {
1335                   Add(value);
1336                 }
1337                 if (!stride) {
1338                   stride = Expr<IntType>{1};
1339                 }
1340                 std::swap(v, values_);
1341                 values_.Push(ImpliedDo<SomeType>{name, std::move(*lower),
1342                     std::move(*upper), std::move(*stride), std::move(v)});
1343               }
1344               exprAnalyzer_.RemoveImpliedDo(name);
1345             } else {
1346               exprAnalyzer_.SayAt(name,
1347                   "Implied DO index is active in surrounding implied DO loop "
1348                   "and may not have the same name"_err_en_US);
1349             }
1350           },
1351       },
1352       x.u);
1353 }
1354 
ToExpr()1355 MaybeExpr ArrayConstructorContext::ToExpr() {
1356   return common::SearchTypes(std::move(*this));
1357 }
1358 
Analyze(const parser::ArrayConstructor & array)1359 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) {
1360   const parser::AcSpec &acSpec{array.v};
1361   ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)};
1362   for (const parser::AcValue &value : acSpec.values) {
1363     acContext.Add(value);
1364   }
1365   return acContext.ToExpr();
1366 }
1367 
Analyze(const parser::StructureConstructor & structure)1368 MaybeExpr ExpressionAnalyzer::Analyze(
1369     const parser::StructureConstructor &structure) {
1370   auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)};
1371   parser::CharBlock typeName{std::get<parser::Name>(parsedType.t).source};
1372   if (!parsedType.derivedTypeSpec) {
1373     return std::nullopt;
1374   }
1375   const auto &spec{*parsedType.derivedTypeSpec};
1376   const Symbol &typeSymbol{spec.typeSymbol()};
1377   if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) {
1378     return std::nullopt; // error recovery
1379   }
1380   const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()};
1381   const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())};
1382 
1383   if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796
1384     AttachDeclaration(Say(typeName,
1385                           "ABSTRACT derived type '%s' may not be used in a "
1386                           "structure constructor"_err_en_US,
1387                           typeName),
1388         typeSymbol);
1389   }
1390 
1391   // This iterator traverses all of the components in the derived type and its
1392   // parents.  The symbols for whole parent components appear after their
1393   // own components and before the components of the types that extend them.
1394   // E.g., TYPE :: A; REAL X; END TYPE
1395   //       TYPE, EXTENDS(A) :: B; REAL Y; END TYPE
1396   // produces the component list X, A, Y.
1397   // The order is important below because a structure constructor can
1398   // initialize X or A by name, but not both.
1399   auto components{semantics::OrderedComponentIterator{spec}};
1400   auto nextAnonymous{components.begin()};
1401 
1402   std::set<parser::CharBlock> unavailable;
1403   bool anyKeyword{false};
1404   StructureConstructor result{spec};
1405   bool checkConflicts{true}; // until we hit one
1406   auto &messages{GetContextualMessages()};
1407 
1408   for (const auto &component :
1409       std::get<std::list<parser::ComponentSpec>>(structure.t)) {
1410     const parser::Expr &expr{
1411         std::get<parser::ComponentDataSource>(component.t).v.value()};
1412     parser::CharBlock source{expr.source};
1413     auto restorer{messages.SetLocation(source)};
1414     const Symbol *symbol{nullptr};
1415     MaybeExpr value{Analyze(expr)};
1416     std::optional<DynamicType> valueType{DynamicType::From(value)};
1417     if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) {
1418       anyKeyword = true;
1419       source = kw->v.source;
1420       symbol = kw->v.symbol;
1421       if (!symbol) {
1422         auto componentIter{std::find_if(components.begin(), components.end(),
1423             [=](const Symbol &symbol) { return symbol.name() == source; })};
1424         if (componentIter != components.end()) {
1425           symbol = &*componentIter;
1426         }
1427       }
1428       if (!symbol) { // C7101
1429         Say(source,
1430             "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US,
1431             source, typeName);
1432       }
1433     } else {
1434       if (anyKeyword) { // C7100
1435         Say(source,
1436             "Value in structure constructor lacks a component name"_err_en_US);
1437         checkConflicts = false; // stem cascade
1438       }
1439       // Here's a regrettably common extension of the standard: anonymous
1440       // initialization of parent components, e.g., T(PT(1)) rather than
1441       // T(1) or T(PT=PT(1)).
1442       if (nextAnonymous == components.begin() && parentComponent &&
1443           valueType == DynamicType::From(*parentComponent) &&
1444           context().IsEnabled(LanguageFeature::AnonymousParents)) {
1445         auto iter{
1446             std::find(components.begin(), components.end(), *parentComponent)};
1447         if (iter != components.end()) {
1448           symbol = parentComponent;
1449           nextAnonymous = ++iter;
1450           if (context().ShouldWarn(LanguageFeature::AnonymousParents)) {
1451             Say(source,
1452                 "Whole parent component '%s' in structure "
1453                 "constructor should not be anonymous"_en_US,
1454                 symbol->name());
1455           }
1456         }
1457       }
1458       while (!symbol && nextAnonymous != components.end()) {
1459         const Symbol &next{*nextAnonymous};
1460         ++nextAnonymous;
1461         if (!next.test(Symbol::Flag::ParentComp)) {
1462           symbol = &next;
1463         }
1464       }
1465       if (!symbol) {
1466         Say(source, "Unexpected value in structure constructor"_err_en_US);
1467       }
1468     }
1469     if (symbol) {
1470       if (const auto *currScope{context_.globalScope().FindScope(source)}) {
1471         if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) {
1472           Say(source, *msg);
1473         }
1474       }
1475       if (checkConflicts) {
1476         auto componentIter{
1477             std::find(components.begin(), components.end(), *symbol)};
1478         if (unavailable.find(symbol->name()) != unavailable.cend()) {
1479           // C797, C798
1480           Say(source,
1481               "Component '%s' conflicts with another component earlier in "
1482               "this structure constructor"_err_en_US,
1483               symbol->name());
1484         } else if (symbol->test(Symbol::Flag::ParentComp)) {
1485           // Make earlier components unavailable once a whole parent appears.
1486           for (auto it{components.begin()}; it != componentIter; ++it) {
1487             unavailable.insert(it->name());
1488           }
1489         } else {
1490           // Make whole parent components unavailable after any of their
1491           // constituents appear.
1492           for (auto it{componentIter}; it != components.end(); ++it) {
1493             if (it->test(Symbol::Flag::ParentComp)) {
1494               unavailable.insert(it->name());
1495             }
1496           }
1497         }
1498       }
1499       unavailable.insert(symbol->name());
1500       if (value) {
1501         if (symbol->has<semantics::ProcEntityDetails>()) {
1502           CHECK(IsPointer(*symbol));
1503         } else if (symbol->has<semantics::ObjectEntityDetails>()) {
1504           // C1594(4)
1505           const auto &innermost{context_.FindScope(expr.source)};
1506           if (const auto *pureProc{FindPureProcedureContaining(innermost)}) {
1507             if (const Symbol * pointer{FindPointerComponent(*symbol)}) {
1508               if (const Symbol *
1509                   object{FindExternallyVisibleObject(*value, *pureProc)}) {
1510                 if (auto *msg{Say(expr.source,
1511                         "Externally visible object '%s' may not be "
1512                         "associated with pointer component '%s' in a "
1513                         "pure procedure"_err_en_US,
1514                         object->name(), pointer->name())}) {
1515                   msg->Attach(object->name(), "Object declaration"_en_US)
1516                       .Attach(pointer->name(), "Pointer declaration"_en_US);
1517                 }
1518               }
1519             }
1520           }
1521         } else if (symbol->has<semantics::TypeParamDetails>()) {
1522           Say(expr.source,
1523               "Type parameter '%s' may not appear as a component "
1524               "of a structure constructor"_err_en_US,
1525               symbol->name());
1526           continue;
1527         } else {
1528           Say(expr.source,
1529               "Component '%s' is neither a procedure pointer "
1530               "nor a data object"_err_en_US,
1531               symbol->name());
1532           continue;
1533         }
1534         if (IsPointer(*symbol)) {
1535           semantics::CheckPointerAssignment(
1536               GetFoldingContext(), *symbol, *value); // C7104, C7105
1537           result.Add(*symbol, Fold(std::move(*value)));
1538         } else if (MaybeExpr converted{
1539                        ConvertToType(*symbol, std::move(*value))}) {
1540           if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) {
1541             if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) {
1542               if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) {
1543                 AttachDeclaration(
1544                     Say(expr.source,
1545                         "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US,
1546                         symbol->name()),
1547                     *symbol);
1548               } else if (CheckConformance(messages, *componentShape,
1549                              *valueShape, "component", "value")) {
1550                 if (GetRank(*componentShape) > 0 && GetRank(*valueShape) == 0 &&
1551                     !IsExpandableScalar(*converted)) {
1552                   AttachDeclaration(
1553                       Say(expr.source,
1554                           "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US,
1555                           symbol->name()),
1556                       *symbol);
1557                 } else {
1558                   result.Add(*symbol, std::move(*converted));
1559                 }
1560               }
1561             } else {
1562               Say(expr.source, "Shape of value cannot be determined"_err_en_US);
1563             }
1564           } else {
1565             AttachDeclaration(
1566                 Say(expr.source,
1567                     "Shape of component '%s' cannot be determined"_err_en_US,
1568                     symbol->name()),
1569                 *symbol);
1570           }
1571         } else if (IsAllocatable(*symbol) &&
1572             std::holds_alternative<NullPointer>(value->u)) {
1573           // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE
1574         } else if (auto symType{DynamicType::From(symbol)}) {
1575           if (valueType) {
1576             AttachDeclaration(
1577                 Say(expr.source,
1578                     "Value in structure constructor of type %s is "
1579                     "incompatible with component '%s' of type %s"_err_en_US,
1580                     valueType->AsFortran(), symbol->name(),
1581                     symType->AsFortran()),
1582                 *symbol);
1583           } else {
1584             AttachDeclaration(
1585                 Say(expr.source,
1586                     "Value in structure constructor is incompatible with "
1587                     " component '%s' of type %s"_err_en_US,
1588                     symbol->name(), symType->AsFortran()),
1589                 *symbol);
1590           }
1591         }
1592       }
1593     }
1594   }
1595 
1596   // Ensure that unmentioned component objects have default initializers.
