1 //===- llvm/Analysis/ValueTracking.h - Walk computations --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ANALYSIS_VALUETRACKING_H
15 #define LLVM_ANALYSIS_VALUETRACKING_H
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/InstrTypes.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include <cassert>
25 #include <cstdint>
26 
27 namespace llvm {
28 
29 class AddOperator;
30 class APInt;
31 class AssumptionCache;
32 class DominatorTree;
33 class GEPOperator;
34 class IntrinsicInst;
35 class LoadInst;
36 class WithOverflowInst;
37 struct KnownBits;
38 class Loop;
39 class LoopInfo;
40 class MDNode;
41 class OptimizationRemarkEmitter;
42 class StringRef;
43 class TargetLibraryInfo;
44 class Value;
45 
46   /// Determine which bits of V are known to be either zero or one and return
47   /// them in the KnownZero/KnownOne bit sets.
48   ///
49   /// This function is defined on values with integer type, values with pointer
50   /// type, and vectors of integers.  In the case
51   /// where V is a vector, the known zero and known one values are the
52   /// same width as the vector element, and the bit is set only if it is true
53   /// for all of the elements in the vector.
54   void computeKnownBits(const Value *V, KnownBits &Known,
55                         const DataLayout &DL, unsigned Depth = 0,
56                         AssumptionCache *AC = nullptr,
57                         const Instruction *CxtI = nullptr,
58                         const DominatorTree *DT = nullptr,
59                         OptimizationRemarkEmitter *ORE = nullptr,
60                         bool UseInstrInfo = true);
61 
62   /// Determine which bits of V are known to be either zero or one and return
63   /// them in the KnownZero/KnownOne bit sets.
64   ///
65   /// This function is defined on values with integer type, values with pointer
66   /// type, and vectors of integers.  In the case
67   /// where V is a vector, the known zero and known one values are the
68   /// same width as the vector element, and the bit is set only if it is true
69   /// for all of the demanded elements in the vector.
70   void computeKnownBits(const Value *V, const APInt &DemandedElts,
71                         KnownBits &Known, const DataLayout &DL,
72                         unsigned Depth = 0, AssumptionCache *AC = nullptr,
73                         const Instruction *CxtI = nullptr,
74                         const DominatorTree *DT = nullptr,
75                         OptimizationRemarkEmitter *ORE = nullptr,
76                         bool UseInstrInfo = true);
77 
78   /// Returns the known bits rather than passing by reference.
79   KnownBits computeKnownBits(const Value *V, const DataLayout &DL,
80                              unsigned Depth = 0, AssumptionCache *AC = nullptr,
81                              const Instruction *CxtI = nullptr,
82                              const DominatorTree *DT = nullptr,
83                              OptimizationRemarkEmitter *ORE = nullptr,
84                              bool UseInstrInfo = true);
85 
86   /// Returns the known bits rather than passing by reference.
87   KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
88                              const DataLayout &DL, unsigned Depth = 0,
89                              AssumptionCache *AC = nullptr,
90                              const Instruction *CxtI = nullptr,
91                              const DominatorTree *DT = nullptr,
92                              OptimizationRemarkEmitter *ORE = nullptr,
93                              bool UseInstrInfo = true);
94 
95   /// Compute known bits from the range metadata.
96   /// \p KnownZero the set of bits that are known to be zero
97   /// \p KnownOne the set of bits that are known to be one
98   void computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
99                                          KnownBits &Known);
100 
101   /// Return true if LHS and RHS have no common bits set.
102   bool haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
103                            const DataLayout &DL,
104                            AssumptionCache *AC = nullptr,
105                            const Instruction *CxtI = nullptr,
106                            const DominatorTree *DT = nullptr,
107                            bool UseInstrInfo = true);
108 
109   /// Return true if the given value is known to have exactly one bit set when
110   /// defined. For vectors return true if every element is known to be a power
111   /// of two when defined. Supports values with integer or pointer type and
112   /// vectors of integers. If 'OrZero' is set, then return true if the given
113   /// value is either a power of two or zero.
