1 //===- llvm/CodeGen/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file describes how to lower LLVM code to machine code.  This has two
11 /// main components:
12 ///
13 ///  1. Which ValueTypes are natively supported by the target.
14 ///  2. Which operations are supported for supported ValueTypes.
15 ///  3. Cost thresholds for alternative implementations of certain operations.
16 ///
17 /// In addition it has a few other components, like information about FP
18 /// immediates.
19 ///
20 //===----------------------------------------------------------------------===//
21 
22 #ifndef LLVM_CODEGEN_TARGETLOWERING_H
23 #define LLVM_CODEGEN_TARGETLOWERING_H
24 
25 #include "llvm/ADT/APInt.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/CodeGen/DAGCombine.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/RuntimeLibcalls.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/SelectionDAGNodes.h"
36 #include "llvm/CodeGen/TargetCallingConv.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/CallingConv.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/InlineAsm.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/Support/Alignment.h"
49 #include "llvm/Support/AtomicOrdering.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MachineValueType.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <climits>
56 #include <cstdint>
57 #include <iterator>
58 #include <map>
59 #include <string>
60 #include <utility>
61 #include <vector>
62 
63 namespace llvm {
64 
65 class BranchProbability;
66 class CCState;
67 class CCValAssign;
68 class Constant;
69 class FastISel;
70 class FunctionLoweringInfo;
71 class GlobalValue;
72 class GISelKnownBits;
73 class IntrinsicInst;
74 struct KnownBits;
75 class LegacyDivergenceAnalysis;
76 class LLVMContext;
77 class MachineBasicBlock;
78 class MachineFunction;
79 class MachineInstr;
80 class MachineJumpTableInfo;
81 class MachineLoop;
82 class MachineRegisterInfo;
83 class MCContext;
84 class MCExpr;
85 class Module;
86 class ProfileSummaryInfo;
87 class TargetLibraryInfo;
88 class TargetMachine;
89 class TargetRegisterClass;
90 class TargetRegisterInfo;
91 class TargetTransformInfo;
92 class Value;
93 
94 namespace Sched {
95 
96   enum Preference {
97     None,             // No preference
98     Source,           // Follow source order.
99     RegPressure,      // Scheduling for lowest register pressure.
100     Hybrid,           // Scheduling for both latency and register pressure.
101     ILP,              // Scheduling for ILP in low register pressure mode.
102     VLIW              // Scheduling for VLIW targets.
103   };
104 
105 } // end namespace Sched
106 
107 // MemOp models a memory operation, either memset or memcpy/memmove.
108 struct MemOp {
109 private:
110   // Shared
111   uint64_t Size;
112   bool DstAlignCanChange; // true if destination alignment can satisfy any
113                           // constraint.
114   Align DstAlign;         // Specified alignment of the memory operation.
115 
116   bool AllowOverlap;
117   // memset only
118   bool IsMemset;   // If setthis memory operation is a memset.
119   bool ZeroMemset; // If set clears out memory with zeros.
120   // memcpy only
121   bool MemcpyStrSrc; // Indicates whether the memcpy source is an in-register
122                      // constant so it does not need to be loaded.
123   Align SrcAlign; // Inferred alignment of the source or default value if the
124                   // memory operation does not need to load the value.
125 public:
126   bool MustPreserveCheriCaps; // memcpy must preserve CHERI tags even if
127   // SrcAlign < CapSize (since it could be aligned
128   // at run time)
129 public:
130   static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign,
131                     Align SrcAlign, bool IsVolatile, bool MustPreserveCheriCaps,
132                     bool MemcpyStrSrc = false) {
133     MemOp Op;
134     Op.Size = Size;
135     Op.DstAlignCanChange = DstAlignCanChange;
136     Op.DstAlign = DstAlign;
137     Op.AllowOverlap = !IsVolatile;
138     Op.IsMemset = false;
139     Op.ZeroMemset = false;
140     Op.MemcpyStrSrc = MemcpyStrSrc;
141     Op.MustPreserveCheriCaps = MustPreserveCheriCaps;
142     Op.SrcAlign = SrcAlign;
143     return Op;
144   }
145 
SetMemOp146   static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign,
147                    bool IsZeroMemset, bool IsVolatile) {
148     MemOp Op;
149     Op.Size = Size;
150     Op.DstAlignCanChange = DstAlignCanChange;
151     Op.DstAlign = DstAlign;
152     Op.AllowOverlap = !IsVolatile;
153     Op.IsMemset = true;
154     Op.ZeroMemset = IsZeroMemset;
155     Op.MemcpyStrSrc = false;
156     Op.MustPreserveCheriCaps = false;
157     return Op;
158   }
159 
sizeMemOp160   uint64_t size() const { return Size; }
getDstAlignMemOp161   Align getDstAlign() const {
162     assert(!DstAlignCanChange);
163     return DstAlign;
164   }
isFixedDstAlignMemOp165   bool isFixedDstAlign() const { return !DstAlignCanChange; }
allowOverlapMemOp166   bool allowOverlap() const { return AllowOverlap; }
isMemsetMemOp167   bool isMemset() const { return IsMemset; }
isMemcpyMemOp168   bool isMemcpy() const { return !IsMemset; }
isMemcpyWithFixedDstAlignMemOp169   bool isMemcpyWithFixedDstAlign() const {
170     return isMemcpy() && !DstAlignCanChange;
171   }
isZeroMemsetMemOp172   bool isZeroMemset() const { return isMemset() && ZeroMemset; }
isMemcpyStrSrcMemOp173   bool isMemcpyStrSrc() const {
174     assert(isMemcpy() && "Must be a memcpy");
175     return MemcpyStrSrc;
176   }
getSrcAlignMemOp177   Align getSrcAlign() const {
178     assert(isMemcpy() && "Must be a memcpy");
179     return SrcAlign;
180   }
isSrcAlignedMemOp181   bool isSrcAligned(Align AlignCheck) const {
182     return isMemset() || llvm::isAligned(AlignCheck, SrcAlign.value());
183   }
isDstAlignedMemOp184   bool isDstAligned(Align AlignCheck) const {
185     return DstAlignCanChange || llvm::isAligned(AlignCheck, DstAlign.value());
186   }
isAlignedMemOp187   bool isAligned(Align AlignCheck) const {
188     return isSrcAligned(AlignCheck) && isDstAligned(AlignCheck);
189   }
190 };
191 
192 /// This base class for TargetLowering contains the SelectionDAG-independent
193 /// parts that can be used from the rest of CodeGen.
194 class TargetLoweringBase {
195 public:
196   /// This enum indicates whether operations are valid for a target, and if not,
197   /// what action should be used to make them valid.
198   enum LegalizeAction : uint8_t {
199     Legal,      // The target natively supports this operation.
200     Promote,    // This operation should be executed in a larger type.
201     Expand,     // Try to expand this to other ops, otherwise use a libcall.
202     LibCall,    // Don't try to expand this to other ops, always use a libcall.
203     Custom      // Use the LowerOperation hook to implement custom lowering.
204   };
205 
206   /// This enum indicates whether a types are legal for a target, and if not,
207   /// what action should be used to make them valid.
208   enum LegalizeTypeAction : uint8_t {
209     TypeLegal,           // The target natively supports this type.
210     TypePromoteInteger,  // Replace this integer with a larger one.
211     TypeExpandInteger,   // Split this integer into two of half the size.
212     TypeSoftenFloat,     // Convert this float to a same size integer type.
213     TypeExpandFloat,     // Split this float into two of half the size.
214     TypeScalarizeVector, // Replace this one-element vector with its element.
215     TypeSplitVector,     // Split this vector into two of half the size.
216     TypeWidenVector,     // This vector should be widened into a larger vector.
217     TypePromoteFloat,    // Replace this float with a larger one.
218     TypeSoftPromoteHalf, // Soften half to i16 and use float to do arithmetic.
219     TypeScalarizeScalableVector, // This action is explicitly left unimplemented.
220                                  // While it is theoretically possible to
221                                  // legalize operations on scalable types with a
222                                  // loop that handles the vscale * #lanes of the
223                                  // vector, this is non-trivial at SelectionDAG
224                                  // level and these types are better to be
225                                  // widened or promoted.
226   };
227 
228   /// LegalizeKind holds the legalization kind that needs to happen to EVT
229   /// in order to type-legalize it.
230   using LegalizeKind = std::pair<LegalizeTypeAction, EVT>;
231 
232   /// Enum that describes how the target represents true/false values.
233   enum BooleanContent {
234     UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
235     ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
236     ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
237   };
238 
239   /// Enum that describes what type of support for selects the target has.
240   enum SelectSupportKind {
241     ScalarValSelect,      // The target supports scalar selects (ex: cmov).
242     ScalarCondVectorVal,  // The target supports selects with a scalar condition
243                           // and vector values (ex: cmov).
244     VectorMaskSelect      // The target supports vector selects with a vector
245                           // mask (ex: x86 blends).
246   };
247 
248   /// Enum that specifies what an atomic load/AtomicRMWInst is expanded
249   /// to, if at all. Exists because different targets have different levels of
250   /// support for these atomic instructions, and also have different options
251   /// w.r.t. what they should expand to.
252   enum class AtomicExpansionKind {
253     None,    // Don't expand the instruction.
254     LLSC,    // Expand the instruction into loadlinked/storeconditional; used
255              // by ARM/AArch64.
256     LLOnly,  // Expand the (load) instruction into just a load-linked, which has
257              // greater atomic guarantees than a normal load.
258     CmpXChg, // Expand the instruction into cmpxchg; used by at least X86.
259     MaskedIntrinsic, // Use a target-specific intrinsic for the LL/SC loop.
260   };
261 
262   /// Enum that specifies when a multiplication should be expanded.
263   enum class MulExpansionKind {
264     Always,            // Always expand the instruction.
265     OnlyLegalOrCustom, // Only expand when the resulting instructions are legal
266                        // or custom.
267   };
268 
269   /// Enum that specifies when a float negation is beneficial.
270   enum class NegatibleCost {
271     Cheaper = 0,    // Negated expression is cheaper.
272     Neutral = 1,    // Negated expression has the same cost.
273     Expensive = 2   // Negated expression is more expensive.
274   };
275 
276   class ArgListEntry {
277   public:
278     Value *Val = nullptr;
279     SDValue Node = SDValue();
280     Type *Ty = nullptr;
281     bool IsSExt : 1;
282     bool IsZExt : 1;
283     bool IsInReg : 1;
284     bool IsSRet : 1;
285     bool IsNest : 1;
286     bool IsByVal : 1;
287     bool IsInAlloca : 1;
288     bool IsPreallocated : 1;
289     bool IsReturned : 1;
290     bool IsSwiftSelf : 1;
291     bool IsSwiftError : 1;
292     bool IsCFGuardTarget : 1;
293     MaybeAlign Alignment = None;
294     Type *ByValType = nullptr;
295     Type *PreallocatedType = nullptr;
296 
ArgListEntry()297     ArgListEntry()
298         : IsSExt(false), IsZExt(false), IsInReg(false), IsSRet(false),
299           IsNest(false), IsByVal(false), IsInAlloca(false),
300           IsPreallocated(false), IsReturned(false), IsSwiftSelf(false),
301           IsSwiftError(false), IsCFGuardTarget(false) {}
302 
303     void setAttributes(const CallBase *Call, unsigned ArgIdx);
304   };
305   using ArgListTy = std::vector<ArgListEntry>;
306 
markLibCallAttributes(MachineFunction * MF,unsigned CC,ArgListTy & Args)307   virtual void markLibCallAttributes(MachineFunction *MF, unsigned CC,
308                                      ArgListTy &Args) const {};
309 
getExtendForContent(BooleanContent Content)310   static ISD::NodeType getExtendForContent(BooleanContent Content) {
311     switch (Content) {
312     case UndefinedBooleanContent:
313       // Extend by adding rubbish bits.
314       return ISD::ANY_EXTEND;
315     case ZeroOrOneBooleanContent:
316       // Extend by adding zero bits.
317       return ISD::ZERO_EXTEND;
318     case ZeroOrNegativeOneBooleanContent:
319       // Extend by copying the sign bit.
320       return ISD::SIGN_EXTEND;
321     }
322     llvm_unreachable("Invalid content kind");
323   }
324 
325   explicit TargetLoweringBase(const TargetMachine &TM);
326   TargetLoweringBase(const TargetLoweringBase &) = delete;
327   TargetLoweringBase &operator=(const TargetLoweringBase &) = delete;
328   virtual ~TargetLoweringBase() = default;
329 
330   /// Return true if the target support strict float operation
isStrictFPEnabled()331   bool isStrictFPEnabled() const {
332     return IsStrictFPEnabled;
333   }
334 
335 protected:
336   /// Initialize all of the actions to default values.
337   void initActions();
338 
339 public:
getTargetMachine()340   const TargetMachine &getTargetMachine() const { return TM; }
341 
useSoftFloat()342   virtual bool useSoftFloat() const { return false; }
343 
getExceptionPointerAS()344   virtual uint32_t getExceptionPointerAS() const { return 0; }
345 
346   /// Return the pointer type for the given address space, defaults to
347   /// the pointer type from the data layout.
348   /// FIXME: The default needs to be removed once all the code is updated.
349   virtual MVT getPointerTy(const DataLayout &DL,
350   // To ease porting of backends allow defaulting to AS0
351 #ifdef LLVM_TARGETLOWERINGINFO_DEFAULT_AS
352                    uint32_t AS = LLVM_TARGETLOWERINGINFO_DEFAULT_AS) const {
353 #else
354                    uint32_t AS) const {
355 #endif
356     if (DL.isFatPointer(AS))
357       return MVT::getFatPointerVT(DL.getPointerSizeInBits(AS));
358     return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
359   }
360 
361   /// Return the in-memory pointer type for the given address space, defaults to
362   /// the pointer type from the data layout.  FIXME: The default needs to be
363   /// removed once all the code is updated.
364   MVT getPointerMemTy(const DataLayout &DL,
365   // To ease porting of backends allow defaulting to AS0
366 #ifdef LLVM_TARGETLOWERINGINFO_DEFAULT_AS
367                    uint32_t AS = LLVM_TARGETLOWERINGINFO_DEFAULT_AS) const {
368 #else
369                    uint32_t AS) const {
370 #endif
371     if (DL.isFatPointer(AS))
372       return MVT::getFatPointerVT(DL.getPointerSizeInBits(AS));
373     return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
374   }
375 
376   /// Return the integer type with the same size as the address range for
377   /// the given address space.
378   virtual MVT getPointerRangeTy(const DataLayout &DL, uint32_t AS = 0) const {
379     return MVT::getIntegerVT(DL.getPointerAddrSizeInBits(AS));
380   }
381 
382   /// Return the type for frame index, which is determined by
383   /// the alloca address space specified through the data layout.
getFrameIndexTy(const DataLayout & DL)384   MVT getFrameIndexTy(const DataLayout &DL) const {
385     return getPointerTy(DL, DL.getAllocaAddrSpace());
386   }
387 
388   /// Return the type for code pointers, which is determined by the program
389   /// address space specified through the data layout.
getProgramPointerTy(const DataLayout & DL)390   MVT getProgramPointerTy(const DataLayout &DL) const {
391     return getPointerTy(DL, DL.getProgramAddressSpace());
392   }
393 
394   /// Return the type for operands of fence.
395   /// TODO: Let fence operands be of i32 type and remove this.
getFenceOperandTy(const DataLayout & DL)396   virtual MVT getFenceOperandTy(const DataLayout &DL) const {
397     // FIXME: hardcoded AS0
398     return getPointerTy(DL, 0);
399   }
400 
401   /// EVT is not used in-tree, but is used by out-of-tree target.
402   /// A documentation for this function would be nice...
403   virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const;
404 
405   EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
406                        bool LegalTypes = true) const;
407 
408   /// Returns the type to be used for the index operand of:
409   /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
410   /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR
getVectorIdxTy(const DataLayout & DL)411   virtual MVT getVectorIdxTy(const DataLayout &DL) const {
412     // FIXME: hardcoded AS0
413     return getPointerTy(DL, 0);
414   }
415 
416   /// This callback is used to inspect load/store instructions and add
417   /// target-specific MachineMemOperand flags to them.  The default
418   /// implementation does nothing.
getTargetMMOFlags(const Instruction & I)419   virtual MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const {
420     return MachineMemOperand::MONone;
421   }
422 
423   MachineMemOperand::Flags getLoadMemOperandFlags(const LoadInst &LI,
424                                                   const DataLayout &DL) const;
425   MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI,
426                                                    const DataLayout &DL) const;
427   MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI,
428                                                     const DataLayout &DL) const;
429 
isSelectSupported(SelectSupportKind)430   virtual bool isSelectSupported(SelectSupportKind /*kind*/) const {
431     return true;
432   }
433 
434   /// Return true if it is profitable to convert a select of FP constants into
435   /// a constant pool load whose address depends on the select condition. The
436   /// parameter may be used to differentiate a select with FP compare from
437   /// integer compare.
reduceSelectOfFPConstantLoads(EVT CmpOpVT)438   virtual bool reduceSelectOfFPConstantLoads(EVT CmpOpVT) const {
439     return true;
440   }
441 
442   /// Return true if multiple condition registers are available.
hasMultipleConditionRegisters()443   bool hasMultipleConditionRegisters() const {
444     return HasMultipleConditionRegisters;
445   }
446 
447   /// Return true if the target has BitExtract instructions.
hasExtractBitsInsn()448   bool hasExtractBitsInsn() const { return HasExtractBitsInsn; }
449 
450   /// Return the preferred vector type legalization action.
451   virtual TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(MVT VT)452   getPreferredVectorAction(MVT VT) const {
453     // The default action for one element vectors is to scalarize
454     if (VT.getVectorElementCount() == 1)
455       return TypeScalarizeVector;
456     // The default action for an odd-width vector is to widen.
457     if (!VT.isPow2VectorType())
458       return TypeWidenVector;
459     // The default action for other vectors is to promote
460     return TypePromoteInteger;
461   }
462 
463   // Return true if the half type should be passed around as i16, but promoted
464   // to float around arithmetic. The default behavior is to pass around as
465   // float and convert around loads/stores/bitcasts and other places where
466   // the size matters.
softPromoteHalfType()467   virtual bool softPromoteHalfType() const { return false; }
468 
469   // There are two general methods for expanding a BUILD_VECTOR node:
470   //  1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle
471   //     them together.
472   //  2. Build the vector on the stack and then load it.
473   // If this function returns true, then method (1) will be used, subject to
474   // the constraint that all of the necessary shuffles are legal (as determined
475   // by isShuffleMaskLegal). If this function returns false, then method (2) is
476   // always used. The vector type, and the number of defined values, are
477   // provided.
478   virtual bool
shouldExpandBuildVectorWithShuffles(EVT,unsigned DefinedValues)479   shouldExpandBuildVectorWithShuffles(EVT /* VT */,
480                                       unsigned DefinedValues) const {
481     return DefinedValues < 3;
482   }
483 
484   /// Return true if integer divide is usually cheaper than a sequence of
485   /// several shifts, adds, and multiplies for this target.
486   /// The definition of "cheaper" may depend on whether we're optimizing
487   /// for speed or for size.
isIntDivCheap(EVT VT,AttributeList Attr)488   virtual bool isIntDivCheap(EVT VT, AttributeList Attr) const { return false; }
489 
490   /// Return true if the target can handle a standalone remainder operation.
hasStandaloneRem(EVT VT)491   virtual bool hasStandaloneRem(EVT VT) const {
492     return true;
493   }
494 
495   /// Return true if SQRT(X) shouldn't be replaced with X*RSQRT(X).
isFsqrtCheap(SDValue X,SelectionDAG & DAG)496   virtual bool isFsqrtCheap(SDValue X, SelectionDAG &DAG) const {
497     // Default behavior is to replace SQRT(X) with X*RSQRT(X).
498     return false;
499   }
500 
501   /// Reciprocal estimate status values used by the functions below.
502   enum ReciprocalEstimate : int {
503     Unspecified = -1,
504     Disabled = 0,
505     Enabled = 1
506   };
507 
508   /// Return a ReciprocalEstimate enum value for a square root of the given type
509   /// based on the function's attributes. If the operation is not overridden by
510   /// the function's attributes, "Unspecified" is returned and target defaults
511   /// are expected to be used for instruction selection.
512   int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const;
513 
514   /// Return a ReciprocalEstimate enum value for a division of the given type
515   /// based on the function's attributes. If the operation is not overridden by
516   /// the function's attributes, "Unspecified" is returned and target defaults
517   /// are expected to be used for instruction selection.
518   int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const;
519 
520   /// Return the refinement step count for a square root of the given type based
521   /// on the function's attributes. If the operation is not overridden by
522   /// the function's attributes, "Unspecified" is returned and target defaults
523   /// are expected to be used for instruction selection.
524   int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const;
525 
526   /// Return the refinement step count for a division of the given type based
527   /// on the function's attributes. If the operation is not overridden by
528   /// the function's attributes, "Unspecified" is returned and target defaults
529   /// are expected to be used for instruction selection.
530   int getDivRefinementSteps(EVT VT, MachineFunction &MF) const;
531 
532   /// Returns true if target has indicated at least one type should be bypassed.
isSlowDivBypassed()533   bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
534 
535   /// Returns map of slow types for division or remainder with corresponding
536   /// fast types
getBypassSlowDivWidths()537   const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
538     return BypassSlowDivWidths;
539   }
540 
541   /// Return true if Flow Control is an expensive operation that should be
542   /// avoided.
isJumpExpensive()543   bool isJumpExpensive() const { return JumpIsExpensive; }
544 
545   /// Return true if selects are only cheaper than branches if the branch is
546   /// unlikely to be predicted right.
isPredictableSelectExpensive()547   bool isPredictableSelectExpensive() const {
548     return PredictableSelectIsExpensive;
549   }
550 
fallBackToDAGISel(const Instruction & Inst)551   virtual bool fallBackToDAGISel(const Instruction &Inst) const {
552     return false;
553   }
554 
555   /// If a branch or a select condition is skewed in one direction by more than
556   /// this factor, it is very likely to be predicted correctly.
557   virtual BranchProbability getPredictableBranchThreshold() const;
558 
559   /// Return true if the following transform is beneficial:
560   /// fold (conv (load x)) -> (load (conv*)x)
561   /// On architectures that don't natively support some vector loads
562   /// efficiently, casting the load to a smaller vector of larger types and
563   /// loading is more efficient, however, this can be undone by optimizations in
564   /// dag combiner.
isLoadBitCastBeneficial(EVT LoadVT,EVT BitcastVT,const SelectionDAG & DAG,const MachineMemOperand & MMO)565   virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT,
566                                        const SelectionDAG &DAG,
567                                        const MachineMemOperand &MMO) const {
568     // Don't do if we could do an indexed load on the original type, but not on
569     // the new one.
570     if (!LoadVT.isSimple() || !BitcastVT.isSimple())
571       return true;
572 
573     MVT LoadMVT = LoadVT.getSimpleVT();
574 
575     // Don't bother doing this if it's just going to be promoted again later, as
576     // doing so might interfere with other combines.
577     if (getOperationAction(ISD::LOAD, LoadMVT) == Promote &&
578         getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT())
579       return false;
580 
581     bool Fast = false;
582     return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), BitcastVT,
583                               MMO, &Fast) && Fast;
584   }
585 
586   /// Return true if the following transform is beneficial:
587   /// (store (y (conv x)), y*)) -> (store x, (x*))
isStoreBitCastBeneficial(EVT StoreVT,EVT BitcastVT,const SelectionDAG & DAG,const MachineMemOperand & MMO)588   virtual bool isStoreBitCastBeneficial(EVT StoreVT, EVT BitcastVT,
589                                         const SelectionDAG &DAG,
590                                         const MachineMemOperand &MMO) const {
591     // Default to the same logic as loads.
