1 //===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the generic implementation of LoopInfo used for both Loops and
10 // MachineLoops.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H
15 #define LLVM_ANALYSIS_LOOPINFOIMPL_H
16 
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/IR/Dominators.h"
22 
23 namespace llvm {
24 
25 //===----------------------------------------------------------------------===//
26 // APIs for simple analysis of the loop. See header notes.
27 
28 /// getExitingBlocks - Return all blocks inside the loop that have successors
29 /// outside of the loop.  These are the blocks _inside of the current loop_
30 /// which branch out.  The returned list is always unique.
31 ///
32 template <class BlockT, class LoopT>
getExitingBlocks(SmallVectorImpl<BlockT * > & ExitingBlocks)33 void LoopBase<BlockT, LoopT>::getExitingBlocks(
34     SmallVectorImpl<BlockT *> &ExitingBlocks) const {
35   assert(!isInvalid() && "Loop not in a valid state!");
36   for (const auto BB : blocks())
37     for (auto *Succ : children<BlockT *>(BB))
38       if (!contains(Succ)) {
39         // Not in current loop? It must be an exit block.
40         ExitingBlocks.push_back(BB);
41         break;
42       }
43 }
44 
45 /// getExitingBlock - If getExitingBlocks would return exactly one block,
46 /// return that block. Otherwise return null.
47 template <class BlockT, class LoopT>
getExitingBlock()48 BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
49   assert(!isInvalid() && "Loop not in a valid state!");
50   SmallVector<BlockT *, 8> ExitingBlocks;
51   getExitingBlocks(ExitingBlocks);
52   if (ExitingBlocks.size() == 1)
53     return ExitingBlocks[0];
54   return nullptr;
55 }
56 
57 /// getExitBlocks - Return all of the successor blocks of this loop.  These
58 /// are the blocks _outside of the current loop_ which are branched to.
59 ///
60 template <class BlockT, class LoopT>
getExitBlocks(SmallVectorImpl<BlockT * > & ExitBlocks)61 void LoopBase<BlockT, LoopT>::getExitBlocks(
62     SmallVectorImpl<BlockT *> &ExitBlocks) const {
63   assert(!isInvalid() && "Loop not in a valid state!");
64   for (const auto BB : blocks())
65     for (auto *Succ : children<BlockT *>(BB))
66       if (!contains(Succ))
67         // Not in current loop? It must be an exit block.
68         ExitBlocks.push_back(Succ);
69 }
70 
71 /// getExitBlock - If getExitBlocks would return exactly one block,
72 /// return that block. Otherwise return null.
73 template <class BlockT, class LoopT>
getExitBlock()74 BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
75   assert(!isInvalid() && "Loop not in a valid state!");
76   SmallVector<BlockT *, 8> ExitBlocks;
77   getExitBlocks(ExitBlocks);
78   if (ExitBlocks.size() == 1)
79     return ExitBlocks[0];
80   return nullptr;
81 }
82 
83 template <class BlockT, class LoopT>
hasDedicatedExits()84 bool LoopBase<BlockT, LoopT>::hasDedicatedExits() const {
85   // Each predecessor of each exit block of a normal loop is contained
86   // within the loop.
87   SmallVector<BlockT *, 4> UniqueExitBlocks;
88   getUniqueExitBlocks(UniqueExitBlocks);
89   for (BlockT *EB : UniqueExitBlocks)
90     for (BlockT *Predecessor : children<Inverse<BlockT *>>(EB))
91       if (!contains(Predecessor))
92         return false;
93   // All the requirements are met.
94   return true;
95 }
96 
97 // Helper function to get unique loop exits. Pred is a predicate pointing to
98 // BasicBlocks in a loop which should be considered to find loop exits.