114   bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
115                               bool OrZero = false, unsigned Depth = 0,
116                               AssumptionCache *AC = nullptr,
117                               const Instruction *CxtI = nullptr,
118                               const DominatorTree *DT = nullptr,
119                               bool UseInstrInfo = true);
120 
121   bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI);
122 
123   /// Return true if the given value is known to be non-zero when defined. For
124   /// vectors, return true if every element is known to be non-zero when
125   /// defined. For pointers, if the context instruction and dominator tree are
126   /// specified, perform context-sensitive analysis and return true if the
127   /// pointer couldn't possibly be null at the specified instruction.
128   /// Supports values with integer or pointer type and vectors of integers.
129   bool isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth = 0,
130                       AssumptionCache *AC = nullptr,
131                       const Instruction *CxtI = nullptr,
132                       const DominatorTree *DT = nullptr,
133                       bool UseInstrInfo = true);
134 
135   /// Return true if the two given values are negation.
136   /// Currently can recoginze Value pair:
137   /// 1: <X, Y> if X = sub (0, Y) or Y = sub (0, X)
138   /// 2: <X, Y> if X = sub (A, B) and Y = sub (B, A)
139   bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW = false);
140 
141   /// Returns true if the give value is known to be non-negative.
142   bool isKnownNonNegative(const Value *V, const DataLayout &DL,
143                           unsigned Depth = 0,
144                           AssumptionCache *AC = nullptr,
145                           const Instruction *CxtI = nullptr,
146                           const DominatorTree *DT = nullptr,
147                           bool UseInstrInfo = true);
148 
149   /// Returns true if the given value is known be positive (i.e. non-negative
150   /// and non-zero).
151   bool isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth = 0,
152                        AssumptionCache *AC = nullptr,
153                        const Instruction *CxtI = nullptr,
154                        const DominatorTree *DT = nullptr,
155                        bool UseInstrInfo = true);
156 
157   /// Returns true if the given value is known be negative (i.e. non-positive
158   /// and non-zero).
159   bool isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth = 0,
160                        AssumptionCache *AC = nullptr,
161                        const Instruction *CxtI = nullptr,
162                        const DominatorTree *DT = nullptr,
163                        bool UseInstrInfo = true);
164 
165   /// Return true if the given values are known to be non-equal when defined.
166   /// Supports scalar integer types only.
167   bool isKnownNonEqual(const Value *V1, const Value *V2, const DataLayout &DL,
168                        AssumptionCache *AC = nullptr,
169                        const Instruction *CxtI = nullptr,
170                        const DominatorTree *DT = nullptr,
171                        bool UseInstrInfo = true);
172 
173   /// Return true if 'V & Mask' is known to be zero. We use this predicate to
174   /// simplify operations downstream. Mask is known to be zero for bits that V
175   /// cannot have.
176   ///
177   /// This function is defined on values with integer type, values with pointer
178   /// type, and vectors of integers.  In the case
179   /// where V is a vector, the mask, known zero, and known one values are the
180   /// same width as the vector element, and the bit is set only if it is true
181   /// for all of the elements in the vector.
182   bool MaskedValueIsZero(const Value *V, const APInt &Mask,
183                          const DataLayout &DL,
184                          unsigned Depth = 0, AssumptionCache *AC = nullptr,
185                          const Instruction *CxtI = nullptr,
186                          const DominatorTree *DT = nullptr,
187                          bool UseInstrInfo = true);
188 
189   /// Return the number of times the sign bit of the register is replicated into
190   /// the other bits. We know that at least 1 bit is always equal to the sign
191   /// bit (itself), but other cases can give us information. For example,
192   /// immediately after an "ashr X, 2", we know that the top 3 bits are all
193   /// equal to each other, so we return 3. For vectors, return the number of
194   /// sign bits for the vector element with the mininum number of known sign
195   /// bits.
196   unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL,
197                               unsigned Depth = 0, AssumptionCache *AC = nullptr,
198                               const Instruction *CxtI = nullptr,
199                               const DominatorTree *DT = nullptr,
200                               bool UseInstrInfo = true);
201 
202   /// This function computes the integer multiple of Base that equals V. If
203   /// successful, it returns true and returns the multiple in Multiple. If
204   /// unsuccessful, it returns false. Also, if V can be simplified to an
205   /// integer, then the simplified V is returned in Val. Look through sext only
206   /// if LookThroughSExt=true.