592     return isLoadBitCastBeneficial(StoreVT, BitcastVT, DAG, MMO);
593   }
594 
595   /// Return true if it is expected to be cheaper to do a store of a non-zero
596   /// vector constant with the given size and type for the address space than to
597   /// store the individual scalar element constants.
storeOfVectorConstantIsCheap(EVT MemVT,unsigned NumElem,unsigned AddrSpace)598   virtual bool storeOfVectorConstantIsCheap(EVT MemVT,
599                                             unsigned NumElem,
600                                             unsigned AddrSpace) const {
601     return false;
602   }
603 
604   /// Allow store merging for the specified type after legalization in addition
605   /// to before legalization. This may transform stores that do not exist
606   /// earlier (for example, stores created from intrinsics).
mergeStoresAfterLegalization(EVT MemVT)607   virtual bool mergeStoresAfterLegalization(EVT MemVT) const {
608     return true;
609   }
610 
611   /// Returns if it's reasonable to merge stores to MemVT size.
canMergeStoresTo(unsigned AS,EVT MemVT,const SelectionDAG & DAG)612   virtual bool canMergeStoresTo(unsigned AS, EVT MemVT,
613                                 const SelectionDAG &DAG) const {
614     return true;
615   }
616 
617   /// Return true if it is cheap to speculate a call to intrinsic cttz.
isCheapToSpeculateCttz()618   virtual bool isCheapToSpeculateCttz() const {
619     return false;
620   }
621 
622   /// Return true if it is cheap to speculate a call to intrinsic ctlz.
isCheapToSpeculateCtlz()623   virtual bool isCheapToSpeculateCtlz() const {
624     return false;
625   }
626 
627   /// Return true if ctlz instruction is fast.
isCtlzFast()628   virtual bool isCtlzFast() const {
629     return false;
630   }
631 
632   /// Return true if instruction generated for equality comparison is folded
633   /// with instruction generated for signed comparison.
isEqualityCmpFoldedWithSignedCmp()634   virtual bool isEqualityCmpFoldedWithSignedCmp() const { return true; }
635 
636   /// Return true if it is safe to transform an integer-domain bitwise operation
637   /// into the equivalent floating-point operation. This should be set to true
638   /// if the target has IEEE-754-compliant fabs/fneg operations for the input
639   /// type.
hasBitPreservingFPLogic(EVT VT)640   virtual bool hasBitPreservingFPLogic(EVT VT) const {
641     return false;
642   }
643 
644   /// Return true if it is cheaper to split the store of a merged int val
645   /// from a pair of smaller values into multiple stores.
isMultiStoresCheaperThanBitsMerge(EVT LTy,EVT HTy)646   virtual bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const {
647     return false;
648   }
649 
650   /// Return if the target supports combining a
651   /// chain like:
652   /// \code
653   ///   %andResult = and %val1, #mask
654   ///   %icmpResult = icmp %andResult, 0
655   /// \endcode
656   /// into a single machine instruction of a form like:
657   /// \code
658   ///   cc = test %register, #mask
659   /// \endcode
isMaskAndCmp0FoldingBeneficial(const Instruction & AndI)660   virtual bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
661     return false;
662   }
663 
664   /// Use bitwise logic to make pairs of compares more efficient. For example:
665   /// and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
666   /// This should be true when it takes more than one instruction to lower
667   /// setcc (cmp+set on x86 scalar), when bitwise ops are faster than logic on
668   /// condition bits (crand on PowerPC), and/or when reducing cmp+br is a win.
convertSetCCLogicToBitwiseLogic(EVT VT)669   virtual bool convertSetCCLogicToBitwiseLogic(EVT VT) const {
670     return false;
671   }
672 
673   /// Return the preferred operand type if the target has a quick way to compare
674   /// integer values of the given size. Assume that any legal integer type can
675   /// be compared efficiently. Targets may override this to allow illegal wide
676   /// types to return a vector type if there is support to compare that type.
hasFastEqualityCompare(unsigned NumBits)677   virtual MVT hasFastEqualityCompare(unsigned NumBits) const {
678     MVT VT = MVT::getIntegerVT(NumBits);
679     return isTypeLegal(VT) ? VT : MVT::INVALID_SIMPLE_VALUE_TYPE;
680   }
681 
682   /// Return true if the target should transform:
683   /// (X & Y) == Y ---> (~X & Y) == 0
684   /// (X & Y) != Y ---> (~X & Y) != 0
685   ///
686   /// This may be profitable if the target has a bitwise and-not operation that
687   /// sets comparison flags. A target may want to limit the transformation based
688   /// on the type of Y or if Y is a constant.
689   ///
690   /// Note that the transform will not occur if Y is known to be a power-of-2
691   /// because a mask and compare of a single bit can be handled by inverting the
692   /// predicate, for example:
693   /// (X & 8) == 8 ---> (X & 8) != 0
hasAndNotCompare(SDValue Y)694   virtual bool hasAndNotCompare(SDValue Y) const {
695     return false;
696   }
697 
698   /// Return true if the target has a bitwise and-not operation:
699   /// X = ~A & B
700   /// This can be used to simplify select or other instructions.
hasAndNot(SDValue X)701   virtual bool hasAndNot(SDValue X) const {
702     // If the target has the more complex version of this operation, assume that
703     // it has this operation too.
704     return hasAndNotCompare(X);
705   }
706 
707   /// Return true if the target has a bit-test instruction:
708   ///   (X & (1 << Y)) ==/!= 0
709   /// This knowledge can be used to prevent breaking the pattern,
710   /// or creating it if it could be recognized.
hasBitTest(SDValue X,SDValue Y)711   virtual bool hasBitTest(SDValue X, SDValue Y) const { return false; }
712 
713   /// There are two ways to clear extreme bits (either low or high):
714   /// Mask:    x &  (-1 << y)  (the instcombine canonical form)
715   /// Shifts:  x >> y << y
716   /// Return true if the variant with 2 variable shifts is preferred.
717   /// Return false if there is no preference.
shouldFoldMaskToVariableShiftPair(SDValue X)718   virtual bool shouldFoldMaskToVariableShiftPair(SDValue X) const {
719     // By default, let's assume that no one prefers shifts.
720     return false;
721   }
722 
723   /// Return true if it is profitable to fold a pair of shifts into a mask.
724   /// This is usually true on most targets. But some targets, like Thumb1,
725   /// have immediate shift instructions, but no immediate "and" instruction;
726   /// this makes the fold unprofitable.
shouldFoldConstantShiftPairToMask(const SDNode * N,CombineLevel Level)727   virtual bool shouldFoldConstantShiftPairToMask(const SDNode *N,
728                                                  CombineLevel Level) const {
729     return true;
730   }
731 
732   /// Should we tranform the IR-optimal check for whether given truncation
733   /// down into KeptBits would be truncating or not:
734   ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
735   /// Into it's more traditional form:
736   ///   ((%x << C) a>> C) dstcond %x
737   /// Return true if we should transform.
738   /// Return false if there is no preference.
shouldTransformSignedTruncationCheck(EVT XVT,unsigned KeptBits)739   virtual bool shouldTransformSignedTruncationCheck(EVT XVT,
740                                                     unsigned KeptBits) const {
741     // By default, let's assume that no one prefers shifts.
742     return false;
743   }
744 
745   /// Given the pattern
746   ///   (X & (C l>>/<< Y)) ==/!= 0
747   /// return true if it should be transformed into:
748   ///   ((X <</l>> Y) & C) ==/!= 0
749   /// WARNING: if 'X' is a constant, the fold may deadlock!
750   /// FIXME: we could avoid passing XC, but we can't use isConstOrConstSplat()
751   ///        here because it can end up being not linked in.
shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(SDValue X,ConstantSDNode * XC,ConstantSDNode * CC,SDValue Y,unsigned OldShiftOpcode,unsigned NewShiftOpcode,SelectionDAG & DAG)752   virtual bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
753       SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
754       unsigned OldShiftOpcode, unsigned NewShiftOpcode,
755       SelectionDAG &DAG) const {
756     if (hasBitTest(X, Y)) {
757       // One interesting pattern that we'd want to form is 'bit test':
758       //   ((1 << Y) & C) ==/!= 0
759       // But we also need to be careful not to try to reverse that fold.
760 
761       // Is this '1 << Y' ?
762       if (OldShiftOpcode == ISD::SHL && CC->isOne())
763         return false; // Keep the 'bit test' pattern.
764 
765       // Will it be '1 << Y' after the transform ?
766       if (XC && NewShiftOpcode == ISD::SHL && XC->isOne())
767         return true; // Do form the 'bit test' pattern.
768     }
769 
770     // If 'X' is a constant, and we transform, then we will immediately
771     // try to undo the fold, thus causing endless combine loop.
772     // So by default, let's assume everyone prefers the fold
773     // iff 'X' is not a constant.
774     return !XC;
775   }
776 
777   /// These two forms are equivalent:
778   ///   sub %y, (xor %x, -1)
779   ///   add (add %x, 1), %y
780   /// The variant with two add's is IR-canonical.
781   /// Some targets may prefer one to the other.
preferIncOfAddToSubOfNot(EVT VT)782   virtual bool preferIncOfAddToSubOfNot(EVT VT) const {
783     // By default, let's assume that everyone prefers the form with two add's.
784     return true;
785   }
786 
787   /// Return true if the target wants to use the optimization that
788   /// turns ext(promotableInst1(...(promotableInstN(load)))) into
789   /// promotedInst1(...(promotedInstN(ext(load)))).
enableExtLdPromotion()790   bool enableExtLdPromotion() const { return EnableExtLdPromotion; }
791 
792   /// Return true if the target can combine store(extractelement VectorTy,
793   /// Idx).
794   /// \p Cost[out] gives the cost of that transformation when this is true.
canCombineStoreAndExtract(Type * VectorTy,Value * Idx,unsigned & Cost)795   virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
796                                          unsigned &Cost) const {
797     return false;
798   }
799 
800   /// Return true if inserting a scalar into a variable element of an undef
801   /// vector is more efficiently handled by splatting the scalar instead.
shouldSplatInsEltVarIndex(EVT)802   virtual bool shouldSplatInsEltVarIndex(EVT) const {
803     return false;
804   }
805 
806   /// Return true if target always beneficiates from combining into FMA for a
807   /// given value type. This must typically return false on targets where FMA
808   /// takes more cycles to execute than FADD.
enableAggressiveFMAFusion(EVT VT)809   virtual bool enableAggressiveFMAFusion(EVT VT) const {
810     return false;
811   }
812 
813   /// Return the ValueType of the result of SETCC operations.
814   virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
815                                  EVT VT) const;
816 
817   /// Return the ValueType for comparison libcalls. Comparions libcalls include
818   /// floating point comparion calls, and Ordered/Unordered check calls on
819   /// floating point numbers.
820   virtual
821   MVT::SimpleValueType getCmpLibcallReturnType() const;
822 
823   /// For targets without i1 registers, this gives the nature of the high-bits
824   /// of boolean values held in types wider than i1.
825   ///
826   /// "Boolean values" are special true/false values produced by nodes like
827   /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
828   /// Not to be confused with general values promoted from i1.  Some cpus
829   /// distinguish between vectors of boolean and scalars; the isVec parameter
830   /// selects between the two kinds.  For example on X86 a scalar boolean should
831   /// be zero extended from i1, while the elements of a vector of booleans
832   /// should be sign extended from i1.
833   ///
834   /// Some cpus also treat floating point types the same way as they treat
835   /// vectors instead of the way they treat scalars.
getBooleanContents(bool isVec,bool isFloat)836   BooleanContent getBooleanContents(bool isVec, bool isFloat) const {
837     if (isVec)
838       return BooleanVectorContents;
839     return isFloat ? BooleanFloatContents : BooleanContents;
840   }
841 
getBooleanContents(EVT Type)842   BooleanContent getBooleanContents(EVT Type) const {
843     return getBooleanContents(Type.isVector(), Type.isFloatingPoint());
844   }
845 
846   /// Return target scheduling preference.
getSchedulingPreference()847   Sched::Preference getSchedulingPreference() const {
848     return SchedPreferenceInfo;
849   }
850 
851   /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics
852   /// for different nodes. This function returns the preference (or none) for
853   /// the given node.
getSchedulingPreference(SDNode *)854   virtual Sched::Preference getSchedulingPreference(SDNode *) const {
855     return Sched::None;
856   }
857 
858   /// Return the register class that should be used for the specified value
859   /// type.
860   virtual const TargetRegisterClass *getRegClassFor(MVT VT, bool isDivergent = false) const {
861     (void)isDivergent;
862     const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
863     assert(RC && "This value type is not natively supported!");
864     return RC;
865   }
866 
867   /// Allows target to decide about the register class of the
868   /// specific value that is live outside the defining block.
869   /// Returns true if the value needs uniform register class.
requiresUniformRegister(MachineFunction & MF,const Value *)870   virtual bool requiresUniformRegister(MachineFunction &MF,
871                                        const Value *) const {
872     return false;
873   }
874 
875   /// Return the 'representative' register class for the specified value
876   /// type.
877   ///
878   /// The 'representative' register class is the largest legal super-reg
879   /// register class for the register class of the value type.  For example, on
880   /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep
881   /// register class is GR64 on x86_64.
getRepRegClassFor(MVT VT)882   virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
883     const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
884     return RC;
885   }
886 
887   /// Return the cost of the 'representative' register class for the specified
888   /// value type.
getRepRegClassCostFor(MVT VT)889   virtual uint8_t getRepRegClassCostFor(MVT VT) const {
890     return RepRegClassCostForVT[VT.SimpleTy];
891   }
892 
893   /// Return true if SHIFT instructions should be expanded to SHIFT_PARTS
894   /// instructions, and false if a library call is preferred (e.g for code-size
895   /// reasons).
shouldExpandShift(SelectionDAG & DAG,SDNode * N)896   virtual bool shouldExpandShift(SelectionDAG &DAG, SDNode *N) const {
897     return true;
898   }
899 
900   /// Return true if the target has native support for the specified value type.
901   /// This means that it has a register that directly holds it without
902   /// promotions or expansions.
isTypeLegal(EVT VT)903   bool isTypeLegal(EVT VT) const {
904     assert(!VT.isSimple() ||
905            (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
906     return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != nullptr;
907   }
908 
909   class ValueTypeActionImpl {
910     /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
911     /// that indicates how instruction selection should deal with the type.
912     LegalizeTypeAction ValueTypeActions[MVT::LAST_VALUETYPE];
913 
914   public:
ValueTypeActionImpl()915     ValueTypeActionImpl() {
916       std::fill(std::begin(ValueTypeActions), std::end(ValueTypeActions),
917                 TypeLegal);
918     }
919 
getTypeAction(MVT VT)920     LegalizeTypeAction getTypeAction(MVT VT) const {
921       return ValueTypeActions[VT.SimpleTy];
922     }
923 
setTypeAction(MVT VT,LegalizeTypeAction Action)924     void setTypeAction(MVT VT, LegalizeTypeAction Action) {
925       ValueTypeActions[VT.SimpleTy] = Action;
926     }
927   };
928 
getValueTypeActions()929   const ValueTypeActionImpl &getValueTypeActions() const {
930     return ValueTypeActions;
931   }
932 
933   /// Return how we should legalize values of this type, either it is already
934   /// legal (return 'Legal') or we need to promote it to a larger type (return
935   /// 'Promote'), or we need to expand it into multiple registers of smaller
936   /// integer type (return 'Expand').  'Custom' is not an option.
getTypeAction(LLVMContext & Context,EVT VT)937   LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
938     return getTypeConversion(Context, VT).first;
939   }
getTypeAction(MVT VT)940   LegalizeTypeAction getTypeAction(MVT VT) const {
941     return ValueTypeActions.getTypeAction(VT);
942   }
943 
944   /// For types supported by the target, this is an identity function.  For
945   /// types that must be promoted to larger types, this returns the larger type
946   /// to promote to.  For integer types that are larger than the largest integer
947   /// register, this contains one step in the expansion to get to the smaller
948   /// register. For illegal floating point types, this returns the integer type
949   /// to transform to.
getTypeToTransformTo(LLVMContext & Context,EVT VT)950   EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
951     return getTypeConversion(Context, VT).second;
952   }
953 
954   /// For types supported by the target, this is an identity function.  For
955   /// types that must be expanded (i.e. integer types that are larger than the
956   /// largest integer register or illegal floating point types), this returns
957   /// the largest legal type it will be expanded to.
getTypeToExpandTo(LLVMContext & Context,EVT VT)958   EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
959     assert(!VT.isVector());
960     while (true) {
961       switch (getTypeAction(Context, VT)) {
962       case TypeLegal:
963         return VT;
964       case TypeExpandInteger:
965         VT = getTypeToTransformTo(Context, VT);
966         break;
967       default:
968         llvm_unreachable("Type is not legal nor is it to be expanded!");
969       }
970     }
971   }
972 
973   /// Vector types are broken down into some number of legal first class types.
974   /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8
975   /// promoted EVT::f64 values with the X86 FP stack.  Similarly, EVT::v2i64
976   /// turns into 4 EVT::i32 values with both PPC and X86.
977   ///
978   /// This method returns the number of registers needed, and the VT for each
979   /// register.  It also returns the VT and quantity of the intermediate values
980   /// before they are promoted/expanded.
981   unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
982                                   EVT &IntermediateVT,
983                                   unsigned &NumIntermediates,
984                                   MVT &RegisterVT) const;
985 
986   /// Certain targets such as MIPS require that some types such as vectors are
987   /// always broken down into scalars in some contexts. This occurs even if the
988   /// vector type is legal.
getVectorTypeBreakdownForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT,EVT & IntermediateVT,unsigned & NumIntermediates,MVT & RegisterVT)989   virtual unsigned getVectorTypeBreakdownForCallingConv(
990       LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
991       unsigned &NumIntermediates, MVT &RegisterVT) const {
992     return getVectorTypeBreakdown(Context, VT, IntermediateVT, NumIntermediates,
993                                   RegisterVT);
994   }
995 
996   struct IntrinsicInfo {
997     unsigned     opc = 0;          // target opcode
998     EVT          memVT;            // memory VT
999 
1000     // value representing memory location
1001     PointerUnion<const Value *, const PseudoSourceValue *> ptrVal;
1002 
1003     int          offset = 0;       // offset off of ptrVal
1004     uint64_t     size = 0;         // the size of the memory location
1005                                    // (taken from memVT if zero)
1006     MaybeAlign align = Align(1);   // alignment
1007 
1008     MachineMemOperand::Flags flags = MachineMemOperand::MONone;
1009     IntrinsicInfo() = default;
1010   };
1011 
1012   /// Given an intrinsic, checks if on the target the intrinsic will need to map
1013   /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
1014   /// true and store the intrinsic information into the IntrinsicInfo that was
1015   /// passed to the function.
getTgtMemIntrinsic(IntrinsicInfo &,const CallInst &,MachineFunction &,unsigned)1016   virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
1017                                   MachineFunction &,
1018                                   unsigned /*Intrinsic*/) const {
1019     return false;
1020   }
1021 
1022   /// Returns true if the target can instruction select the specified FP
1023   /// immediate natively. If false, the legalizer will materialize the FP
1024   /// immediate as a load from a constant pool.
1025   virtual bool isFPImmLegal(const APFloat & /*Imm*/, EVT /*VT*/,
1026                             bool ForCodeSize = false) const {
1027     return false;
1028   }
1029 
1030   /// Targets can use this to indicate that they only support *some*
1031   /// VECTOR_SHUFFLE operations, those with specific masks.  By default, if a
1032   /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be
1033   /// legal.
isShuffleMaskLegal(ArrayRef<int>,EVT)1034   virtual bool isShuffleMaskLegal(ArrayRef<int> /*Mask*/, EVT /*VT*/) const {
1035     return true;
1036   }
1037 
1038   /// Returns true if the operation can trap for the value type.
1039   ///
1040   /// VT must be a legal type. By default, we optimistically assume most
1041   /// operations don't trap except for integer divide and remainder.
1042   virtual bool canOpTrap(unsigned Op, EVT VT) const;
1043 
1044   /// Similar to isShuffleMaskLegal. Targets can use this to indicate if there
1045   /// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a
1046   /// constant pool entry.
isVectorClearMaskLegal(ArrayRef<int>,EVT)1047   virtual bool isVectorClearMaskLegal(ArrayRef<int> /*Mask*/,
1048                                       EVT /*VT*/) const {
1049     return false;
1050   }
1051 
1052   /// Return how this operation should be treated: either it is legal, needs to
1053   /// be promoted to a larger size, needs to be expanded to some other code
1054   /// sequence, or the target has a custom expander for it.
getOperationAction(unsigned Op,EVT VT)1055   LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
1056     if (VT.isExtended()) return Expand;
1057     // If a target-specific SDNode requires legalization, require the target
1058     // to provide custom legalization for it.
1059     if (Op >= array_lengthof(OpActions[0])) return Custom;
1060     return OpActions[(unsigned)VT.getSimpleVT().SimpleTy][Op];
1061   }
1062 
1063   /// Custom method defined by each target to indicate if an operation which
1064   /// may require a scale is supported natively by the target.
1065   /// If not, the operation is illegal.
isSupportedFixedPointOperation(unsigned Op,EVT VT,unsigned Scale)1066   virtual bool isSupportedFixedPointOperation(unsigned Op, EVT VT,
1067                                               unsigned Scale) const {
1068     return false;
1069   }
1070 
1071   /// Some fixed point operations may be natively supported by the target but
1072   /// only for specific scales. This method allows for checking
1073   /// if the width is supported by the target for a given operation that may
1074   /// depend on scale.
getFixedPointOperationAction(unsigned Op,EVT VT,unsigned Scale)1075   LegalizeAction getFixedPointOperationAction(unsigned Op, EVT VT,
1076                                               unsigned Scale) const {
1077     auto Action = getOperationAction(Op, VT);
1078     if (Action != Legal)
1079       return Action;
1080 
1081     // This operation is supported in this type but may only work on specific
1082     // scales.
1083     bool Supported;
1084     switch (Op) {
1085     default:
1086       llvm_unreachable("Unexpected fixed point operation.");
1087     case ISD::SMULFIX:
1088     case ISD::SMULFIXSAT:
1089     case ISD::UMULFIX:
1090     case ISD::UMULFIXSAT:
1091     case ISD::SDIVFIX:
1092     case ISD::SDIVFIXSAT:
1093     case ISD::UDIVFIX:
1094     case ISD::UDIVFIXSAT:
1095       Supported = isSupportedFixedPointOperation(Op, VT, Scale);
1096       break;
1097     }
1098 
1099     return Supported ? Action : Expand;
1100   }
1101 
1102   // If Op is a strict floating-point operation, return the result
1103   // of getOperationAction for the equivalent non-strict operation.
getStrictFPOperationAction(unsigned Op,EVT VT)1104   LegalizeAction getStrictFPOperationAction(unsigned Op, EVT VT) const {
1105     unsigned EqOpc;
1106     switch (Op) {
1107       default: llvm_unreachable("Unexpected FP pseudo-opcode");
1108 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
1109       case ISD::STRICT_##DAGN: EqOpc = ISD::DAGN; break;
1110 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
1111       case ISD::STRICT_##DAGN: EqOpc = ISD::SETCC; break;
1112 #include "llvm/IR/ConstrainedOps.def"
1113     }
1114 
1115     return getOperationAction(EqOpc, VT);
1116   }
1117 
1118   /// Return true if the specified operation is legal on this target or can be
1119   /// made legal with custom lowering. This is used to help guide high-level
1120   /// lowering decisions.
isOperationLegalOrCustom(unsigned Op,EVT VT)1121   bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
1122     return (VT == MVT::Other || isTypeLegal(VT)) &&
1123       (getOperationAction(Op, VT) == Legal ||
1124        getOperationAction(Op, VT) == Custom);
1125   }
1126 
1127   /// Return true if the specified operation is legal on this target or can be
1128   /// made legal using promotion. This is used to help guide high-level lowering
1129   /// decisions.
isOperationLegalOrPromote(unsigned Op,EVT VT)1130   bool isOperationLegalOrPromote(unsigned Op, EVT VT) const {
1131     return (VT == MVT::Other || isTypeLegal(VT)) &&
1132       (getOperationAction(Op, VT) == Legal ||
1133        getOperationAction(Op, VT) == Promote);
1134   }
1135 
1136   /// Return true if the specified operation is legal on this target or can be
1137   /// made legal with custom lowering or using promotion. This is used to help
1138   /// guide high-level lowering decisions.
isOperationLegalOrCustomOrPromote(unsigned Op,EVT VT)1139   bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT) const {
1140     return (VT == MVT::Other || isTypeLegal(VT)) &&
1141       (getOperationAction(Op, VT) == Legal ||
1142        getOperationAction(Op, VT) == Custom ||
1143        getOperationAction(Op, VT) == Promote);
1144   }
1145 
1146   /// Return true if the operation uses custom lowering, regardless of whether
1147   /// the type is legal or not.
isOperationCustom(unsigned Op,EVT VT)1148   bool isOperationCustom(unsigned Op, EVT VT) const {
1149     return getOperationAction(Op, VT) == Custom;
1150   }
1151 
1152   /// Return true if lowering to a jump table is allowed.
areJTsAllowed(const Function * Fn)1153   virtual bool areJTsAllowed(const Function *Fn) const {
1154     if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
1155       return false;
1156 
1157     return isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1158            isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
1159   }
1160 
1161   /// Check whether the range [Low,High] fits in a machine word.
rangeFitsInWord(const APInt & Low,const APInt & High,const DataLayout & DL)1162   bool rangeFitsInWord(const APInt &Low, const APInt &High,
1163                        const DataLayout &DL) const {
1164     // FIXME: Using the pointer type doesn't seem ideal.