1597   for (const Symbol &symbol : components) {
1598     if (!symbol.test(Symbol::Flag::ParentComp) &&
1599         unavailable.find(symbol.name()) == unavailable.cend() &&
1600         !IsAllocatable(symbol)) {
1601       if (const auto *details{
1602               symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
1603         if (details->init()) {
1604           result.Add(symbol, common::Clone(*details->init()));
1605         } else { // C799
1606           AttachDeclaration(Say(typeName,
1607                                 "Structure constructor lacks a value for "
1608                                 "component '%s'"_err_en_US,
1609                                 symbol.name()),
1610               symbol);
1611         }
1612       }
1613     }
1614   }
1615 
1616   return AsMaybeExpr(Expr<SomeDerived>{std::move(result)});
1617 }
1618 
GetPassName(const semantics::Symbol & proc)1619 static std::optional<parser::CharBlock> GetPassName(
1620     const semantics::Symbol &proc) {
1621   return std::visit(
1622       [](const auto &details) {
1623         if constexpr (std::is_base_of_v<semantics::WithPassArg,
1624                           std::decay_t<decltype(details)>>) {
1625           return details.passName();
1626         } else {
1627           return std::optional<parser::CharBlock>{};
1628         }
1629       },
1630       proc.details());
1631 }
1632 
GetPassIndex(const Symbol & proc)1633 static int GetPassIndex(const Symbol &proc) {
1634   CHECK(!proc.attrs().test(semantics::Attr::NOPASS));
1635   std::optional<parser::CharBlock> passName{GetPassName(proc)};
1636   const auto *interface{semantics::FindInterface(proc)};
1637   if (!passName || !interface) {
1638     return 0; // first argument is passed-object
1639   }
1640   const auto &subp{interface->get<semantics::SubprogramDetails>()};
1641   int index{0};
1642   for (const auto *arg : subp.dummyArgs()) {
1643     if (arg && arg->name() == passName) {
1644       return index;
1645     }
1646     ++index;
1647   }
1648   DIE("PASS argument name not in dummy argument list");
1649 }
1650 
1651 // Injects an expression into an actual argument list as the "passed object"
1652 // for a type-bound procedure reference that is not NOPASS.  Adds an
1653 // argument keyword if possible, but not when the passed object goes
1654 // before a positional argument.
1655 // e.g., obj%tbp(x) -> tbp(obj,x).
AddPassArg(ActualArguments & actuals,const Expr<SomeDerived> & expr,const Symbol & component,bool isPassedObject=true)1656 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr,
1657     const Symbol &component, bool isPassedObject = true) {
1658   if (component.attrs().test(semantics::Attr::NOPASS)) {
1659     return;
1660   }
1661   int passIndex{GetPassIndex(component)};
1662   auto iter{actuals.begin()};
1663   int at{0};
1664   while (iter < actuals.end() && at < passIndex) {
1665     if (*iter && (*iter)->keyword()) {
1666       iter = actuals.end();
1667       break;
1668     }
1669     ++iter;
1670     ++at;
1671   }
1672   ActualArgument passed{AsGenericExpr(common::Clone(expr))};
1673   passed.set_isPassedObject(isPassedObject);
1674   if (iter == actuals.end()) {
1675     if (auto passName{GetPassName(component)}) {
1676       passed.set_keyword(*passName);
1677     }
1678   }
1679   actuals.emplace(iter, std::move(passed));
1680 }
1681 
1682 // Return the compile-time resolution of a procedure binding, if possible.
GetBindingResolution(const std::optional<DynamicType> & baseType,const Symbol & component)1683 static const Symbol *GetBindingResolution(
1684     const std::optional<DynamicType> &baseType, const Symbol &component) {
1685   const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()};
1686   if (!binding) {
1687     return nullptr;
1688   }
1689   if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) &&
1690       (!baseType || baseType->IsPolymorphic())) {
1691     return nullptr;
1692   }
1693   return &binding->symbol();
1694 }
1695 
AnalyzeProcedureComponentRef(const parser::ProcComponentRef & pcr,ActualArguments && arguments)1696 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef(
1697     const parser::ProcComponentRef &pcr, ActualArguments &&arguments)
1698     -> std::optional<CalleeAndArguments> {
1699   const parser::StructureComponent &sc{pcr.v.thing};
1700   const auto &name{sc.component.source};
1701   if (MaybeExpr base{Analyze(sc.base)}) {
1702     if (const Symbol * sym{sc.component.symbol}) {
1703       if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) {
1704         if (sym->has<semantics::GenericDetails>()) {
1705           AdjustActuals adjustment{
1706               [&](const Symbol &proc, ActualArguments &actuals) {
1707                 if (!proc.attrs().test(semantics::Attr::NOPASS)) {
1708                   AddPassArg(actuals, std::move(*dtExpr), proc);
1709                 }
1710                 return true;
1711               }};
1712           sym = ResolveGeneric(*sym, arguments, adjustment);
1713           if (!sym) {
1714             EmitGenericResolutionError(*sc.component.symbol);
1715             return std::nullopt;
1716           }
1717         }
1718         if (const Symbol *
1719             resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) {
1720           AddPassArg(arguments, std::move(*dtExpr), *sym, false);
1721           return CalleeAndArguments{
1722               ProcedureDesignator{*resolution}, std::move(arguments)};
1723         } else if (std::optional<DataRef> dataRef{
1724                        ExtractDataRef(std::move(*dtExpr))}) {
1725           if (sym->attrs().test(semantics::Attr::NOPASS)) {
1726             return CalleeAndArguments{
1727                 ProcedureDesignator{Component{std::move(*dataRef), *sym}},
1728                 std::move(arguments)};
1729           } else {
1730             AddPassArg(arguments,
1731                 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}},
1732                 *sym);
1733             return CalleeAndArguments{
1734                 ProcedureDesignator{*sym}, std::move(arguments)};
1735           }
1736         }
1737       }
1738       Say(name,
1739           "Base of procedure component reference is not a derived-type object"_err_en_US);
1740     }
1741   }
1742   CHECK(!GetContextualMessages().empty());
1743   return std::nullopt;
1744 }
1745 
1746 // Can actual be argument associated with dummy?
CheckCompatibleArgument(bool isElemental,const ActualArgument & actual,const characteristics::DummyArgument & dummy)1747 static bool CheckCompatibleArgument(bool isElemental,
1748     const ActualArgument &actual, const characteristics::DummyArgument &dummy) {
1749   return std::visit(
1750       common::visitors{
1751           [&](const characteristics::DummyDataObject &x) {
1752             characteristics::TypeAndShape dummyTypeAndShape{x.type};
1753             if (!isElemental && actual.Rank() != dummyTypeAndShape.Rank()) {
1754               return false;
1755             } else if (auto actualType{actual.GetType()}) {
1756               return dummyTypeAndShape.type().IsTkCompatibleWith(*actualType);
1757             } else {
1758               return false;
1759             }
1760           },
1761           [&](const characteristics::DummyProcedure &) {
1762             const auto *expr{actual.UnwrapExpr()};
1763             return expr && IsProcedurePointer(*expr);
1764           },
1765           [&](const characteristics::AlternateReturn &) {
1766             return actual.isAlternateReturn();
1767           },
1768       },
1769       dummy.u);
1770 }
1771 
1772 // Are the actual arguments compatible with the dummy arguments of procedure?
CheckCompatibleArguments(const characteristics::Procedure & procedure,const ActualArguments & actuals)1773 static bool CheckCompatibleArguments(
1774     const characteristics::Procedure &procedure,
1775     const ActualArguments &actuals) {
1776   bool isElemental{procedure.IsElemental()};
1777   const auto &dummies{procedure.dummyArguments};
1778   CHECK(dummies.size() == actuals.size());
1779   for (std::size_t i{0}; i < dummies.size(); ++i) {
1780     const characteristics::DummyArgument &dummy{dummies[i]};
1781     const std::optional<ActualArgument> &actual{actuals[i]};
1782     if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) {
1783       return false;
1784     }
1785   }
1786   return true;
1787 }
1788 
1789 // Handles a forward reference to a module function from what must
1790 // be a specification expression.  Return false if the symbol is
1791 // an invalid forward reference.
ResolveForward(const Symbol & symbol)1792 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) {
1793   if (context_.HasError(symbol)) {
1794     return false;
1795   }
1796   if (const auto *details{
1797           symbol.detailsIf<semantics::SubprogramNameDetails>()}) {
1798     if (details->kind() == semantics::SubprogramKind::Module) {
1799       // If this symbol is still a SubprogramNameDetails, we must be
1800       // checking a specification expression in a sibling module
1801       // procedure.  Resolve its names now so that its interface
1802       // is known.