207   bool ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
208                        bool LookThroughSExt = false,
209                        unsigned Depth = 0);
210 
211   /// Map a call instruction to an intrinsic ID.  Libcalls which have equivalent
212   /// intrinsics are treated as-if they were intrinsics.
213   Intrinsic::ID getIntrinsicForCallSite(const CallBase &CB,
214                                         const TargetLibraryInfo *TLI);
215 
216   /// Return true if we can prove that the specified FP value is never equal to
217   /// -0.0.
218   bool CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
219                             unsigned Depth = 0);
220 
221   /// Return true if we can prove that the specified FP value is either NaN or
222   /// never less than -0.0.
223   ///
224   ///      NaN --> true
225   ///       +0 --> true
226   ///       -0 --> true
227   ///   x > +0 --> true
228   ///   x < -0 --> false
229   bool CannotBeOrderedLessThanZero(const Value *V, const TargetLibraryInfo *TLI);
230 
231   /// Return true if the floating-point scalar value is not an infinity or if
232   /// the floating-point vector value has no infinities. Return false if a value
233   /// could ever be infinity.
234   bool isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
235                             unsigned Depth = 0);
236 
237   /// Return true if the floating-point scalar value is not a NaN or if the
238   /// floating-point vector value has no NaN elements. Return false if a value
239   /// could ever be NaN.
240   bool isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
241                        unsigned Depth = 0);
242 
243   /// Return true if we can prove that the specified FP value's sign bit is 0.
244   ///
245   ///      NaN --> true/false (depending on the NaN's sign bit)
246   ///       +0 --> true
247   ///       -0 --> false
248   ///   x > +0 --> true
249   ///   x < -0 --> false
250   bool SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI);
251 
252   /// If the specified value can be set by repeating the same byte in memory,
253   /// return the i8 value that it is represented with. This is true for all i8
254   /// values obviously, but is also true for i32 0, i32 -1, i16 0xF0F0, double
255   /// 0.0 etc. If the value can't be handled with a repeated byte store (e.g.
256   /// i16 0x1234), return null. If the value is entirely undef and padding,
257   /// return undef.
258   Value *isBytewiseValue(Value *V, const DataLayout &DL);
259 
260   /// Given an aggregate and an sequence of indices, see if the scalar value
261   /// indexed is already around as a register, for example if it were inserted
262   /// directly into the aggregate.
263   ///
264   /// If InsertBefore is not null, this function will duplicate (modified)
265   /// insertvalues when a part of a nested struct is extracted.
266   Value *FindInsertedValue(Value *V,
267                            ArrayRef<unsigned> idx_range,
268                            Instruction *InsertBefore = nullptr);
269 
270   /// Analyze the specified pointer to see if it can be expressed as a base
271   /// pointer plus a constant offset. Return the base and offset to the caller.
272   ///
273   /// This is a wrapper around Value::stripAndAccumulateConstantOffsets that
274   /// creates and later unpacks the required APInt.
275   inline Value *GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
276                                                  const DataLayout &DL,
277                                                  bool AllowNonInbounds = true) {
278     APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
279     Value *Base =
280         Ptr->stripAndAccumulateConstantOffsets(DL, OffsetAPInt, AllowNonInbounds);
281 
282     Offset = OffsetAPInt.getSExtValue();
283     return Base;
284   }
285   inline const Value *
286   GetPointerBaseWithConstantOffset(const Value *Ptr, int64_t &Offset,
287                                    const DataLayout &DL,
288                                    bool AllowNonInbounds = true) {
289     return GetPointerBaseWithConstantOffset(const_cast<Value *>(Ptr), Offset, DL,
290                                             AllowNonInbounds);
291   }
292 
293   /// Returns true if the GEP is based on a pointer to a string (array of
294   // \p CharSize integers) and is indexing into this string.
295   bool isGEPBasedOnPointerToString(const GEPOperator *GEP,
296                                    unsigned CharSize = 8);
297 
298   /// Represents offset+length into a ConstantDataArray.