99 template <class BlockT, class LoopT, typename PredicateT>
getUniqueExitBlocksHelper(const LoopT * L,SmallVectorImpl<BlockT * > & ExitBlocks,PredicateT Pred)100 void getUniqueExitBlocksHelper(const LoopT *L,
101                                SmallVectorImpl<BlockT *> &ExitBlocks,
102                                PredicateT Pred) {
103   assert(!L->isInvalid() && "Loop not in a valid state!");
104   SmallPtrSet<BlockT *, 32> Visited;
105   auto Filtered = make_filter_range(L->blocks(), Pred);
106   for (BlockT *BB : Filtered)
107     for (BlockT *Successor : children<BlockT *>(BB))
108       if (!L->contains(Successor))
109         if (Visited.insert(Successor).second)
110           ExitBlocks.push_back(Successor);
111 }
112 
113 template <class BlockT, class LoopT>
getUniqueExitBlocks(SmallVectorImpl<BlockT * > & ExitBlocks)114 void LoopBase<BlockT, LoopT>::getUniqueExitBlocks(
115     SmallVectorImpl<BlockT *> &ExitBlocks) const {
116   getUniqueExitBlocksHelper(this, ExitBlocks,
117                             [](const BlockT *BB) { return true; });
118 }
119 
120 template <class BlockT, class LoopT>
getUniqueNonLatchExitBlocks(SmallVectorImpl<BlockT * > & ExitBlocks)121 void LoopBase<BlockT, LoopT>::getUniqueNonLatchExitBlocks(
122     SmallVectorImpl<BlockT *> &ExitBlocks) const {
123   const BlockT *Latch = getLoopLatch();
124   assert(Latch && "Latch block must exists");
125   getUniqueExitBlocksHelper(this, ExitBlocks,
126                             [Latch](const BlockT *BB) { return BB != Latch; });
127 }
128 
129 template <class BlockT, class LoopT>
getUniqueExitBlock()130 BlockT *LoopBase<BlockT, LoopT>::getUniqueExitBlock() const {
131   SmallVector<BlockT *, 8> UniqueExitBlocks;
132   getUniqueExitBlocks(UniqueExitBlocks);
133   if (UniqueExitBlocks.size() == 1)
134     return UniqueExitBlocks[0];
135   return nullptr;
136 }
137 
138 /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
139 template <class BlockT, class LoopT>
getExitEdges(SmallVectorImpl<Edge> & ExitEdges)140 void LoopBase<BlockT, LoopT>::getExitEdges(
141     SmallVectorImpl<Edge> &ExitEdges) const {
142   assert(!isInvalid() && "Loop not in a valid state!");
143   for (const auto BB : blocks())
144     for (auto *Succ : children<BlockT *>(BB))
145       if (!contains(Succ))
146         // Not in current loop? It must be an exit block.
147         ExitEdges.emplace_back(BB, Succ);
148 }
149 
150 /// getLoopPreheader - If there is a preheader for this loop, return it.  A
151 /// loop has a preheader if there is only one edge to the header of the loop
152 /// from outside of the loop and it is legal to hoist instructions into the
153 /// predecessor. If this is the case, the block branching to the header of the
154 /// loop is the preheader node.
155 ///
156 /// This method returns null if there is no preheader for the loop.
157 ///
158 template <class BlockT, class LoopT>
getLoopPreheader()159 BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const {
160   assert(!isInvalid() && "Loop not in a valid state!");
161   // Keep track of nodes outside the loop branching to the header...
162   BlockT *Out = getLoopPredecessor();
163   if (!Out)
164     return nullptr;
165 
166   // Make sure we are allowed to hoist instructions into the predecessor.
167   if (!Out->isLegalToHoistInto())
168     return nullptr;
169 
170   // Make sure there is only one exit out of the preheader.
171   typedef GraphTraits<BlockT *> BlockTraits;
172   typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
173   ++SI;
174   if (SI != BlockTraits::child_end(Out))
175     return nullptr; // Multiple exits from the block, must not be a preheader.
176 
177   // The predecessor has exactly one successor, so it is a preheader.
178   return Out;
179 }
180 
181 /// getLoopPredecessor - If the given loop's header has exactly one unique
182 /// predecessor outside the loop, return it. Otherwise return null.
183 /// This is less strict that the loop "preheader" concept, which requires
184 /// the predecessor to have exactly one successor.
185 ///
186 template <class BlockT, class LoopT>
getLoopPredecessor()187 BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
188   assert(!isInvalid() && "Loop not in a valid state!");
189   // Keep track of nodes outside the loop branching to the header...