1165     // XXXAR: AS0 hardcoded
1166     uint64_t BW = DL.getIndexSizeInBits(0u);
1167     uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
1168     return Range <= BW;
1169   }
1170 
1171   /// Return true if lowering to a jump table is suitable for a set of case
1172   /// clusters which may contain \p NumCases cases, \p Range range of values.
1173   virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases,
1174                                       uint64_t Range, ProfileSummaryInfo *PSI,
1175                                       BlockFrequencyInfo *BFI) const;
1176 
1177   /// Return true if lowering to a bit test is suitable for a set of case
1178   /// clusters which contains \p NumDests unique destinations, \p Low and
1179   /// \p High as its lowest and highest case values, and expects \p NumCmps
1180   /// case value comparisons. Check if the number of destinations, comparison
1181   /// metric, and range are all suitable.
isSuitableForBitTests(unsigned NumDests,unsigned NumCmps,const APInt & Low,const APInt & High,const DataLayout & DL)1182   bool isSuitableForBitTests(unsigned NumDests, unsigned NumCmps,
1183                              const APInt &Low, const APInt &High,
1184                              const DataLayout &DL) const {
1185     // FIXME: I don't think NumCmps is the correct metric: a single case and a
1186     // range of cases both require only one branch to lower. Just looking at the
1187     // number of clusters and destinations should be enough to decide whether to
1188     // build bit tests.
1189 
1190     // To lower a range with bit tests, the range must fit the bitwidth of a
1191     // machine word.
1192     if (!rangeFitsInWord(Low, High, DL))
1193       return false;
1194 
1195     // Decide whether it's profitable to lower this range with bit tests. Each
1196     // destination requires a bit test and branch, and there is an overall range
1197     // check branch. For a small number of clusters, separate comparisons might
1198     // be cheaper, and for many destinations, splitting the range might be
1199     // better.
1200     return (NumDests == 1 && NumCmps >= 3) || (NumDests == 2 && NumCmps >= 5) ||
1201            (NumDests == 3 && NumCmps >= 6);
1202   }
1203 
1204   /// Return true if the specified operation is illegal on this target or
1205   /// unlikely to be made legal with custom lowering. This is used to help guide
1206   /// high-level lowering decisions.
isOperationExpand(unsigned Op,EVT VT)1207   bool isOperationExpand(unsigned Op, EVT VT) const {
1208     return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
1209   }
1210 
1211   /// Return true if the specified operation is legal on this target.
isOperationLegal(unsigned Op,EVT VT)1212   bool isOperationLegal(unsigned Op, EVT VT) const {
1213     return (VT == MVT::Other || isTypeLegal(VT)) &&
1214            getOperationAction(Op, VT) == Legal;
1215   }
1216 
1217   /// Return how this load with extension should be treated: either it is legal,
1218   /// needs to be promoted to a larger size, needs to be expanded to some other
1219   /// code sequence, or the target has a custom expander for it.
getLoadExtAction(unsigned ExtType,EVT ValVT,EVT MemVT)1220   LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT,
1221                                   EVT MemVT) const {
1222     if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
1223     unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
1224     unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
1225     assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValI < MVT::LAST_VALUETYPE &&
1226            MemI < MVT::LAST_VALUETYPE && "Table isn't big enough!");
1227     unsigned Shift = 4 * ExtType;
1228     return (LegalizeAction)((LoadExtActions[ValI][MemI] >> Shift) & 0xf);
1229   }
1230 
1231   /// Return true if the specified load with extension is legal on this target.
isLoadExtLegal(unsigned ExtType,EVT ValVT,EVT MemVT)1232   bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const {
1233     return getLoadExtAction(ExtType, ValVT, MemVT) == Legal;
1234   }
1235 
1236   /// Return true if the specified load with extension is legal or custom
1237   /// on this target.
isLoadExtLegalOrCustom(unsigned ExtType,EVT ValVT,EVT MemVT)1238   bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const {
1239     return getLoadExtAction(ExtType, ValVT, MemVT) == Legal ||
1240            getLoadExtAction(ExtType, ValVT, MemVT) == Custom;
1241   }
1242 
1243   /// Return how this store with truncation should be treated: either it is
1244   /// legal, needs to be promoted to a larger size, needs to be expanded to some
1245   /// other code sequence, or the target has a custom expander for it.
getTruncStoreAction(EVT ValVT,EVT MemVT)1246   LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
1247     if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
1248     unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
1249     unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
1250     assert(ValI < MVT::LAST_VALUETYPE && MemI < MVT::LAST_VALUETYPE &&
1251            "Table isn't big enough!");
1252     return TruncStoreActions[ValI][MemI];
1253   }
1254 
1255   /// Return true if the specified store with truncation is legal on this
1256   /// target.
isTruncStoreLegal(EVT ValVT,EVT MemVT)1257   bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
1258     return isTypeLegal(ValVT) && getTruncStoreAction(ValVT, MemVT) == Legal;
1259   }
1260 
1261   /// Return true if the specified store with truncation has solution on this
1262   /// target.
isTruncStoreLegalOrCustom(EVT ValVT,EVT MemVT)1263   bool isTruncStoreLegalOrCustom(EVT ValVT, EVT MemVT) const {
1264     return isTypeLegal(ValVT) &&
1265       (getTruncStoreAction(ValVT, MemVT) == Legal ||
1266        getTruncStoreAction(ValVT, MemVT) == Custom);
1267   }
1268 
1269   /// Return how the indexed load should be treated: either it is legal, needs
1270   /// to be promoted to a larger size, needs to be expanded to some other code
1271   /// sequence, or the target has a custom expander for it.
getIndexedLoadAction(unsigned IdxMode,MVT VT)1272   LegalizeAction getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
1273     return getIndexedModeAction(IdxMode, VT, IMAB_Load);
1274   }
1275 
1276   /// Return true if the specified indexed load is legal on this target.
isIndexedLoadLegal(unsigned IdxMode,EVT VT)1277   bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
1278     return VT.isSimple() &&
1279       (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
1280        getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
1281   }
1282 
1283   /// Return how the indexed store should be treated: either it is legal, needs
1284   /// to be promoted to a larger size, needs to be expanded to some other code
1285   /// sequence, or the target has a custom expander for it.
getIndexedStoreAction(unsigned IdxMode,MVT VT)1286   LegalizeAction getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
1287     return getIndexedModeAction(IdxMode, VT, IMAB_Store);
1288   }
1289 
1290   /// Return true if the specified indexed load is legal on this target.
isIndexedStoreLegal(unsigned IdxMode,EVT VT)1291   bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
1292     return VT.isSimple() &&
1293       (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
1294        getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
1295   }
1296 
1297   /// Return how the indexed load should be treated: either it is legal, needs
1298   /// to be promoted to a larger size, needs to be expanded to some other code
1299   /// sequence, or the target has a custom expander for it.
getIndexedMaskedLoadAction(unsigned IdxMode,MVT VT)1300   LegalizeAction getIndexedMaskedLoadAction(unsigned IdxMode, MVT VT) const {
1301     return getIndexedModeAction(IdxMode, VT, IMAB_MaskedLoad);
1302   }
1303 
1304   /// Return true if the specified indexed load is legal on this target.
isIndexedMaskedLoadLegal(unsigned IdxMode,EVT VT)1305   bool isIndexedMaskedLoadLegal(unsigned IdxMode, EVT VT) const {
1306     return VT.isSimple() &&
1307            (getIndexedMaskedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
1308             getIndexedMaskedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
1309   }
1310 
1311   /// Return how the indexed store should be treated: either it is legal, needs
1312   /// to be promoted to a larger size, needs to be expanded to some other code
1313   /// sequence, or the target has a custom expander for it.
getIndexedMaskedStoreAction(unsigned IdxMode,MVT VT)1314   LegalizeAction getIndexedMaskedStoreAction(unsigned IdxMode, MVT VT) const {
1315     return getIndexedModeAction(IdxMode, VT, IMAB_MaskedStore);
1316   }
1317 
1318   /// Return true if the specified indexed load is legal on this target.
isIndexedMaskedStoreLegal(unsigned IdxMode,EVT VT)1319   bool isIndexedMaskedStoreLegal(unsigned IdxMode, EVT VT) const {
1320     return VT.isSimple() &&
1321            (getIndexedMaskedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
1322             getIndexedMaskedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
1323   }
1324 
1325   /// Return how the condition code should be treated: either it is legal, needs
1326   /// to be expanded to some other code sequence, or the target has a custom
1327   /// expander for it.
1328   LegalizeAction
getCondCodeAction(ISD::CondCode CC,MVT VT)1329   getCondCodeAction(ISD::CondCode CC, MVT VT) const {
1330     assert((unsigned)CC < array_lengthof(CondCodeActions) &&
1331            ((unsigned)VT.SimpleTy >> 3) < array_lengthof(CondCodeActions[0]) &&
1332            "Table isn't big enough!");
1333     // See setCondCodeAction for how this is encoded.
1334     uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
1335     uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 3];
1336     LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0xF);
1337     assert(Action != Promote && "Can't promote condition code!");
1338     return Action;
1339   }
1340 
1341   /// Return true if the specified condition code is legal on this target.
isCondCodeLegal(ISD::CondCode CC,MVT VT)1342   bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
1343     return getCondCodeAction(CC, VT) == Legal;
1344   }
1345 
1346   /// Return true if the specified condition code is legal or custom on this
1347   /// target.
isCondCodeLegalOrCustom(ISD::CondCode CC,MVT VT)1348   bool isCondCodeLegalOrCustom(ISD::CondCode CC, MVT VT) const {
1349     return getCondCodeAction(CC, VT) == Legal ||
1350            getCondCodeAction(CC, VT) == Custom;
1351   }
1352 
1353   /// If the action for this operation is to promote, this method returns the
1354   /// ValueType to promote to.
getTypeToPromoteTo(unsigned Op,MVT VT)1355   MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
1356     assert(getOperationAction(Op, VT) == Promote &&
1357            "This operation isn't promoted!");
1358 
1359     // See if this has an explicit type specified.
1360     std::map<std::pair<unsigned, MVT::SimpleValueType>,
1361              MVT::SimpleValueType>::const_iterator PTTI =
1362       PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
1363     if (PTTI != PromoteToType.end()) return PTTI->second;
1364 
1365     assert((VT.isInteger() || VT.isFloatingPoint()) &&
1366            "Cannot autopromote this type, add it with AddPromotedToType.");
1367 
1368     MVT NVT = VT;
1369     do {
1370       NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
1371       assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
1372              "Didn't find type to promote to!");
1373     } while (!isTypeLegal(NVT) ||
1374               getOperationAction(Op, NVT) == Promote);
1375     return NVT;
1376   }
1377 
1378   /// Return the EVT corresponding to this LLVM type.  This is fixed by the LLVM
1379   /// operations except for the pointer size.  If AllowUnknown is true, this
1380   /// will return MVT::Other for types with no EVT counterpart (e.g. structs),
1381   /// otherwise it will assert.
1382   EVT getValueType(const DataLayout &DL, Type *Ty,
1383                    bool AllowUnknown = false) const {
1384     // Lower scalar pointers to native pointer types.
1385     if (auto *PTy = dyn_cast<PointerType>(Ty))
1386       return getPointerTy(DL, PTy->getAddressSpace());
1387 
1388     if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1389       Type *EltTy = VTy->getElementType();
1390       // Lower vectors of pointers to native pointer types.
1391       EVT ElemVT;
1392       if (auto *PTy = dyn_cast<PointerType>(EltTy)) {
1393         ElemVT = getPointerTy(DL, PTy->getAddressSpace());
1394       } else {
1395         ElemVT = EVT::getEVT(EltTy, false);
1396       }
1397       assert(!ElemVT.isOverloaded() && "Should not get an overloaded EVT here");
1398       return EVT::getVectorVT(Ty->getContext(), ElemVT, VTy->getElementCount());
1399     }
1400 
1401     return EVT::getEVT(Ty, AllowUnknown);
1402   }
1403 
1404   EVT getMemValueType(const DataLayout &DL, Type *Ty,
1405                       bool AllowUnknown = false) const {
1406     // Lower scalar pointers to native pointer types.
1407     if (PointerType *PTy = dyn_cast<PointerType>(Ty))
1408       return getPointerMemTy(DL, PTy->getAddressSpace());
1409     else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1410       Type *Elm = VTy->getElementType();
1411       if (PointerType *PT = dyn_cast<PointerType>(Elm)) {
1412         EVT PointerTy(getPointerMemTy(DL, PT->getAddressSpace()));
1413         Elm = PointerTy.getTypeForEVT(Ty->getContext());
1414       }
1415       return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
1416                               VTy->getElementCount());
1417     }
1418 
1419     return getValueType(DL, Ty, AllowUnknown);
1420   }
1421 
1422 
1423   /// Return the MVT corresponding to this LLVM type. See getValueType.
1424   MVT getSimpleValueType(const DataLayout &DL, Type *Ty,
1425                          bool AllowUnknown = false) const {
1426     return getValueType(DL, Ty, AllowUnknown).getSimpleVT();
1427   }
1428 
1429   /// Return the desired alignment for ByVal or InAlloca aggregate function
1430   /// arguments in the caller parameter area.  This is the actual alignment, not
1431   /// its logarithm.
1432   virtual unsigned getByValTypeAlignment(Type *Ty, const DataLayout &DL) const;
1433 
1434   /// Return the type of registers that this ValueType will eventually require.
getRegisterType(MVT VT)1435   MVT getRegisterType(MVT VT) const {
1436     assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
1437     return RegisterTypeForVT[VT.SimpleTy];
1438   }
1439 
1440   /// Return the type of registers that this ValueType will eventually require.
getRegisterType(LLVMContext & Context,EVT VT)1441   MVT getRegisterType(LLVMContext &Context, EVT VT) const {
1442     if (VT.isSimple()) {
1443       assert((unsigned)VT.getSimpleVT().SimpleTy <
1444                 array_lengthof(RegisterTypeForVT));
1445       return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
1446     }
1447     if (VT.isVector()) {
1448       EVT VT1;
1449       MVT RegisterVT;
1450       unsigned NumIntermediates;
1451       (void)getVectorTypeBreakdown(Context, VT, VT1,
1452                                    NumIntermediates, RegisterVT);
1453       return RegisterVT;
1454     }
1455     if (VT.isInteger()) {
1456       return getRegisterType(Context, getTypeToTransformTo(Context, VT));
1457     }
1458     llvm_unreachable("Unsupported extended type!");
1459   }
1460 
1461   /// Return the number of registers that this ValueType will eventually
1462   /// require.
1463   ///
1464   /// This is one for any types promoted to live in larger registers, but may be
1465   /// more than one for types (like i64) that are split into pieces.  For types
1466   /// like i140, which are first promoted then expanded, it is the number of
1467   /// registers needed to hold all the bits of the original type.  For an i140
1468   /// on a 32 bit machine this means 5 registers.
getNumRegisters(LLVMContext & Context,EVT VT)1469   unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
1470     if (VT.isSimple()) {
1471       assert((unsigned)VT.getSimpleVT().SimpleTy <
1472                 array_lengthof(NumRegistersForVT));
1473       return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
1474     }
1475     if (VT.isVector()) {
1476       EVT VT1;
1477       MVT VT2;
1478       unsigned NumIntermediates;
1479       return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
1480     }
1481     if (VT.isInteger()) {
1482       unsigned BitWidth = VT.getSizeInBits();
1483       unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
1484       return (BitWidth + RegWidth - 1) / RegWidth;
1485     }
1486     llvm_unreachable("Unsupported extended type!");
1487   }
1488 
1489   /// Certain combinations of ABIs, Targets and features require that types
1490   /// are legal for some operations and not for other operations.
1491   /// For MIPS all vector types must be passed through the integer register set.
getRegisterTypeForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT)1492   virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context,
1493                                             CallingConv::ID CC, EVT VT) const {
1494     return getRegisterType(Context, VT);
1495   }
1496 
1497   /// Certain targets require unusual breakdowns of certain types. For MIPS,
1498   /// this occurs when a vector type is used, as vector are passed through the
1499   /// integer register set.
getNumRegistersForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT)1500   virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context,
1501                                                  CallingConv::ID CC,
1502                                                  EVT VT) const {
1503     return getNumRegisters(Context, VT);
1504   }
1505 
1506   /// Certain targets have context senstive alignment requirements, where one
1507   /// type has the alignment requirement of another type.
getABIAlignmentForCallingConv(Type * ArgTy,DataLayout DL)1508   virtual Align getABIAlignmentForCallingConv(Type *ArgTy,
1509                                               DataLayout DL) const {
1510     return DL.getABITypeAlign(ArgTy);
1511   }
1512 
1513   /// If true, then instruction selection should seek to shrink the FP constant
1514   /// of the specified type to a smaller type in order to save space and / or
1515   /// reduce runtime.
ShouldShrinkFPConstant(EVT)1516   virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
1517 
1518   /// Return true if it is profitable to reduce a load to a smaller type.
1519   /// Example: (i16 (trunc (i32 (load x))) -> i16 load x
shouldReduceLoadWidth(SDNode * Load,ISD::LoadExtType ExtTy,EVT NewVT)1520   virtual bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy,
1521                                      EVT NewVT) const {
1522     // By default, assume that it is cheaper to extract a subvector from a wide
1523     // vector load rather than creating multiple narrow vector loads.
1524     if (NewVT.isVector() && !Load->hasOneUse())
1525       return false;
1526 
1527     return true;
1528   }
1529 
1530   /// When splitting a value of the specified type into parts, does the Lo
1531   /// or Hi part come first?  This usually follows the endianness, except
1532   /// for ppcf128, where the Hi part always comes first.
hasBigEndianPartOrdering(EVT VT,const DataLayout & DL)1533   bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const {
1534     return DL.isBigEndian() || VT == MVT::ppcf128;
1535   }
1536 
1537   /// If true, the target has custom DAG combine transformations that it can
1538   /// perform for the specified node.
hasTargetDAGCombine(ISD::NodeType NT)1539   bool hasTargetDAGCombine(ISD::NodeType NT) const {
1540     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1541     return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
1542   }
1543 
getGatherAllAliasesMaxDepth()1544   unsigned getGatherAllAliasesMaxDepth() const {
1545     return GatherAllAliasesMaxDepth;
1546   }
1547 
1548   /// Returns the size of the platform's va_list object.
getVaListSizeInBits(const DataLayout & DL,unsigned AS)1549   virtual unsigned getVaListSizeInBits(const DataLayout &DL,
1550                                        unsigned AS) const {
1551     return getPointerTy(DL, AS).getSizeInBits();
1552   }
1553 
1554   /// Get maximum # of store operations permitted for llvm.memset
1555   ///
1556   /// This function returns the maximum number of store operations permitted
1557   /// to replace a call to llvm.memset. The value is set by the target at the
1558   /// performance threshold for such a replacement. If OptSize is true,
1559   /// return the limit for functions that have OptSize attribute.
getMaxStoresPerMemset(bool OptSize)1560   unsigned getMaxStoresPerMemset(bool OptSize) const {
1561     return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset;
1562   }
1563 
1564   /// Get maximum # of store operations permitted for llvm.memcpy
1565   ///
1566   /// This function returns the maximum number of store operations permitted
1567   /// to replace a call to llvm.memcpy. The value is set by the target at the
1568   /// performance threshold for such a replacement. If OptSize is true,
1569   /// return the limit for functions that have OptSize attribute.
getMaxStoresPerMemcpy(bool OptSize)1570   unsigned getMaxStoresPerMemcpy(bool OptSize) const {
1571     return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy;
1572   }
1573 
1574   /// \brief Get maximum # of store operations to be glued together
1575   ///
1576   /// This function returns the maximum number of store operations permitted
1577   /// to glue together during lowering of llvm.memcpy. The value is set by
1578   //  the target at the performance threshold for such a replacement.
getMaxGluedStoresPerMemcpy()1579   virtual unsigned getMaxGluedStoresPerMemcpy() const {
1580     return MaxGluedStoresPerMemcpy;
1581   }
1582 
1583   /// Get maximum # of load operations permitted for memcmp
1584   ///
1585   /// This function returns the maximum number of load operations permitted
1586   /// to replace a call to memcmp. The value is set by the target at the
1587   /// performance threshold for such a replacement. If OptSize is true,
1588   /// return the limit for functions that have OptSize attribute.
getMaxExpandSizeMemcmp(bool OptSize)1589   unsigned getMaxExpandSizeMemcmp(bool OptSize) const {
1590     return OptSize ? MaxLoadsPerMemcmpOptSize : MaxLoadsPerMemcmp;
1591   }
1592 
1593   /// Get maximum # of store operations permitted for llvm.memmove
1594   ///
1595   /// This function returns the maximum number of store operations permitted
1596   /// to replace a call to llvm.memmove. The value is set by the target at the
1597   /// performance threshold for such a replacement. If OptSize is true,
1598   /// return the limit for functions that have OptSize attribute.
getMaxStoresPerMemmove(bool OptSize)1599   unsigned getMaxStoresPerMemmove(bool OptSize) const {
1600     return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove;
1601   }
1602 
1603   /// Determine if the target supports unaligned memory accesses.
1604   ///
1605   /// This function returns true if the target allows unaligned memory accesses
1606   /// of the specified type in the given address space. If true, it also returns
1607   /// whether the unaligned memory access is "fast" in the last argument by
1608   /// reference. This is used, for example, in situations where an array
1609   /// copy/move/set is converted to a sequence of store operations. Its use
1610   /// helps to ensure that such replacements don't generate code that causes an
1611   /// alignment error (trap) on the target machine.
1612   virtual bool allowsMisalignedMemoryAccesses(
1613       EVT, unsigned AddrSpace = 0, unsigned Align = 1,
1614       MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
1615       bool * /*Fast*/ = nullptr) const {
1616     return false;
1617   }
1618 
1619   /// LLT handling variant.
1620   virtual bool allowsMisalignedMemoryAccesses(
1621       LLT, unsigned AddrSpace = 0, Align Alignment = Align(1),
1622       MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
1623       bool * /*Fast*/ = nullptr) const {
1624     return false;
1625   }
1626 
1627   /// This function returns true if the memory access is aligned or if the
1628   /// target allows this specific unaligned memory access. If the access is
1629   /// allowed, the optional final parameter returns if the access is also fast
1630   /// (as defined by the target).
1631   bool allowsMemoryAccessForAlignment(
1632       LLVMContext &Context, const DataLayout &DL, EVT VT,
1633       unsigned AddrSpace = 0, Align Alignment = Align(1),
1634       MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
1635       bool *Fast = nullptr) const;
1636 
1637   /// Return true if the memory access of this type is aligned or if the target
1638   /// allows this specific unaligned access for the given MachineMemOperand.
1639   /// If the access is allowed, the optional final parameter returns if the
1640   /// access is also fast (as defined by the target).
