1 //===- AArch64.cpp --------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "Symbols.h"
10 #include "SyntheticSections.h"
11 #include "Target.h"
12 #include "Thunks.h"
13 #include "lld/Common/ErrorHandler.h"
14 #include "llvm/Object/ELF.h"
15 #include "llvm/Support/Endian.h"
16
17 using namespace llvm;
18 using namespace llvm::support::endian;
19 using namespace llvm::ELF;
20 using namespace lld;
21 using namespace lld::elf;
22
23 // Page(Expr) is the page address of the expression Expr, defined
24 // as (Expr & ~0xFFF). (This applies even if the machine page size
25 // supported by the platform has a different value.)
getAArch64Page(uint64_t expr)26 uint64_t elf::getAArch64Page(uint64_t expr) {
27 return expr & ~static_cast<uint64_t>(0xFFF);
28 }
29
30 namespace {
31 class AArch64 : public TargetInfo {
32 public:
33 AArch64();
34 RelExpr getRelExpr(RelType type, const Symbol &s,
35 const uint8_t *loc) const override;
36 RelType getDynRel(RelType type) const override;
37 void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
38 void writePltHeader(uint8_t *buf) const override;
39 void writePlt(uint8_t *buf, const Symbol &sym,
40 uint64_t pltEntryAddr) const override;
41 bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
42 uint64_t branchAddr, const Symbol &s,
43 int64_t a) const override;
44 uint32_t getThunkSectionSpacing() const override;
45 bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
46 bool usesOnlyLowPageBits(RelType type) const override;
47 void relocate(uint8_t *loc, const Relocation &rel,
48 uint64_t val) const override;
49 RelExpr adjustRelaxExpr(RelType type, const uint8_t *data,
50 RelExpr expr) const override;
51 void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
52 uint64_t val) const override;
53 void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
54 uint64_t val) const override;
55 void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
56 uint64_t val) const override;
57 };
58 } // namespace
59
AArch64()60 AArch64::AArch64() {
61 copyRel = R_AARCH64_COPY;
62 relativeRel = R_AARCH64_RELATIVE;
63 iRelativeRel = R_AARCH64_IRELATIVE;
64 gotRel = R_AARCH64_GLOB_DAT;
65 noneRel = R_AARCH64_NONE;
66 pltRel = R_AARCH64_JUMP_SLOT;
67 symbolicRel = R_AARCH64_ABS64;
68 tlsDescRel = R_AARCH64_TLSDESC;
69 tlsGotRel = R_AARCH64_TLS_TPREL64;
70 pltHeaderSize = 32;
71 pltEntrySize = 16;
72 ipltEntrySize = 16;
73 defaultMaxPageSize = 65536;
74
75 // Align to the 2 MiB page size (known as a superpage or huge page).
76 // FreeBSD automatically promotes 2 MiB-aligned allocations.
77 defaultImageBase = 0x200000;
78
79 needsThunks = true;
80 }
81
getRelExpr(RelType type,const Symbol & s,const uint8_t * loc) const82 RelExpr AArch64::getRelExpr(RelType type, const Symbol &s,
83 const uint8_t *loc) const {
84 switch (type) {
85 case R_AARCH64_ABS16:
86 case R_AARCH64_ABS32:
87 case R_AARCH64_ABS64:
88 case R_AARCH64_ADD_ABS_LO12_NC:
89 case R_AARCH64_LDST128_ABS_LO12_NC:
90 case R_AARCH64_LDST16_ABS_LO12_NC:
91 case R_AARCH64_LDST32_ABS_LO12_NC:
92 case R_AARCH64_LDST64_ABS_LO12_NC:
93 case R_AARCH64_LDST8_ABS_LO12_NC:
94 case R_AARCH64_MOVW_SABS_G0:
95 case R_AARCH64_MOVW_SABS_G1:
96 case R_AARCH64_MOVW_SABS_G2:
97 case R_AARCH64_MOVW_UABS_G0:
98 case R_AARCH64_MOVW_UABS_G0_NC:
99 case R_AARCH64_MOVW_UABS_G1:
100 case R_AARCH64_MOVW_UABS_G1_NC:
101 case R_AARCH64_MOVW_UABS_G2:
102 case R_AARCH64_MOVW_UABS_G2_NC:
103 case R_AARCH64_MOVW_UABS_G3:
104 return R_ABS;
105 case R_AARCH64_TLSDESC_ADR_PAGE21:
106 return R_AARCH64_TLSDESC_PAGE;
107 case R_AARCH64_TLSDESC_LD64_LO12:
108 case R_AARCH64_TLSDESC_ADD_LO12:
109 return R_TLSDESC;
110 case R_AARCH64_TLSDESC_CALL:
111 return R_TLSDESC_CALL;
112 case R_AARCH64_TLSLE_ADD_TPREL_HI12:
113 case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
114 case R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
115 case R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
116 case R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
117 case R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
118 case R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC:
119 case R_AARCH64_TLSLE_MOVW_TPREL_G0:
120 case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
121 case R_AARCH64_TLSLE_MOVW_TPREL_G1:
122 case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
123 case R_AARCH64_TLSLE_MOVW_TPREL_G2:
124 return R_TLS;
125 case R_AARCH64_CALL26:
126 case R_AARCH64_CONDBR19:
127 case R_AARCH64_JUMP26:
128 case R_AARCH64_TSTBR14:
129 case R_AARCH64_PLT32:
130 return R_PLT_PC;
131 case R_AARCH64_PREL16:
132 case R_AARCH64_PREL32:
133 case R_AARCH64_PREL64:
134 case R_AARCH64_ADR_PREL_LO21:
135 case R_AARCH64_LD_PREL_LO19:
136 case R_AARCH64_MOVW_PREL_G0:
137 case R_AARCH64_MOVW_PREL_G0_NC:
138 case R_AARCH64_MOVW_PREL_G1:
139 case R_AARCH64_MOVW_PREL_G1_NC:
140 case R_AARCH64_MOVW_PREL_G2:
141 case R_AARCH64_MOVW_PREL_G2_NC:
142 case R_AARCH64_MOVW_PREL_G3:
143 return R_PC;
144 case R_AARCH64_ADR_PREL_PG_HI21:
145 case R_AARCH64_ADR_PREL_PG_HI21_NC:
146 return R_AARCH64_PAGE_PC;
147 case R_AARCH64_LD64_GOT_LO12_NC:
148 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
149 return R_GOT;
150 case R_AARCH64_ADR_GOT_PAGE:
151 case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
152 return R_AARCH64_GOT_PAGE_PC;
153 case R_AARCH64_NONE:
154 return R_NONE;
155 default:
156 error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
157 ") against symbol " + toString(s));
158 return R_NONE;
159 }
160 }
161
adjustRelaxExpr(RelType type,const uint8_t * data,RelExpr expr) const162 RelExpr AArch64::adjustRelaxExpr(RelType type, const uint8_t *data,
163 RelExpr expr) const {
164 if (expr == R_RELAX_TLS_GD_TO_IE) {
165 if (type == R_AARCH64_TLSDESC_ADR_PAGE21)
166 return R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC;
167 return R_RELAX_TLS_GD_TO_IE_ABS;
168 }
169 return expr;
170 }
171
usesOnlyLowPageBits(RelType type) const172 bool AArch64::usesOnlyLowPageBits(RelType type) const {
173 switch (type) {
174 default:
175 return false;
176 case R_AARCH64_ADD_ABS_LO12_NC:
177 case R_AARCH64_LD64_GOT_LO12_NC:
178 case R_AARCH64_LDST128_ABS_LO12_NC:
179 case R_AARCH64_LDST16_ABS_LO12_NC:
180 case R_AARCH64_LDST32_ABS_LO12_NC:
181 case R_AARCH64_LDST64_ABS_LO12_NC:
182 case R_AARCH64_LDST8_ABS_LO12_NC:
183 case R_AARCH64_TLSDESC_ADD_LO12:
184 case R_AARCH64_TLSDESC_LD64_LO12:
185 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
186 return true;
187 }
188 }
189
getDynRel(RelType type) const190 RelType AArch64::getDynRel(RelType type) const {
191 if (type == R_AARCH64_ABS64)
192 return type;
193 return R_AARCH64_NONE;
194 }
195
writeGotPlt(uint8_t * buf,const Symbol &) const196 void AArch64::writeGotPlt(uint8_t *buf, const Symbol &) const {
197 write64le(buf, in.plt->getVA());
198 }
199
writePltHeader(uint8_t * buf) const200 void AArch64::writePltHeader(uint8_t *buf) const {
201 const uint8_t pltData[] = {
202 0xf0, 0x7b, 0xbf, 0xa9, // stp x16, x30, [sp,#-16]!