190   BlockT *Out = nullptr;
191 
192   // Loop over the predecessors of the header node...
193   BlockT *Header = getHeader();
194   for (const auto Pred : children<Inverse<BlockT *>>(Header)) {
195     if (!contains(Pred)) { // If the block is not in the loop...
196       if (Out && Out != Pred)
197         return nullptr; // Multiple predecessors outside the loop
198       Out = Pred;
199     }
200   }
201 
202   return Out;
203 }
204 
205 /// getLoopLatch - If there is a single latch block for this loop, return it.
206 /// A latch block is a block that contains a branch back to the header.
207 template <class BlockT, class LoopT>
getLoopLatch()208 BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
209   assert(!isInvalid() && "Loop not in a valid state!");
210   BlockT *Header = getHeader();
211   BlockT *Latch = nullptr;
212   for (const auto Pred : children<Inverse<BlockT *>>(Header)) {
213     if (contains(Pred)) {
214       if (Latch)
215         return nullptr;
216       Latch = Pred;
217     }
218   }
219 
220   return Latch;
221 }
222 
223 //===----------------------------------------------------------------------===//
224 // APIs for updating loop information after changing the CFG
225 //
226 
227 /// addBasicBlockToLoop - This method is used by other analyses to update loop
228 /// information.  NewBB is set to be a new member of the current loop.
229 /// Because of this, it is added as a member of all parent loops, and is added
230 /// to the specified LoopInfo object as being in the current basic block.  It
231 /// is not valid to replace the loop header with this method.
232 ///
233 template <class BlockT, class LoopT>
addBasicBlockToLoop(BlockT * NewBB,LoopInfoBase<BlockT,LoopT> & LIB)234 void LoopBase<BlockT, LoopT>::addBasicBlockToLoop(
235     BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) {
236   assert(!isInvalid() && "Loop not in a valid state!");
237 #ifndef NDEBUG
238   if (!Blocks.empty()) {
239     auto SameHeader = LIB[getHeader()];
240     assert(contains(SameHeader) && getHeader() == SameHeader->getHeader() &&
241            "Incorrect LI specified for this loop!");
242   }
243 #endif
244   assert(NewBB && "Cannot add a null basic block to the loop!");
245   assert(!LIB[NewBB] && "BasicBlock already in the loop!");
246 
247   LoopT *L = static_cast<LoopT *>(this);
248 
249   // Add the loop mapping to the LoopInfo object...
250   LIB.BBMap[NewBB] = L;
251 
252   // Add the basic block to this loop and all parent loops...
253   while (L) {
254     L->addBlockEntry(NewBB);
255     L = L->getParentLoop();
256   }
257 }
258 
259 /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
260 /// the OldChild entry in our children list with NewChild, and updates the
261 /// parent pointer of OldChild to be null and the NewChild to be this loop.
262 /// This updates the loop depth of the new child.
263 template <class BlockT, class LoopT>
replaceChildLoopWith(LoopT * OldChild,LoopT * NewChild)264 void LoopBase<BlockT, LoopT>::replaceChildLoopWith(LoopT *OldChild,
265                                                    LoopT *NewChild) {
266   assert(!isInvalid() && "Loop not in a valid state!");
267   assert(OldChild->ParentLoop == this && "This loop is already broken!");
268   assert(!NewChild->ParentLoop && "NewChild already has a parent!");
269   typename std::vector<LoopT *>::iterator I = find(SubLoops, OldChild);
270   assert(I != SubLoops.end() && "OldChild not in loop!");
271   *I = NewChild;
272   OldChild->ParentLoop = nullptr;
273   NewChild->ParentLoop = static_cast<LoopT *>(this);
274 }
275 
276 /// verifyLoop - Verify loop structure
277 template <class BlockT, class LoopT>
verifyLoop()278 void LoopBase<BlockT, LoopT>::verifyLoop() const {
279   assert(!isInvalid() && "Loop not in a valid state!");
280 #ifndef NDEBUG
281   assert(!Blocks.empty() && "Loop header is missing");
282 
283   // Setup for using a depth-first iterator to visit every block in the loop.