1641   bool allowsMemoryAccessForAlignment(LLVMContext &Context,
1642                                       const DataLayout &DL, EVT VT,
1643                                       const MachineMemOperand &MMO,
1644                                       bool *Fast = nullptr) const;
1645 
1646   /// Return true if the target supports a memory access of this type for the
1647   /// given address space and alignment. If the access is allowed, the optional
1648   /// final parameter returns if the access is also fast (as defined by the
1649   /// target).
1650   virtual bool
1651   allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
1652                      unsigned AddrSpace = 0, Align Alignment = Align(1),
1653                      MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
1654                      bool *Fast = nullptr) const;
1655 
1656   /// Return true if the target supports a memory access of this type for the
1657   /// given MachineMemOperand. If the access is allowed, the optional
1658   /// final parameter returns if the access is also fast (as defined by the
1659   /// target).
1660   bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
1661                           const MachineMemOperand &MMO,
1662                           bool *Fast = nullptr) const;
1663 
1664   /// Returns the target specific optimal type for load and store operations as
1665   /// a result of memset, memcpy, and memmove lowering.
1666   /// It returns EVT::Other if the type should be determined using generic
1667   /// target-independent logic.
1668   virtual EVT
getOptimalMemOpType(const MemOp & Op,const AttributeList &)1669   getOptimalMemOpType(const MemOp &Op,
1670                       const AttributeList & /*FuncAttributes*/) const {
1671     return MVT::Other;
1672   }
1673 
1674   /// LLT returning variant.
1675   virtual LLT
getOptimalMemOpLLT(const MemOp & Op,const AttributeList &)1676   getOptimalMemOpLLT(const MemOp &Op,
1677                      const AttributeList & /*FuncAttributes*/) const {
1678     return LLT();
1679   }
1680 
1681   /// Returns true if it's safe to use load / store of the specified type to
1682   /// expand memcpy / memset inline.
1683   ///
1684   /// This is mostly true for all types except for some special cases. For
1685   /// example, on X86 targets without SSE2 f64 load / store are done with fldl /
1686   /// fstpl which also does type conversion. Note the specified type doesn't
1687   /// have to be legal as the hook is used before type legalization.
isSafeMemOpType(MVT)1688   virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; }
1689 
1690   /// Return lower limit for number of blocks in a jump table.
1691   virtual unsigned getMinimumJumpTableEntries() const;
1692 
1693   /// Return lower limit of the density in a jump table.
1694   unsigned getMinimumJumpTableDensity(bool OptForSize) const;
1695 
1696   /// Return upper limit for number of entries in a jump table.
1697   /// Zero if no limit.
1698   unsigned getMaximumJumpTableSize() const;
1699 
1700   virtual bool isJumpTableRelative() const;
1701 
1702   /// Return true if a mulh[s|u] node for a specific type is cheaper than
1703   /// a multiply followed by a shift. This is false by default.
isMulhCheaperThanMulShift(EVT Type)1704   virtual bool isMulhCheaperThanMulShift(EVT Type) const { return false; }
1705 
1706   /// If a physical register, this specifies the register that
1707   /// llvm.savestack/llvm.restorestack should save and restore.
getStackPointerRegisterToSaveRestore()1708   unsigned getStackPointerRegisterToSaveRestore() const {
1709     return StackPointerRegisterToSaveRestore;
1710   }
1711 
1712   /// If a physical register, this returns the register that receives the
1713   /// exception address on entry to an EH pad.
1714   virtual Register
getExceptionPointerRegister(const Constant * PersonalityFn)1715   getExceptionPointerRegister(const Constant *PersonalityFn) const {
1716     return Register();
1717   }
1718 
1719   /// If a physical register, this returns the register that receives the
1720   /// exception typeid on entry to a landing pad.
1721   virtual Register
getExceptionSelectorRegister(const Constant * PersonalityFn)1722   getExceptionSelectorRegister(const Constant *PersonalityFn) const {
1723     return Register();
1724   }
1725 
needsFixedCatchObjects()1726   virtual bool needsFixedCatchObjects() const {
1727     report_fatal_error("Funclet EH is not implemented for this target");
1728   }
1729 
1730   /// Return the minimum stack alignment of an argument.
getMinStackArgumentAlignment()1731   Align getMinStackArgumentAlignment() const {
1732     return MinStackArgumentAlignment;
1733   }
1734 
1735   /// Return the minimum function alignment.
getMinFunctionAlignment()1736   Align getMinFunctionAlignment() const { return MinFunctionAlignment; }
1737 
1738   /// Return the preferred function alignment.
getPrefFunctionAlignment()1739   Align getPrefFunctionAlignment() const { return PrefFunctionAlignment; }
1740 
1741   /// Return the preferred loop alignment.
1742   virtual Align getPrefLoopAlignment(MachineLoop *ML = nullptr) const {
1743     return PrefLoopAlignment;
1744   }
1745 
1746   /// Should loops be aligned even when the function is marked OptSize (but not
1747   /// MinSize).
alignLoopsWithOptSize()1748   virtual bool alignLoopsWithOptSize() const {
1749     return false;
1750   }
1751 
1752   /// If the target has a standard location for the stack protector guard,
1753   /// returns the address of that location. Otherwise, returns nullptr.
1754   /// DEPRECATED: please override useLoadStackGuardNode and customize
1755   ///             LOAD_STACK_GUARD, or customize \@llvm.stackguard().
1756   virtual Value *getIRStackGuard(IRBuilder<> &IRB) const;
1757 
1758   /// Inserts necessary declarations for SSP (stack protection) purpose.
1759   /// Should be used only when getIRStackGuard returns nullptr.
1760   virtual void insertSSPDeclarations(Module &M) const;
1761 
1762   /// Return the variable that's previously inserted by insertSSPDeclarations,
1763   /// if any, otherwise return nullptr. Should be used only when
1764   /// getIRStackGuard returns nullptr.
1765   virtual Value *getSDagStackGuard(const Module &M) const;
1766 
1767   /// If this function returns true, stack protection checks should XOR the
1768   /// frame pointer (or whichever pointer is used to address locals) into the
1769   /// stack guard value before checking it. getIRStackGuard must return nullptr
1770   /// if this returns true.
useStackGuardXorFP()1771   virtual bool useStackGuardXorFP() const { return false; }
1772 
1773   /// If the target has a standard stack protection check function that
1774   /// performs validation and error handling, returns the function. Otherwise,
1775   /// returns nullptr. Must be previously inserted by insertSSPDeclarations.
1776   /// Should be used only when getIRStackGuard returns nullptr.
1777   virtual Function *getSSPStackGuardCheck(const Module &M) const;
1778 
1779 protected:
1780   Value *getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
1781                                             bool UseTLS) const;
1782 
1783 public:
1784   /// Returns the target-specific address of the unsafe stack pointer.
1785   virtual Value *getSafeStackPointerLocation(IRBuilder<> &IRB) const;
1786 
1787   /// Returns the name of the symbol used to emit stack probes or the empty
1788   /// string if not applicable.
hasStackProbeSymbol(MachineFunction & MF)1789   virtual bool hasStackProbeSymbol(MachineFunction &MF) const { return false; }
1790 
hasInlineStackProbe(MachineFunction & MF)1791   virtual bool hasInlineStackProbe(MachineFunction &MF) const { return false; }
1792 
getStackProbeSymbolName(MachineFunction & MF)1793   virtual StringRef getStackProbeSymbolName(MachineFunction &MF) const {
1794     return "";
1795   }
1796 
1797   /// Returns true if a cast between SrcAS and DestAS is a noop.
isNoopAddrSpaceCast(unsigned SrcAS,unsigned DestAS)1798   virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const {
1799     return false;
1800   }
1801 
1802   /// Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g. we
1803   /// are happy to sink it into basic blocks. A cast may be free, but not
1804   /// necessarily a no-op. e.g. a free truncate from a 64-bit to 32-bit pointer.
isFreeAddrSpaceCast(unsigned SrcAS,unsigned DestAS)1805   virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const {
1806     return isNoopAddrSpaceCast(SrcAS, DestAS);
1807   }
1808 
1809   /// Return true if the pointer arguments to CI should be aligned by aligning
1810   /// the object whose address is being passed. If so then MinSize is set to the
1811   /// minimum size the object must be to be aligned and PrefAlign is set to the
1812   /// preferred alignment.
shouldAlignPointerArgs(CallInst *,unsigned &,unsigned &)1813   virtual bool shouldAlignPointerArgs(CallInst * /*CI*/, unsigned & /*MinSize*/,
1814                                       unsigned & /*PrefAlign*/) const {
1815     return false;
1816   }
1817 
1818   //===--------------------------------------------------------------------===//
1819   /// \name Helpers for TargetTransformInfo implementations
1820   /// @{
1821 
1822   /// Get the ISD node that corresponds to the Instruction class opcode.
1823   int InstructionOpcodeToISD(unsigned Opcode) const;
1824 
1825   /// Estimate the cost of type-legalization and the legalized type.
1826   std::pair<int, MVT> getTypeLegalizationCost(const DataLayout &DL,
1827                                               Type *Ty) const;
1828 
1829   /// @}
1830 
1831   //===--------------------------------------------------------------------===//
1832   /// \name Helpers for atomic expansion.
1833   /// @{
1834 
1835   /// Returns the maximum atomic operation size (in bits) supported by
1836   /// the backend. Atomic operations greater than this size (as well
1837   /// as ones that are not naturally aligned), will be expanded by
1838   /// AtomicExpandPass into an __atomic_* library call.
getMaxAtomicSizeInBitsSupported()1839   unsigned getMaxAtomicSizeInBitsSupported() const {
1840     return MaxAtomicSizeInBitsSupported;
1841   }
1842 
1843   /// Returns the size of the smallest cmpxchg or ll/sc instruction
1844   /// the backend supports.  Any smaller operations are widened in
1845   /// AtomicExpandPass.
1846   ///
1847   /// Note that *unlike* operations above the maximum size, atomic ops
1848   /// are still natively supported below the minimum; they just
1849   /// require a more complex expansion.
getMinCmpXchgSizeInBits()1850   unsigned getMinCmpXchgSizeInBits() const { return MinCmpXchgSizeInBits; }
1851 
1852   /// Whether the target supports unaligned atomic operations.
supportsUnalignedAtomics()1853   bool supportsUnalignedAtomics() const { return SupportsUnalignedAtomics; }
1854 
1855   /// Whether AtomicExpandPass should automatically insert fences and reduce
1856   /// ordering for this atomic. This should be true for most architectures with
1857   /// weak memory ordering. Defaults to false.
shouldInsertFencesForAtomic(const Instruction * I)1858   virtual bool shouldInsertFencesForAtomic(const Instruction *I) const {
1859     return false;
1860   }
1861 
1862   /// Whether the atomic operation \p AI with type \p ValueTy and alignment
1863   /// \p Alignment via \p PointerTy is natively supported or requires an
1864   /// __atomic_* libcall.
1865   virtual bool supportsAtomicOperation(const DataLayout &DL,
1866                                        const Instruction *AI, Type *ValueTy,
1867                                        Type *PointerTy, Align Alignment) const;
1868 
1869   /// Perform a load-linked operation on Addr, returning a "Value *" with the
1870   /// corresponding pointee type. This may entail some non-trivial operations to
1871   /// truncate or reconstruct types that will be illegal in the backend. See
1872   /// ARMISelLowering for an example implementation.
emitLoadLinked(IRBuilder<> & Builder,Value * Addr,AtomicOrdering Ord)1873   virtual Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
1874                                 AtomicOrdering Ord) const {
1875     llvm_unreachable("Load linked unimplemented on this target");
1876   }
1877 
1878   /// Perform a store-conditional operation to Addr. Return the status of the
1879   /// store. This should be 0 if the store succeeded, non-zero otherwise.
emitStoreConditional(IRBuilder<> & Builder,Value * Val,Value * Addr,AtomicOrdering Ord)1880   virtual Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val,
1881                                       Value *Addr, AtomicOrdering Ord) const {
1882     llvm_unreachable("Store conditional unimplemented on this target");
1883   }
1884 
1885   /// Perform a masked atomicrmw using a target-specific intrinsic. This
1886   /// represents the core LL/SC loop which will be lowered at a late stage by
1887   /// the backend.
emitMaskedAtomicRMWIntrinsic(IRBuilder<> & Builder,AtomicRMWInst * AI,Value * AlignedAddr,Value * Incr,Value * Mask,Value * ShiftAmt,AtomicOrdering Ord)1888   virtual Value *emitMaskedAtomicRMWIntrinsic(IRBuilder<> &Builder,
1889                                               AtomicRMWInst *AI,
1890                                               Value *AlignedAddr, Value *Incr,
1891                                               Value *Mask, Value *ShiftAmt,
1892                                               AtomicOrdering Ord) const {
1893     llvm_unreachable("Masked atomicrmw expansion unimplemented on this target");
1894   }
1895 
1896   /// Perform a masked cmpxchg using a target-specific intrinsic. This
1897   /// represents the core LL/SC loop which will be lowered at a late stage by
1898   /// the backend.
emitMaskedAtomicCmpXchgIntrinsic(IRBuilder<> & Builder,AtomicCmpXchgInst * CI,Value * AlignedAddr,Value * CmpVal,Value * NewVal,Value * Mask,AtomicOrdering Ord)1899   virtual Value *emitMaskedAtomicCmpXchgIntrinsic(
1900       IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
1901       Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
1902     llvm_unreachable("Masked cmpxchg expansion unimplemented on this target");
1903   }
1904 
1905   /// Inserts in the IR a target-specific intrinsic specifying a fence.
1906   /// It is called by AtomicExpandPass before expanding an
1907   ///   AtomicRMW/AtomicCmpXchg/AtomicStore/AtomicLoad
1908   ///   if shouldInsertFencesForAtomic returns true.
1909   ///
1910   /// Inst is the original atomic instruction, prior to other expansions that
1911   /// may be performed.
1912   ///
1913   /// This function should either return a nullptr, or a pointer to an IR-level
1914   ///   Instruction*. Even complex fence sequences can be represented by a
1915   ///   single Instruction* through an intrinsic to be lowered later.
1916   /// Backends should override this method to produce target-specific intrinsic
1917   ///   for their fences.
1918   /// FIXME: Please note that the default implementation here in terms of
1919   ///   IR-level fences exists for historical/compatibility reasons and is
1920   ///   *unsound* ! Fences cannot, in general, be used to restore sequential
1921   ///   consistency. For example, consider the following example:
1922   /// atomic<int> x = y = 0;
1923   /// int r1, r2, r3, r4;
1924   /// Thread 0:
1925   ///   x.store(1);
1926   /// Thread 1:
1927   ///   y.store(1);
1928   /// Thread 2:
1929   ///   r1 = x.load();
1930   ///   r2 = y.load();
1931   /// Thread 3:
1932   ///   r3 = y.load();
1933   ///   r4 = x.load();
1934   ///  r1 = r3 = 1 and r2 = r4 = 0 is impossible as long as the accesses are all
1935   ///  seq_cst. But if they are lowered to monotonic accesses, no amount of
1936   ///  IR-level fences can prevent it.
1937   /// @{
emitLeadingFence(IRBuilder<> & Builder,Instruction * Inst,AtomicOrdering Ord)1938   virtual Instruction *emitLeadingFence(IRBuilder<> &Builder, Instruction *Inst,
1939                                         AtomicOrdering Ord) const {
1940     if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore())
1941       return Builder.CreateFence(Ord);
1942     else
1943       return nullptr;
1944   }
1945 
emitTrailingFence(IRBuilder<> & Builder,Instruction * Inst,AtomicOrdering Ord)1946   virtual Instruction *emitTrailingFence(IRBuilder<> &Builder,
1947                                          Instruction *Inst,
1948                                          AtomicOrdering Ord) const {
1949     if (isAcquireOrStronger(Ord))
1950       return Builder.CreateFence(Ord);
1951     else
1952       return nullptr;
1953   }
1954   /// @}
1955 
1956   // Emits code that executes when the comparison result in the ll/sc
1957   // expansion of a cmpxchg instruction is such that the store-conditional will
1958   // not execute.  This makes it possible to balance out the load-linked with
1959   // a dedicated instruction, if desired.
1960   // E.g., on ARM, if ldrex isn't followed by strex, the exclusive monitor would
1961   // be unnecessarily held, except if clrex, inserted by this hook, is executed.
emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> & Builder)1962   virtual void emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> &Builder) const {}
1963 
1964   /// Returns true if the given (atomic) store should be expanded by the
1965   /// IR-level AtomicExpand pass into an "atomic xchg" which ignores its input.
shouldExpandAtomicStoreInIR(StoreInst * SI)1966   virtual bool shouldExpandAtomicStoreInIR(StoreInst *SI) const {
1967     return false;
1968   }
1969 
1970   /// Returns true if arguments should be sign-extended in lib calls.
shouldSignExtendTypeInLibCall(EVT Type,bool IsSigned)1971   virtual bool shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
1972     return IsSigned;
1973   }
1974 
1975   /// Returns true if arguments should be extended in lib calls.
shouldExtendTypeInLibCall(EVT Type)1976   virtual bool shouldExtendTypeInLibCall(EVT Type) const {
1977     return true;
1978   }
1979 
1980   /// Returns how the given (atomic) load should be expanded by the
1981   /// IR-level AtomicExpand pass.
shouldExpandAtomicLoadInIR(LoadInst * LI)1982   virtual AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const {
1983     return AtomicExpansionKind::None;
1984   }
1985 
1986   /// Returns how the given atomic cmpxchg should be expanded by the IR-level
1987   /// AtomicExpand pass.
1988   virtual AtomicExpansionKind
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst * AI)1989   shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
1990     return AtomicExpansionKind::None;
1991   }
1992 
1993   /// Return true if the backend can lower of pointer-type cmpxchg.
1994   /// Otherwise it will be converted to an integer-type cmpxchg in the IR
1995   /// TODO: remove this hook
canLowerPointerTypeCmpXchg(const DataLayout & DL,AtomicCmpXchgInst * AI)1996   virtual bool canLowerPointerTypeCmpXchg(const DataLayout &DL,
1997                                           AtomicCmpXchgInst *AI) const {
1998     // Capability-type cmxchg always needs to use i8 addrspace(200)* instead of
1999     // converting arguments to integer types.
2000     return DL.isFatPointer(AI->getCompareOperand()->getType());
2001   }
2002 
2003   /// Returns how the IR-level AtomicExpand pass should expand the given
2004   /// AtomicRMW, if at all. Default is to never expand.
shouldExpandAtomicRMWInIR(AtomicRMWInst * RMW)2005   virtual AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
2006     return RMW->isFloatingPointOperation() ?
2007       AtomicExpansionKind::CmpXChg : AtomicExpansionKind::None;
2008   }
2009 
2010   /// On some platforms, an AtomicRMW that never actually modifies the value
2011   /// (such as fetch_add of 0) can be turned into a fence followed by an
2012   /// atomic load. This may sound useless, but it makes it possible for the
2013   /// processor to keep the cacheline shared, dramatically improving
2014   /// performance. And such idempotent RMWs are useful for implementing some
2015   /// kinds of locks, see for example (justification + benchmarks):
2016   /// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf
2017   /// This method tries doing that transformation, returning the atomic load if
2018   /// it succeeds, and nullptr otherwise.
2019   /// If shouldExpandAtomicLoadInIR returns true on that load, it will undergo
2020   /// another round of expansion.
2021   virtual LoadInst *
lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst * RMWI)2022   lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *RMWI) const {
2023     return nullptr;
2024   }
2025 
2026   /// Returns how the platform's atomic operations are extended (ZERO_EXTEND,
2027   /// SIGN_EXTEND, or ANY_EXTEND).
getExtendForAtomicOps()2028   virtual ISD::NodeType getExtendForAtomicOps() const {
2029     return ISD::ZERO_EXTEND;
2030   }
2031 
2032   /// Returns how the platform's atomic compare and swap expects its comparison
2033   /// value to be extended (ZERO_EXTEND, SIGN_EXTEND, or ANY_EXTEND). This is
2034   /// separate from getExtendForAtomicOps, which is concerned with the
2035   /// sign-extension of the instruction's output, whereas here we are concerned
2036   /// with the sign-extension of the input. For targets with compare-and-swap
2037   /// instructions (or sub-word comparisons in their LL/SC loop expansions),
2038   /// the input can be ANY_EXTEND, but the output will still have a specific
2039   /// extension.
getExtendForAtomicCmpSwapArg()2040   virtual ISD::NodeType getExtendForAtomicCmpSwapArg() const {
2041     return ISD::ANY_EXTEND;
2042   }
2043 
2044   /// @}
2045 
2046   /// Returns true if we should normalize
2047   /// select(N0&N1, X, Y) => select(N0, select(N1, X, Y), Y) and
2048   /// select(N0|N1, X, Y) => select(N0, select(N1, X, Y, Y)) if it is likely
2049   /// that it saves us from materializing N0 and N1 in an integer register.
2050   /// Targets that are able to perform and/or on flags should return false here.
shouldNormalizeToSelectSequence(LLVMContext & Context,EVT VT)2051   virtual bool shouldNormalizeToSelectSequence(LLVMContext &Context,
2052                                                EVT VT) const {
2053     // If a target has multiple condition registers, then it likely has logical
2054     // operations on those registers.
2055     if (hasMultipleConditionRegisters())
2056       return false;
2057     // Only do the transform if the value won't be split into multiple
2058     // registers.
2059     LegalizeTypeAction Action = getTypeAction(Context, VT);
2060     return Action != TypeExpandInteger && Action != TypeExpandFloat &&
2061       Action != TypeSplitVector;
2062   }
2063 
isProfitableToCombineMinNumMaxNum(EVT VT)2064   virtual bool isProfitableToCombineMinNumMaxNum(EVT VT) const { return true; }
2065 
2066   /// Return true if a select of constants (select Cond, C1, C2) should be
2067   /// transformed into simple math ops with the condition value. For example:
2068   /// select Cond, C1, C1-1 --> add (zext Cond), C1-1
convertSelectOfConstantsToMath(EVT VT)2069   virtual bool convertSelectOfConstantsToMath(EVT VT) const {
2070     return false;
2071   }
2072 
2073   /// Return true if it is profitable to transform an integer
2074   /// multiplication-by-constant into simpler operations like shifts and adds.
2075   /// This may be true if the target does not directly support the
2076   /// multiplication operation for the specified type or the sequence of simpler
2077   /// ops is faster than the multiply.
decomposeMulByConstant(LLVMContext & Context,EVT VT,SDValue C)2078   virtual bool decomposeMulByConstant(LLVMContext &Context,
2079                                       EVT VT, SDValue C) const {
2080     return false;
2081   }
2082 
2083   /// Return true if it is more correct/profitable to use strict FP_TO_INT
2084   /// conversion operations - canonicalizing the FP source value instead of
2085   /// converting all cases and then selecting based on value.
2086   /// This may be true if the target throws exceptions for out of bounds
2087   /// conversions or has fast FP CMOV.
shouldUseStrictFP_TO_INT(EVT FpVT,EVT IntVT,bool IsSigned)2088   virtual bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT,
2089                                         bool IsSigned) const {
2090     return false;
2091   }
2092 
2093   //===--------------------------------------------------------------------===//
2094   // TargetLowering Configuration Methods - These methods should be invoked by
2095   // the derived class constructor to configure this object for the target.
2096   //
2097 protected:
2098   /// Specify how the target extends the result of integer and floating point
2099   /// boolean values from i1 to a wider type.  See getBooleanContents.
setBooleanContents(BooleanContent Ty)2100   void setBooleanContents(BooleanContent Ty) {
2101     BooleanContents = Ty;
2102     BooleanFloatContents = Ty;
2103   }
2104 
2105   /// Specify how the target extends the result of integer and floating point
2106   /// boolean values from i1 to a wider type.  See getBooleanContents.
setBooleanContents(BooleanContent IntTy,BooleanContent FloatTy)2107   void setBooleanContents(BooleanContent IntTy, BooleanContent FloatTy) {
2108     BooleanContents = IntTy;
2109     BooleanFloatContents = FloatTy;
2110   }
2111 
2112   /// Specify how the target extends the result of a vector boolean value from a
2113   /// vector of i1 to a wider type.  See getBooleanContents.
setBooleanVectorContents(BooleanContent Ty)2114   void setBooleanVectorContents(BooleanContent Ty) {
2115     BooleanVectorContents = Ty;
2116   }
2117 
2118   /// Specify the target scheduling preference.
setSchedulingPreference(Sched::Preference Pref)2119   void setSchedulingPreference(Sched::Preference Pref) {
2120     SchedPreferenceInfo = Pref;
2121   }
2122 
2123   /// Indicate the minimum number of blocks to generate jump tables.