1803       semantics::ResolveSpecificationParts(context_, symbol);
1804       if (symbol.has<semantics::SubprogramNameDetails>()) {
1805         // When the symbol hasn't had its details updated, we must have
1806         // already been in the process of resolving the function's
1807         // specification part; but recursive function calls are not
1808         // allowed in specification parts (10.1.11 para 5).
1809         Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US,
1810             symbol.name());
1811         context_.SetError(const_cast<Symbol &>(symbol));
1812         return false;
1813       }
1814     } else { // 10.1.11 para 4
1815       Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US,
1816           symbol.name());
1817       context_.SetError(const_cast<Symbol &>(symbol));
1818       return false;
1819     }
1820   }
1821   return true;
1822 }
1823 
1824 // Resolve a call to a generic procedure with given actual arguments.
1825 // adjustActuals is called on procedure bindings to handle pass arg.
ResolveGeneric(const Symbol & symbol,const ActualArguments & actuals,const AdjustActuals & adjustActuals,bool mightBeStructureConstructor)1826 const Symbol *ExpressionAnalyzer::ResolveGeneric(const Symbol &symbol,
1827     const ActualArguments &actuals, const AdjustActuals &adjustActuals,
1828     bool mightBeStructureConstructor) {
1829   const Symbol *elemental{nullptr}; // matching elemental specific proc
1830   const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()};
1831   for (const Symbol &specific : details.specificProcs()) {
1832     if (!ResolveForward(specific)) {
1833       continue;
1834     }
1835     if (std::optional<characteristics::Procedure> procedure{
1836             characteristics::Procedure::Characterize(
1837                 ProcedureDesignator{specific}, context_.intrinsics())}) {
1838       ActualArguments localActuals{actuals};
1839       if (specific.has<semantics::ProcBindingDetails>()) {
1840         if (!adjustActuals.value()(specific, localActuals)) {
1841           continue;
1842         }
1843       }
1844       if (semantics::CheckInterfaceForGeneric(
1845               *procedure, localActuals, GetFoldingContext())) {
1846         if (CheckCompatibleArguments(*procedure, localActuals)) {
1847           if (!procedure->IsElemental()) {
1848             return &specific; // takes priority over elemental match
1849           }
1850           elemental = &specific;
1851         }
1852       }
1853     }
1854   }
1855   if (elemental) {
1856     return elemental;
1857   }
1858   // Check parent derived type
1859   if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) {
1860     if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) {
1861       if (extended->GetUltimate().has<semantics::GenericDetails>()) {
1862         if (const Symbol *
1863             result{ResolveGeneric(*extended, actuals, adjustActuals, false)}) {
1864           return result;
1865         }
1866       }
1867     }
1868   }
1869   if (mightBeStructureConstructor && details.derivedType()) {
1870     return details.derivedType();
1871   }
1872   return nullptr;
1873 }
1874 
EmitGenericResolutionError(const Symbol & symbol)1875 void ExpressionAnalyzer::EmitGenericResolutionError(const Symbol &symbol) {
1876   if (semantics::IsGenericDefinedOp(symbol)) {
1877     Say("No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US,
1878         symbol.name());
1879   } else {
1880     Say("No specific procedure of generic '%s' matches the actual arguments"_err_en_US,
1881         symbol.name());
1882   }
1883 }
1884 
GetCalleeAndArguments(const parser::ProcedureDesignator & pd,ActualArguments && arguments,bool isSubroutine,bool mightBeStructureConstructor)1885 auto ExpressionAnalyzer::GetCalleeAndArguments(
1886     const parser::ProcedureDesignator &pd, ActualArguments &&arguments,
1887     bool isSubroutine, bool mightBeStructureConstructor)
1888     -> std::optional<CalleeAndArguments> {
1889   return std::visit(
1890       common::visitors{
1891           [&](const parser::Name &name) {
1892             return GetCalleeAndArguments(name, std::move(arguments),
1893                 isSubroutine, mightBeStructureConstructor);
1894           },
1895           [&](const parser::ProcComponentRef &pcr) {
1896             return AnalyzeProcedureComponentRef(pcr, std::move(arguments));
1897           },
1898       },
1899       pd.u);
1900 }
1901 
GetCalleeAndArguments(const parser::Name & name,ActualArguments && arguments,bool isSubroutine,bool mightBeStructureConstructor)1902 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name,
1903     ActualArguments &&arguments, bool isSubroutine,
1904     bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> {
1905   const Symbol *symbol{name.symbol};
1906   if (context_.HasError(symbol)) {
1907     return std::nullopt; // also handles null symbol
1908   }
1909   const Symbol &ultimate{DEREF(symbol).GetUltimate()};
1910   if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) {
1911     if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe(
1912             CallCharacteristics{ultimate.name().ToString(), isSubroutine},
1913             arguments, GetFoldingContext())}) {
1914       return CalleeAndArguments{
1915           ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
1916           std::move(specificCall->arguments)};
1917     }
1918   } else {
1919     CheckForBadRecursion(name.source, ultimate);
1920     if (ultimate.has<semantics::GenericDetails>()) {
1921       ExpressionAnalyzer::AdjustActuals noAdjustment;
1922       symbol = ResolveGeneric(
1923           *symbol, arguments, noAdjustment, mightBeStructureConstructor);
1924     }
1925     if (symbol) {
1926       if (symbol->GetUltimate().has<semantics::DerivedTypeDetails>()) {
1927         if (mightBeStructureConstructor) {
1928           return CalleeAndArguments{
1929               semantics::SymbolRef{*symbol}, std::move(arguments)};
1930         }
1931       } else {
1932         return CalleeAndArguments{
1933             ProcedureDesignator{*symbol}, std::move(arguments)};
1934       }
1935     } else if (std::optional<SpecificCall> specificCall{
1936                    context_.intrinsics().Probe(
1937                        CallCharacteristics{
1938                            ultimate.name().ToString(), isSubroutine},
1939                        arguments, GetFoldingContext())}) {
1940       // Generics can extend intrinsics
1941       return CalleeAndArguments{
1942           ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
1943           std::move(specificCall->arguments)};
1944     } else {
1945       EmitGenericResolutionError(*name.symbol);
1946     }
1947   }
1948   return std::nullopt;
1949 }
1950 
CheckForBadRecursion(parser::CharBlock callSite,const semantics::Symbol & proc)1951 void ExpressionAnalyzer::CheckForBadRecursion(
1952     parser::CharBlock callSite, const semantics::Symbol &proc) {
1953   if (const auto *scope{proc.scope()}) {
1954     if (scope->sourceRange().Contains(callSite)) {
1955       parser::Message *msg{nullptr};
1956       if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3)
1957         msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US,
1958             callSite);
1959       } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) {
1960         msg = Say( // 15.6.2.1(3)
1961             "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US,
1962             callSite);
1963       }
1964       AttachDeclaration(msg, proc);
1965     }
1966   }
1967 }
1968 
AssumedTypeDummy(const A & x)1969 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) {
1970   if (const auto *designator{
1971           std::get_if<common::Indirection<parser::Designator>>(&x.u)}) {
1972     if (const auto *dataRef{
1973             std::get_if<parser::DataRef>(&designator->value().u)}) {
1974       if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) {
1975         if (const Symbol * symbol{name->symbol}) {
1976           if (const auto *type{symbol->GetType()}) {
1977             if (type->category() == semantics::DeclTypeSpec::TypeStar) {
1978               return symbol;
1979             }
1980           }
1981         }
1982       }
1983     }
1984   }
1985   return nullptr;
1986 }
1987 
Analyze(const parser::FunctionReference & funcRef,std::optional<parser::StructureConstructor> * structureConstructor)1988 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef,
1989     std::optional<parser::StructureConstructor> *structureConstructor) {
1990   const parser::Call &call{funcRef.v};
1991   auto restorer{GetContextualMessages().SetLocation(call.source)};
1992   ArgumentAnalyzer analyzer{*this, call.source, true /* allowAssumedType */};
1993   for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) {
1994     analyzer.Analyze(arg, false /* not subroutine call */);
1995   }
1996   if (analyzer.fatalErrors()) {
1997     return std::nullopt;
1998   }
1999   if (std::optional<CalleeAndArguments> callee{
2000           GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t),
2001               analyzer.GetActuals(), false /* not subroutine */,
2002               true /* might be structure constructor */)}) {
2003     if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) {
2004       return MakeFunctionRef(
2005           call.source, std::move(*proc), std::move(callee->arguments));
2006     } else if (structureConstructor) {
2007       // Structure constructor misparsed as function reference?