284   SmallVector<BlockT *, 8> ExitBBs;
285   getExitBlocks(ExitBBs);
286   df_iterator_default_set<BlockT *> VisitSet;
287   VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
288   df_ext_iterator<BlockT *, df_iterator_default_set<BlockT *>>
289       BI = df_ext_begin(getHeader(), VisitSet),
290       BE = df_ext_end(getHeader(), VisitSet);
291 
292   // Keep track of the BBs visited.
293   SmallPtrSet<BlockT *, 8> VisitedBBs;
294 
295   // Check the individual blocks.
296   for (; BI != BE; ++BI) {
297     BlockT *BB = *BI;
298 
299     assert(std::any_of(GraphTraits<BlockT *>::child_begin(BB),
300                        GraphTraits<BlockT *>::child_end(BB),
301                        [&](BlockT *B) { return contains(B); }) &&
302            "Loop block has no in-loop successors!");
303 
304     assert(std::any_of(GraphTraits<Inverse<BlockT *>>::child_begin(BB),
305                        GraphTraits<Inverse<BlockT *>>::child_end(BB),
306                        [&](BlockT *B) { return contains(B); }) &&
307            "Loop block has no in-loop predecessors!");
308 
309     SmallVector<BlockT *, 2> OutsideLoopPreds;
310     std::for_each(GraphTraits<Inverse<BlockT *>>::child_begin(BB),
311                   GraphTraits<Inverse<BlockT *>>::child_end(BB),
312                   [&](BlockT *B) {
313                     if (!contains(B))
314                       OutsideLoopPreds.push_back(B);
315                   });
316 
317     if (BB == getHeader()) {
318       assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
319     } else if (!OutsideLoopPreds.empty()) {
320       // A non-header loop shouldn't be reachable from outside the loop,
321       // though it is permitted if the predecessor is not itself actually
322       // reachable.
323       BlockT *EntryBB = &BB->getParent()->front();
324       for (BlockT *CB : depth_first(EntryBB))
325         for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
326           assert(CB != OutsideLoopPreds[i] &&
327                  "Loop has multiple entry points!");
328     }
329     assert(BB != &getHeader()->getParent()->front() &&
330            "Loop contains function entry block!");
331 
332     VisitedBBs.insert(BB);
333   }
334 
335   if (VisitedBBs.size() != getNumBlocks()) {
336     dbgs() << "The following blocks are unreachable in the loop: ";
337     for (auto BB : Blocks) {
338       if (!VisitedBBs.count(BB)) {
339         dbgs() << *BB << "\n";
340       }
341     }
342     assert(false && "Unreachable block in loop");
343   }
344 
345   // Check the subloops.
346   for (iterator I = begin(), E = end(); I != E; ++I)
347     // Each block in each subloop should be contained within this loop.
348     for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
349          BI != BE; ++BI) {
350       assert(contains(*BI) &&
351              "Loop does not contain all the blocks of a subloop!");
352     }
353 
354   // Check the parent loop pointer.
355   if (ParentLoop) {
356     assert(is_contained(*ParentLoop, this) &&
357            "Loop is not a subloop of its parent!");
358   }
359 #endif
360 }
361 
362 /// verifyLoop - Verify loop structure of this loop and all nested loops.
363 template <class BlockT, class LoopT>
verifyLoopNest(DenseSet<const LoopT * > * Loops)364 void LoopBase<BlockT, LoopT>::verifyLoopNest(
365     DenseSet<const LoopT *> *Loops) const {
366   assert(!isInvalid() && "Loop not in a valid state!");
367   Loops->insert(static_cast<const LoopT *>(this));
368   // Verify this loop.
369   verifyLoop();
370   // Verify the subloops.