2124   void setMinimumJumpTableEntries(unsigned Val);
2125 
2126   /// Indicate the maximum number of entries in jump tables.
2127   /// Set to zero to generate unlimited jump tables.
2128   void setMaximumJumpTableSize(unsigned);
2129 
2130   /// If set to a physical register, this specifies the register that
2131   /// llvm.savestack/llvm.restorestack should save and restore.
setStackPointerRegisterToSaveRestore(Register R)2132   void setStackPointerRegisterToSaveRestore(Register R) {
2133     StackPointerRegisterToSaveRestore = R;
2134   }
2135 
2136   /// Tells the code generator that the target has multiple (allocatable)
2137   /// condition registers that can be used to store the results of comparisons
2138   /// for use by selects and conditional branches. With multiple condition
2139   /// registers, the code generator will not aggressively sink comparisons into
2140   /// the blocks of their users.
2141   void setHasMultipleConditionRegisters(bool hasManyRegs = true) {
2142     HasMultipleConditionRegisters = hasManyRegs;
2143   }
2144 
2145   /// Tells the code generator that the target has BitExtract instructions.
2146   /// The code generator will aggressively sink "shift"s into the blocks of
2147   /// their users if the users will generate "and" instructions which can be
2148   /// combined with "shift" to BitExtract instructions.
2149   void setHasExtractBitsInsn(bool hasExtractInsn = true) {
2150     HasExtractBitsInsn = hasExtractInsn;
2151   }
2152 
2153   /// Tells the code generator not to expand logic operations on comparison
2154   /// predicates into separate sequences that increase the amount of flow
2155   /// control.
2156   void setJumpIsExpensive(bool isExpensive = true);
2157 
2158   /// Tells the code generator which bitwidths to bypass.
addBypassSlowDiv(unsigned int SlowBitWidth,unsigned int FastBitWidth)2159   void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
2160     BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
2161   }
2162 
2163   /// Add the specified register class as an available regclass for the
2164   /// specified value type. This indicates the selector can handle values of
2165   /// that class natively.
addRegisterClass(MVT VT,const TargetRegisterClass * RC)2166   void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
2167     assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT));
2168     RegClassForVT[VT.SimpleTy] = RC;
2169   }
2170 
2171   /// Return the largest legal super-reg register class of the register class
2172   /// for the specified type and its associated "cost".
2173   virtual std::pair<const TargetRegisterClass *, uint8_t>
2174   findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const;
2175 
2176   /// Once all of the register classes are added, this allows us to compute
2177   /// derived properties we expose.
2178   void computeRegisterProperties(const TargetRegisterInfo *TRI);
2179 
2180   /// Indicate that the specified operation does not work with the specified
2181   /// type and indicate what to do about it. Note that VT may refer to either
2182   /// the type of a result or that of an operand of Op.
setOperationAction(unsigned Op,MVT VT,LegalizeAction Action)2183   void setOperationAction(unsigned Op, MVT VT,
2184                           LegalizeAction Action) {
2185     assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
2186     OpActions[(unsigned)VT.SimpleTy][Op] = Action;
2187   }
2188 
2189   /// Indicate that the specified load with extension does not work with the
2190   /// specified type and indicate what to do about it.
setLoadExtAction(unsigned ExtType,MVT ValVT,MVT MemVT,LegalizeAction Action)2191   void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT,
2192                         LegalizeAction Action) {
2193     assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() &&
2194            MemVT.isValid() && "Table isn't big enough!");
2195     assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
2196     unsigned Shift = 4 * ExtType;
2197     LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] &= ~((uint16_t)0xF << Shift);
2198     LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] |= (uint16_t)Action << Shift;
2199   }
2200 
2201   /// Indicate that the specified truncating store does not work with the
2202   /// specified type and indicate what to do about it.
setTruncStoreAction(MVT ValVT,MVT MemVT,LegalizeAction Action)2203   void setTruncStoreAction(MVT ValVT, MVT MemVT,
2204                            LegalizeAction Action) {
2205     assert(ValVT.isValid() && MemVT.isValid() && "Table isn't big enough!");
2206     TruncStoreActions[(unsigned)ValVT.SimpleTy][MemVT.SimpleTy] = Action;
2207   }
2208 
2209   /// Indicate that the specified indexed load does or does not work with the
2210   /// specified type and indicate what to do abort it.
2211   ///
2212   /// NOTE: All indexed mode loads are initialized to Expand in
2213   /// TargetLowering.cpp
setIndexedLoadAction(unsigned IdxMode,MVT VT,LegalizeAction Action)2214   void setIndexedLoadAction(unsigned IdxMode, MVT VT, LegalizeAction Action) {
2215     setIndexedModeAction(IdxMode, VT, IMAB_Load, Action);
2216   }
2217 
2218   /// Indicate that the specified indexed store does or does not work with the
2219   /// specified type and indicate what to do about it.
2220   ///
2221   /// NOTE: All indexed mode stores are initialized to Expand in
2222   /// TargetLowering.cpp
setIndexedStoreAction(unsigned IdxMode,MVT VT,LegalizeAction Action)2223   void setIndexedStoreAction(unsigned IdxMode, MVT VT, LegalizeAction Action) {
2224     setIndexedModeAction(IdxMode, VT, IMAB_Store, Action);
2225   }
2226 
2227   /// Indicate that the specified indexed masked load does or does not work with
2228   /// the specified type and indicate what to do about it.
2229   ///
2230   /// NOTE: All indexed mode masked loads are initialized to Expand in
2231   /// TargetLowering.cpp
setIndexedMaskedLoadAction(unsigned IdxMode,MVT VT,LegalizeAction Action)2232   void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT,
2233                                   LegalizeAction Action) {
2234     setIndexedModeAction(IdxMode, VT, IMAB_MaskedLoad, Action);
2235   }
2236 
2237   /// Indicate that the specified indexed masked store does or does not work
2238   /// with the specified type and indicate what to do about it.
2239   ///
2240   /// NOTE: All indexed mode masked stores are initialized to Expand in
2241   /// TargetLowering.cpp
setIndexedMaskedStoreAction(unsigned IdxMode,MVT VT,LegalizeAction Action)2242   void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT,
2243                                    LegalizeAction Action) {
2244     setIndexedModeAction(IdxMode, VT, IMAB_MaskedStore, Action);
2245   }
2246 
2247   /// Indicate that the specified condition code is or isn't supported on the
2248   /// target and indicate what to do about it.
setCondCodeAction(ISD::CondCode CC,MVT VT,LegalizeAction Action)2249   void setCondCodeAction(ISD::CondCode CC, MVT VT,
2250                          LegalizeAction Action) {
2251     assert(VT.isValid() && (unsigned)CC < array_lengthof(CondCodeActions) &&
2252            "Table isn't big enough!");
2253     assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
2254     /// The lower 3 bits of the SimpleTy index into Nth 4bit set from the 32-bit
2255     /// value and the upper 29 bits index into the second dimension of the array
2256     /// to select what 32-bit value to use.
2257     uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
2258     CondCodeActions[CC][VT.SimpleTy >> 3] &= ~((uint32_t)0xF << Shift);
2259     CondCodeActions[CC][VT.SimpleTy >> 3] |= (uint32_t)Action << Shift;
2260   }
2261 
2262   /// If Opc/OrigVT is specified as being promoted, the promotion code defaults
2263   /// to trying a larger integer/fp until it can find one that works. If that
2264   /// default is insufficient, this method can be used by the target to override
2265   /// the default.
AddPromotedToType(unsigned Opc,MVT OrigVT,MVT DestVT)2266   void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
2267     PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
2268   }
2269 
2270   /// Convenience method to set an operation to Promote and specify the type
2271   /// in a single call.
setOperationPromotedToType(unsigned Opc,MVT OrigVT,MVT DestVT)2272   void setOperationPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
2273     setOperationAction(Opc, OrigVT, Promote);
2274     AddPromotedToType(Opc, OrigVT, DestVT);
2275   }
2276 
2277   /// Targets should invoke this method for each target independent node that
2278   /// they want to provide a custom DAG combiner for by implementing the
2279   /// PerformDAGCombine virtual method.
setTargetDAGCombine(ISD::NodeType NT)2280   void setTargetDAGCombine(ISD::NodeType NT) {
2281     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
2282     TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
2283   }
2284 
2285   /// Set the target's minimum function alignment.
setMinFunctionAlignment(Align Alignment)2286   void setMinFunctionAlignment(Align Alignment) {
2287     MinFunctionAlignment = Alignment;
2288   }
2289 
2290   /// Set the target's preferred function alignment.  This should be set if
2291   /// there is a performance benefit to higher-than-minimum alignment
setPrefFunctionAlignment(Align Alignment)2292   void setPrefFunctionAlignment(Align Alignment) {
2293     PrefFunctionAlignment = Alignment;
2294   }
2295 
2296   /// Set the target's preferred loop alignment. Default alignment is one, it
2297   /// means the target does not care about loop alignment. The target may also
2298   /// override getPrefLoopAlignment to provide per-loop values.
setPrefLoopAlignment(Align Alignment)2299   void setPrefLoopAlignment(Align Alignment) { PrefLoopAlignment = Alignment; }
2300 
2301   /// Set the minimum stack alignment of an argument.
setMinStackArgumentAlignment(Align Alignment)2302   void setMinStackArgumentAlignment(Align Alignment) {
2303     MinStackArgumentAlignment = Alignment;
2304   }
2305 
2306   /// Set the maximum atomic operation size supported by the
2307   /// backend. Atomic operations greater than this size (as well as
2308   /// ones that are not naturally aligned), will be expanded by
2309   /// AtomicExpandPass into an __atomic_* library call.
setMaxAtomicSizeInBitsSupported(unsigned SizeInBits)2310   void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits) {
2311     MaxAtomicSizeInBitsSupported = SizeInBits;
2312   }
2313 
2314   /// Sets the minimum cmpxchg or ll/sc size supported by the backend.
setMinCmpXchgSizeInBits(unsigned SizeInBits)2315   void setMinCmpXchgSizeInBits(unsigned SizeInBits) {
2316     MinCmpXchgSizeInBits = SizeInBits;
2317   }
2318 
2319   /// Sets whether unaligned atomic operations are supported.
setSupportsUnalignedAtomics(bool UnalignedSupported)2320   void setSupportsUnalignedAtomics(bool UnalignedSupported) {
2321     SupportsUnalignedAtomics = UnalignedSupported;
2322   }
2323 
2324 public:
2325   //===--------------------------------------------------------------------===//
2326   // Addressing mode description hooks (used by LSR etc).
2327   //
2328 
2329   /// CodeGenPrepare sinks address calculations into the same BB as Load/Store
2330   /// instructions reading the address. This allows as much computation as
2331   /// possible to be done in the address mode for that operand. This hook lets
2332   /// targets also pass back when this should be done on intrinsics which
2333   /// load/store.
getAddrModeArguments(IntrinsicInst *,SmallVectorImpl<Value * > &,Type * &)2334   virtual bool getAddrModeArguments(IntrinsicInst * /*I*/,
2335                                     SmallVectorImpl<Value*> &/*Ops*/,
2336                                     Type *&/*AccessTy*/) const {
2337     return false;
2338   }
2339 
2340   /// This represents an addressing mode of:
2341   ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
2342   /// If BaseGV is null,  there is no BaseGV.
2343   /// If BaseOffs is zero, there is no base offset.
2344   /// If HasBaseReg is false, there is no base register.
2345   /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
2346   /// no scale.
2347   struct AddrMode {
2348     GlobalValue *BaseGV = nullptr;
2349     int64_t      BaseOffs = 0;
2350     bool         HasBaseReg = false;
2351     int64_t      Scale = 0;
2352     AddrMode() = default;
2353   };
2354 
2355   /// Return true if the addressing mode represented by AM is legal for this
2356   /// target, for a load/store of the specified type.
2357   ///
2358   /// The type may be VoidTy, in which case only return true if the addressing
2359   /// mode is legal for a load/store of any legal type.  TODO: Handle
2360   /// pre/postinc as well.
2361   ///
2362   /// If the address space cannot be determined, it will be -1.
2363   ///
2364   /// TODO: Remove default argument
2365   virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
2366                                      Type *Ty, unsigned AddrSpace,
2367                                      Instruction *I = nullptr) const;
2368 
2369   /// Return the cost of the scaling factor used in the addressing mode
2370   /// represented by AM for this target, for a load/store of the specified type.
2371   ///
2372   /// If the AM is supported, the return value must be >= 0.
2373   /// If the AM is not supported, it returns a negative value.
2374   /// TODO: Handle pre/postinc as well.
2375   /// TODO: Remove default argument
2376   virtual int getScalingFactorCost(const DataLayout &DL, const AddrMode &AM,
2377                                    Type *Ty, unsigned AS = 0) const {
2378     // Default: assume that any scaling factor used in a legal AM is free.
2379     if (isLegalAddressingMode(DL, AM, Ty, AS))
2380       return 0;
2381     return -1;
2382   }
2383 
2384   /// Return true if the specified immediate is legal icmp immediate, that is
2385   /// the target has icmp instructions which can compare a register against the
2386   /// immediate without having to materialize the immediate into a register.
isLegalICmpImmediate(int64_t)2387   virtual bool isLegalICmpImmediate(int64_t) const {
2388     return true;
2389   }
2390 
2391   /// Return true if the specified immediate is legal add immediate, that is the
2392   /// target has add instructions which can add a register with the immediate
2393   /// without having to materialize the immediate into a register.
isLegalAddImmediate(int64_t)2394   virtual bool isLegalAddImmediate(int64_t) const {
2395     return true;
2396   }
2397 
2398   /// Return true if the specified immediate is legal for the value input of a
2399   /// store instruction.
isLegalStoreImmediate(int64_t Value)2400   virtual bool isLegalStoreImmediate(int64_t Value) const {
2401     // Default implementation assumes that at least 0 works since it is likely
2402     // that a zero register exists or a zero immediate is allowed.
2403     return Value == 0;
2404   }
2405 
2406   /// Return true if it's significantly cheaper to shift a vector by a uniform
2407   /// scalar than by an amount which will vary across each lane. On x86 before
2408   /// AVX2 for example, there is a "psllw" instruction for the former case, but
2409   /// no simple instruction for a general "a << b" operation on vectors.
2410   /// This should also apply to lowering for vector funnel shifts (rotates).
isVectorShiftByScalarCheap(Type * Ty)2411   virtual bool isVectorShiftByScalarCheap(Type *Ty) const {
2412     return false;
2413   }
2414 
2415   /// Given a shuffle vector SVI representing a vector splat, return a new
2416   /// scalar type of size equal to SVI's scalar type if the new type is more
2417   /// profitable. Returns nullptr otherwise. For example under MVE float splats
2418   /// are converted to integer to prevent the need to move from SPR to GPR
2419   /// registers.
shouldConvertSplatType(ShuffleVectorInst * SVI)2420   virtual Type* shouldConvertSplatType(ShuffleVectorInst* SVI) const {
2421     return nullptr;
2422   }
2423 
2424   /// Given a set in interconnected phis of type 'From' that are loaded/stored
2425   /// or bitcast to type 'To', return true if the set should be converted to
2426   /// 'To'.
shouldConvertPhiType(Type * From,Type * To)2427   virtual bool shouldConvertPhiType(Type *From, Type *To) const {
2428     return (From->isIntegerTy() || From->isFloatingPointTy()) &&
2429            (To->isIntegerTy() || To->isFloatingPointTy());
2430   }
2431 
2432   /// Returns true if the opcode is a commutative binary operation.
isCommutativeBinOp(unsigned Opcode)2433   virtual bool isCommutativeBinOp(unsigned Opcode) const {
2434     // FIXME: This should get its info from the td file.
2435     switch (Opcode) {
2436     case ISD::ADD:
2437     case ISD::SMIN:
2438     case ISD::SMAX:
2439     case ISD::UMIN:
2440     case ISD::UMAX:
2441     case ISD::MUL:
2442     case ISD::MULHU:
2443     case ISD::MULHS:
2444     case ISD::SMUL_LOHI:
2445     case ISD::UMUL_LOHI:
2446     case ISD::FADD:
2447     case ISD::FMUL:
2448     case ISD::AND:
2449     case ISD::OR:
2450     case ISD::XOR:
2451     case ISD::SADDO:
2452     case ISD::UADDO:
2453     case ISD::ADDC:
2454     case ISD::ADDE:
2455     case ISD::SADDSAT:
2456     case ISD::UADDSAT:
2457     case ISD::FMINNUM:
2458     case ISD::FMAXNUM:
2459     case ISD::FMINNUM_IEEE:
2460     case ISD::FMAXNUM_IEEE:
2461     case ISD::FMINIMUM:
2462     case ISD::FMAXIMUM:
2463       return true;
2464     default: return false;
2465     }
2466   }
2467 
2468   /// Return true if the node is a math/logic binary operator.
isBinOp(unsigned Opcode)2469   virtual bool isBinOp(unsigned Opcode) const {
2470     // A commutative binop must be a binop.
2471     if (isCommutativeBinOp(Opcode))
2472       return true;
2473     // These are non-commutative binops.
2474     switch (Opcode) {
2475     case ISD::SUB:
2476     case ISD::SHL:
2477     case ISD::SRL:
2478     case ISD::SRA:
2479     case ISD::SDIV:
2480     case ISD::UDIV:
2481     case ISD::SREM:
2482     case ISD::UREM:
2483     case ISD::FSUB:
2484     case ISD::FDIV:
2485     case ISD::FREM:
2486       return true;
2487     default:
2488       return false;
2489     }
2490   }
2491 
2492   /// Return true if it's free to truncate a value of type FromTy to type
2493   /// ToTy. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
2494   /// by referencing its sub-register AX.
2495   /// Targets must return false when FromTy <= ToTy.
isTruncateFree(Type * FromTy,Type * ToTy)2496   virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const {
2497     return false;
2498   }
2499 
2500   /// Return true if a truncation from FromTy to ToTy is permitted when deciding
2501   /// whether a call is in tail position. Typically this means that both results
2502   /// would be assigned to the same register or stack slot, but it could mean
2503   /// the target performs adequate checks of its own before proceeding with the
2504   /// tail call.  Targets must return false when FromTy <= ToTy.
allowTruncateForTailCall(Type * FromTy,Type * ToTy)2505   virtual bool allowTruncateForTailCall(Type *FromTy, Type *ToTy) const {
2506     return false;
2507   }
2508 
isTruncateFree(EVT FromVT,EVT ToVT)2509   virtual bool isTruncateFree(EVT FromVT, EVT ToVT) const {
2510     return false;
2511   }
2512 
isProfitableToHoist(Instruction * I)2513   virtual bool isProfitableToHoist(Instruction *I) const { return true; }
2514 
2515   /// Return true if the extension represented by \p I is free.
2516   /// Unlikely the is[Z|FP]ExtFree family which is based on types,
2517   /// this method can use the context provided by \p I to decide
2518   /// whether or not \p I is free.
2519   /// This method extends the behavior of the is[Z|FP]ExtFree family.
2520   /// In other words, if is[Z|FP]Free returns true, then this method
2521   /// returns true as well. The converse is not true.
2522   /// The target can perform the adequate checks by overriding isExtFreeImpl.
2523   /// \pre \p I must be a sign, zero, or fp extension.
isExtFree(const Instruction * I)2524   bool isExtFree(const Instruction *I) const {
2525     switch (I->getOpcode()) {
2526     case Instruction::FPExt:
2527       if (isFPExtFree(EVT::getEVT(I->getType()),
2528                       EVT::getEVT(I->getOperand(0)->getType())))
2529         return true;
2530       break;
2531     case Instruction::ZExt:
2532       if (isZExtFree(I->getOperand(0)->getType(), I->getType()))
2533         return true;
2534       break;
2535     case Instruction::SExt:
2536       break;
2537     default:
2538       llvm_unreachable("Instruction is not an extension");
2539     }
2540     return isExtFreeImpl(I);
2541   }
2542 
2543   /// Return true if \p Load and \p Ext can form an ExtLoad.
2544   /// For example, in AArch64
2545   ///   %L = load i8, i8* %ptr
2546   ///   %E = zext i8 %L to i32
2547   /// can be lowered into one load instruction
2548   ///   ldrb w0, [x0]
isExtLoad(const LoadInst * Load,const Instruction * Ext,const DataLayout & DL)2549   bool isExtLoad(const LoadInst *Load, const Instruction *Ext,
2550                  const DataLayout &DL) const {
2551     EVT VT = getValueType(DL, Ext->getType());
2552     EVT LoadVT = getValueType(DL, Load->getType());
2553 
2554     // If the load has other users and the truncate is not free, the ext
2555     // probably isn't free.
2556     if (!Load->hasOneUse() && (isTypeLegal(LoadVT) || !isTypeLegal(VT)) &&
2557         !isTruncateFree(Ext->getType(), Load->getType()))
2558       return false;
2559 
2560     // Check whether the target supports casts folded into loads.
2561     unsigned LType;
2562     if (isa<ZExtInst>(Ext))
2563       LType = ISD::ZEXTLOAD;
2564     else {
2565       assert(isa<SExtInst>(Ext) && "Unexpected ext type!");
2566       LType = ISD::SEXTLOAD;
2567     }
2568 
2569     return isLoadExtLegal(LType, VT, LoadVT);
2570   }
2571 
2572   /// Return true if any actual instruction that defines a value of type FromTy
2573   /// implicitly zero-extends the value to ToTy in the result register.
2574   ///
2575   /// The function should return true when it is likely that the truncate can
2576   /// be freely folded with an instruction defining a value of FromTy. If
2577   /// the defining instruction is unknown (because you're looking at a
2578   /// function argument, PHI, etc.) then the target may require an
2579   /// explicit truncate, which is not necessarily free, but this function
2580   /// does not deal with those cases.
2581   /// Targets must return false when FromTy >= ToTy.
isZExtFree(Type * FromTy,Type * ToTy)2582   virtual bool isZExtFree(Type *FromTy, Type *ToTy) const {
2583     return false;
2584   }
2585 
isZExtFree(EVT FromTy,EVT ToTy)2586   virtual bool isZExtFree(EVT FromTy, EVT ToTy) const {
2587     return false;
2588   }
2589 
2590   /// Return true if sign-extension from FromTy to ToTy is cheaper than
2591   /// zero-extension.
isSExtCheaperThanZExt(EVT FromTy,EVT ToTy)2592   virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const {
2593     return false;
2594   }
2595 
2596   /// Return true if sinking I's operands to the same basic block as I is
2597   /// profitable, e.g. because the operands can be folded into a target
2598   /// instruction during instruction selection. After calling the function
2599   /// \p Ops contains the Uses to sink ordered by dominance (dominating users
2600   /// come first).
shouldSinkOperands(Instruction * I,SmallVectorImpl<Use * > & Ops)2601   virtual bool shouldSinkOperands(Instruction *I,
2602                                   SmallVectorImpl<Use *> &Ops) const {
2603     return false;
2604   }
2605 
2606   /// Return true if the target supplies and combines to a paired load
2607   /// two loaded values of type LoadedType next to each other in memory.
2608   /// RequiredAlignment gives the minimal alignment constraints that must be met
2609   /// to be able to select this paired load.
2610   ///
2611   /// This information is *not* used to generate actual paired loads, but it is
2612   /// used to generate a sequence of loads that is easier to combine into a
2613   /// paired load.