203 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[2]))
204 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.plt.got[2]))]
205 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.plt.got[2]))
206 0x20, 0x02, 0x1f, 0xd6, // br x17
207 0x1f, 0x20, 0x03, 0xd5, // nop
208 0x1f, 0x20, 0x03, 0xd5, // nop
209 0x1f, 0x20, 0x03, 0xd5 // nop
210 };
211 memcpy(buf, pltData, sizeof(pltData));
212
213 uint64_t got = in.gotPlt->getVA();
214 uint64_t plt = in.plt->getVA();
215 relocateNoSym(buf + 4, R_AARCH64_ADR_PREL_PG_HI21,
216 getAArch64Page(got + 16) - getAArch64Page(plt + 4));
217 relocateNoSym(buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, got + 16);
218 relocateNoSym(buf + 12, R_AARCH64_ADD_ABS_LO12_NC, got + 16);
219 }
220
writePlt(uint8_t * buf,const Symbol & sym,uint64_t pltEntryAddr) const221 void AArch64::writePlt(uint8_t *buf, const Symbol &sym,
222 uint64_t pltEntryAddr) const {
223 const uint8_t inst[] = {
224 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[n]))
225 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.plt.got[n]))]
226 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.plt.got[n]))
227 0x20, 0x02, 0x1f, 0xd6 // br x17
228 };
229 memcpy(buf, inst, sizeof(inst));
230
231 uint64_t gotPltEntryAddr = sym.getGotPltVA();
232 relocateNoSym(buf, R_AARCH64_ADR_PREL_PG_HI21,
233 getAArch64Page(gotPltEntryAddr) - getAArch64Page(pltEntryAddr));
234 relocateNoSym(buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, gotPltEntryAddr);
235 relocateNoSym(buf + 8, R_AARCH64_ADD_ABS_LO12_NC, gotPltEntryAddr);
236 }
237
needsThunk(RelExpr expr,RelType type,const InputFile * file,uint64_t branchAddr,const Symbol & s,int64_t a) const238 bool AArch64::needsThunk(RelExpr expr, RelType type, const InputFile *file,
239 uint64_t branchAddr, const Symbol &s,
240 int64_t a) const {
241 // If s is an undefined weak symbol and does not have a PLT entry then it
242 // will be resolved as a branch to the next instruction.
243 if (s.isUndefWeak() && !s.isInPlt())
244 return false;
245 // ELF for the ARM 64-bit architecture, section Call and Jump relocations
246 // only permits range extension thunks for R_AARCH64_CALL26 and
247 // R_AARCH64_JUMP26 relocation types.
248 if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26 &&
249 type != R_AARCH64_PLT32)
250 return false;
251 uint64_t dst = expr == R_PLT_PC ? s.getPltVA() : s.getVA(a);
252 return !inBranchRange(type, branchAddr, dst);
253 }
254
getThunkSectionSpacing() const255 uint32_t AArch64::getThunkSectionSpacing() const {
256 // See comment in Arch/ARM.cpp for a more detailed explanation of
257 // getThunkSectionSpacing(). For AArch64 the only branches we are permitted to
258 // Thunk have a range of +/- 128 MiB
259 return (128 * 1024 * 1024) - 0x30000;
260 }
261
inBranchRange(RelType type,uint64_t src,uint64_t dst) const262 bool AArch64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
263 if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26 &&
264 type != R_AARCH64_PLT32)
265 return true;
266 // The AArch64 call and unconditional branch instructions have a range of
267 // +/- 128 MiB. The PLT32 relocation supports a range up to +/- 2 GiB.