2008       CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u));
2009       const Symbol &derivedType{*std::get<semantics::SymbolRef>(callee->u)};
2010       const auto &designator{std::get<parser::ProcedureDesignator>(call.t)};
2011       if (const auto *name{std::get_if<parser::Name>(&designator.u)}) {
2012         semantics::Scope &scope{context_.FindScope(name->source)};
2013         const semantics::DeclTypeSpec &type{
2014             semantics::FindOrInstantiateDerivedType(scope,
2015                 semantics::DerivedTypeSpec{
2016                     name->source, derivedType.GetUltimate()},
2017                 context_)};
2018         auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)};
2019         *structureConstructor =
2020             mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec());
2021         return Analyze(structureConstructor->value());
2022       }
2023     }
2024   }
2025   return std::nullopt;
2026 }
2027 
Analyze(const parser::CallStmt & callStmt)2028 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) {
2029   const parser::Call &call{callStmt.v};
2030   auto restorer{GetContextualMessages().SetLocation(call.source)};
2031   ArgumentAnalyzer analyzer{*this, call.source, true /* allowAssumedType */};
2032   const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)};
2033   for (const auto &arg : actualArgList) {
2034     analyzer.Analyze(arg, true /* is subroutine call */);
2035   }
2036   if (!analyzer.fatalErrors()) {
2037     if (std::optional<CalleeAndArguments> callee{
2038             GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t),
2039                 analyzer.GetActuals(), true /* subroutine */)}) {
2040       ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)};
2041       CHECK(proc);
2042       if (CheckCall(call.source, *proc, callee->arguments)) {
2043         bool hasAlternateReturns{
2044             callee->arguments.size() < actualArgList.size()};
2045         callStmt.typedCall.Reset(
2046             new ProcedureRef{std::move(*proc), std::move(callee->arguments),
2047                 hasAlternateReturns},
2048             ProcedureRef::Deleter);
2049       }
2050     }
2051   }
2052 }
2053 
Analyze(const parser::AssignmentStmt & x)2054 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) {
2055   if (!x.typedAssignment) {
2056     ArgumentAnalyzer analyzer{*this};
2057     analyzer.Analyze(std::get<parser::Variable>(x.t));
2058     analyzer.Analyze(std::get<parser::Expr>(x.t));
2059     if (analyzer.fatalErrors()) {
2060       x.typedAssignment.Reset(
2061           new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter);
2062     } else {
2063       std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()};
2064       Assignment assignment{
2065           Fold(analyzer.MoveExpr(0)), Fold(analyzer.MoveExpr(1))};
2066       if (procRef) {
2067         assignment.u = std::move(*procRef);
2068       }
2069       x.typedAssignment.Reset(
2070           new GenericAssignmentWrapper{std::move(assignment)},
2071           GenericAssignmentWrapper::Deleter);
2072     }
2073   }
2074   return common::GetPtrFromOptional(x.typedAssignment->v);
2075 }
2076 
Analyze(const parser::PointerAssignmentStmt & x)2077 const Assignment *ExpressionAnalyzer::Analyze(
2078     const parser::PointerAssignmentStmt &x) {
2079   if (!x.typedAssignment) {
2080     MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))};
2081     MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))};
2082     if (!lhs || !rhs) {
2083       x.typedAssignment.Reset(
2084           new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter);
2085     } else {
2086       Assignment assignment{std::move(*lhs), std::move(*rhs)};
2087       std::visit(common::visitors{
2088                      [&](const std::list<parser::BoundsRemapping> &list) {
2089                        Assignment::BoundsRemapping bounds;
2090                        for (const auto &elem : list) {
2091                          auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))};
2092                          auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))};
2093                          if (lower && upper) {
2094                            bounds.emplace_back(Fold(std::move(*lower)),
2095                                Fold(std::move(*upper)));
2096                          }
2097                        }
2098                        assignment.u = std::move(bounds);
2099                      },
2100                      [&](const std::list<parser::BoundsSpec> &list) {
2101                        Assignment::BoundsSpec bounds;
2102                        for (const auto &bound : list) {
2103                          if (auto lower{AsSubscript(Analyze(bound.v))}) {
2104                            bounds.emplace_back(Fold(std::move(*lower)));
2105                          }
2106                        }
2107                        assignment.u = std::move(bounds);
2108                      },
2109                  },
2110           std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u);
2111       x.typedAssignment.Reset(
2112           new GenericAssignmentWrapper{std::move(assignment)},
2113           GenericAssignmentWrapper::Deleter);
2114     }
2115   }
2116   return common::GetPtrFromOptional(x.typedAssignment->v);
2117 }
2118 
IsExternalCalledImplicitly(parser::CharBlock callSite,const ProcedureDesignator & proc)2119 static bool IsExternalCalledImplicitly(
2120     parser::CharBlock callSite, const ProcedureDesignator &proc) {
2121   if (const auto *symbol{proc.GetSymbol()}) {
2122     return symbol->has<semantics::SubprogramDetails>() &&
2123         symbol->owner().IsGlobal() &&
2124         (!symbol->scope() /*ENTRY*/ ||
2125             !symbol->scope()->sourceRange().Contains(callSite));
2126   } else {
2127     return false;
2128   }
2129 }
2130 
CheckCall(parser::CharBlock callSite,const ProcedureDesignator & proc,ActualArguments & arguments)2131 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall(
2132     parser::CharBlock callSite, const ProcedureDesignator &proc,
2133     ActualArguments &arguments) {
2134   auto chars{
2135       characteristics::Procedure::Characterize(proc, context_.intrinsics())};
2136   if (chars) {
2137     bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)};
2138     if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) {
2139       Say(callSite,
2140           "References to the procedure '%s' require an explicit interface"_en_US,
2141           DEREF(proc.GetSymbol()).name());
2142     }
2143     semantics::CheckArguments(*chars, arguments, GetFoldingContext(),
2144         context_.FindScope(callSite), treatExternalAsImplicit);
2145     const Symbol *procSymbol{proc.GetSymbol()};
2146     if (procSymbol && !IsPureProcedure(*procSymbol)) {
2147       if (const semantics::Scope *
2148           pure{semantics::FindPureProcedureContaining(
2149               context_.FindScope(callSite))}) {
2150         Say(callSite,
2151             "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US,
2152             procSymbol->name(), DEREF(pure->symbol()).name());
2153       }
2154     }
2155   }
2156   return chars;
2157 }
2158 
2159 // Unary operations
2160 
Analyze(const parser::Expr::Parentheses & x)2161 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) {
2162   if (MaybeExpr operand{Analyze(x.v.value())}) {
2163     if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) {
2164       if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) {
2165         if (semantics::IsProcedurePointer(*result)) {
2166           Say("A function reference that returns a procedure "
2167               "pointer may not be parenthesized"_err_en_US); // C1003
2168         }
2169       }
2170     }
2171     return Parenthesize(std::move(*operand));
2172   }
2173   return std::nullopt;
2174 }
2175 
NumericUnaryHelper(ExpressionAnalyzer & context,NumericOperator opr,const parser::Expr::IntrinsicUnary & x)2176 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context,
2177     NumericOperator opr, const parser::Expr::IntrinsicUnary &x) {
2178   ArgumentAnalyzer analyzer{context};
2179   analyzer.Analyze(x.v);
2180   if (analyzer.fatalErrors()) {
2181     return std::nullopt;
2182   } else if (analyzer.IsIntrinsicNumeric(opr)) {
2183     if (opr == NumericOperator::Add) {
2184       return analyzer.MoveExpr(0);
2185     } else {
2186       return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0));
2187     }
2188   } else {
2189     return analyzer.TryDefinedOp(AsFortran(opr),
2190         "Operand of unary %s must be numeric; have %s"_err_en_US);
2191   }
2192 }
2193 
Analyze(const parser::Expr::UnaryPlus & x)2194 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) {
2195   return NumericUnaryHelper(*this, NumericOperator::Add, x);
2196 }
2197 
Analyze(const parser::Expr::Negate & x)2198 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) {
2199   return NumericUnaryHelper(*this, NumericOperator::Subtract, x);
2200 }
2201 
Analyze(const parser::Expr::NOT & x)2202 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) {
2203   ArgumentAnalyzer analyzer{*this};
2204   analyzer.Analyze(x.v);
2205   if (analyzer.fatalErrors()) {
2206     return std::nullopt;
2207   } else if (analyzer.IsIntrinsicLogical()) {
2208     return AsGenericExpr(
2209         LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u)));
2210   } else {
2211     return analyzer.TryDefinedOp(LogicalOperator::Not,
2212         "Operand of %s must be LOGICAL; have %s"_err_en_US);
2213   }
2214 }
2215 
Analyze(const parser::Expr::PercentLoc & x)2216 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) {
2217   // Represent %LOC() exactly as if it had been a call to the LOC() extension
2218   // intrinsic function.
2219   // Use the actual source for the name of the call for error reporting.