299   struct ConstantDataArraySlice {
300     /// ConstantDataArray pointer. nullptr indicates a zeroinitializer (a valid
301     /// initializer, it just doesn't fit the ConstantDataArray interface).
302     const ConstantDataArray *Array;
303 
304     /// Slice starts at this Offset.
305     uint64_t Offset;
306 
307     /// Length of the slice.
308     uint64_t Length;
309 
310     /// Moves the Offset and adjusts Length accordingly.
moveConstantDataArraySlice311     void move(uint64_t Delta) {
312       assert(Delta < Length);
313       Offset += Delta;
314       Length -= Delta;
315     }
316 
317     /// Convenience accessor for elements in the slice.
318     uint64_t operator[](unsigned I) const {
319       return Array==nullptr ? 0 : Array->getElementAsInteger(I + Offset);
320     }
321   };
322 
323   /// Returns true if the value \p V is a pointer into a ConstantDataArray.
324   /// If successful \p Slice will point to a ConstantDataArray info object
325   /// with an appropriate offset.
326   bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice,
327                                 unsigned ElementSize, uint64_t Offset = 0);
328 
329   /// This function computes the length of a null-terminated C string pointed to
330   /// by V. If successful, it returns true and returns the string in Str. If
331   /// unsuccessful, it returns false. This does not include the trailing null
332   /// character by default. If TrimAtNul is set to false, then this returns any
333   /// trailing null characters as well as any other characters that come after
334   /// it.
335   bool getConstantStringInfo(const Value *V, StringRef &Str,
336                              uint64_t Offset = 0, bool TrimAtNul = true);
337 
338   /// If we can compute the length of the string pointed to by the specified
339   /// pointer, return 'len+1'.  If we can't, return 0.
340   uint64_t GetStringLength(const Value *V, unsigned CharSize = 8);
341 
342   /// This function returns call pointer argument that is considered the same by
343   /// aliasing rules. You CAN'T use it to replace one value with another. If
344   /// \p MustPreserveNullness is true, the call must preserve the nullness of
345   /// the pointer.
346   const Value *getArgumentAliasingToReturnedPointer(const CallBase *Call,
347                                                     bool MustPreserveNullness);
348   inline Value *
getArgumentAliasingToReturnedPointer(CallBase * Call,bool MustPreserveNullness)349   getArgumentAliasingToReturnedPointer(CallBase *Call,
350                                        bool MustPreserveNullness) {
351     return const_cast<Value *>(getArgumentAliasingToReturnedPointer(
352         const_cast<const CallBase *>(Call), MustPreserveNullness));
353   }
354 
355   /// {launder,strip}.invariant.group returns pointer that aliases its argument,
356   /// and it only captures pointer by returning it.
357   /// These intrinsics are not marked as nocapture, because returning is
358   /// considered as capture. The arguments are not marked as returned neither,
359   /// because it would make it useless. If \p MustPreserveNullness is true,
360   /// the intrinsic must preserve the nullness of the pointer.
361   bool isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
362       const CallBase *Call, bool MustPreserveNullness);
363 
364   /// This method strips off any GEP address adjustments and pointer casts from
365   /// the specified value, returning the original object being addressed. Note
366   /// that the returned value has pointer type if the specified value does. If
367   /// the MaxLookup value is non-zero, it limits the number of instructions to
368   /// be stripped off.
369   Value *GetUnderlyingObject(Value *V, const DataLayout &DL,
370                              unsigned MaxLookup = 6);
371   inline const Value *GetUnderlyingObject(const Value *V, const DataLayout &DL,
372                                           unsigned MaxLookup = 6) {
373     return GetUnderlyingObject(const_cast<Value *>(V), DL, MaxLookup);
374   }
375 
376   /// This method is similar to GetUnderlyingObject except that it can
377   /// look through phi and select instructions and return multiple objects.