268 uint64_t range =
269 type == R_AARCH64_PLT32 ? (UINT64_C(1) << 31) : (128 * 1024 * 1024);
270 if (dst > src) {
271 // Immediate of branch is signed.
272 range -= 4;
273 return dst - src <= range;
274 }
275 return src - dst <= range;
276 }
277
write32AArch64Addr(uint8_t * l,uint64_t imm)278 static void write32AArch64Addr(uint8_t *l, uint64_t imm) {
279 uint32_t immLo = (imm & 0x3) << 29;
280 uint32_t immHi = (imm & 0x1FFFFC) << 3;
281 uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3);
282 write32le(l, (read32le(l) & ~mask) | immLo | immHi);
283 }
284
285 // Return the bits [Start, End] from Val shifted Start bits.
286 // For instance, getBits(0xF0, 4, 8) returns 0xF.
getBits(uint64_t val,int start,int end)287 static uint64_t getBits(uint64_t val, int start, int end) {
288 uint64_t mask = ((uint64_t)1 << (end + 1 - start)) - 1;
289 return (val >> start) & mask;
290 }
291
or32le(uint8_t * p,int32_t v)292 static void or32le(uint8_t *p, int32_t v) { write32le(p, read32le(p) | v); }
293
294 // Update the immediate field in a AARCH64 ldr, str, and add instruction.
or32AArch64Imm(uint8_t * l,uint64_t imm)295 static void or32AArch64Imm(uint8_t *l, uint64_t imm) {
296 or32le(l, (imm & 0xFFF) << 10);
297 }
298
299 // Update the immediate field in an AArch64 movk, movn or movz instruction
300 // for a signed relocation, and update the opcode of a movn or movz instruction
301 // to match the sign of the operand.
writeSMovWImm(uint8_t * loc,uint32_t imm)302 static void writeSMovWImm(uint8_t *loc, uint32_t imm) {
303 uint32_t inst = read32le(loc);
304 // Opcode field is bits 30, 29, with 10 = movz, 00 = movn and 11 = movk.
305 if (!(inst & (1 << 29))) {
306 // movn or movz.
307 if (imm & 0x10000) {
308 // Change opcode to movn, which takes an inverted operand.
309 imm ^= 0xFFFF;
310 inst &= ~(1 << 30);
311 } else {
312 // Change opcode to movz.
313 inst |= 1 << 30;
314 }
315 }
316 write32le(loc, inst | ((imm & 0xFFFF) << 5));
317 }
318
relocate(uint8_t * loc,const Relocation & rel,uint64_t val) const319 void AArch64::relocate(uint8_t *loc, const Relocation &rel,
320 uint64_t val) const {
321 switch (rel.type) {
322 case R_AARCH64_ABS16:
323 case R_AARCH64_PREL16:
324 checkIntUInt(loc, val, 16, rel);
325 write16le(loc, val);
326 break;
327 case R_AARCH64_ABS32:
328 case R_AARCH64_PREL32:
329 checkIntUInt(loc, val, 32, rel);
330 write32le(loc, val);
331 break;
332 case R_AARCH64_PLT32:
333 checkInt(loc, val, 32, rel);
334 write32le(loc, val);
335 break;
336 case R_AARCH64_ABS64:
337 case R_AARCH64_PREL64:
338 write64le(loc, val);
339 break;
340 case R_AARCH64_ADD_ABS_LO12_NC:
341 or32AArch64Imm(loc, val);
342 break;
343 case R_AARCH64_ADR_GOT_PAGE:
344 case R_AARCH64_ADR_PREL_PG_HI21:
345 case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
346 case R_AARCH64_TLSDESC_ADR_PAGE21:
347 checkInt(loc, val, 33, rel);
348 LLVM_FALLTHROUGH;
349 case R_AARCH64_ADR_PREL_PG_HI21_NC:
350 write32AArch64Addr(loc, val >> 12);
351 break;
352 case R_AARCH64_ADR_PREL_LO21:
353 checkInt(loc, val, 21, rel);
354 write32AArch64Addr(loc, val);
355 break;
356 case R_AARCH64_JUMP26:
357 // Normally we would just write the bits of the immediate field, however
358 // when patching instructions for the cpu errata fix -fix-cortex-a53-843419
359 // we want to replace a non-branch instruction with a branch immediate
360 // instruction. By writing all the bits of the instruction including the
361 // opcode and the immediate (0 001 | 01 imm26) we can do this
362 // transformation by placing a R_AARCH64_JUMP26 relocation at the offset of
363 // the instruction we want to patch.