2614   /// For instance, something like this:
2615   /// a = load i64* addr
2616   /// b = trunc i64 a to i32
2617   /// c = lshr i64 a, 32
2618   /// d = trunc i64 c to i32
2619   /// will be optimized into:
2620   /// b = load i32* addr1
2621   /// d = load i32* addr2
2622   /// Where addr1 = addr2 +/- sizeof(i32).
2623   ///
2624   /// In other words, unless the target performs a post-isel load combining,
2625   /// this information should not be provided because it will generate more
2626   /// loads.
hasPairedLoad(EVT,Align &)2627   virtual bool hasPairedLoad(EVT /*LoadedType*/,
2628                              Align & /*RequiredAlignment*/) const {
2629     return false;
2630   }
2631 
2632   /// Return true if the target has a vector blend instruction.
hasVectorBlend()2633   virtual bool hasVectorBlend() const { return false; }
2634 
2635   /// Get the maximum supported factor for interleaved memory accesses.
2636   /// Default to be the minimum interleave factor: 2.
getMaxSupportedInterleaveFactor()2637   virtual unsigned getMaxSupportedInterleaveFactor() const { return 2; }
2638 
2639   /// Lower an interleaved load to target specific intrinsics. Return
2640   /// true on success.
2641   ///
2642   /// \p LI is the vector load instruction.
2643   /// \p Shuffles is the shufflevector list to DE-interleave the loaded vector.
2644   /// \p Indices is the corresponding indices for each shufflevector.
2645   /// \p Factor is the interleave factor.
lowerInterleavedLoad(LoadInst * LI,ArrayRef<ShuffleVectorInst * > Shuffles,ArrayRef<unsigned> Indices,unsigned Factor)2646   virtual bool lowerInterleavedLoad(LoadInst *LI,
2647                                     ArrayRef<ShuffleVectorInst *> Shuffles,
2648                                     ArrayRef<unsigned> Indices,
2649                                     unsigned Factor) const {
2650     return false;
2651   }
2652 
2653   /// Lower an interleaved store to target specific intrinsics. Return
2654   /// true on success.
2655   ///
2656   /// \p SI is the vector store instruction.
2657   /// \p SVI is the shufflevector to RE-interleave the stored vector.
2658   /// \p Factor is the interleave factor.
lowerInterleavedStore(StoreInst * SI,ShuffleVectorInst * SVI,unsigned Factor)2659   virtual bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
2660                                      unsigned Factor) const {
2661     return false;
2662   }
2663 
2664   /// Return true if zero-extending the specific node Val to type VT2 is free
2665   /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or
2666   /// because it's folded such as X86 zero-extending loads).
isZExtFree(SDValue Val,EVT VT2)2667   virtual bool isZExtFree(SDValue Val, EVT VT2) const {
2668     return isZExtFree(Val.getValueType(), VT2);
2669   }
2670 
2671   /// Return true if an fpext operation is free (for instance, because
2672   /// single-precision floating-point numbers are implicitly extended to
2673   /// double-precision).
isFPExtFree(EVT DestVT,EVT SrcVT)2674   virtual bool isFPExtFree(EVT DestVT, EVT SrcVT) const {
2675     assert(SrcVT.isFloatingPoint() && DestVT.isFloatingPoint() &&
2676            "invalid fpext types");
2677     return false;
2678   }
2679 
2680   /// Return true if an fpext operation input to an \p Opcode operation is free
2681   /// (for instance, because half-precision floating-point numbers are
2682   /// implicitly extended to float-precision) for an FMA instruction.
isFPExtFoldable(const SelectionDAG & DAG,unsigned Opcode,EVT DestVT,EVT SrcVT)2683   virtual bool isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
2684                                EVT DestVT, EVT SrcVT) const {
2685     assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
2686            "invalid fpext types");
2687     return isFPExtFree(DestVT, SrcVT);
2688   }
2689 
2690   /// Return true if folding a vector load into ExtVal (a sign, zero, or any
2691   /// extend node) is profitable.
isVectorLoadExtDesirable(SDValue ExtVal)2692   virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const { return false; }
2693 
2694   /// Return true if an fneg operation is free to the point where it is never
2695   /// worthwhile to replace it with a bitwise operation.
isFNegFree(EVT VT)2696   virtual bool isFNegFree(EVT VT) const {
2697     assert(VT.isFloatingPoint());
2698     return false;
2699   }
2700 
2701   /// Return true if an fabs operation is free to the point where it is never
2702   /// worthwhile to replace it with a bitwise operation.
isFAbsFree(EVT VT)2703   virtual bool isFAbsFree(EVT VT) const {
2704     assert(VT.isFloatingPoint());
2705     return false;
2706   }
2707 
2708   /// Return true if an FMA operation is faster than a pair of fmul and fadd
2709   /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
2710   /// returns true, otherwise fmuladd is expanded to fmul + fadd.
2711   ///
2712   /// NOTE: This may be called before legalization on types for which FMAs are
2713   /// not legal, but should return true if those types will eventually legalize
2714   /// to types that support FMAs. After legalization, it will only be called on
2715   /// types that support FMAs (via Legal or Custom actions)
isFMAFasterThanFMulAndFAdd(const MachineFunction & MF,EVT)2716   virtual bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
2717                                           EVT) const {
2718     return false;
2719   }
2720 
2721   /// IR version
isFMAFasterThanFMulAndFAdd(const Function & F,Type *)2722   virtual bool isFMAFasterThanFMulAndFAdd(const Function &F, Type *) const {
2723     return false;
2724   }
2725 
2726   /// Returns true if be combined with to form an ISD::FMAD. \p N may be an
2727   /// ISD::FADD, ISD::FSUB, or an ISD::FMUL which will be distributed into an
2728   /// fadd/fsub.
isFMADLegal(const SelectionDAG & DAG,const SDNode * N)2729   virtual bool isFMADLegal(const SelectionDAG &DAG, const SDNode *N) const {
2730     assert((N->getOpcode() == ISD::FADD || N->getOpcode() == ISD::FSUB ||
2731             N->getOpcode() == ISD::FMUL) &&
2732            "unexpected node in FMAD forming combine");
2733     return isOperationLegal(ISD::FMAD, N->getValueType(0));
2734   }
2735 
2736   /// Return true if it's profitable to narrow operations of type VT1 to
2737   /// VT2. e.g. on x86, it's profitable to narrow from i32 to i8 but not from
2738   /// i32 to i16.
isNarrowingProfitable(EVT,EVT)2739   virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
2740     return false;
2741   }
2742 
2743   /// Return true if it is beneficial to convert a load of a constant to
2744   /// just the constant itself.
2745   /// On some targets it might be more efficient to use a combination of
2746   /// arithmetic instructions to materialize the constant instead of loading it
2747   /// from a constant pool.
shouldConvertConstantLoadToIntImm(const APInt & Imm,Type * Ty)2748   virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
2749                                                  Type *Ty) const {
2750     return false;
2751   }
2752 
2753   /// Return true if EXTRACT_SUBVECTOR is cheap for extracting this result type
2754   /// from this source type with this index. This is needed because
2755   /// EXTRACT_SUBVECTOR usually has custom lowering that depends on the index of
2756   /// the first element, and only the target knows which lowering is cheap.
isExtractSubvectorCheap(EVT ResVT,EVT SrcVT,unsigned Index)2757   virtual bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
2758                                        unsigned Index) const {
2759     return false;
2760   }
2761 
2762   /// Try to convert an extract element of a vector binary operation into an
2763   /// extract element followed by a scalar operation.
shouldScalarizeBinop(SDValue VecOp)2764   virtual bool shouldScalarizeBinop(SDValue VecOp) const {
2765     return false;
2766   }
2767 
2768   /// Return true if extraction of a scalar element from the given vector type
2769   /// at the given index is cheap. For example, if scalar operations occur on
2770   /// the same register file as vector operations, then an extract element may
2771   /// be a sub-register rename rather than an actual instruction.
isExtractVecEltCheap(EVT VT,unsigned Index)2772   virtual bool isExtractVecEltCheap(EVT VT, unsigned Index) const {
2773     return false;
2774   }
2775 
2776   /// Try to convert math with an overflow comparison into the corresponding DAG
2777   /// node operation. Targets may want to override this independently of whether
2778   /// the operation is legal/custom for the given type because it may obscure
2779   /// matching of other patterns.
shouldFormOverflowOp(unsigned Opcode,EVT VT,bool MathUsed)2780   virtual bool shouldFormOverflowOp(unsigned Opcode, EVT VT,
2781                                     bool MathUsed) const {
2782     // TODO: The default logic is inherited from code in CodeGenPrepare.
2783     // The opcode should not make a difference by default?
2784     if (Opcode != ISD::UADDO)
2785       return false;
2786 
2787     // Allow the transform as long as we have an integer type that is not
2788     // obviously illegal and unsupported and if the math result is used
2789     // besides the overflow check. On some targets (e.g. SPARC), it is
2790     // not profitable to form on overflow op if the math result has no
2791     // concrete users.
2792     if (VT.isVector())
2793       return false;
2794     return MathUsed && (VT.isSimple() || !isOperationExpand(Opcode, VT));
2795   }
2796 
2797   // Return true if it is profitable to use a scalar input to a BUILD_VECTOR
2798   // even if the vector itself has multiple uses.
aggressivelyPreferBuildVectorSources(EVT VecVT)2799   virtual bool aggressivelyPreferBuildVectorSources(EVT VecVT) const {
2800     return false;
2801   }
2802 
2803   // Return true if CodeGenPrepare should consider splitting large offset of a
2804   // GEP to make the GEP fit into the addressing mode and can be sunk into the
2805   // same blocks of its users.
shouldConsiderGEPOffsetSplit()2806   virtual bool shouldConsiderGEPOffsetSplit() const { return false; }
2807 
2808   /// Return true if creating a shift of the type by the given
2809   /// amount is not profitable.
shouldAvoidTransformToShift(EVT VT,unsigned Amount)2810   virtual bool shouldAvoidTransformToShift(EVT VT, unsigned Amount) const {
2811     return false;
2812   }
2813 
2814   // Return true if the target has a capability set address instruction.
hasCapabilitySetAddress()2815   virtual bool hasCapabilitySetAddress() const { return false; }
cheriCapabilityType()2816   MVT cheriCapabilityType() const { return CapType; }
cheriCapabilityTypeHasPreciseBounds()2817   bool cheriCapabilityTypeHasPreciseBounds() const {
2818     return CapTypeHasPreciseBounds;
2819   }
supportsUnalignedCapabilityMemOps()2820   bool supportsUnalignedCapabilityMemOps() const {
2821     return SupportsUnalignedCapabilityMemOps;
2822   }
getTailPaddingForPreciseBounds(uint64_t Size)2823   virtual TailPaddingAmount getTailPaddingForPreciseBounds(uint64_t Size) const {
2824     return TailPaddingAmount::None;
2825   }
getAlignmentForPreciseBounds(uint64_t Size)2826   virtual Align getAlignmentForPreciseBounds(uint64_t Size) const {
2827     return Align();
2828   }
supportsAtomicCapabilityOperations()2829   bool supportsAtomicCapabilityOperations() const {
2830     return SupportsAtomicCapabilityOperations;
2831   }
getNullCapabilityRegister()2832   Register getNullCapabilityRegister() const {
2833     return NullCapabilityRegister;
2834   }
2835 
2836   //===--------------------------------------------------------------------===//
2837   // Runtime Library hooks
2838   //
2839 
2840   /// Rename the default libcall routine name for the specified libcall.
setLibcallName(RTLIB::Libcall Call,const char * Name)2841   void setLibcallName(RTLIB::Libcall Call, const char *Name) {
2842     LibcallRoutineNames[Call] = Name;
2843   }
2844 
2845   /// Get the libcall routine name for the specified libcall.
getLibcallName(RTLIB::Libcall Call)2846   const char *getLibcallName(RTLIB::Libcall Call) const {
2847     return LibcallRoutineNames[Call];
2848   }
2849 
2850   /// Override the default CondCode to be used to test the result of the
2851   /// comparison libcall against zero.
setCmpLibcallCC(RTLIB::Libcall Call,ISD::CondCode CC)2852   void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
2853     CmpLibcallCCs[Call] = CC;
2854   }
2855 
2856   /// Get the CondCode that's to be used to test the result of the comparison
2857   /// libcall against zero.
getCmpLibcallCC(RTLIB::Libcall Call)2858   ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
2859     return CmpLibcallCCs[Call];
2860   }
2861 
2862   /// Set the CallingConv that should be used for the specified libcall.
setLibcallCallingConv(RTLIB::Libcall Call,CallingConv::ID CC)2863   void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
2864     LibcallCallingConvs[Call] = CC;
2865   }
2866 
2867   /// Get the CallingConv that should be used for the specified libcall.
getLibcallCallingConv(RTLIB::Libcall Call)2868   CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
2869     return LibcallCallingConvs[Call];
2870   }
2871 
2872   /// Execute target specific actions to finalize target lowering.
2873   /// This is used to set extra flags in MachineFrameInformation and freezing
2874   /// the set of reserved registers.
2875   /// The default implementation just freezes the set of reserved registers.
2876   virtual void finalizeLowering(MachineFunction &MF) const;
2877 
2878   //===----------------------------------------------------------------------===//
2879   //  GlobalISel Hooks
2880   //===----------------------------------------------------------------------===//
2881   /// Check whether or not \p MI needs to be moved close to its uses.
2882   virtual bool shouldLocalize(const MachineInstr &MI, const TargetTransformInfo *TTI) const;
2883 
2884 
2885 private:
2886   const TargetMachine &TM;
2887 
2888   /// Tells the code generator that the target has multiple (allocatable)
2889   /// condition registers that can be used to store the results of comparisons
2890   /// for use by selects and conditional branches. With multiple condition
2891   /// registers, the code generator will not aggressively sink comparisons into
2892   /// the blocks of their users.
2893   bool HasMultipleConditionRegisters;
2894 
2895   /// Tells the code generator that the target has BitExtract instructions.
2896   /// The code generator will aggressively sink "shift"s into the blocks of
2897   /// their users if the users will generate "and" instructions which can be
2898   /// combined with "shift" to BitExtract instructions.
2899   bool HasExtractBitsInsn;
2900 
2901   /// Tells the code generator to bypass slow divide or remainder
2902   /// instructions. For example, BypassSlowDivWidths[32,8] tells the code
2903   /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer
2904   /// div/rem when the operands are positive and less than 256.
2905   DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
2906 
2907   /// Tells the code generator that it shouldn't generate extra flow control
2908   /// instructions and should attempt to combine flow control instructions via
2909   /// predication.
2910   bool JumpIsExpensive;
2911 
2912   /// Information about the contents of the high-bits in boolean values held in
2913   /// a type wider than i1. See getBooleanContents.
2914   BooleanContent BooleanContents;
2915 
2916   /// Information about the contents of the high-bits in boolean values held in
2917   /// a type wider than i1. See getBooleanContents.
2918   BooleanContent BooleanFloatContents;
2919 
2920   /// Information about the contents of the high-bits in boolean vector values
2921   /// when the element type is wider than i1. See getBooleanContents.
2922   BooleanContent BooleanVectorContents;
2923 
2924   /// The target scheduling preference: shortest possible total cycles or lowest
2925   /// register usage.
2926   Sched::Preference SchedPreferenceInfo;
2927 
2928   /// The minimum alignment that any argument on the stack needs to have.
2929   Align MinStackArgumentAlignment;
2930 
2931   /// The minimum function alignment (used when optimizing for size, and to
2932   /// prevent explicitly provided alignment from leading to incorrect code).
2933   Align MinFunctionAlignment;
2934 
2935   /// The preferred function alignment (used when alignment unspecified and
2936   /// optimizing for speed).
2937   Align PrefFunctionAlignment;
2938 
2939   /// The preferred loop alignment (in log2 bot in bytes).
2940   Align PrefLoopAlignment;
2941 
2942   /// Size in bits of the maximum atomics size the backend supports.
2943   /// Accesses larger than this will be expanded by AtomicExpandPass.
2944   unsigned MaxAtomicSizeInBitsSupported;
2945 
2946   /// Size in bits of the minimum cmpxchg or ll/sc operation the
2947   /// backend supports.
2948   unsigned MinCmpXchgSizeInBits;
2949 
2950   /// This indicates if the target supports unaligned atomic operations.
2951   bool SupportsUnalignedAtomics;
2952 
2953   /// If set to a physical register, this specifies the register that
2954   /// llvm.savestack/llvm.restorestack should save and restore.
2955   Register StackPointerRegisterToSaveRestore;
2956 
2957   /// This indicates the default register class to use for each ValueType the
2958   /// target supports natively.
2959   const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
2960   uint16_t NumRegistersForVT[MVT::LAST_VALUETYPE];
2961   MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
2962 
2963   /// This indicates the "representative" register class to use for each
2964   /// ValueType the target supports natively. This information is used by the
2965   /// scheduler to track register pressure. By default, the representative
2966   /// register class is the largest legal super-reg register class of the
2967   /// register class of the specified type. e.g. On x86, i8, i16, and i32's
2968   /// representative class would be GR32.
2969   const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
2970 
2971   /// This indicates the "cost" of the "representative" register class for each
2972   /// ValueType. The cost is used by the scheduler to approximate register
2973   /// pressure.
2974   uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
2975 
2976   /// For any value types we are promoting or expanding, this contains the value
2977   /// type that we are changing to.  For Expanded types, this contains one step
2978   /// of the expand (e.g. i64 -> i32), even if there are multiple steps required
2979   /// (e.g. i64 -> i16).  For types natively supported by the system, this holds
2980   /// the same type (e.g. i32 -> i32).
2981   MVT TransformToType[MVT::LAST_VALUETYPE];
2982 
2983   /// For each operation and each value type, keep a LegalizeAction that
2984   /// indicates how instruction selection should deal with the operation.  Most
2985   /// operations are Legal (aka, supported natively by the target), but
2986   /// operations that are not should be described.  Note that operations on
2987   /// non-legal value types are not described here.
2988   LegalizeAction OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
2989 
2990   /// For each load extension type and each value type, keep a LegalizeAction
2991   /// that indicates how instruction selection should deal with a load of a
2992   /// specific value type and extension type. Uses 4-bits to store the action
2993   /// for each of the 4 load ext types.
2994   uint16_t LoadExtActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
2995 
2996   /// For each value type pair keep a LegalizeAction that indicates whether a
2997   /// truncating store of a specific value type and truncating type is legal.
2998   LegalizeAction TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
2999 
3000   /// For each indexed mode and each value type, keep a quad of LegalizeAction
3001   /// that indicates how instruction selection should deal with the load /
3002   /// store / maskedload / maskedstore.
3003   ///
3004   /// The first dimension is the value_type for the reference. The second
3005   /// dimension represents the various modes for load store.
3006   uint16_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
3007 
3008   /// For each condition code (ISD::CondCode) keep a LegalizeAction that
3009   /// indicates how instruction selection should deal with the condition code.
3010   ///
3011   /// Because each CC action takes up 4 bits, we need to have the array size be
3012   /// large enough to fit all of the value types. This can be done by rounding
3013   /// up the MVT::LAST_VALUETYPE value to the next multiple of 8.
3014   uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE + 7) / 8];
3015 
3016   ValueTypeActionImpl ValueTypeActions;
3017 
3018 private:
3019   LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const;
3020 
3021   /// Targets can specify ISD nodes that they would like PerformDAGCombine
3022   /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this
3023   /// array.
3024   unsigned char
3025   TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
3026 
3027   /// For operations that must be promoted to a specific type, this holds the
3028   /// destination type.  This map should be sparse, so don't hold it as an
3029   /// array.
3030   ///
3031   /// Targets add entries to this map with AddPromotedToType(..), clients access
3032   /// this with getTypeToPromoteTo(..).
3033   std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
3034     PromoteToType;
3035 
3036   /// Stores the name each libcall.
3037   const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL + 1];
3038 
3039   /// The ISD::CondCode that should be used to test the result of each of the
3040   /// comparison libcall against zero.
3041   ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
3042 
3043   /// Stores the CallingConv that should be used for each libcall.
3044   CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
3045 
3046   /// Set default libcall names and calling conventions.
3047   void InitLibcalls(const Triple &TT);
3048 
3049   /// The bits of IndexedModeActions used to store the legalisation actions
3050   /// We store the data as   | ML | MS |  L |  S | each taking 4 bits.
3051   enum IndexedModeActionsBits {
3052     IMAB_Store = 0,
3053     IMAB_Load = 4,
3054     IMAB_MaskedStore = 8,
3055     IMAB_MaskedLoad = 12
3056   };
3057 
setIndexedModeAction(unsigned IdxMode,MVT VT,unsigned Shift,LegalizeAction Action)3058   void setIndexedModeAction(unsigned IdxMode, MVT VT, unsigned Shift,
3059                             LegalizeAction Action) {
3060     assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
3061            (unsigned)Action < 0xf && "Table isn't big enough!");
3062     unsigned Ty = (unsigned)VT.SimpleTy;
3063     IndexedModeActions[Ty][IdxMode] &= ~(0xf << Shift);
3064     IndexedModeActions[Ty][IdxMode] |= ((uint16_t)Action) << Shift;
3065   }
3066 
getIndexedModeAction(unsigned IdxMode,MVT VT,unsigned Shift)3067   LegalizeAction getIndexedModeAction(unsigned IdxMode, MVT VT,
3068                                       unsigned Shift) const {
3069     assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
3070            "Table isn't big enough!");
3071     unsigned Ty = (unsigned)VT.SimpleTy;
3072     return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] >> Shift) & 0xf);
3073   }
3074 
3075 protected:
3076   /// Return true if the extension represented by \p I is free.
3077   /// \pre \p I is a sign, zero, or fp extension and
3078   ///      is[Z|FP]ExtFree of the related types is not true.
isExtFreeImpl(const Instruction * I)3079   virtual bool isExtFreeImpl(const Instruction *I) const { return false; }
3080 
3081   /// Depth that GatherAllAliases should should continue looking for chain
3082   /// dependencies when trying to find a more preferable chain. As an
3083   /// approximation, this should be more than the number of consecutive stores
3084   /// expected to be merged.
3085   unsigned GatherAllAliasesMaxDepth;
3086 
3087   /// \brief Specify maximum number of store instructions per memset call.
3088   ///
3089   /// When lowering \@llvm.memset this field specifies the maximum number of
3090   /// store operations that may be substituted for the call to memset. Targets
3091   /// must set this value based on the cost threshold for that target. Targets
3092   /// should assume that the memset will be done using as many of the largest
3093   /// store operations first, followed by smaller ones, if necessary, per
3094   /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
3095   /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
3096   /// store.  This only applies to setting a constant array of a constant size.
3097   unsigned MaxStoresPerMemset;
3098   /// Likewise for functions with the OptSize attribute.
3099   unsigned MaxStoresPerMemsetOptSize;
3100 
3101   /// \brief Specify maximum number of store instructions per memcpy call.
3102   ///
3103   /// When lowering \@llvm.memcpy this field specifies the maximum number of
3104   /// store operations that may be substituted for a call to memcpy. Targets
3105   /// must set this value based on the cost threshold for that target. Targets
3106   /// should assume that the memcpy will be done using as many of the largest
3107   /// store operations first, followed by smaller ones, if necessary, per
3108   /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
3109   /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
3110   /// and one 1-byte store. This only applies to copying a constant array of
3111   /// constant size.
3112   unsigned MaxStoresPerMemcpy;
3113   /// Likewise for functions with the OptSize attribute.
3114   unsigned MaxStoresPerMemcpyOptSize;
3115   /// \brief Specify max number of store instructions to glue in inlined memcpy.
3116   ///
3117   /// When memcpy is inlined based on MaxStoresPerMemcpy, specify maximum number
3118   /// of store instructions to keep together. This helps in pairing and
3119   //  vectorization later on.
3120   unsigned MaxGluedStoresPerMemcpy = 0;
3121 
3122   /// \brief Specify maximum number of load instructions per memcmp call.
3123   ///
3124   /// When lowering \@llvm.memcmp this field specifies the maximum number of
3125   /// pairs of load operations that may be substituted for a call to memcmp.
3126   /// Targets must set this value based on the cost threshold for that target.