371   for (iterator I = begin(), E = end(); I != E; ++I)
372     (*I)->verifyLoopNest(Loops);
373 }
374 
375 template <class BlockT, class LoopT>
print(raw_ostream & OS,unsigned Depth,bool Verbose)376 void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, unsigned Depth,
377                                     bool Verbose) const {
378   OS.indent(Depth * 2);
379   if (static_cast<const LoopT *>(this)->isAnnotatedParallel())
380     OS << "Parallel ";
381   OS << "Loop at depth " << getLoopDepth() << " containing: ";
382 
383   BlockT *H = getHeader();
384   for (unsigned i = 0; i < getBlocks().size(); ++i) {
385     BlockT *BB = getBlocks()[i];
386     if (!Verbose) {
387       if (i)
388         OS << ",";
389       BB->printAsOperand(OS, false);
390     } else
391       OS << "\n";
392 
393     if (BB == H)
394       OS << "<header>";
395     if (isLoopLatch(BB))
396       OS << "<latch>";
397     if (isLoopExiting(BB))
398       OS << "<exiting>";
399     if (Verbose)
400       BB->print(OS);
401   }
402   OS << "\n";
403 
404   for (iterator I = begin(), E = end(); I != E; ++I)
405     (*I)->print(OS, Depth + 2);
406 }
407 
408 //===----------------------------------------------------------------------===//
409 /// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
410 /// result does / not depend on use list (block predecessor) order.
411 ///
412 
413 /// Discover a subloop with the specified backedges such that: All blocks within
414 /// this loop are mapped to this loop or a subloop. And all subloops within this
415 /// loop have their parent loop set to this loop or a subloop.
416 template <class BlockT, class LoopT>
discoverAndMapSubloop(LoopT * L,ArrayRef<BlockT * > Backedges,LoopInfoBase<BlockT,LoopT> * LI,const DomTreeBase<BlockT> & DomTree)417 static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT *> Backedges,
418                                   LoopInfoBase<BlockT, LoopT> *LI,
419                                   const DomTreeBase<BlockT> &DomTree) {
420   typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits;
421 
422   unsigned NumBlocks = 0;
423   unsigned NumSubloops = 0;
424 
425   // Perform a backward CFG traversal using a worklist.
426   std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end());
427   while (!ReverseCFGWorklist.empty()) {
428     BlockT *PredBB = ReverseCFGWorklist.back();
429     ReverseCFGWorklist.pop_back();
430 
431     LoopT *Subloop = LI->getLoopFor(PredBB);
432     if (!Subloop) {
433       if (!DomTree.isReachableFromEntry(PredBB))
434         continue;
435 
436       // This is an undiscovered block. Map it to the current loop.
437       LI->changeLoopFor(PredBB, L);
438       ++NumBlocks;
439       if (PredBB == L->getHeader())
440         continue;
441       // Push all block predecessors on the worklist.
442       ReverseCFGWorklist.insert(ReverseCFGWorklist.end(),
443                                 InvBlockTraits::child_begin(PredBB),
444                                 InvBlockTraits::child_end(PredBB));
445     } else {
446       // This is a discovered block. Find its outermost discovered loop.
447       while (LoopT *Parent = Subloop->getParentLoop())
448         Subloop = Parent;
449 
450       // If it is already discovered to be a subloop of this loop, continue.
451       if (Subloop == L)
452         continue;
453 
454       // Discover a subloop of this loop.
455       Subloop->setParentLoop(L);
456       ++NumSubloops;
457       NumBlocks += Subloop->getBlocksVector().capacity();
458       PredBB = Subloop->getHeader();
459       // Continue traversal along predecessors that are not loop-back edges from
460       // within this subloop tree itself. Note that a predecessor may directly
461       // reach another subloop that is not yet discovered to be a subloop of
462       // this loop, which we must traverse.
463       for (const auto Pred : children<Inverse<BlockT *>>(PredBB)) {
464         if (LI->getLoopFor(Pred) != Subloop)
465           ReverseCFGWorklist.push_back(Pred);
466       }
467     }
468   }
469   L->getSubLoopsVector().reserve(NumSubloops);
470   L->reserveBlocks(NumBlocks);
471 }
472 
473 /// Populate all loop data in a stable order during a single forward DFS.