364 write32le(loc, 0x14000000);
365 LLVM_FALLTHROUGH;
366 case R_AARCH64_CALL26:
367 checkInt(loc, val, 28, rel);
368 or32le(loc, (val & 0x0FFFFFFC) >> 2);
369 break;
370 case R_AARCH64_CONDBR19:
371 case R_AARCH64_LD_PREL_LO19:
372 checkAlignment(loc, val, 4, rel);
373 checkInt(loc, val, 21, rel);
374 or32le(loc, (val & 0x1FFFFC) << 3);
375 break;
376 case R_AARCH64_LDST8_ABS_LO12_NC:
377 case R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
378 or32AArch64Imm(loc, getBits(val, 0, 11));
379 break;
380 case R_AARCH64_LDST16_ABS_LO12_NC:
381 case R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
382 checkAlignment(loc, val, 2, rel);
383 or32AArch64Imm(loc, getBits(val, 1, 11));
384 break;
385 case R_AARCH64_LDST32_ABS_LO12_NC:
386 case R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
387 checkAlignment(loc, val, 4, rel);
388 or32AArch64Imm(loc, getBits(val, 2, 11));
389 break;
390 case R_AARCH64_LDST64_ABS_LO12_NC:
391 case R_AARCH64_LD64_GOT_LO12_NC:
392 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
393 case R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
394 case R_AARCH64_TLSDESC_LD64_LO12:
395 checkAlignment(loc, val, 8, rel);
396 or32AArch64Imm(loc, getBits(val, 3, 11));
397 break;
398 case R_AARCH64_LDST128_ABS_LO12_NC:
399 case R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC:
400 checkAlignment(loc, val, 16, rel);
401 or32AArch64Imm(loc, getBits(val, 4, 11));
402 break;
403 case R_AARCH64_MOVW_UABS_G0:
404 checkUInt(loc, val, 16, rel);
405 LLVM_FALLTHROUGH;
406 case R_AARCH64_MOVW_UABS_G0_NC:
407 or32le(loc, (val & 0xFFFF) << 5);
408 break;
409 case R_AARCH64_MOVW_UABS_G1:
410 checkUInt(loc, val, 32, rel);
411 LLVM_FALLTHROUGH;
412 case R_AARCH64_MOVW_UABS_G1_NC:
413 or32le(loc, (val & 0xFFFF0000) >> 11);
414 break;
415 case R_AARCH64_MOVW_UABS_G2:
416 checkUInt(loc, val, 48, rel);
417 LLVM_FALLTHROUGH;
418 case R_AARCH64_MOVW_UABS_G2_NC:
419 or32le(loc, (val & 0xFFFF00000000) >> 27);
420 break;
421 case R_AARCH64_MOVW_UABS_G3:
422 or32le(loc, (val & 0xFFFF000000000000) >> 43);
423 break;
424 case R_AARCH64_MOVW_PREL_G0:
425 case R_AARCH64_MOVW_SABS_G0:
426 case R_AARCH64_TLSLE_MOVW_TPREL_G0:
427 checkInt(loc, val, 17, rel);
428 LLVM_FALLTHROUGH;
429 case R_AARCH64_MOVW_PREL_G0_NC:
430 case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
431 writeSMovWImm(loc, val);
432 break;
433 case R_AARCH64_MOVW_PREL_G1:
434 case R_AARCH64_MOVW_SABS_G1:
435 case R_AARCH64_TLSLE_MOVW_TPREL_G1:
436 checkInt(loc, val, 33, rel);
437 LLVM_FALLTHROUGH;
438 case R_AARCH64_MOVW_PREL_G1_NC:
439 case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
440 writeSMovWImm(loc, val >> 16);
441 break;
442 case R_AARCH64_MOVW_PREL_G2:
443 case R_AARCH64_MOVW_SABS_G2:
444 case R_AARCH64_TLSLE_MOVW_TPREL_G2:
445 checkInt(loc, val, 49, rel);
446 LLVM_FALLTHROUGH;
447 case R_AARCH64_MOVW_PREL_G2_NC:
448 writeSMovWImm(loc, val >> 32);
449 break;
450 case R_AARCH64_MOVW_PREL_G3:
451 writeSMovWImm(loc, val >> 48);
452 break;
453 case R_AARCH64_TSTBR14:
454 checkInt(loc, val, 16, rel);
455 or32le(loc, (val & 0xFFFC) << 3);
456 break;