378   ///
379   /// If LoopInfo is passed, loop phis are further analyzed.  If a pointer
380   /// accesses different objects in each iteration, we don't look through the
381   /// phi node. E.g. consider this loop nest:
382   ///
383   ///   int **A;
384   ///   for (i)
385   ///     for (j) {
386   ///        A[i][j] = A[i-1][j] * B[j]
387   ///     }
388   ///
389   /// This is transformed by Load-PRE to stash away A[i] for the next iteration
390   /// of the outer loop:
391   ///
392   ///   Curr = A[0];          // Prev_0
393   ///   for (i: 1..N) {
394   ///     Prev = Curr;        // Prev = PHI (Prev_0, Curr)
395   ///     Curr = A[i];
396   ///     for (j: 0..N) {
397   ///        Curr[j] = Prev[j] * B[j]
398   ///     }
399   ///   }
400   ///
401   /// Since A[i] and A[i-1] are independent pointers, getUnderlyingObjects
402   /// should not assume that Curr and Prev share the same underlying object thus
403   /// it shouldn't look through the phi above.
404   void GetUnderlyingObjects(const Value *V,
405                             SmallVectorImpl<const Value *> &Objects,
406                             const DataLayout &DL, LoopInfo *LI = nullptr,
407                             unsigned MaxLookup = 6);
408 
409   /// This is a wrapper around GetUnderlyingObjects and adds support for basic
410   /// ptrtoint+arithmetic+inttoptr sequences.
411   bool getUnderlyingObjectsForCodeGen(const Value *V,
412                             SmallVectorImpl<Value *> &Objects,
413                             const DataLayout &DL);
414 
415   /// Return true if the only users of this pointer are lifetime markers.
416   bool onlyUsedByLifetimeMarkers(const Value *V);
417 
418   /// Return true if speculation of the given load must be suppressed to avoid
419   /// ordering or interfering with an active sanitizer.  If not suppressed,
420   /// dereferenceability and alignment must be proven separately.  Note: This
421   /// is only needed for raw reasoning; if you use the interface below
422   /// (isSafeToSpeculativelyExecute), this is handled internally.
423   bool mustSuppressSpeculation(const LoadInst &LI);
424 
425   /// Return true if the instruction does not have any effects besides
426   /// calculating the result and does not have undefined behavior.
427   ///
428   /// This method never returns true for an instruction that returns true for
429   /// mayHaveSideEffects; however, this method also does some other checks in
430   /// addition. It checks for undefined behavior, like dividing by zero or
431   /// loading from an invalid pointer (but not for undefined results, like a
432   /// shift with a shift amount larger than the width of the result). It checks
433   /// for malloc and alloca because speculatively executing them might cause a
434   /// memory leak. It also returns false for instructions related to control
435   /// flow, specifically terminators and PHI nodes.
436   ///
437   /// If the CtxI is specified this method performs context-sensitive analysis
438   /// and returns true if it is safe to execute the instruction immediately
439   /// before the CtxI.
440   ///
441   /// If the CtxI is NOT specified this method only looks at the instruction
442   /// itself and its operands, so if this method returns true, it is safe to
443   /// move the instruction as long as the correct dominance relationships for
444   /// the operands and users hold.
445   ///
446   /// This method can return true for instructions that read memory;
447   /// for such instructions, moving them may change the resulting value.
448   bool isSafeToSpeculativelyExecute(const Value *V,
449                                     const Instruction *CtxI = nullptr,
450                                     const DominatorTree *DT = nullptr);
451 
452   /// Returns true if the result or effects of the given instructions \p I
453   /// depend on or influence global memory.
454   /// Memory dependence arises for example if the instruction reads from
455   /// memory or may produce effects or undefined behaviour. Memory dependent
456   /// instructions generally cannot be reorderd with respect to other memory
457   /// dependent instructions or moved into non-dominated basic blocks.
458   /// Instructions which just compute a value based on the values of their
459   /// operands are not memory dependent.
460   bool mayBeMemoryDependent(const Instruction &I);
461 
462   /// Return true if it is an intrinsic that cannot be speculated but also
463   /// cannot trap.
464   bool isAssumeLikeIntrinsic(const Instruction *I);
465 
466   /// Return true if it is valid to use the assumptions provided by an
467   /// assume intrinsic, I, at the point in the control-flow identified by the
468   /// context instruction, CxtI.