2220   std::optional<ActualArgument> arg;
2221   if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) {
2222     arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}};
2223   } else if (MaybeExpr argExpr{Analyze(x.v.value())}) {
2224     arg = ActualArgument{std::move(*argExpr)};
2225   } else {
2226     return std::nullopt;
2227   }
2228   parser::CharBlock at{GetContextualMessages().at()};
2229   CHECK(at.size() >= 4);
2230   parser::CharBlock loc{at.begin() + 1, 3};
2231   CHECK(loc == "loc");
2232   return MakeFunctionRef(loc, ActualArguments{std::move(*arg)});
2233 }
2234 
Analyze(const parser::Expr::DefinedUnary & x)2235 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) {
2236   const auto &name{std::get<parser::DefinedOpName>(x.t).v};
2237   ArgumentAnalyzer analyzer{*this, name.source};
2238   analyzer.Analyze(std::get<1>(x.t));
2239   return analyzer.TryDefinedOp(name.source.ToString().c_str(),
2240       "No operator %s defined for %s"_err_en_US, true);
2241 }
2242 
2243 // Binary (dyadic) operations
2244 
2245 template <template <typename> class OPR>
NumericBinaryHelper(ExpressionAnalyzer & context,NumericOperator opr,const parser::Expr::IntrinsicBinary & x)2246 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr,
2247     const parser::Expr::IntrinsicBinary &x) {
2248   ArgumentAnalyzer analyzer{context};
2249   analyzer.Analyze(std::get<0>(x.t));
2250   analyzer.Analyze(std::get<1>(x.t));
2251   if (analyzer.fatalErrors()) {
2252     return std::nullopt;
2253   } else if (analyzer.IsIntrinsicNumeric(opr)) {
2254     return NumericOperation<OPR>(context.GetContextualMessages(),
2255         analyzer.MoveExpr(0), analyzer.MoveExpr(1),
2256         context.GetDefaultKind(TypeCategory::Real));
2257   } else {
2258     return analyzer.TryDefinedOp(AsFortran(opr),
2259         "Operands of %s must be numeric; have %s and %s"_err_en_US);
2260   }
2261 }
2262 
Analyze(const parser::Expr::Power & x)2263 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) {
2264   return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x);
2265 }
2266 
Analyze(const parser::Expr::Multiply & x)2267 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) {
2268   return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x);
2269 }
2270 
Analyze(const parser::Expr::Divide & x)2271 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) {
2272   return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x);
2273 }
2274 
Analyze(const parser::Expr::Add & x)2275 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) {
2276   return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x);
2277 }
2278 
Analyze(const parser::Expr::Subtract & x)2279 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) {
2280   return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x);
2281 }
2282 
Analyze(const parser::Expr::ComplexConstructor & x)2283 MaybeExpr ExpressionAnalyzer::Analyze(
2284     const parser::Expr::ComplexConstructor &x) {
2285   auto re{Analyze(std::get<0>(x.t).value())};
2286   auto im{Analyze(std::get<1>(x.t).value())};
2287   if (re && im) {
2288     ConformabilityCheck(GetContextualMessages(), *re, *im);
2289   }
2290   return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re),
2291       std::move(im), GetDefaultKind(TypeCategory::Real)));
2292 }
2293 
Analyze(const parser::Expr::Concat & x)2294 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) {
2295   ArgumentAnalyzer analyzer{*this};
2296   analyzer.Analyze(std::get<0>(x.t));
2297   analyzer.Analyze(std::get<1>(x.t));
2298   if (analyzer.fatalErrors()) {
2299     return std::nullopt;
2300   } else if (analyzer.IsIntrinsicConcat()) {
2301     return std::visit(
2302         [&](auto &&x, auto &&y) -> MaybeExpr {
2303           using T = ResultType<decltype(x)>;
2304           if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) {
2305             return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)});
2306           } else {
2307             DIE("different types for intrinsic concat");
2308           }
2309         },
2310         std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u),
2311         std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u));
2312   } else {
2313     return analyzer.TryDefinedOp("//",
2314         "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US);
2315   }
2316 }
2317 
2318 // The Name represents a user-defined intrinsic operator.
2319 // If the actuals match one of the specific procedures, return a function ref.
2320 // Otherwise report the error in messages.
AnalyzeDefinedOp(const parser::Name & name,ActualArguments && actuals)2321 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp(
2322     const parser::Name &name, ActualArguments &&actuals) {
2323   if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) {
2324     CHECK(std::holds_alternative<ProcedureDesignator>(callee->u));
2325     return MakeFunctionRef(name.source,
2326         std::move(std::get<ProcedureDesignator>(callee->u)),
2327         std::move(callee->arguments));
2328   } else {
2329     return std::nullopt;
2330   }
2331 }
2332 
RelationHelper(ExpressionAnalyzer & context,RelationalOperator opr,const parser::Expr::IntrinsicBinary & x)2333 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr,
2334     const parser::Expr::IntrinsicBinary &x) {
2335   ArgumentAnalyzer analyzer{context};
2336   analyzer.Analyze(std::get<0>(x.t));
2337   analyzer.Analyze(std::get<1>(x.t));
2338   if (analyzer.fatalErrors()) {
2339     return std::nullopt;
2340   } else if (analyzer.IsIntrinsicRelational(opr)) {
2341     return AsMaybeExpr(Relate(context.GetContextualMessages(), opr,
2342         analyzer.MoveExpr(0), analyzer.MoveExpr(1)));
2343   } else {
2344     return analyzer.TryDefinedOp(opr,
2345         "Operands of %s must have comparable types; have %s and %s"_err_en_US);
2346   }
2347 }
2348 
Analyze(const parser::Expr::LT & x)2349 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) {
2350   return RelationHelper(*this, RelationalOperator::LT, x);
2351 }
2352 
Analyze(const parser::Expr::LE & x)2353 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) {
2354   return RelationHelper(*this, RelationalOperator::LE, x);
2355 }
2356 
Analyze(const parser::Expr::EQ & x)2357 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) {
2358   return RelationHelper(*this, RelationalOperator::EQ, x);
2359 }
2360 
Analyze(const parser::Expr::NE & x)2361 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) {
2362   return RelationHelper(*this, RelationalOperator::NE, x);
2363 }
2364 
Analyze(const parser::Expr::GE & x)2365 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) {
2366   return RelationHelper(*this, RelationalOperator::GE, x);
2367 }
2368 
Analyze(const parser::Expr::GT & x)2369 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) {
2370   return RelationHelper(*this, RelationalOperator::GT, x);
2371 }
2372 
LogicalBinaryHelper(ExpressionAnalyzer & context,LogicalOperator opr,const parser::Expr::IntrinsicBinary & x)2373 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr,
2374     const parser::Expr::IntrinsicBinary &x) {
2375   ArgumentAnalyzer analyzer{context};
2376   analyzer.Analyze(std::get<0>(x.t));
2377   analyzer.Analyze(std::get<1>(x.t));
2378   if (analyzer.fatalErrors()) {
2379     return std::nullopt;
2380   } else if (analyzer.IsIntrinsicLogical()) {
2381     return AsGenericExpr(BinaryLogicalOperation(opr,
2382         std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u),
2383         std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u)));
2384   } else {
2385     return analyzer.TryDefinedOp(
2386         opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US);
2387   }
2388 }
2389 
Analyze(const parser::Expr::AND & x)2390 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) {
2391   return LogicalBinaryHelper(*this, LogicalOperator::And, x);
2392 }
2393 
Analyze(const parser::Expr::OR & x)2394 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) {
2395   return LogicalBinaryHelper(*this, LogicalOperator::Or, x);
2396 }
2397 
Analyze(const parser::Expr::EQV & x)2398 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) {
2399   return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x);
2400 }
2401 
Analyze(const parser::Expr::NEQV & x)2402 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) {
2403   return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x);
2404 }
2405 
Analyze(const parser::Expr::DefinedBinary & x)2406 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) {
2407   const auto &name{std::get<parser::DefinedOpName>(x.t).v};
2408   ArgumentAnalyzer analyzer{*this, name.source};
2409   analyzer.Analyze(std::get<1>(x.t));
2410   analyzer.Analyze(std::get<2>(x.t));
2411   return analyzer.TryDefinedOp(name.source.ToString().c_str(),
2412       "No operator %s defined for %s and %s"_err_en_US, true);
2413 }
2414 
CheckFuncRefToArrayElementRefHasSubscripts(semantics::SemanticsContext & context,const parser::FunctionReference & funcRef)2415 static void CheckFuncRefToArrayElementRefHasSubscripts(
2416     semantics::SemanticsContext &context,
2417     const parser::FunctionReference &funcRef) {
2418   // Emit message if the function reference fix will end up an array element
2419   // reference with no subscripts because it will not be possible to later tell
2420   // the difference in expressions between empty subscript list due to bad
2421   // subscripts error recovery or because the user did not put any.
2422   if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) {
2423     auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)};
2424     const auto *name{std::get_if<parser::Name>(&proc.u)};
2425     if (!name) {
2426       name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component;
2427     }
2428     auto &msg{context.Say(funcRef.v.source,
2429         name->symbol && name->symbol->Rank() == 0
2430             ? "'%s' is not a function"_err_en_US
2431             : "Reference to array '%s' with empty subscript list"_err_en_US,
2432         name->source)};
2433     if (name->symbol) {
2434       if (semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)) {
2435         msg.Attach(name->source,
2436             "A result variable must be declared with RESULT to allow recursive "
2437             "function calls"_en_US);
2438       } else {
2439         AttachDeclaration(&msg, *name->symbol);
2440       }
2441     }
2442   }
2443 }
2444 
2445 // Converts, if appropriate, an original misparse of ambiguous syntax like
2446 // A(1) as a function reference into an array reference.
2447 // Misparse structure constructors are detected elsewhere after generic
2448 // function call resolution fails.
2449 template <typename... A>
FixMisparsedFunctionReference(semantics::SemanticsContext & context,const std::variant<A...> & constU)2450 static void FixMisparsedFunctionReference(
2451     semantics::SemanticsContext &context, const std::variant<A...> &constU) {
2452   // The parse tree is updated in situ when resolving an ambiguous parse.