457 case R_AARCH64_TLSLE_ADD_TPREL_HI12:
458 checkUInt(loc, val, 24, rel);
459 or32AArch64Imm(loc, val >> 12);
460 break;
461 case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
462 case R_AARCH64_TLSDESC_ADD_LO12:
463 or32AArch64Imm(loc, val);
464 break;
465 default:
466 llvm_unreachable("unknown relocation");
467 }
468 }
469
relaxTlsGdToLe(uint8_t * loc,const Relocation & rel,uint64_t val) const470 void AArch64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
471 uint64_t val) const {
472 // TLSDESC Global-Dynamic relocation are in the form:
473 // adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21]
474 // ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12]
475 // add x0, x0, :tlsdesc_los:v [R_AARCH64_TLSDESC_ADD_LO12]
476 // .tlsdesccall [R_AARCH64_TLSDESC_CALL]
477 // blr x1
478 // And it can optimized to:
479 // movz x0, #0x0, lsl #16
480 // movk x0, #0x10
481 // nop
482 // nop
483 checkUInt(loc, val, 32, rel);
484
485 switch (rel.type) {
486 case R_AARCH64_TLSDESC_ADD_LO12:
487 case R_AARCH64_TLSDESC_CALL:
488 write32le(loc, 0xd503201f); // nop
489 return;
490 case R_AARCH64_TLSDESC_ADR_PAGE21:
491 write32le(loc, 0xd2a00000 | (((val >> 16) & 0xffff) << 5)); // movz
492 return;
493 case R_AARCH64_TLSDESC_LD64_LO12:
494 write32le(loc, 0xf2800000 | ((val & 0xffff) << 5)); // movk
495 return;
496 default:
497 llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
498 }
499 }
500
relaxTlsGdToIe(uint8_t * loc,const Relocation & rel,uint64_t val) const501 void AArch64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
502 uint64_t val) const {
503 // TLSDESC Global-Dynamic relocation are in the form:
504 // adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21]
505 // ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12]
506 // add x0, x0, :tlsdesc_los:v [R_AARCH64_TLSDESC_ADD_LO12]
507 // .tlsdesccall [R_AARCH64_TLSDESC_CALL]
508 // blr x1
509 // And it can optimized to:
510 // adrp x0, :gottprel:v
511 // ldr x0, [x0, :gottprel_lo12:v]
512 // nop
513 // nop
514
515 switch (rel.type) {
516 case R_AARCH64_TLSDESC_ADD_LO12:
517 case R_AARCH64_TLSDESC_CALL:
518 write32le(loc, 0xd503201f); // nop
519 break;
520 case R_AARCH64_TLSDESC_ADR_PAGE21:
521 write32le(loc, 0x90000000); // adrp
522 relocateNoSym(loc, R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, val);
523 break;
524 case R_AARCH64_TLSDESC_LD64_LO12:
525 write32le(loc, 0xf9400000); // ldr
526 relocateNoSym(loc, R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, val);
527 break;
528 default:
529 llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
530 }
531 }
532
relaxTlsIeToLe(uint8_t * loc,const Relocation & rel,uint64_t val) const533 void AArch64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
534 uint64_t val) const {
535 checkUInt(loc, val, 32, rel);
536
537 if (rel.type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21) {
538 // Generate MOVZ.
539 uint32_t regNo = read32le(loc) & 0x1f;
540 write32le(loc, (0xd2a00000 | regNo) | (((val >> 16) & 0xffff) << 5));
541 return;
542 }
543 if (rel.type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC) {
544 // Generate MOVK.