469   bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI,
470                                const DominatorTree *DT = nullptr);
471 
472   enum class OverflowResult {
473     /// Always overflows in the direction of signed/unsigned min value.
474     AlwaysOverflowsLow,
475     /// Always overflows in the direction of signed/unsigned max value.
476     AlwaysOverflowsHigh,
477     /// May or may not overflow.
478     MayOverflow,
479     /// Never overflows.
480     NeverOverflows,
481   };
482 
483   OverflowResult computeOverflowForUnsignedMul(const Value *LHS,
484                                                const Value *RHS,
485                                                const DataLayout &DL,
486                                                AssumptionCache *AC,
487                                                const Instruction *CxtI,
488                                                const DominatorTree *DT,
489                                                bool UseInstrInfo = true);
490   OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
491                                              const DataLayout &DL,
492                                              AssumptionCache *AC,
493                                              const Instruction *CxtI,
494                                              const DominatorTree *DT,
495                                              bool UseInstrInfo = true);
496   OverflowResult computeOverflowForUnsignedAdd(const Value *LHS,
497                                                const Value *RHS,
498                                                const DataLayout &DL,
499                                                AssumptionCache *AC,
500                                                const Instruction *CxtI,
501                                                const DominatorTree *DT,
502                                                bool UseInstrInfo = true);
503   OverflowResult computeOverflowForSignedAdd(const Value *LHS, const Value *RHS,
504                                              const DataLayout &DL,
505                                              AssumptionCache *AC = nullptr,
506                                              const Instruction *CxtI = nullptr,
507                                              const DominatorTree *DT = nullptr);
508   /// This version also leverages the sign bit of Add if known.
509   OverflowResult computeOverflowForSignedAdd(const AddOperator *Add,
510                                              const DataLayout &DL,
511                                              AssumptionCache *AC = nullptr,
512                                              const Instruction *CxtI = nullptr,
513                                              const DominatorTree *DT = nullptr);
514   OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS,
515                                                const DataLayout &DL,
516                                                AssumptionCache *AC,
517                                                const Instruction *CxtI,
518                                                const DominatorTree *DT);
519   OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
520                                              const DataLayout &DL,
521                                              AssumptionCache *AC,
522                                              const Instruction *CxtI,
523                                              const DominatorTree *DT);
524 
525   /// Returns true if the arithmetic part of the \p WO 's result is
526   /// used only along the paths control dependent on the computation
527   /// not overflowing, \p WO being an <op>.with.overflow intrinsic.
528   bool isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
529                                  const DominatorTree &DT);
530 
531 
532   /// Determine the possible constant range of an integer or vector of integer
533   /// value. This is intended as a cheap, non-recursive check.
534   ConstantRange computeConstantRange(const Value *V, bool UseInstrInfo = true,
535                                      AssumptionCache *AC = nullptr,
536                                      const Instruction *CtxI = nullptr,
537                                      unsigned Depth = 0);
538 
539   /// Return true if this function can prove that the instruction I will
540   /// always transfer execution to one of its successors (including the next
541   /// instruction that follows within a basic block). E.g. this is not
542   /// guaranteed for function calls that could loop infinitely.
543   ///
544   /// In other words, this function returns false for instructions that may
545   /// transfer execution or fail to transfer execution in a way that is not
546   /// captured in the CFG nor in the sequence of instructions within a basic
547   /// block.
548   ///
549   /// Undefined behavior is assumed not to happen, so e.g. division is
550   /// guaranteed to transfer execution to the following instruction even
551   /// though division by zero might cause undefined behavior.
552   bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I);
553 
554   /// Returns true if this block does not contain a potential implicit exit.
555   /// This is equivelent to saying that all instructions within the basic block
556   /// are guaranteed to transfer execution to their successor within the basic
557   /// block. This has the same assumptions w.r.t. undefined behavior as the
558   /// instruction variant of this function.
559   bool isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB);
560 
561   /// Return true if this function can prove that the instruction I
562   /// is executed for every iteration of the loop L.
563   ///
564   /// Note that this currently only considers the loop header.
565   bool isGuaranteedToExecuteForEveryIteration(const Instruction *I,
566                                               const Loop *L);
567 
568   /// Return true if I yields poison or raises UB if any of its operands is
569   /// poison.