474 template <class BlockT, class LoopT> class PopulateLoopsDFS {
475   typedef GraphTraits<BlockT *> BlockTraits;
476   typedef typename BlockTraits::ChildIteratorType SuccIterTy;
477 
478   LoopInfoBase<BlockT, LoopT> *LI;
479 
480 public:
PopulateLoopsDFS(LoopInfoBase<BlockT,LoopT> * li)481   PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li) : LI(li) {}
482 
483   void traverse(BlockT *EntryBlock);
484 
485 protected:
486   void insertIntoLoop(BlockT *Block);
487 };
488 
489 /// Top-level driver for the forward DFS within the loop.
490 template <class BlockT, class LoopT>
traverse(BlockT * EntryBlock)491 void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) {
492   for (BlockT *BB : post_order(EntryBlock))
493     insertIntoLoop(BB);
494 }
495 
496 /// Add a single Block to its ancestor loops in PostOrder. If the block is a
497 /// subloop header, add the subloop to its parent in PostOrder, then reverse the
498 /// Block and Subloop vectors of the now complete subloop to achieve RPO.
499 template <class BlockT, class LoopT>
insertIntoLoop(BlockT * Block)500 void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) {
501   LoopT *Subloop = LI->getLoopFor(Block);
502   if (Subloop && Block == Subloop->getHeader()) {
503     // We reach this point once per subloop after processing all the blocks in
504     // the subloop.
505     if (Subloop->getParentLoop())
506       Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop);
507     else
508       LI->addTopLevelLoop(Subloop);
509 
510     // For convenience, Blocks and Subloops are inserted in postorder. Reverse
511     // the lists, except for the loop header, which is always at the beginning.
512     Subloop->reverseBlock(1);
513     std::reverse(Subloop->getSubLoopsVector().begin(),
514                  Subloop->getSubLoopsVector().end());
515 
516     Subloop = Subloop->getParentLoop();
517   }
518   for (; Subloop; Subloop = Subloop->getParentLoop())
519     Subloop->addBlockEntry(Block);
520 }
521 
522 /// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
523 /// interleaved with backward CFG traversals within each subloop
524 /// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
525 /// this part of the algorithm is linear in the number of CFG edges. Subloop and
526 /// Block vectors are then populated during a single forward CFG traversal
527 /// (PopulateLoopDFS).
528 ///
529 /// During the two CFG traversals each block is seen three times:
530 /// 1) Discovered and mapped by a reverse CFG traversal.
531 /// 2) Visited during a forward DFS CFG traversal.
532 /// 3) Reverse-inserted in the loop in postorder following forward DFS.
533 ///
534 /// The Block vectors are inclusive, so step 3 requires loop-depth number of
535 /// insertions per block.
536 template <class BlockT, class LoopT>
analyze(const DomTreeBase<BlockT> & DomTree)537 void LoopInfoBase<BlockT, LoopT>::analyze(const DomTreeBase<BlockT> &DomTree) {
538   // Postorder traversal of the dominator tree.
539   const DomTreeNodeBase<BlockT> *DomRoot = DomTree.getRootNode();
540   for (auto DomNode : post_order(DomRoot)) {
541 
542     BlockT *Header = DomNode->getBlock();
543     SmallVector<BlockT *, 4> Backedges;
544 
545     // Check each predecessor of the potential loop header.
546     for (const auto Backedge : children<Inverse<BlockT *>>(Header)) {
547       // If Header dominates predBB, this is a new loop. Collect the backedges.
548       if (DomTree.dominates(Header, Backedge) &&
549           DomTree.isReachableFromEntry(Backedge)) {
550         Backedges.push_back(Backedge);
551       }
552     }
553     // Perform a backward CFG traversal to discover and map blocks in this loop.
554     if (!Backedges.empty()) {
555       LoopT *L = AllocateLoop(Header);
556       discoverAndMapSubloop(L, ArrayRef<BlockT *>(Backedges), this, DomTree);
557     }
558   }
559   // Perform a single forward CFG traversal to populate block and subloop
560   // vectors for all loops.