2453   using uType = std::decay_t<decltype(constU)>;
2454   auto &u{const_cast<uType &>(constU)};
2455   if (auto *func{
2456           std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) {
2457     parser::FunctionReference &funcRef{func->value()};
2458     auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)};
2459     if (Symbol *
2460         origSymbol{
2461             std::visit(common::visitors{
2462                            [&](parser::Name &name) { return name.symbol; },
2463                            [&](parser::ProcComponentRef &pcr) {
2464                              return pcr.v.thing.component.symbol;
2465                            },
2466                        },
2467                 proc.u)}) {
2468       Symbol &symbol{origSymbol->GetUltimate()};
2469       if (symbol.has<semantics::ObjectEntityDetails>() ||
2470           symbol.has<semantics::AssocEntityDetails>()) {
2471         // Note that expression in AssocEntityDetails cannot be a procedure
2472         // pointer as per C1105 so this cannot be a function reference.
2473         if constexpr (common::HasMember<common::Indirection<parser::Designator>,
2474                           uType>) {
2475           CheckFuncRefToArrayElementRefHasSubscripts(context, funcRef);
2476           u = common::Indirection{funcRef.ConvertToArrayElementRef()};
2477         } else {
2478           DIE("can't fix misparsed function as array reference");
2479         }
2480       }
2481     }
2482   }
2483 }
2484 
2485 // Common handling of parse tree node types that retain the
2486 // representation of the analyzed expression.
2487 template <typename PARSED>
ExprOrVariable(const PARSED & x)2488 MaybeExpr ExpressionAnalyzer::ExprOrVariable(const PARSED &x) {
2489   if (x.typedExpr) {
2490     return x.typedExpr->v;
2491   }
2492   if constexpr (std::is_same_v<PARSED, parser::Expr> ||
2493       std::is_same_v<PARSED, parser::Variable>) {
2494     FixMisparsedFunctionReference(context_, x.u);
2495   }
2496   if (AssumedTypeDummy(x)) { // C710
2497     Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US);
2498   } else if (MaybeExpr result{evaluate::Fold(foldingContext_, Analyze(x.u))}) {
2499     SetExpr(x, std::move(*result));
2500     return x.typedExpr->v;
2501   }
2502   ResetExpr(x);
2503   if (!context_.AnyFatalError()) {
2504     std::string buf;
2505     llvm::raw_string_ostream dump{buf};
2506     parser::DumpTree(dump, x);
2507     Say("Internal error: Expression analysis failed on: %s"_err_en_US,
2508         dump.str());
2509   }
2510   fatalErrors_ = true;
2511   return std::nullopt;
2512 }
2513 
Analyze(const parser::Expr & expr)2514 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) {
2515   auto restorer{GetContextualMessages().SetLocation(expr.source)};
2516   return ExprOrVariable(expr);
2517 }
2518 
Analyze(const parser::Variable & variable)2519 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) {
2520   auto restorer{GetContextualMessages().SetLocation(variable.GetSource())};
2521   return ExprOrVariable(variable);
2522 }
2523 
Analyze(const parser::DataStmtConstant & x)2524 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) {
2525   auto restorer{GetContextualMessages().SetLocation(x.source)};
2526   return ExprOrVariable(x);
2527 }
2528 
AnalyzeKindSelector(TypeCategory category,const std::optional<parser::KindSelector> & selector)2529 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector(
2530     TypeCategory category,
2531     const std::optional<parser::KindSelector> &selector) {
2532   int defaultKind{GetDefaultKind(category)};
2533   if (!selector) {
2534     return Expr<SubscriptInteger>{defaultKind};
2535   }
2536   return std::visit(
2537       common::visitors{
2538           [&](const parser::ScalarIntConstantExpr &x) {
2539             if (MaybeExpr kind{Analyze(x)}) {
2540               Expr<SomeType> folded{Fold(std::move(*kind))};
2541               if (std::optional<std::int64_t> code{ToInt64(folded)}) {
2542                 if (CheckIntrinsicKind(category, *code)) {
2543                   return Expr<SubscriptInteger>{*code};
2544                 }
2545               } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(folded)}) {
2546                 return ConvertToType<SubscriptInteger>(std::move(*intExpr));
2547               }
2548             }
2549             return Expr<SubscriptInteger>{defaultKind};
2550           },
2551           [&](const parser::KindSelector::StarSize &x) {
2552             std::intmax_t size = x.v;
2553             if (!CheckIntrinsicSize(category, size)) {
2554               size = defaultKind;
2555             } else if (category == TypeCategory::Complex) {
2556               size /= 2;
2557             }
2558             return Expr<SubscriptInteger>{size};
2559           },
2560       },
2561       selector->u);
2562 }
2563 
GetDefaultKind(common::TypeCategory category)2564 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) {
2565   return context_.GetDefaultKind(category);
2566 }
2567 
GetDefaultKindOfType(common::TypeCategory category)2568 DynamicType ExpressionAnalyzer::GetDefaultKindOfType(
2569     common::TypeCategory category) {
2570   return {category, GetDefaultKind(category)};
2571 }
2572 
CheckIntrinsicKind(TypeCategory category,std::int64_t kind)2573 bool ExpressionAnalyzer::CheckIntrinsicKind(
2574     TypeCategory category, std::int64_t kind) {
2575   if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727
2576     return true;
2577   } else {
2578     Say("%s(KIND=%jd) is not a supported type"_err_en_US,
2579         ToUpperCase(EnumToString(category)), kind);
2580     return false;
2581   }
2582 }
2583 
CheckIntrinsicSize(TypeCategory category,std::int64_t size)2584 bool ExpressionAnalyzer::CheckIntrinsicSize(
2585     TypeCategory category, std::int64_t size) {
2586   if (category == TypeCategory::Complex) {
2587     // COMPLEX*16 == COMPLEX(KIND=8)
2588     if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) {
2589       return true;
2590     }
2591   } else if (IsValidKindOfIntrinsicType(category, size)) {
2592     return true;
2593   }
2594   Say("%s*%jd is not a supported type"_err_en_US,
2595       ToUpperCase(EnumToString(category)), size);
2596   return false;
2597 }
2598 
AddImpliedDo(parser::CharBlock name,int kind)2599 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) {
2600   return impliedDos_.insert(std::make_pair(name, kind)).second;
2601 }
2602 
RemoveImpliedDo(parser::CharBlock name)2603 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) {
2604   auto iter{impliedDos_.find(name)};
2605   if (iter != impliedDos_.end()) {
2606     impliedDos_.erase(iter);
2607   }
2608 }
2609 
IsImpliedDo(parser::CharBlock name) const2610 std::optional<int> ExpressionAnalyzer::IsImpliedDo(
2611     parser::CharBlock name) const {
2612   auto iter{impliedDos_.find(name)};
2613   if (iter != impliedDos_.cend()) {
2614     return {iter->second};
2615   } else {
2616     return std::nullopt;
2617   }
2618 }
2619 
EnforceTypeConstraint(parser::CharBlock at,const MaybeExpr & result,TypeCategory category,bool defaultKind)2620 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at,
2621     const MaybeExpr &result, TypeCategory category, bool defaultKind) {
2622   if (result) {
2623     if (auto type{result->GetType()}) {
2624       if (type->category() != category) { // C885
2625         Say(at, "Must have %s type, but is %s"_err_en_US,
2626             ToUpperCase(EnumToString(category)),
2627             ToUpperCase(type->AsFortran()));
2628         return false;
2629       } else if (defaultKind) {
2630         int kind{context_.GetDefaultKind(category)};
2631         if (type->kind() != kind) {
2632           Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US,
2633               kind, ToUpperCase(EnumToString(category)),
2634               ToUpperCase(type->AsFortran()));
2635           return false;
2636         }
2637       }
2638     } else {
2639       Say(at, "Must have %s type, but is typeless"_err_en_US,
2640           ToUpperCase(EnumToString(category)));
2641       return false;
2642     }
2643   }
2644   return true;
2645 }
2646 
MakeFunctionRef(parser::CharBlock callSite,ProcedureDesignator && proc,ActualArguments && arguments)2647 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite,
2648     ProcedureDesignator &&proc, ActualArguments &&arguments) {
2649   if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) {
2650     if (intrinsic->name == "null" && arguments.empty()) {
2651       return Expr<SomeType>{NullPointer{}};
2652     }
2653   }
2654   if (const Symbol * symbol{proc.GetSymbol()}) {
2655     if (!ResolveForward(*symbol)) {
2656       return std::nullopt;
2657     }
2658   }
2659   if (auto chars{CheckCall(callSite, proc, arguments)}) {
2660     if (chars->functionResult) {
2661       const auto &result{*chars->functionResult};
2662       if (result.IsProcedurePointer()) {
2663         return Expr<SomeType>{
2664             ProcedureRef{std::move(proc), std::move(arguments)}};
2665       } else {
2666         // Not a procedure pointer, so type and shape are known.