570   /// Formally, given I = `r = op v1 v2 .. vN`, propagatesPoison returns true
571   /// if, for all i, r is evaluated to poison or op raises UB if vi = poison.
572   /// To filter out operands that raise UB on poison, you can use
573   /// getGuaranteedNonPoisonOp.
574   bool propagatesPoison(const Instruction *I);
575 
576   /// Return either nullptr or an operand of I such that I will trigger
577   /// undefined behavior if I is executed and that operand has a poison
578   /// value.
579   const Value *getGuaranteedNonPoisonOp(const Instruction *I);
580 
581   /// Return true if the given instruction must trigger undefined behavior.
582   /// when I is executed with any operands which appear in KnownPoison holding
583   /// a poison value at the point of execution.
584   bool mustTriggerUB(const Instruction *I,
585                      const SmallSet<const Value *, 16>& KnownPoison);
586 
587   /// Return true if this function can prove that if PoisonI is executed
588   /// and yields a poison value, then that will trigger undefined behavior.
589   ///
590   /// Note that this currently only considers the basic block that is
591   /// the parent of I.
592   bool programUndefinedIfPoison(const Instruction *PoisonI);
593 
594   /// Return true if I can create poison from non-poison operands.
595   /// For vectors, canCreatePoison returns true if there is potential poison in
596   /// any element of the result when vectors without poison are given as
597   /// operands.
598   /// For example, given `I = shl <2 x i32> %x, <0, 32>`, this function returns
599   /// true. If I raises immediate UB but never creates poison (e.g. sdiv I, 0),
600   /// canCreatePoison returns false.
601   bool canCreatePoison(const Instruction *I);
602 
603   /// Return true if this function can prove that V is never undef value
604   /// or poison value.
605   //
606   /// If CtxI and DT are specified this method performs flow-sensitive analysis
607   /// and returns true if it is guaranteed to be never undef or poison
608   /// immediately before the CtxI.
609   bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
610                                         const Instruction *CtxI = nullptr,
611                                         const DominatorTree *DT = nullptr,
612                                         unsigned Depth = 0);
613 
614   /// Specific patterns of select instructions we can match.
615   enum SelectPatternFlavor {
616     SPF_UNKNOWN = 0,
617     SPF_SMIN,                   /// Signed minimum
618     SPF_UMIN,                   /// Unsigned minimum
619     SPF_SMAX,                   /// Signed maximum
620     SPF_UMAX,                   /// Unsigned maximum
621     SPF_FMINNUM,                /// Floating point minnum
622     SPF_FMAXNUM,                /// Floating point maxnum
623     SPF_ABS,                    /// Absolute value
624     SPF_NABS                    /// Negated absolute value
625   };
626 
627   /// Behavior when a floating point min/max is given one NaN and one
628   /// non-NaN as input.
629   enum SelectPatternNaNBehavior {
630     SPNB_NA = 0,                /// NaN behavior not applicable.
631     SPNB_RETURNS_NAN,           /// Given one NaN input, returns the NaN.
632     SPNB_RETURNS_OTHER,         /// Given one NaN input, returns the non-NaN.
633     SPNB_RETURNS_ANY            /// Given one NaN input, can return either (or
634                                 /// it has been determined that no operands can
635                                 /// be NaN).
636   };
637 
638   struct SelectPatternResult {
639     SelectPatternFlavor Flavor;
640     SelectPatternNaNBehavior NaNBehavior; /// Only applicable if Flavor is
641                                           /// SPF_FMINNUM or SPF_FMAXNUM.
642     bool Ordered;               /// When implementing this min/max pattern as
643                                 /// fcmp; select, does the fcmp have to be
644                                 /// ordered?
645 
646     /// Return true if \p SPF is a min or a max pattern.
isMinOrMaxSelectPatternResult647     static bool isMinOrMax(SelectPatternFlavor SPF) {
648       return SPF != SPF_UNKNOWN && SPF != SPF_ABS && SPF != SPF_NABS;
649     }
650   };
651 
652   /// Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind
653   /// and providing the out parameter results if we successfully match.