561   PopulateLoopsDFS<BlockT, LoopT> DFS(this);
562   DFS.traverse(DomRoot->getBlock());
563 }
564 
565 template <class BlockT, class LoopT>
getLoopsInPreorder()566 SmallVector<LoopT *, 4> LoopInfoBase<BlockT, LoopT>::getLoopsInPreorder() {
567   SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
568   // The outer-most loop actually goes into the result in the same relative
569   // order as we walk it. But LoopInfo stores the top level loops in reverse
570   // program order so for here we reverse it to get forward program order.
571   // FIXME: If we change the order of LoopInfo we will want to remove the
572   // reverse here.
573   for (LoopT *RootL : reverse(*this)) {
574     auto PreOrderLoopsInRootL = RootL->getLoopsInPreorder();
575     PreOrderLoops.append(PreOrderLoopsInRootL.begin(),
576                          PreOrderLoopsInRootL.end());
577   }
578 
579   return PreOrderLoops;
580 }
581 
582 template <class BlockT, class LoopT>
583 SmallVector<LoopT *, 4>
getLoopsInReverseSiblingPreorder()584 LoopInfoBase<BlockT, LoopT>::getLoopsInReverseSiblingPreorder() {
585   SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
586   // The outer-most loop actually goes into the result in the same relative
587   // order as we walk it. LoopInfo stores the top level loops in reverse
588   // program order so we walk in order here.
589   // FIXME: If we change the order of LoopInfo we will want to add a reverse
590   // here.
591   for (LoopT *RootL : *this) {
592     assert(PreOrderWorklist.empty() &&
593            "Must start with an empty preorder walk worklist.");
594     PreOrderWorklist.push_back(RootL);
595     do {
596       LoopT *L = PreOrderWorklist.pop_back_val();
597       // Sub-loops are stored in forward program order, but will process the
598       // worklist backwards so we can just append them in order.
599       PreOrderWorklist.append(L->begin(), L->end());
600       PreOrderLoops.push_back(L);
601     } while (!PreOrderWorklist.empty());
602   }
603 
604   return PreOrderLoops;
605 }
606 
607 // Debugging
608 template <class BlockT, class LoopT>
print(raw_ostream & OS)609 void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const {
610   for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
611     TopLevelLoops[i]->print(OS);
612 #if 0
613   for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
614          E = BBMap.end(); I != E; ++I)
615     OS << "BB '" << I->first->getName() << "' level = "
616        << I->second->getLoopDepth() << "\n";
617 #endif
618 }
619 
620 template <typename T>
compareVectors(std::vector<T> & BB1,std::vector<T> & BB2)621 bool compareVectors(std::vector<T> &BB1, std::vector<T> &BB2) {
622   llvm::sort(BB1);
623   llvm::sort(BB2);
624   return BB1 == BB2;
625 }
626 
627 template <class BlockT, class LoopT>
addInnerLoopsToHeadersMap(DenseMap<BlockT *,const LoopT * > & LoopHeaders,const LoopInfoBase<BlockT,LoopT> & LI,const LoopT & L)628 void addInnerLoopsToHeadersMap(DenseMap<BlockT *, const LoopT *> &LoopHeaders,
629                                const LoopInfoBase<BlockT, LoopT> &LI,
630                                const LoopT &L) {
631   LoopHeaders[L.getHeader()] = &L;
632   for (LoopT *SL : L)
633     addInnerLoopsToHeadersMap(LoopHeaders, LI, *SL);
634 }
635 
636 #ifndef NDEBUG
637 template <class BlockT, class LoopT>
compareLoops(const LoopT * L,const LoopT * OtherL,DenseMap<BlockT *,const LoopT * > & OtherLoopHeaders)638 static void compareLoops(const LoopT *L, const LoopT *OtherL,
639                          DenseMap<BlockT *, const LoopT *> &OtherLoopHeaders) {
640   BlockT *H = L->getHeader();
641   BlockT *OtherH = OtherL->getHeader();
642   assert(H == OtherH &&
643          "Mismatched headers even though found in the same map entry!");
644 
645   assert(L->getLoopDepth() == OtherL->getLoopDepth() &&