3127   /// Targets should assume that the memcmp will be done using as many of the
3128   /// largest load operations first, followed by smaller ones, if necessary, per
3129   /// alignment restrictions. For example, loading 7 bytes on a 32-bit machine
3130   /// with 32-bit alignment would result in one 4-byte load, a one 2-byte load
3131   /// and one 1-byte load. This only applies to copying a constant array of
3132   /// constant size.
3133   unsigned MaxLoadsPerMemcmp;
3134   /// Likewise for functions with the OptSize attribute.
3135   unsigned MaxLoadsPerMemcmpOptSize;
3136 
3137   /// \brief Specify maximum number of store instructions per memmove call.
3138   ///
3139   /// When lowering \@llvm.memmove this field specifies the maximum number of
3140   /// store instructions that may be substituted for a call to memmove. Targets
3141   /// must set this value based on the cost threshold for that target. Targets
3142   /// should assume that the memmove will be done using as many of the largest
3143   /// store operations first, followed by smaller ones, if necessary, per
3144   /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
3145   /// with 8-bit alignment would result in nine 1-byte stores.  This only
3146   /// applies to copying a constant array of constant size.
3147   unsigned MaxStoresPerMemmove;
3148   /// Likewise for functions with the OptSize attribute.
3149   unsigned MaxStoresPerMemmoveOptSize;
3150 
3151   /// Tells the code generator that select is more expensive than a branch if
3152   /// the branch is usually predicted right.
3153   bool PredictableSelectIsExpensive;
3154 
3155   /// \see enableExtLdPromotion.
3156   bool EnableExtLdPromotion;
3157 
3158   /// The type to use for CHERI capabilities (if supported)
3159   /// Should be one of iFATPTR64/128/256
3160   MVT CapType = MVT();
3161 
3162   /// Whether the CHERI capability type supports precise bounds for any
3163   /// allocation. Defaults to false for safety over efficiency.
3164   bool CapTypeHasPreciseBounds = false;
3165 
3166   /// Whether CHERI Capability loads/stores can be used with unaligned addresses
3167   /// This makes it possible to do a tag-preserving copy even if the alignment
3168   /// is not statically known to be at least capability aligned.
3169   bool SupportsUnalignedCapabilityMemOps = false;
3170 
3171   /// Whether atomic operations with CHERI capability values are supported.
3172   bool SupportsAtomicCapabilityOperations = false;
3173 
3174   /// Set the target has a NULL capability register (e.g. Mips::CNULL)
3175   Register NullCapabilityRegister = {};
3176 
3177   /// Return true if the value types that can be represented by the specified
3178   /// register class are all legal.
3179   bool isLegalRC(const TargetRegisterInfo &TRI,
3180                  const TargetRegisterClass &RC) const;
3181 
3182   /// Replace/modify any TargetFrameIndex operands with a targte-dependent
3183   /// sequence of memory operands that is recognized by PrologEpilogInserter.
3184   MachineBasicBlock *emitPatchPoint(MachineInstr &MI,
3185                                     MachineBasicBlock *MBB) const;
3186 
3187   /// Replace/modify the XRay custom event operands with target-dependent
3188   /// details.
3189   MachineBasicBlock *emitXRayCustomEvent(MachineInstr &MI,
3190                                          MachineBasicBlock *MBB) const;
3191 
3192   /// Replace/modify the XRay typed event operands with target-dependent
3193   /// details.
3194   MachineBasicBlock *emitXRayTypedEvent(MachineInstr &MI,
3195                                         MachineBasicBlock *MBB) const;
3196 
3197   bool IsStrictFPEnabled;
3198 };
3199 
3200 /// This class defines information used to lower LLVM code to legal SelectionDAG
3201 /// operators that the target instruction selector can accept natively.
3202 ///
3203 /// This class also defines callbacks that targets must implement to lower
3204 /// target-specific constructs to SelectionDAG operators.
3205 class TargetLowering : public TargetLoweringBase {
3206 public:
3207   struct DAGCombinerInfo;
3208   struct MakeLibCallOptions;
3209 
3210   TargetLowering(const TargetLowering &) = delete;
3211   TargetLowering &operator=(const TargetLowering &) = delete;
3212 
3213   explicit TargetLowering(const TargetMachine &TM);
3214 
3215   bool isPositionIndependent() const;
3216 
isSDNodeSourceOfDivergence(const SDNode * N,FunctionLoweringInfo * FLI,LegacyDivergenceAnalysis * DA)3217   virtual bool isSDNodeSourceOfDivergence(const SDNode *N,
3218                                           FunctionLoweringInfo *FLI,
3219                                           LegacyDivergenceAnalysis *DA) const {
3220     return false;
3221   }
3222 
isSDNodeAlwaysUniform(const SDNode * N)3223   virtual bool isSDNodeAlwaysUniform(const SDNode * N) const {
3224     return false;
3225   }
3226 
3227   /// Returns true by value, base pointer and offset pointer and addressing mode
3228   /// by reference if the node's address can be legally represented as
3229   /// pre-indexed load / store address.
getPreIndexedAddressParts(SDNode *,SDValue &,SDValue &,ISD::MemIndexedMode &,SelectionDAG &)3230   virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
3231                                          SDValue &/*Offset*/,
3232                                          ISD::MemIndexedMode &/*AM*/,
3233                                          SelectionDAG &/*DAG*/) const {
3234     return false;
3235   }
3236 
3237   /// Returns true by value, base pointer and offset pointer and addressing mode
3238   /// by reference if this node can be combined with a load / store to form a
3239   /// post-indexed load / store.
getPostIndexedAddressParts(SDNode *,SDNode *,SDValue &,SDValue &,ISD::MemIndexedMode &,SelectionDAG &)3240   virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
3241                                           SDValue &/*Base*/,
3242                                           SDValue &/*Offset*/,
3243                                           ISD::MemIndexedMode &/*AM*/,
3244                                           SelectionDAG &/*DAG*/) const {
3245     return false;
3246   }
3247 
3248   /// Returns true if the specified base+offset is a legal indexed addressing
3249   /// mode for this target. \p MI is the load or store instruction that is being
3250   /// considered for transformation.
isIndexingLegal(MachineInstr & MI,Register Base,Register Offset,bool IsPre,MachineRegisterInfo & MRI)3251   virtual bool isIndexingLegal(MachineInstr &MI, Register Base, Register Offset,
3252                                bool IsPre, MachineRegisterInfo &MRI) const {
3253     return false;
3254   }
3255 
3256   /// Return the entry encoding for a jump table in the current function.  The
3257   /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
3258   virtual unsigned getJumpTableEncoding() const;
3259 
3260   virtual const MCExpr *
LowerCustomJumpTableEntry(const MachineJumpTableInfo *,const MachineBasicBlock *,unsigned,MCContext &)3261   LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
3262                             const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
3263                             MCContext &/*Ctx*/) const {
3264     llvm_unreachable("Need to implement this hook if target has custom JTIs");
3265   }
3266 
3267   /// Returns relocation base for the given PIC jumptable.
3268   virtual SDValue getPICJumpTableRelocBase(SDValue Table,
3269                                            SelectionDAG &DAG) const;
3270 
3271   /// This returns the relocation base for the given PIC jumptable, the same as
3272   /// getPICJumpTableRelocBase, but as an MCExpr.
3273   virtual const MCExpr *
3274   getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
3275                                unsigned JTI, MCContext &Ctx) const;
3276 
3277   /// Return true if folding a constant offset with the given GlobalAddress is
3278   /// legal.  It is frequently not legal in PIC relocation models.
3279   virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
3280 
3281   bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
3282                             SDValue &Chain) const;
3283 
3284   void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS,
3285                            SDValue &NewRHS, ISD::CondCode &CCCode,
3286                            const SDLoc &DL, const SDValue OldLHS,
3287                            const SDValue OldRHS) const;
3288 
3289   void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS,
3290                            SDValue &NewRHS, ISD::CondCode &CCCode,
3291                            const SDLoc &DL, const SDValue OldLHS,
3292                            const SDValue OldRHS, SDValue &Chain,
3293                            bool IsSignaling = false) const;
3294 
3295   /// Returns a pair of (return value, chain).
3296   /// It is an error to pass RTLIB::UNKNOWN_LIBCALL as \p LC.
3297   std::pair<SDValue, SDValue> makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC,
3298                                           EVT RetVT, ArrayRef<SDValue> Ops,
3299                                           MakeLibCallOptions CallOptions,
3300                                           const SDLoc &dl,
3301                                           SDValue Chain = SDValue()) const;
3302 
3303   /// Check whether parameters to a call that are passed in callee saved
3304   /// registers are the same as from the calling function.  This needs to be
3305   /// checked for tail call eligibility.
3306   bool parametersInCSRMatch(const MachineRegisterInfo &MRI,
3307       const uint32_t *CallerPreservedMask,
3308       const SmallVectorImpl<CCValAssign> &ArgLocs,
3309       const SmallVectorImpl<SDValue> &OutVals) const;
3310 
3311   //===--------------------------------------------------------------------===//
3312   // TargetLowering Optimization Methods
3313   //
3314 
3315   /// A convenience struct that encapsulates a DAG, and two SDValues for
3316   /// returning information from TargetLowering to its clients that want to
3317   /// combine.
3318   struct TargetLoweringOpt {
3319     SelectionDAG &DAG;
3320     bool LegalTys;
3321     bool LegalOps;
3322     SDValue Old;
3323     SDValue New;
3324 
TargetLoweringOptTargetLoweringOpt3325     explicit TargetLoweringOpt(SelectionDAG &InDAG,
3326                                bool LT, bool LO) :
3327       DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
3328 
LegalTypesTargetLoweringOpt3329     bool LegalTypes() const { return LegalTys; }
LegalOperationsTargetLoweringOpt3330     bool LegalOperations() const { return LegalOps; }
3331 
CombineToTargetLoweringOpt3332     bool CombineTo(SDValue O, SDValue N) {
3333       Old = O;
3334       New = N;
3335       return true;
3336     }
3337   };
3338 
3339   /// Determines the optimal series of memory ops to replace the memset / memcpy.
3340   /// Return true if the number of memory ops is below the threshold (Limit).
3341   /// It returns the types of the sequence of memory ops to perform
3342   /// memset / memcpy by reference.
3343   bool findOptimalMemOpLowering(std::vector<EVT> &MemOps, unsigned Limit,
3344                                 const MemOp &Op, unsigned DstAS, unsigned SrcAS,
3345                                 const AttributeList &FuncAttributes) const;
3346 
3347   /// Check to see if the specified operand of the specified instruction is a
3348   /// constant integer.  If so, check to see if there are any bits set in the
3349   /// constant that are not demanded.  If so, shrink the constant and return
3350   /// true.
3351   bool ShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits,
3352                               const APInt &DemandedElts,
3353                               TargetLoweringOpt &TLO) const;
3354 
3355   /// Helper wrapper around ShrinkDemandedConstant, demanding all elements.
3356   bool ShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits,
3357                               TargetLoweringOpt &TLO) const;
3358 
3359   // Target hook to do target-specific const optimization, which is called by
3360   // ShrinkDemandedConstant. This function should return true if the target
3361   // doesn't want ShrinkDemandedConstant to further optimize the constant.
targetShrinkDemandedConstant(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,TargetLoweringOpt & TLO)3362   virtual bool targetShrinkDemandedConstant(SDValue Op,
3363                                             const APInt &DemandedBits,
3364                                             const APInt &DemandedElts,
3365                                             TargetLoweringOpt &TLO) const {
3366     return false;
3367   }
3368 
3369   /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.  This
3370   /// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
3371   /// generalized for targets with other types of implicit widening casts.
3372   bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
3373                         TargetLoweringOpt &TLO) const;
3374 
3375   /// Look at Op.  At this point, we know that only the DemandedBits bits of the
3376   /// result of Op are ever used downstream.  If we can use this information to
3377   /// simplify Op, create a new simplified DAG node and return true, returning
3378   /// the original and new nodes in Old and New.  Otherwise, analyze the
3379   /// expression and return a mask of KnownOne and KnownZero bits for the
3380   /// expression (used to simplify the caller).  The KnownZero/One bits may only
3381   /// be accurate for those bits in the Demanded masks.
3382   /// \p AssumeSingleUse When this parameter is true, this function will
3383   ///    attempt to simplify \p Op even if there are multiple uses.
3384   ///    Callers are responsible for correctly updating the DAG based on the
3385   ///    results of this function, because simply replacing replacing TLO.Old
3386   ///    with TLO.New will be incorrect when this parameter is true and TLO.Old
3387   ///    has multiple uses.
3388   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
3389                             const APInt &DemandedElts, KnownBits &Known,
3390                             TargetLoweringOpt &TLO, unsigned Depth = 0,
3391                             bool AssumeSingleUse = false) const;
3392 
3393   /// Helper wrapper around SimplifyDemandedBits, demanding all elements.
3394   /// Adds Op back to the worklist upon success.
3395   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
3396                             KnownBits &Known, TargetLoweringOpt &TLO,
3397                             unsigned Depth = 0,
3398                             bool AssumeSingleUse = false) const;
3399 
3400   /// Helper wrapper around SimplifyDemandedBits.
3401   /// Adds Op back to the worklist upon success.
3402   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
3403                             DAGCombinerInfo &DCI) const;
3404 
3405   /// More limited version of SimplifyDemandedBits that can be used to "look
3406   /// through" ops that don't contribute to the DemandedBits/DemandedElts -
3407   /// bitwise ops etc.
3408   SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits,
3409                                           const APInt &DemandedElts,
3410                                           SelectionDAG &DAG,
3411                                           unsigned Depth) const;
3412 
3413   /// Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all
3414   /// elements.
3415   SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits,
3416                                           SelectionDAG &DAG,
3417                                           unsigned Depth = 0) const;
3418 
3419   /// Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all
3420   /// bits from only some vector elements.
3421   SDValue SimplifyMultipleUseDemandedVectorElts(SDValue Op,
3422                                                 const APInt &DemandedElts,
3423                                                 SelectionDAG &DAG,
3424                                                 unsigned Depth = 0) const;
3425 
3426   /// Look at Vector Op. At this point, we know that only the DemandedElts
3427   /// elements of the result of Op are ever used downstream.  If we can use
3428   /// this information to simplify Op, create a new simplified DAG node and
3429   /// return true, storing the original and new nodes in TLO.
3430   /// Otherwise, analyze the expression and return a mask of KnownUndef and
3431   /// KnownZero elements for the expression (used to simplify the caller).
3432   /// The KnownUndef/Zero elements may only be accurate for those bits
3433   /// in the DemandedMask.
3434   /// \p AssumeSingleUse When this parameter is true, this function will
3435   ///    attempt to simplify \p Op even if there are multiple uses.
3436   ///    Callers are responsible for correctly updating the DAG based on the
3437   ///    results of this function, because simply replacing replacing TLO.Old
3438   ///    with TLO.New will be incorrect when this parameter is true and TLO.Old
3439   ///    has multiple uses.
3440   bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask,
3441                                   APInt &KnownUndef, APInt &KnownZero,
3442                                   TargetLoweringOpt &TLO, unsigned Depth = 0,
3443                                   bool AssumeSingleUse = false) const;
3444 
3445   /// Helper wrapper around SimplifyDemandedVectorElts.
3446   /// Adds Op back to the worklist upon success.
3447   bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts,
3448                                   APInt &KnownUndef, APInt &KnownZero,
3449                                   DAGCombinerInfo &DCI) const;
3450 
3451   /// Determine which of the bits specified in Mask are known to be either zero
3452   /// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts
3453   /// argument allows us to only collect the known bits that are shared by the
3454   /// requested vector elements.
3455   virtual void computeKnownBitsForTargetNode(const SDValue Op,
3456                                              KnownBits &Known,
3457                                              const APInt &DemandedElts,
3458                                              const SelectionDAG &DAG,
3459                                              unsigned Depth = 0) const;
3460 
3461   /// Determine which of the bits specified in Mask are known to be either zero
3462   /// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts
3463   /// argument allows us to only collect the known bits that are shared by the
3464   /// requested vector elements. This is for GISel.
3465   virtual void computeKnownBitsForTargetInstr(GISelKnownBits &Analysis,
3466                                               Register R, KnownBits &Known,
3467                                               const APInt &DemandedElts,
3468                                               const MachineRegisterInfo &MRI,
3469                                               unsigned Depth = 0) const;
3470 
3471   /// Determine the known alignment for the pointer value \p R. This is can
3472   /// typically be inferred from the number of low known 0 bits. However, for a
3473   /// pointer with a non-integral address space, the alignment value may be
3474   /// independent from the known low bits.
3475   virtual Align computeKnownAlignForTargetInstr(GISelKnownBits &Analysis,
3476                                                 Register R,
3477                                                 const MachineRegisterInfo &MRI,
3478                                                 unsigned Depth = 0) const;
3479 
3480   /// Determine which of the bits of FrameIndex \p FIOp are known to be 0.
3481   /// Default implementation computes low bits based on alignment
3482   /// information. This should preserve known bits passed into it.
3483   virtual void computeKnownBitsForFrameIndex(int FIOp,
3484                                              KnownBits &Known,
3485                                              const MachineFunction &MF) const;
3486 
3487   /// This method can be implemented by targets that want to expose additional
3488   /// information about sign bits to the DAG Combiner. The DemandedElts
3489   /// argument allows us to only collect the minimum sign bits that are shared
3490   /// by the requested vector elements.
3491   virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
3492                                                    const APInt &DemandedElts,
3493                                                    const SelectionDAG &DAG,
3494                                                    unsigned Depth = 0) const;
3495 
3496   /// This method can be implemented by targets that want to expose additional
3497   /// information about sign bits to GlobalISel combiners. The DemandedElts
3498   /// argument allows us to only collect the minimum sign bits that are shared
3499   /// by the requested vector elements.
3500   virtual unsigned computeNumSignBitsForTargetInstr(GISelKnownBits &Analysis,
3501                                                     Register R,
3502                                                     const APInt &DemandedElts,
3503                                                     const MachineRegisterInfo &MRI,
3504                                                     unsigned Depth = 0) const;
3505 
3506   /// Attempt to simplify any target nodes based on the demanded vector
3507   /// elements, returning true on success. Otherwise, analyze the expression and
3508   /// return a mask of KnownUndef and KnownZero elements for the expression
3509   /// (used to simplify the caller). The KnownUndef/Zero elements may only be
3510   /// accurate for those bits in the DemandedMask.
3511   virtual bool SimplifyDemandedVectorEltsForTargetNode(
3512       SDValue Op, const APInt &DemandedElts, APInt &KnownUndef,
3513       APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth = 0) const;
3514 
3515   /// Attempt to simplify any target nodes based on the demanded bits/elts,
3516   /// returning true on success. Otherwise, analyze the
3517   /// expression and return a mask of KnownOne and KnownZero bits for the
3518   /// expression (used to simplify the caller).  The KnownZero/One bits may only
3519   /// be accurate for those bits in the Demanded masks.
3520   virtual bool SimplifyDemandedBitsForTargetNode(SDValue Op,
3521                                                  const APInt &DemandedBits,
3522                                                  const APInt &DemandedElts,
3523                                                  KnownBits &Known,
3524                                                  TargetLoweringOpt &TLO,
3525                                                  unsigned Depth = 0) const;
3526 
3527   /// More limited version of SimplifyDemandedBits that can be used to "look
3528   /// through" ops that don't contribute to the DemandedBits/DemandedElts -
3529   /// bitwise ops etc.
3530   virtual SDValue SimplifyMultipleUseDemandedBitsForTargetNode(
3531       SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3532       SelectionDAG &DAG, unsigned Depth) const;
3533 
3534   /// Tries to build a legal vector shuffle using the provided parameters
3535   /// or equivalent variations. The Mask argument maybe be modified as the
3536   /// function tries different variations.
3537   /// Returns an empty SDValue if the operation fails.
3538   SDValue buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3539                                   SDValue N1, MutableArrayRef<int> Mask,
3540                                   SelectionDAG &DAG) const;
3541 
3542   /// This method returns the constant pool value that will be loaded by LD.
3543   /// NOTE: You must check for implicit extensions of the constant by LD.
3544   virtual const Constant *getTargetConstantFromLoad(LoadSDNode *LD) const;
3545 
3546   /// If \p SNaN is false, \returns true if \p Op is known to never be any
3547   /// NaN. If \p sNaN is true, returns if \p Op is known to never be a signaling
3548   /// NaN.
3549   virtual bool isKnownNeverNaNForTargetNode(SDValue Op,
3550                                             const SelectionDAG &DAG,
3551                                             bool SNaN = false,
3552                                             unsigned Depth = 0) const;
3553   struct DAGCombinerInfo {
3554     void *DC;  // The DAG Combiner object.
3555     CombineLevel Level;
3556     bool CalledByLegalizer;
3557 
3558   public:
3559     SelectionDAG &DAG;
3560 
DAGCombinerInfoDAGCombinerInfo3561     DAGCombinerInfo(SelectionDAG &dag, CombineLevel level,  bool cl, void *dc)
3562       : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
3563 
isBeforeLegalizeDAGCombinerInfo3564     bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
isBeforeLegalizeOpsDAGCombinerInfo3565     bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
isAfterLegalizeDAGDAGCombinerInfo3566     bool isAfterLegalizeDAG() const { return Level >= AfterLegalizeDAG; }
getDAGCombineLevelDAGCombinerInfo3567     CombineLevel getDAGCombineLevel() { return Level; }
isCalledByLegalizerDAGCombinerInfo3568     bool isCalledByLegalizer() const { return CalledByLegalizer; }
3569 
3570     void AddToWorklist(SDNode *N);
3571     SDValue CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo = true);
3572     SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
3573     SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
3574 
3575     bool recursivelyDeleteUnusedNodes(SDNode *N);
3576 
3577     void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
3578   };
3579 
3580   /// Return if the N is a constant or constant vector equal to the true value
3581   /// from getBooleanContents().
3582   bool isConstTrueVal(const SDNode *N) const;
3583 
3584   /// Return if the N is a constant or constant vector equal to the false value
3585   /// from getBooleanContents().
3586   bool isConstFalseVal(const SDNode *N) const;
3587 
3588   /// Return if \p N is a True value when extended to \p VT.
3589   bool isExtendedTrueVal(const ConstantSDNode *N, EVT VT, bool SExt) const;
3590 
3591   /// Try to simplify a setcc built with the specified operands and cc. If it is
3592   /// unable to simplify it, return a null SDValue.
3593   SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
3594                         bool foldBooleans, DAGCombinerInfo &DCI,
3595                         const SDLoc &dl) const;
3596 
3597   // For targets which wrap address, unwrap for analysis.
unwrapAddress(SDValue N)3598   virtual SDValue unwrapAddress(SDValue N) const { return N; }
3599 
3600   /// Returns true (and the GlobalValue and the offset) if the node is a
3601   /// GlobalAddress + offset.
3602   virtual bool
3603   isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
3604 
3605   /// This method will be invoked for all target nodes and for any
3606   /// target-independent nodes that the target has registered with invoke it
3607   /// for.
3608   ///
3609   /// The semantics are as follows:
3610   /// Return Value:
3611   ///   SDValue.Val == 0   - No change was made
3612   ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
3613   ///   otherwise          - N should be replaced by the returned Operand.
3614   ///
3615   /// In addition, methods provided by DAGCombinerInfo may be used to perform
3616   /// more complex transformations.
3617   ///
3618   virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
3619 
3620   /// Return true if it is profitable to move this shift by a constant amount
3621   /// though its operand, adjusting any immediate operands as necessary to
3622   /// preserve semantics. This transformation may not be desirable if it
3623   /// disrupts a particularly auspicious target-specific tree (e.g. bitfield
3624   /// extraction in AArch64). By default, it returns true.
3625   ///
3626   /// @param N the shift node
3627   /// @param Level the current DAGCombine legalization level.
isDesirableToCommuteWithShift(const SDNode * N,CombineLevel Level)3628   virtual bool isDesirableToCommuteWithShift(const SDNode *N,
3629                                              CombineLevel Level) const {
3630     return true;
3631   }
3632 
3633   /// Return true if the target has native support for the specified value type
3634   /// and it is 'desirable' to use the type for the given node type. e.g. On x86
3635   /// i16 is legal, but undesirable since i16 instruction encodings are longer
3636   /// and some i16 instructions are slow.
isTypeDesirableForOp(unsigned,EVT VT)3637   virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
3638     // By default, assume all legal types are desirable.