545 uint32_t regNo = read32le(loc) & 0x1f;
546 write32le(loc, (0xf2800000 | regNo) | ((val & 0xffff) << 5));
547 return;
548 }
549 llvm_unreachable("invalid relocation for TLS IE to LE relaxation");
550 }
551
552 // AArch64 may use security features in variant PLT sequences. These are:
553 // Pointer Authentication (PAC), introduced in armv8.3-a and Branch Target
554 // Indicator (BTI) introduced in armv8.5-a. The additional instructions used
555 // in the variant Plt sequences are encoded in the Hint space so they can be
556 // deployed on older architectures, which treat the instructions as a nop.
557 // PAC and BTI can be combined leading to the following combinations:
558 // writePltHeader
559 // writePltHeaderBti (no PAC Header needed)
560 // writePlt
561 // writePltBti (BTI only)
562 // writePltPac (PAC only)
563 // writePltBtiPac (BTI and PAC)
564 //
565 // When PAC is enabled the dynamic loader encrypts the address that it places
566 // in the .got.plt using the pacia1716 instruction which encrypts the value in
567 // x17 using the modifier in x16. The static linker places autia1716 before the
568 // indirect branch to x17 to authenticate the address in x17 with the modifier
569 // in x16. This makes it more difficult for an attacker to modify the value in
570 // the .got.plt.
571 //
572 // When BTI is enabled all indirect branches must land on a bti instruction.
573 // The static linker must place a bti instruction at the start of any PLT entry
574 // that may be the target of an indirect branch. As the PLT entries call the
575 // lazy resolver indirectly this must have a bti instruction at start. In
576 // general a bti instruction is not needed for a PLT entry as indirect calls
577 // are resolved to the function address and not the PLT entry for the function.
578 // There are a small number of cases where the PLT address can escape, such as
579 // taking the address of a function or ifunc via a non got-generating
580 // relocation, and a shared library refers to that symbol.
581 //
582 // We use the bti c variant of the instruction which permits indirect branches
583 // (br) via x16/x17 and indirect function calls (blr) via any register. The ABI
584 // guarantees that all indirect branches from code requiring BTI protection
585 // will go via x16/x17
586
587 namespace {
588 class AArch64BtiPac final : public AArch64 {
589 public:
590 AArch64BtiPac();
591 void writePltHeader(uint8_t *buf) const override;
592 void writePlt(uint8_t *buf, const Symbol &sym,
593 uint64_t pltEntryAddr) const override;
594
595 private:
596 bool btiHeader; // bti instruction needed in PLT Header
597 bool btiEntry; // bti instruction needed in PLT Entry
598 bool pacEntry; // autia1716 instruction needed in PLT Entry
599 };
600 } // namespace
601
AArch64BtiPac()602 AArch64BtiPac::AArch64BtiPac() {
603 btiHeader = (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI);
604 // A BTI (Branch Target Indicator) Plt Entry is only required if the
605 // address of the PLT entry can be taken by the program, which permits an
606 // indirect jump to the PLT entry. This can happen when the address
607 // of the PLT entry for a function is canonicalised due to the address of
608 // the function in an executable being taken by a shared library.
609 // FIXME: There is a potential optimization to omit the BTI if we detect
610 // that the address of the PLT entry isn't taken.
611 // The PAC PLT entries require dynamic loader support and this isn't known
612 // from properties in the objects, so we use the command line flag.
613 btiEntry = btiHeader && !config->shared;
614 pacEntry = config->zPacPlt;
615
616 if (btiEntry || pacEntry) {
617 pltEntrySize = 24;
618 ipltEntrySize = 24;
619 }
620 }
621
writePltHeader(uint8_t * buf) const622 void AArch64BtiPac::writePltHeader(uint8_t *buf) const {
623 const uint8_t btiData[] = { 0x5f, 0x24, 0x03, 0xd5 }; // bti c
624 const uint8_t pltData[] = {
625 0xf0, 0x7b, 0xbf, 0xa9, // stp x16, x30, [sp,#-16]!