654   ///
655   /// For ABS/NABS, LHS will be set to the input to the abs idiom. RHS will be
656   /// the negation instruction from the idiom.
657   ///
658   /// If CastOp is not nullptr, also match MIN/MAX idioms where the type does
659   /// not match that of the original select. If this is the case, the cast
660   /// operation (one of Trunc,SExt,Zext) that must be done to transform the
661   /// type of LHS and RHS into the type of V is returned in CastOp.
662   ///
663   /// For example:
664   ///   %1 = icmp slt i32 %a, i32 4
665   ///   %2 = sext i32 %a to i64
666   ///   %3 = select i1 %1, i64 %2, i64 4
667   ///
668   /// -> LHS = %a, RHS = i32 4, *CastOp = Instruction::SExt
669   ///
670   SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
671                                          Instruction::CastOps *CastOp = nullptr,
672                                          unsigned Depth = 0);
673 
674   inline SelectPatternResult
matchSelectPattern(const Value * V,const Value * & LHS,const Value * & RHS)675   matchSelectPattern(const Value *V, const Value *&LHS, const Value *&RHS) {
676     Value *L = const_cast<Value *>(LHS);
677     Value *R = const_cast<Value *>(RHS);
678     auto Result = matchSelectPattern(const_cast<Value *>(V), L, R);
679     LHS = L;
680     RHS = R;
681     return Result;
682   }
683 
684   /// Determine the pattern that a select with the given compare as its
685   /// predicate and given values as its true/false operands would match.
686   SelectPatternResult matchDecomposedSelectPattern(
687       CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
688       Instruction::CastOps *CastOp = nullptr, unsigned Depth = 0);
689 
690   /// Return the canonical comparison predicate for the specified
691   /// minimum/maximum flavor.
692   CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF,
693                                    bool Ordered = false);
694 
695   /// Return the inverse minimum/maximum flavor of the specified flavor.
696   /// For example, signed minimum is the inverse of signed maximum.
697   SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF);
698 
699   /// Return the canonical inverse comparison predicate for the specified
700   /// minimum/maximum flavor.
701   CmpInst::Predicate getInverseMinMaxPred(SelectPatternFlavor SPF);
702 
703   /// Return true if RHS is known to be implied true by LHS.  Return false if
704   /// RHS is known to be implied false by LHS.  Otherwise, return None if no
705   /// implication can be made.
706   /// A & B must be i1 (boolean) values or a vector of such values. Note that
707   /// the truth table for implication is the same as <=u on i1 values (but not
708   /// <=s!).  The truth table for both is:
709   ///    | T | F (B)
710   ///  T | T | F
711   ///  F | T | T
712   /// (A)
713   Optional<bool> isImpliedCondition(const Value *LHS, const Value *RHS,
714                                     const DataLayout &DL, bool LHSIsTrue = true,
715                                     unsigned Depth = 0);
716   Optional<bool> isImpliedCondition(const Value *LHS,
717                                     CmpInst::Predicate RHSPred,
718                                     const Value *RHSOp0, const Value *RHSOp1,
719                                     const DataLayout &DL, bool LHSIsTrue = true,
720                                     unsigned Depth = 0);
721 
722   /// Return the boolean condition value in the context of the given instruction
723   /// if it is known based on dominating conditions.
724   Optional<bool> isImpliedByDomCondition(const Value *Cond,
725                                          const Instruction *ContextI,
726                                          const DataLayout &DL);
727   Optional<bool> isImpliedByDomCondition(CmpInst::Predicate Pred,
728                                          const Value *LHS, const Value *RHS,
729                                          const Instruction *ContextI,
730                                          const DataLayout &DL);
731 
732   /// If Ptr1 is provably equal to Ptr2 plus a constant offset, return that
733   /// offset. For example, Ptr1 might be &A[42], and Ptr2 might be &A[40]. In
734   /// this case offset would be -8.
735   Optional<int64_t> isPointerOffset(const Value *Ptr1, const Value *Ptr2,
736                                     const DataLayout &DL);
737 } // end namespace llvm
738 
739 #endif // LLVM_ANALYSIS_VALUETRACKING_H
740