2667         return TypedWrapper<FunctionRef, ProcedureRef>(
2668             DEREF(result.GetTypeAndShape()).type(),
2669             ProcedureRef{std::move(proc), std::move(arguments)});
2670       }
2671     }
2672   }
2673   return std::nullopt;
2674 }
2675 
MakeFunctionRef(parser::CharBlock intrinsic,ActualArguments && arguments)2676 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(
2677     parser::CharBlock intrinsic, ActualArguments &&arguments) {
2678   if (std::optional<SpecificCall> specificCall{
2679           context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()},
2680               arguments, context_.foldingContext())}) {
2681     return MakeFunctionRef(intrinsic,
2682         ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
2683         std::move(specificCall->arguments));
2684   } else {
2685     return std::nullopt;
2686   }
2687 }
2688 
Analyze(const parser::Variable & x)2689 void ArgumentAnalyzer::Analyze(const parser::Variable &x) {
2690   source_.ExtendToCover(x.GetSource());
2691   if (MaybeExpr expr{context_.Analyze(x)}) {
2692     if (!IsConstantExpr(*expr)) {
2693       actuals_.emplace_back(std::move(*expr));
2694       return;
2695     }
2696     const Symbol *symbol{GetFirstSymbol(*expr)};
2697     context_.Say(x.GetSource(),
2698         "Assignment to constant '%s' is not allowed"_err_en_US,
2699         symbol ? symbol->name() : x.GetSource());
2700   }
2701   fatalErrors_ = true;
2702 }
2703 
Analyze(const parser::ActualArgSpec & arg,bool isSubroutine)2704 void ArgumentAnalyzer::Analyze(
2705     const parser::ActualArgSpec &arg, bool isSubroutine) {
2706   // TODO: C1002: Allow a whole assumed-size array to appear if the dummy
2707   // argument would accept it.  Handle by special-casing the context
2708   // ActualArg -> Variable -> Designator.
2709   // TODO: Actual arguments that are procedures and procedure pointers need to
2710   // be detected and represented (they're not expressions).
2711   // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed.
2712   std::optional<ActualArgument> actual;
2713   bool isAltReturn{false};
2714   std::visit(common::visitors{
2715                  [&](const common::Indirection<parser::Expr> &x) {
2716                    // TODO: Distinguish & handle procedure name and
2717                    // proc-component-ref
2718                    actual = AnalyzeExpr(x.value());
2719                  },
2720                  [&](const parser::AltReturnSpec &) {
2721                    if (!isSubroutine) {
2722                      context_.Say(
2723                          "alternate return specification may not appear on"
2724                          " function reference"_err_en_US);
2725                    }
2726                    isAltReturn = true;
2727                  },
2728                  [&](const parser::ActualArg::PercentRef &) {
2729                    context_.Say("TODO: %REF() argument"_err_en_US);
2730                  },
2731                  [&](const parser::ActualArg::PercentVal &) {
2732                    context_.Say("TODO: %VAL() argument"_err_en_US);
2733                  },
2734              },
2735       std::get<parser::ActualArg>(arg.t).u);
2736   if (actual) {
2737     if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) {
2738       actual->set_keyword(argKW->v.source);
2739     }
2740     actuals_.emplace_back(std::move(*actual));
2741   } else if (!isAltReturn) {
2742     fatalErrors_ = true;
2743   }
2744 }
2745 
IsIntrinsicRelational(RelationalOperator opr) const2746 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr) const {
2747   CHECK(actuals_.size() == 2);
2748   return semantics::IsIntrinsicRelational(
2749       opr, *GetType(0), GetRank(0), *GetType(1), GetRank(1));
2750 }
2751 
IsIntrinsicNumeric(NumericOperator opr) const2752 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const {
2753   std::optional<DynamicType> type0{GetType(0)};
2754   if (actuals_.size() == 1) {
2755     if (IsBOZLiteral(0)) {
2756       return opr == NumericOperator::Add;
2757     } else {
2758       return type0 && semantics::IsIntrinsicNumeric(*type0);
2759     }
2760   } else {
2761     std::optional<DynamicType> type1{GetType(1)};
2762     if (IsBOZLiteral(0) && type1) {
2763       auto cat1{type1->category()};
2764       return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real;
2765     } else if (IsBOZLiteral(1) && type0) { // Integer/Real opr BOZ
2766       auto cat0{type0->category()};
2767       return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real;
2768     } else {
2769       return type0 && type1 &&
2770           semantics::IsIntrinsicNumeric(*type0, GetRank(0), *type1, GetRank(1));
2771     }
2772   }
2773 }
2774 
IsIntrinsicLogical() const2775 bool ArgumentAnalyzer::IsIntrinsicLogical() const {
2776   if (actuals_.size() == 1) {
2777     return semantics::IsIntrinsicLogical(*GetType(0));
2778     return GetType(0)->category() == TypeCategory::Logical;
2779   } else {
2780     return semantics::IsIntrinsicLogical(
2781         *GetType(0), GetRank(0), *GetType(1), GetRank(1));
2782   }
2783 }
2784 
IsIntrinsicConcat() const2785 bool ArgumentAnalyzer::IsIntrinsicConcat() const {
2786   return semantics::IsIntrinsicConcat(
2787       *GetType(0), GetRank(0), *GetType(1), GetRank(1));
2788 }
2789 
TryDefinedOp(const char * opr,parser::MessageFixedText && error,bool isUserOp)2790 MaybeExpr ArgumentAnalyzer::TryDefinedOp(
2791     const char *opr, parser::MessageFixedText &&error, bool isUserOp) {
2792   if (AnyUntypedOperand()) {
2793     context_.Say(
2794         std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1));
2795     return std::nullopt;
2796   }
2797   {
2798     auto restorer{context_.GetContextualMessages().DiscardMessages()};
2799     std::string oprNameString{
2800         isUserOp ? std::string{opr} : "operator("s + opr + ')'};
2801     parser::CharBlock oprName{oprNameString};
2802     const auto &scope{context_.context().FindScope(source_)};
2803     if (Symbol * symbol{scope.FindSymbol(oprName)}) {
2804       parser::Name name{symbol->name(), symbol};
2805       if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) {
2806         return result;
2807       }
2808       sawDefinedOp_ = symbol;
2809     }
2810     for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) {
2811       if (const Symbol * symbol{FindBoundOp(oprName, passIndex)}) {
2812         if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) {
2813           return result;
2814         }
2815       }
2816     }
2817   }
2818   if (sawDefinedOp_) {
2819     SayNoMatch(ToUpperCase(sawDefinedOp_->name().ToString()));
2820   } else if (actuals_.size() == 1 || AreConformable()) {
2821     context_.Say(
2822         std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1));
2823   } else {
2824     context_.Say(
2825         "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US,
2826         ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank());
2827   }
2828   return std::nullopt;
2829 }
2830 
TryDefinedOp(std::vector<const char * > oprs,parser::MessageFixedText && error)2831 MaybeExpr ArgumentAnalyzer::TryDefinedOp(
2832     std::vector<const char *> oprs, parser::MessageFixedText &&error) {
2833   for (std::size_t i{1}; i < oprs.size(); ++i) {
2834     auto restorer{context_.GetContextualMessages().DiscardMessages()};
2835     if (auto result{TryDefinedOp(oprs[i], std::move(error))}) {
2836       return result;
2837     }
2838   }
2839   return TryDefinedOp(oprs[0], std::move(error));
2840 }
2841 
TryBoundOp(const Symbol & symbol,int passIndex)2842 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) {
2843   ActualArguments localActuals{actuals_};
2844   const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)};
2845   if (!proc) {
2846     proc = &symbol;
2847     localActuals.at(passIndex).value().set_isPassedObject();
2848   }
2849   return context_.MakeFunctionRef(
2850       source_, ProcedureDesignator{*proc}, std::move(localActuals));
2851 }
2852 
TryDefinedAssignment()2853 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() {
2854   using semantics::Tristate;
2855   const Expr<SomeType> &lhs{GetExpr(0)};
2856   const Expr<SomeType> &rhs{GetExpr(1)};
2857   std::optional<DynamicType> lhsType{lhs.GetType()};
2858   std::optional<DynamicType> rhsType{rhs.GetType()};
2859   int lhsRank{lhs.Rank()};
2860   int rhsRank{rhs.Rank()};
2861   Tristate isDefined{
2862       semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)};
2863   if (isDefined == Tristate::No) {
2864     if (lhsType && rhsType) {
2865       AddAssignmentConversion(*lhsType, *rhsType);
2866     }
2867     return std::nullopt; // user-defined assignment not allowed for these args
2868   }
2869   auto restorer{context_.GetContextualMessages().SetLocation(source_)};
2870   if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) {
2871     context_.CheckCall(source_, procRef->proc(), procRef->arguments());
2872     return std::move(*procRef);
2873   }
2874   if (isDefined == Tristate::Yes) {
2875     if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) ||
2876         !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) {
2877       SayNoMatch("ASSIGNMENT(=)", true);
2878     }
2879   }
2880   return std::nullopt;
2881 }
2882 
OkLogicalIntegerAssignment(TypeCategory lhs,TypeCategory rhs)2883 bool ArgumentAnalyzer::OkLogicalIntegerAssignment(
2884     TypeCategory lhs, TypeCategory rhs) {
2885   if (!context_.context().languageFeatures().IsEnabled(
2886           common::LanguageFeature::LogicalIntegerAssignment)) {
2887     return false;
2888   }
2889   std::optional<parser::MessageFixedText> msg;
2890   if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) {
2891     // allow assignment to LOGICAL from INTEGER as a legacy extension
2892     msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_en_US;
2893   } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) {
2894     // ... and assignment to LOGICAL from INTEGER
2895     msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_en_US;
2896   } else {
2897     return false;
2898   }
2899   if (context_.context().languageFeatures().ShouldWarn(
2900           common::LanguageFeature::LogicalIntegerAssignment)) {
2901     context_.Say(std::move(*msg));
2902   }
2903   return true;
2904 }
2905 
GetDefinedAssignmentProc()2906 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() {
2907   auto restorer{context_.GetContextualMessages().DiscardMessages()};
2908   std::string oprNameString{"assignment(=)"};
2909   parser::CharBlock oprName{oprNameString};
2910   const Symbol *proc{nullptr};
2911   const auto &scope{context_.context().FindScope(source_)};
2912   if (const Symbol * symbol{scope.FindSymbol(oprName)}) {
2913     ExpressionAnalyzer::AdjustActuals noAdjustment;
2914     if (const Symbol *
2915         specific{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)}) {
2916       proc = specific;
2917     } else {
2918       context_.EmitGenericResolutionError(*symbol);
2919     }
2920   }
2921   for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) {
2922     if (const Symbol * specific{FindBoundOp(oprName, passIndex)}) {
2923       proc = specific;
2924     }
2925   }
2926   if (proc) {
2927     ActualArguments actualsCopy{actuals_};
2928     actualsCopy[1]->Parenthesize();
2929     return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)};
2930   } else {
2931     return std::nullopt;
2932   }
2933 }
2934 
Dump(llvm::raw_ostream & os)2935 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) {
2936   os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_
2937      << '\n';
2938   for (const auto &actual : actuals_) {
2939     if (!actual.has_value()) {
2940       os << "- error\n";
2941     } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) {
2942       os << "- assumed type: " << symbol->name().ToString() << '\n';
2943     } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) {
2944       expr->AsFortran(os << "- expr: ") << '\n';
2945     } else {
2946       DIE("bad ActualArgument");
2947     }
2948   }
2949 }
AnalyzeExpr(const parser::Expr & expr)2950 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr(
2951     const parser::Expr &expr) {
2952   source_.ExtendToCover(expr.source);
2953   if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) {
2954     expr.typedExpr.Reset(new GenericExprWrapper{}, GenericExprWrapper::Deleter);
2955     if (allowAssumedType_) {
2956       return ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}};
2957     } else {
2958       context_.SayAt(expr.source,
2959           "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US);
2960       return std::nullopt;
2961     }
2962   } else if (MaybeExpr argExpr{context_.Analyze(expr)}) {
2963     return ActualArgument{context_.Fold(std::move(*argExpr))};
2964   } else {
2965     return std::nullopt;
2966   }
2967 }
2968 
AreConformable() const2969 bool ArgumentAnalyzer::AreConformable() const {
2970   CHECK(!fatalErrors_ && actuals_.size() == 2);
2971   return evaluate::AreConformable(*actuals_[0], *actuals_[1]);
2972 }
2973 
2974 // Look for a type-bound operator in the type of arg number passIndex.