626 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[2]))
627 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.plt.got[2]))]
628 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.plt.got[2]))
629 0x20, 0x02, 0x1f, 0xd6, // br x17
630 0x1f, 0x20, 0x03, 0xd5, // nop
631 0x1f, 0x20, 0x03, 0xd5 // nop
632 };
633 const uint8_t nopData[] = { 0x1f, 0x20, 0x03, 0xd5 }; // nop
634
635 uint64_t got = in.gotPlt->getVA();
636 uint64_t plt = in.plt->getVA();
637
638 if (btiHeader) {
639 // PltHeader is called indirectly by plt[N]. Prefix pltData with a BTI C
640 // instruction.
641 memcpy(buf, btiData, sizeof(btiData));
642 buf += sizeof(btiData);
643 plt += sizeof(btiData);
644 }
645 memcpy(buf, pltData, sizeof(pltData));
646
647 relocateNoSym(buf + 4, R_AARCH64_ADR_PREL_PG_HI21,
648 getAArch64Page(got + 16) - getAArch64Page(plt + 8));
649 relocateNoSym(buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, got + 16);
650 relocateNoSym(buf + 12, R_AARCH64_ADD_ABS_LO12_NC, got + 16);
651 if (!btiHeader)
652 // We didn't add the BTI c instruction so round out size with NOP.
653 memcpy(buf + sizeof(pltData), nopData, sizeof(nopData));
654 }
655
writePlt(uint8_t * buf,const Symbol & sym,uint64_t pltEntryAddr) const656 void AArch64BtiPac::writePlt(uint8_t *buf, const Symbol &sym,
657 uint64_t pltEntryAddr) const {
658 // The PLT entry is of the form:
659 // [btiData] addrInst (pacBr | stdBr) [nopData]
660 const uint8_t btiData[] = { 0x5f, 0x24, 0x03, 0xd5 }; // bti c
661 const uint8_t addrInst[] = {
662 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[n]))
663 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.plt.got[n]))]
664 0x10, 0x02, 0x00, 0x91 // add x16, x16, Offset(&(.plt.got[n]))
665 };
666 const uint8_t pacBr[] = {
667 0x9f, 0x21, 0x03, 0xd5, // autia1716
668 0x20, 0x02, 0x1f, 0xd6 // br x17
669 };
670 const uint8_t stdBr[] = {
671 0x20, 0x02, 0x1f, 0xd6, // br x17
672 0x1f, 0x20, 0x03, 0xd5 // nop
673 };
674 const uint8_t nopData[] = { 0x1f, 0x20, 0x03, 0xd5 }; // nop
675
676 if (btiEntry) {
677 memcpy(buf, btiData, sizeof(btiData));
678 buf += sizeof(btiData);
679 pltEntryAddr += sizeof(btiData);
680 }
681
682 uint64_t gotPltEntryAddr = sym.getGotPltVA();
683 memcpy(buf, addrInst, sizeof(addrInst));
684 relocateNoSym(buf, R_AARCH64_ADR_PREL_PG_HI21,
685 getAArch64Page(gotPltEntryAddr) - getAArch64Page(pltEntryAddr));
686 relocateNoSym(buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, gotPltEntryAddr);
687 relocateNoSym(buf + 8, R_AARCH64_ADD_ABS_LO12_NC, gotPltEntryAddr);
688
689 if (pacEntry)
690 memcpy(buf + sizeof(addrInst), pacBr, sizeof(pacBr));
691 else
692 memcpy(buf + sizeof(addrInst), stdBr, sizeof(stdBr));
693 if (!btiEntry)
694 // We didn't add the BTI c instruction so round out size with NOP.
695 memcpy(buf + sizeof(addrInst) + sizeof(stdBr), nopData, sizeof(nopData));
696 }
697
getTargetInfo()698 static TargetInfo *getTargetInfo() {
699 if (config->andFeatures & (GNU_PROPERTY_AARCH64_FEATURE_1_BTI |
700 GNU_PROPERTY_AARCH64_FEATURE_1_PAC)) {
701 static AArch64BtiPac t;
702 return &t;
703 }
704 static AArch64 t;
705 return &t;
706 }
707
getAArch64TargetInfo()708 TargetInfo *elf::getAArch64TargetInfo() { return getTargetInfo(); }
709