646          "Mismatched loop depth!");
647   const LoopT *ParentL = L, *OtherParentL = OtherL;
648   do {
649     assert(ParentL->getHeader() == OtherParentL->getHeader() &&
650            "Mismatched parent loop headers!");
651     ParentL = ParentL->getParentLoop();
652     OtherParentL = OtherParentL->getParentLoop();
653   } while (ParentL);
654 
655   for (const LoopT *SubL : *L) {
656     BlockT *SubH = SubL->getHeader();
657     const LoopT *OtherSubL = OtherLoopHeaders.lookup(SubH);
658     assert(OtherSubL && "Inner loop is missing in computed loop info!");
659     OtherLoopHeaders.erase(SubH);
660     compareLoops(SubL, OtherSubL, OtherLoopHeaders);
661   }
662 
663   std::vector<BlockT *> BBs = L->getBlocks();
664   std::vector<BlockT *> OtherBBs = OtherL->getBlocks();
665   assert(compareVectors(BBs, OtherBBs) &&
666          "Mismatched basic blocks in the loops!");
667 
668   const SmallPtrSetImpl<const BlockT *> &BlocksSet = L->getBlocksSet();
669   const SmallPtrSetImpl<const BlockT *> &OtherBlocksSet = L->getBlocksSet();
670   assert(BlocksSet.size() == OtherBlocksSet.size() &&
671          std::all_of(BlocksSet.begin(), BlocksSet.end(),
672                      [&OtherBlocksSet](const BlockT *BB) {
673                        return OtherBlocksSet.count(BB);
674                      }) &&
675          "Mismatched basic blocks in BlocksSets!");
676 }
677 #endif
678 
679 template <class BlockT, class LoopT>
verify(const DomTreeBase<BlockT> & DomTree)680 void LoopInfoBase<BlockT, LoopT>::verify(
681     const DomTreeBase<BlockT> &DomTree) const {
682   DenseSet<const LoopT *> Loops;
683   for (iterator I = begin(), E = end(); I != E; ++I) {
684     assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
685     (*I)->verifyLoopNest(&Loops);
686   }
687 
688 // Verify that blocks are mapped to valid loops.
689 #ifndef NDEBUG
690   for (auto &Entry : BBMap) {
691     const BlockT *BB = Entry.first;
692     LoopT *L = Entry.second;
693     assert(Loops.count(L) && "orphaned loop");
694     assert(L->contains(BB) && "orphaned block");
695     for (LoopT *ChildLoop : *L)
696       assert(!ChildLoop->contains(BB) &&
697              "BBMap should point to the innermost loop containing BB");
698   }
699 
700   // Recompute LoopInfo to verify loops structure.
701   LoopInfoBase<BlockT, LoopT> OtherLI;
702   OtherLI.analyze(DomTree);
703 
704   // Build a map we can use to move from our LI to the computed one. This
705   // allows us to ignore the particular order in any layer of the loop forest
706   // while still comparing the structure.
707   DenseMap<BlockT *, const LoopT *> OtherLoopHeaders;
708   for (LoopT *L : OtherLI)
709     addInnerLoopsToHeadersMap(OtherLoopHeaders, OtherLI, *L);
710 
711   // Walk the top level loops and ensure there is a corresponding top-level
712   // loop in the computed version and then recursively compare those loop
713   // nests.
714   for (LoopT *L : *this) {
715     BlockT *Header = L->getHeader();
716     const LoopT *OtherL = OtherLoopHeaders.lookup(Header);
717     assert(OtherL && "Top level loop is missing in computed loop info!");
718     // Now that we've matched this loop, erase its header from the map.
719     OtherLoopHeaders.erase(Header);
720     // And recursively compare these loops.
721     compareLoops(L, OtherL, OtherLoopHeaders);
722   }
723 
724   // Any remaining entries in the map are loops which were found when computing
725   // a fresh LoopInfo but not present in the current one.
726   if (!OtherLoopHeaders.empty()) {
727     for (const auto &HeaderAndLoop : OtherLoopHeaders)
728       dbgs() << "Found new loop: " << *HeaderAndLoop.second << "\n";
729     llvm_unreachable("Found new loops when recomputing LoopInfo!");
730   }
731 #endif
732 }
733 
734 } // End llvm namespace
735 
736 #endif
737