FindBoundOp(parser::CharBlock oprName,int passIndex)2975 const Symbol *ArgumentAnalyzer::FindBoundOp(
2976     parser::CharBlock oprName, int passIndex) {
2977   const auto *type{GetDerivedTypeSpec(GetType(passIndex))};
2978   if (!type || !type->scope()) {
2979     return nullptr;
2980   }
2981   const Symbol *symbol{type->scope()->FindComponent(oprName)};
2982   if (!symbol) {
2983     return nullptr;
2984   }
2985   sawDefinedOp_ = symbol;
2986   ExpressionAnalyzer::AdjustActuals adjustment{
2987       [&](const Symbol &proc, ActualArguments &) {
2988         return passIndex == GetPassIndex(proc);
2989       }};
2990   const Symbol *result{context_.ResolveGeneric(*symbol, actuals_, adjustment)};
2991   if (!result) {
2992     context_.EmitGenericResolutionError(*symbol);
2993   }
2994   return result;
2995 }
2996 
2997 // If there is an implicit conversion between intrinsic types, make it explicit
AddAssignmentConversion(const DynamicType & lhsType,const DynamicType & rhsType)2998 void ArgumentAnalyzer::AddAssignmentConversion(
2999     const DynamicType &lhsType, const DynamicType &rhsType) {
3000   if (lhsType.category() == rhsType.category() &&
3001       lhsType.kind() == rhsType.kind()) {
3002     // no conversion necessary
3003   } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) {
3004     actuals_[1] = ActualArgument{*rhsExpr};
3005   } else {
3006     actuals_[1] = std::nullopt;
3007   }
3008 }
3009 
GetType(std::size_t i) const3010 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const {
3011   return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt;
3012 }
GetRank(std::size_t i) const3013 int ArgumentAnalyzer::GetRank(std::size_t i) const {
3014   return i < actuals_.size() ? actuals_[i].value().Rank() : 0;
3015 }
3016 
3017 // Report error resolving opr when there is a user-defined one available
SayNoMatch(const std::string & opr,bool isAssignment)3018 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) {
3019   std::string type0{TypeAsFortran(0)};
3020   auto rank0{actuals_[0]->Rank()};
3021   if (actuals_.size() == 1) {
3022     if (rank0 > 0) {
3023       context_.Say("No intrinsic or user-defined %s matches "
3024                    "rank %d array of %s"_err_en_US,
3025           opr, rank0, type0);
3026     } else {
3027       context_.Say("No intrinsic or user-defined %s matches "
3028                    "operand type %s"_err_en_US,
3029           opr, type0);
3030     }
3031   } else {
3032     std::string type1{TypeAsFortran(1)};
3033     auto rank1{actuals_[1]->Rank()};
3034     if (rank0 > 0 && rank1 > 0 && rank0 != rank1) {
3035       context_.Say("No intrinsic or user-defined %s matches "
3036                    "rank %d array of %s and rank %d array of %s"_err_en_US,
3037           opr, rank0, type0, rank1, type1);
3038     } else if (isAssignment && rank0 != rank1) {
3039       if (rank0 == 0) {
3040         context_.Say("No intrinsic or user-defined %s matches "
3041                      "scalar %s and rank %d array of %s"_err_en_US,
3042             opr, type0, rank1, type1);
3043       } else {
3044         context_.Say("No intrinsic or user-defined %s matches "
3045                      "rank %d array of %s and scalar %s"_err_en_US,
3046             opr, rank0, type0, type1);
3047       }
3048     } else {
3049       context_.Say("No intrinsic or user-defined %s matches "
3050                    "operand types %s and %s"_err_en_US,
3051           opr, type0, type1);
3052     }
3053   }
3054 }
3055 
TypeAsFortran(std::size_t i)3056 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) {
3057   if (std::optional<DynamicType> type{GetType(i)}) {
3058     return type->category() == TypeCategory::Derived
3059         ? "TYPE("s + type->AsFortran() + ')'
3060         : type->category() == TypeCategory::Character
3061         ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')'
3062         : ToUpperCase(type->AsFortran());
3063   } else {
3064     return "untyped";
3065   }
3066 }
3067 
AnyUntypedOperand()3068 bool ArgumentAnalyzer::AnyUntypedOperand() {
3069   for (const auto &actual : actuals_) {
3070     if (!actual.value().GetType()) {
3071       return true;
3072     }
3073   }
3074   return false;
3075 }
3076 
3077 } // namespace Fortran::evaluate
3078 
3079 namespace Fortran::semantics {
AnalyzeKindSelector(SemanticsContext & context,common::TypeCategory category,const std::optional<parser::KindSelector> & selector)3080 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector(
3081     SemanticsContext &context, common::TypeCategory category,
3082     const std::optional<parser::KindSelector> &selector) {
3083   evaluate::ExpressionAnalyzer analyzer{context};
3084   auto restorer{
3085       analyzer.GetContextualMessages().SetLocation(context.location().value())};
3086   return analyzer.AnalyzeKindSelector(category, selector);
3087 }
3088 
AnalyzeCallStmt(SemanticsContext & context,const parser::CallStmt & call)3089 void AnalyzeCallStmt(SemanticsContext &context, const parser::CallStmt &call) {
3090   evaluate::ExpressionAnalyzer{context}.Analyze(call);
3091 }
3092 
AnalyzeAssignmentStmt(SemanticsContext & context,const parser::AssignmentStmt & stmt)3093 const evaluate::Assignment *AnalyzeAssignmentStmt(
3094     SemanticsContext &context, const parser::AssignmentStmt &stmt) {
3095   return evaluate::ExpressionAnalyzer{context}.Analyze(stmt);
3096 }
AnalyzePointerAssignmentStmt(SemanticsContext & context,const parser::PointerAssignmentStmt & stmt)3097 const evaluate::Assignment *AnalyzePointerAssignmentStmt(
3098     SemanticsContext &context, const parser::PointerAssignmentStmt &stmt) {
3099   return evaluate::ExpressionAnalyzer{context}.Analyze(stmt);
3100 }
3101 
ExprChecker(SemanticsContext & context)3102 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {}
3103 
Pre(const parser::DataImpliedDo & ido)3104 bool ExprChecker::Pre(const parser::DataImpliedDo &ido) {
3105   parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this);
3106   const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)};
3107   auto name{bounds.name.thing.thing};
3108   int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind};
3109   if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) {
3110     if (dynamicType->category() == TypeCategory::Integer) {
3111       kind = dynamicType->kind();
3112     }
3113   }
3114   exprAnalyzer_.AddImpliedDo(name.source, kind);
3115   parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this);
3116   exprAnalyzer_.RemoveImpliedDo(name.source);
3117   return false;
3118 }
3119 
Walk(const parser::Program & program)3120 bool ExprChecker::Walk(const parser::Program &program) {
3121   parser::Walk(program, *this);
3122   return !context_.AnyFatalError();
3123 }
3124 } // namespace Fortran::semantics
3125