3639     return isTypeLegal(VT);
3640   }
3641 
3642   /// Return true if it is profitable for dag combiner to transform a floating
3643   /// point op of specified opcode to a equivalent op of an integer
3644   /// type. e.g. f32 load -> i32 load can be profitable on ARM.
isDesirableToTransformToIntegerOp(unsigned,EVT)3645   virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
3646                                                  EVT /*VT*/) const {
3647     return false;
3648   }
3649 
3650   /// This method query the target whether it is beneficial for dag combiner to
3651   /// promote the specified node. If true, it should return the desired
3652   /// promotion type by reference.
IsDesirableToPromoteOp(SDValue,EVT &)3653   virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
3654     return false;
3655   }
3656 
3657   /// Return true if the target supports swifterror attribute. It optimizes
3658   /// loads and stores to reading and writing a specific register.
supportSwiftError()3659   virtual bool supportSwiftError() const {
3660     return false;
3661   }
3662 
3663   /// Return true if the target supports that a subset of CSRs for the given
3664   /// machine function is handled explicitly via copies.
supportSplitCSR(MachineFunction * MF)3665   virtual bool supportSplitCSR(MachineFunction *MF) const {
3666     return false;
3667   }
3668 
3669   /// Perform necessary initialization to handle a subset of CSRs explicitly
3670   /// via copies. This function is called at the beginning of instruction
3671   /// selection.
initializeSplitCSR(MachineBasicBlock * Entry)3672   virtual void initializeSplitCSR(MachineBasicBlock *Entry) const {
3673     llvm_unreachable("Not Implemented");
3674   }
3675 
3676   /// Insert explicit copies in entry and exit blocks. We copy a subset of
3677   /// CSRs to virtual registers in the entry block, and copy them back to
3678   /// physical registers in the exit blocks. This function is called at the end
3679   /// of instruction selection.
insertCopiesSplitCSR(MachineBasicBlock * Entry,const SmallVectorImpl<MachineBasicBlock * > & Exits)3680   virtual void insertCopiesSplitCSR(
3681       MachineBasicBlock *Entry,
3682       const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
3683     llvm_unreachable("Not Implemented");
3684   }
3685 
3686   /// Return the newly negated expression if the cost is not expensive and
3687   /// set the cost in \p Cost to indicate that if it is cheaper or neutral to
3688   /// do the negation.
3689   virtual SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG,
3690                                        bool LegalOps, bool OptForSize,
3691                                        NegatibleCost &Cost,
3692                                        unsigned Depth = 0) const;
3693 
3694   /// This is the helper function to return the newly negated expression only
3695   /// when the cost is cheaper.
3696   SDValue getCheaperNegatedExpression(SDValue Op, SelectionDAG &DAG,
3697                                       bool LegalOps, bool OptForSize,
3698                                       unsigned Depth = 0) const {
3699     NegatibleCost Cost = NegatibleCost::Expensive;
3700     SDValue Neg =
3701         getNegatedExpression(Op, DAG, LegalOps, OptForSize, Cost, Depth);
3702     if (Neg && Cost == NegatibleCost::Cheaper)
3703       return Neg;
3704     // Remove the new created node to avoid the side effect to the DAG.
3705     if (Neg && Neg.getNode()->use_empty())
3706       DAG.RemoveDeadNode(Neg.getNode());
3707     return SDValue();
3708   }
3709 
3710   /// This is the helper function to return the newly negated expression if
3711   /// the cost is not expensive.
3712   SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps,
3713                                bool OptForSize, unsigned Depth = 0) const {
3714     NegatibleCost Cost = NegatibleCost::Expensive;
3715     return getNegatedExpression(Op, DAG, LegalOps, OptForSize, Cost, Depth);
3716   }
3717 
3718   //===--------------------------------------------------------------------===//
3719   // Lowering methods - These methods must be implemented by targets so that
3720   // the SelectionDAGBuilder code knows how to lower these.
3721   //
3722 
3723   /// Target-specific splitting of values into parts that fit a register
3724   /// storing a legal type
splitValueIntoRegisterParts(SelectionDAG & DAG,const SDLoc & DL,SDValue Val,SDValue * Parts,unsigned NumParts,MVT PartVT,Optional<CallingConv::ID> CC)3725   virtual bool splitValueIntoRegisterParts(SelectionDAG &DAG, const SDLoc &DL,
3726                                            SDValue Val, SDValue *Parts,
3727                                            unsigned NumParts, MVT PartVT,
3728                                            Optional<CallingConv::ID> CC) const {
3729     return false;
3730   }
3731 
3732   /// Target-specific combining of register parts into its original value
3733   virtual SDValue
joinRegisterPartsIntoValue(SelectionDAG & DAG,const SDLoc & DL,const SDValue * Parts,unsigned NumParts,MVT PartVT,EVT ValueVT,Optional<CallingConv::ID> CC)3734   joinRegisterPartsIntoValue(SelectionDAG &DAG, const SDLoc &DL,
3735                              const SDValue *Parts, unsigned NumParts,
3736                              MVT PartVT, EVT ValueVT,
3737                              Optional<CallingConv::ID> CC) const {
3738     return SDValue();
3739   }
3740 
3741   /// This hook must be implemented to lower the incoming (formal) arguments,
3742   /// described by the Ins array, into the specified DAG. The implementation
3743   /// should fill in the InVals array with legal-type argument values, and
3744   /// return the resulting token chain value.
LowerFormalArguments(SDValue,CallingConv::ID,bool,const SmallVectorImpl<ISD::InputArg> &,const SDLoc &,SelectionDAG &,SmallVectorImpl<SDValue> &)3745   virtual SDValue LowerFormalArguments(
3746       SDValue /*Chain*/, CallingConv::ID /*CallConv*/, bool /*isVarArg*/,
3747       const SmallVectorImpl<ISD::InputArg> & /*Ins*/, const SDLoc & /*dl*/,
3748       SelectionDAG & /*DAG*/, SmallVectorImpl<SDValue> & /*InVals*/) const {
3749     llvm_unreachable("Not Implemented");
3750   }
3751 
3752   /// This structure contains all information that is necessary for lowering
3753   /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder
3754   /// needs to lower a call, and targets will see this struct in their LowerCall
3755   /// implementation.
3756   struct CallLoweringInfo {
3757     SDValue Chain;
3758     Type *RetTy = nullptr;
3759     bool RetSExt           : 1;
3760     bool RetZExt           : 1;
3761     bool IsVarArg          : 1;
3762     bool IsInReg           : 1;
3763     bool DoesNotReturn     : 1;
3764     bool IsReturnValueUsed : 1;
3765     bool IsConvergent      : 1;
3766     bool IsPatchPoint      : 1;
3767     bool IsPreallocated : 1;
3768     bool NoMerge           : 1;
3769 
3770     // IsTailCall should be modified by implementations of
3771     // TargetLowering::LowerCall that perform tail call conversions.
3772     bool IsTailCall = false;
3773 
3774     // Is Call lowering done post SelectionDAG type legalization.
3775     bool IsPostTypeLegalization = false;
3776 
3777     unsigned NumFixedArgs = -1;
3778     CallingConv::ID CallConv = CallingConv::C;
3779     SDValue Callee;
3780     ArgListTy Args;
3781     SelectionDAG &DAG;
3782     SDLoc DL;
3783     const CallBase *CB = nullptr;
3784     SmallVector<ISD::OutputArg, 32> Outs;
3785     SmallVector<SDValue, 32> OutVals;
3786     SmallVector<ISD::InputArg, 32> Ins;
3787     SmallVector<SDValue, 4> InVals;
3788 
CallLoweringInfoCallLoweringInfo3789     CallLoweringInfo(SelectionDAG &DAG)
3790         : RetSExt(false), RetZExt(false), IsVarArg(false), IsInReg(false),
3791           DoesNotReturn(false), IsReturnValueUsed(true), IsConvergent(false),
3792           IsPatchPoint(false), IsPreallocated(false), NoMerge(false),
3793           DAG(DAG) {}
3794 
setDebugLocCallLoweringInfo3795     CallLoweringInfo &setDebugLoc(const SDLoc &dl) {
3796       DL = dl;
3797       return *this;
3798     }
3799 
setChainCallLoweringInfo3800     CallLoweringInfo &setChain(SDValue InChain) {
3801       Chain = InChain;
3802       return *this;
3803     }
3804 
3805     // setCallee with target/module-specific attributes
setLibCalleeCallLoweringInfo3806     CallLoweringInfo &setLibCallee(CallingConv::ID CC, Type *ResultType,
3807                                    SDValue Target, ArgListTy &&ArgsList) {
3808       RetTy = ResultType;
3809       Callee = Target;
3810       CallConv = CC;
3811       NumFixedArgs = ArgsList.size();
3812       Args = std::move(ArgsList);
3813 
3814       DAG.getTargetLoweringInfo().markLibCallAttributes(
3815           &(DAG.getMachineFunction()), CC, Args);
3816       return *this;
3817     }
3818 
setCalleeCallLoweringInfo3819     CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultType,
3820                                 SDValue Target, ArgListTy &&ArgsList) {
3821       RetTy = ResultType;
3822       Callee = Target;
3823       CallConv = CC;
3824       NumFixedArgs = ArgsList.size();
3825       Args = std::move(ArgsList);
3826       return *this;
3827     }
3828 
setCalleeCallLoweringInfo3829     CallLoweringInfo &setCallee(Type *ResultType, FunctionType *FTy,
3830                                 SDValue Target, ArgListTy &&ArgsList,
3831                                 const CallBase &Call) {
3832       RetTy = ResultType;
3833 
3834       IsInReg = Call.hasRetAttr(Attribute::InReg);
3835       DoesNotReturn =
3836           Call.doesNotReturn() ||
3837           (!isa<InvokeInst>(Call) && isa<UnreachableInst>(Call.getNextNode()));
3838       IsVarArg = FTy->isVarArg();
3839       IsReturnValueUsed = !Call.use_empty();
3840       RetSExt = Call.hasRetAttr(Attribute::SExt);
3841       RetZExt = Call.hasRetAttr(Attribute::ZExt);
3842       NoMerge = Call.hasFnAttr(Attribute::NoMerge);
3843 
3844       Callee = Target;
3845 
3846       CallConv = Call.getCallingConv();
3847       NumFixedArgs = FTy->getNumParams();
3848       Args = std::move(ArgsList);
3849 
3850       CB = &Call;
3851 
3852       return *this;
3853     }
3854 
3855     CallLoweringInfo &setInRegister(bool Value = true) {
3856       IsInReg = Value;
3857       return *this;
3858     }
3859 
3860     CallLoweringInfo &setNoReturn(bool Value = true) {
3861       DoesNotReturn = Value;
3862       return *this;
3863     }
3864 
3865     CallLoweringInfo &setVarArg(bool Value = true) {
3866       IsVarArg = Value;
3867       return *this;
3868     }
3869 
3870     CallLoweringInfo &setTailCall(bool Value = true) {
3871       IsTailCall = Value;
3872       return *this;
3873     }
3874 
3875     CallLoweringInfo &setDiscardResult(bool Value = true) {
3876       IsReturnValueUsed = !Value;
3877       return *this;
3878     }
3879 
3880     CallLoweringInfo &setConvergent(bool Value = true) {
3881       IsConvergent = Value;
3882       return *this;
3883     }
3884 
3885     CallLoweringInfo &setSExtResult(bool Value = true) {
3886       RetSExt = Value;
3887       return *this;
3888     }
3889 
3890     CallLoweringInfo &setZExtResult(bool Value = true) {
3891       RetZExt = Value;
3892       return *this;
3893     }
3894 
3895     CallLoweringInfo &setIsPatchPoint(bool Value = true) {
3896       IsPatchPoint = Value;
3897       return *this;
3898     }
3899 
3900     CallLoweringInfo &setIsPreallocated(bool Value = true) {
3901       IsPreallocated = Value;
3902       return *this;
3903     }
3904 
3905     CallLoweringInfo &setIsPostTypeLegalization(bool Value=true) {
3906       IsPostTypeLegalization = Value;
3907       return *this;
3908     }
3909 
getArgsCallLoweringInfo3910     ArgListTy &getArgs() {
3911       return Args;
3912     }
3913   };
3914 
3915   /// This structure is used to pass arguments to makeLibCall function.
3916   struct MakeLibCallOptions {
3917     // By passing type list before soften to makeLibCall, the target hook
3918     // shouldExtendTypeInLibCall can get the original type before soften.
3919     ArrayRef<EVT> OpsVTBeforeSoften;
3920     EVT RetVTBeforeSoften;
3921     bool IsSExt : 1;
3922     bool DoesNotReturn : 1;
3923     bool IsReturnValueUsed : 1;
3924     bool IsPostTypeLegalization : 1;
3925     bool IsSoften : 1;
3926 
MakeLibCallOptionsMakeLibCallOptions3927     MakeLibCallOptions()
3928         : IsSExt(false), DoesNotReturn(false), IsReturnValueUsed(true),
3929           IsPostTypeLegalization(false), IsSoften(false) {}
3930 
3931     MakeLibCallOptions &setSExt(bool Value = true) {
3932       IsSExt = Value;
3933       return *this;
3934     }
3935 
3936     MakeLibCallOptions &setNoReturn(bool Value = true) {
3937       DoesNotReturn = Value;
3938       return *this;
3939     }
3940 
3941     MakeLibCallOptions &setDiscardResult(bool Value = true) {
3942       IsReturnValueUsed = !Value;
3943       return *this;
3944     }
3945 
3946     MakeLibCallOptions &setIsPostTypeLegalization(bool Value = true) {
3947       IsPostTypeLegalization = Value;
3948       return *this;
3949     }
3950 
3951     MakeLibCallOptions &setTypeListBeforeSoften(ArrayRef<EVT> OpsVT, EVT RetVT,
3952                                                 bool Value = true) {
3953       OpsVTBeforeSoften = OpsVT;
3954       RetVTBeforeSoften = RetVT;
3955       IsSoften = Value;
3956       return *this;
3957     }
3958   };
3959 
3960   /// This function lowers an abstract call to a function into an actual call.
3961   /// This returns a pair of operands.  The first element is the return value
3962   /// for the function (if RetTy is not VoidTy).  The second element is the
3963   /// outgoing token chain. It calls LowerCall to do the actual lowering.
3964   std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
3965 
3966   /// This hook must be implemented to lower calls into the specified
3967   /// DAG. The outgoing arguments to the call are described by the Outs array,
3968   /// and the values to be returned by the call are described by the Ins
3969   /// array. The implementation should fill in the InVals array with legal-type
3970   /// return values from the call, and return the resulting token chain value.
3971   virtual SDValue
LowerCall(CallLoweringInfo &,SmallVectorImpl<SDValue> &)3972     LowerCall(CallLoweringInfo &/*CLI*/,
3973               SmallVectorImpl<SDValue> &/*InVals*/) const {
3974     llvm_unreachable("Not Implemented");
3975   }
3976 
3977   /// Target-specific cleanup for formal ByVal parameters.
HandleByVal(CCState *,unsigned &,Align)3978   virtual void HandleByVal(CCState *, unsigned &, Align) const {}
3979 
3980   /// This hook should be implemented to check whether the return values
3981   /// described by the Outs array can fit into the return registers.  If false
3982   /// is returned, an sret-demotion is performed.
CanLowerReturn(CallingConv::ID,MachineFunction &,bool,const SmallVectorImpl<ISD::OutputArg> &,LLVMContext &)3983   virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
3984                               MachineFunction &/*MF*/, bool /*isVarArg*/,
3985                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
3986                LLVMContext &/*Context*/) const
3987   {
3988     // Return true by default to get preexisting behavior.
3989     return true;
3990   }
3991 
3992   /// This hook must be implemented to lower outgoing return values, described
3993   /// by the Outs array, into the specified DAG. The implementation should
3994   /// return the resulting token chain value.
LowerReturn(SDValue,CallingConv::ID,bool,const SmallVectorImpl<ISD::OutputArg> &,const SmallVectorImpl<SDValue> &,const SDLoc &,SelectionDAG &)3995   virtual SDValue LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
3996                               bool /*isVarArg*/,
3997                               const SmallVectorImpl<ISD::OutputArg> & /*Outs*/,
3998                               const SmallVectorImpl<SDValue> & /*OutVals*/,
3999                               const SDLoc & /*dl*/,
4000                               SelectionDAG & /*DAG*/) const {
4001     llvm_unreachable("Not Implemented");
4002   }
4003 
4004   /// Return true if result of the specified node is used by a return node
4005   /// only. It also compute and return the input chain for the tail call.
4006   ///
4007   /// This is used to determine whether it is possible to codegen a libcall as
4008   /// tail call at legalization time.
isUsedByReturnOnly(SDNode *,SDValue &)4009   virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const {
4010     return false;
4011   }
4012 
4013   /// Return true if the target may be able emit the call instruction as a tail
4014   /// call. This is used by optimization passes to determine if it's profitable
4015   /// to duplicate return instructions to enable tailcall optimization.
mayBeEmittedAsTailCall(const CallInst *)4016   virtual bool mayBeEmittedAsTailCall(const CallInst *) const {
4017     return false;
4018   }
4019 
4020   /// Return the builtin name for the __builtin___clear_cache intrinsic
4021   /// Default is to invoke the clear cache library call
getClearCacheBuiltinName()4022   virtual const char * getClearCacheBuiltinName() const {
4023     return "__clear_cache";
4024   }
4025 
4026   /// Return the register ID of the name passed in. Used by named register
4027   /// global variables extension. There is no target-independent behaviour
4028   /// so the default action is to bail.
getRegisterByName(const char * RegName,LLT Ty,const MachineFunction & MF)4029   virtual Register getRegisterByName(const char* RegName, LLT Ty,
4030                                      const MachineFunction &MF) const {
4031     report_fatal_error("Named registers not implemented for this target");
4032   }
4033 
4034   /// Return the type that should be used to zero or sign extend a
4035   /// zeroext/signext integer return value.  FIXME: Some C calling conventions
4036   /// require the return type to be promoted, but this is not true all the time,
4037   /// e.g. i1/i8/i16 on x86/x86_64. It is also not necessary for non-C calling
4038   /// conventions. The frontend should handle this and include all of the
4039   /// necessary information.
getTypeForExtReturn(LLVMContext & Context,EVT VT,ISD::NodeType)4040   virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT,
4041                                        ISD::NodeType /*ExtendKind*/) const {
4042     EVT MinVT = getRegisterType(Context, MVT::i32);
4043     return VT.bitsLT(MinVT) ? MinVT : VT;
4044   }
4045 
4046   /// For some targets, an LLVM struct type must be broken down into multiple
4047   /// simple types, but the calling convention specifies that the entire struct
4048   /// must be passed in a block of consecutive registers.
4049   virtual bool
functionArgumentNeedsConsecutiveRegisters(Type * Ty,CallingConv::ID CallConv,bool isVarArg)4050   functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv,
4051                                             bool isVarArg) const {
4052     return false;
4053   }
4054 
4055   /// For most targets, an LLVM type must be broken down into multiple
4056   /// smaller types. Usually the halves are ordered according to the endianness
4057   /// but for some platform that would break. So this method will default to
4058   /// matching the endianness but can be overridden.
4059   virtual bool
shouldSplitFunctionArgumentsAsLittleEndian(const DataLayout & DL)4060   shouldSplitFunctionArgumentsAsLittleEndian(const DataLayout &DL) const {
4061     return DL.isLittleEndian();
4062   }
4063 
4064   /// Returns a 0 terminated array of registers that can be safely used as
4065   /// scratch registers.
getScratchRegisters(CallingConv::ID CC)4066   virtual const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const {
4067     return nullptr;
4068   }
4069 
4070   /// This callback is used to prepare for a volatile or atomic load.
4071   /// It takes a chain node as input and returns the chain for the load itself.
4072   ///
4073   /// Having a callback like this is necessary for targets like SystemZ,
4074   /// which allows a CPU to reuse the result of a previous load indefinitely,
4075   /// even if a cache-coherent store is performed by another CPU.  The default
4076   /// implementation does nothing.
prepareVolatileOrAtomicLoad(SDValue Chain,const SDLoc & DL,SelectionDAG & DAG)4077   virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, const SDLoc &DL,
4078                                               SelectionDAG &DAG) const {
4079     return Chain;
4080   }
4081 
4082   /// Should SelectionDAG lower an atomic store of the given kind as a normal
4083   /// StoreSDNode (as opposed to an AtomicSDNode)?  NOTE: The intention is to
4084   /// eventually migrate all targets to the using StoreSDNodes, but porting is
4085   /// being done target at a time.
lowerAtomicStoreAsStoreSDNode(const StoreInst & SI)4086   virtual bool lowerAtomicStoreAsStoreSDNode(const StoreInst &SI) const {
4087     assert(SI.isAtomic() && "violated precondition");
4088     return false;
4089   }
4090 
4091   /// Should SelectionDAG lower an atomic load of the given kind as a normal
4092   /// LoadSDNode (as opposed to an AtomicSDNode)?  NOTE: The intention is to
4093   /// eventually migrate all targets to the using LoadSDNodes, but porting is
4094   /// being done target at a time.
lowerAtomicLoadAsLoadSDNode(const LoadInst & LI)4095   virtual bool lowerAtomicLoadAsLoadSDNode(const LoadInst &LI) const {
4096     assert(LI.isAtomic() && "violated precondition");
4097     return false;
4098   }
4099 
4100 
4101   /// This callback is invoked by the type legalizer to legalize nodes with an
4102   /// illegal operand type but legal result types.  It replaces the
4103   /// LowerOperation callback in the type Legalizer.  The reason we can not do
4104   /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to
4105   /// use this callback.
4106   ///
4107   /// TODO: Consider merging with ReplaceNodeResults.
4108   ///
4109   /// The target places new result values for the node in Results (their number
4110   /// and types must exactly match those of the original return values of
4111   /// the node), or leaves Results empty, which indicates that the node is not
4112   /// to be custom lowered after all.
4113   /// The default implementation calls LowerOperation.
4114   virtual void LowerOperationWrapper(SDNode *N,
4115                                      SmallVectorImpl<SDValue> &Results,
4116                                      SelectionDAG &DAG) const;
4117 
4118   /// This callback is invoked for operations that are unsupported by the
4119   /// target, which are registered to use 'custom' lowering, and whose defined
4120   /// values are all legal.  If the target has no operations that require custom
4121   /// lowering, it need not implement this.  The default implementation of this
4122   /// aborts.
4123   virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
4124 
4125   /// This callback is invoked when a node result type is illegal for the
4126   /// target, and the operation was registered to use 'custom' lowering for that
4127   /// result type.  The target places new result values for the node in Results
4128   /// (their number and types must exactly match those of the original return
4129   /// values of the node), or leaves Results empty, which indicates that the
4130   /// node is not to be custom lowered after all.
4131   ///
4132   /// If the target has no operations that require custom lowering, it need not
4133   /// implement this.  The default implementation aborts.
ReplaceNodeResults(SDNode *,SmallVectorImpl<SDValue> &,SelectionDAG &)4134   virtual void ReplaceNodeResults(SDNode * /*N*/,
4135                                   SmallVectorImpl<SDValue> &/*Results*/,
4136                                   SelectionDAG &/*DAG*/) const {
4137     llvm_unreachable("ReplaceNodeResults not implemented for this target!");
4138   }
4139 
4140   /// This method returns the name of a target specific DAG node.
4141   virtual const char *getTargetNodeName(unsigned Opcode) const;
4142 
4143   /// This method returns a target specific FastISel object, or null if the
4144   /// target does not support "fast" ISel.
createFastISel(FunctionLoweringInfo &,const TargetLibraryInfo *)4145   virtual FastISel *createFastISel(FunctionLoweringInfo &,
4146                                    const TargetLibraryInfo *) const {
4147     return nullptr;
4148   }
4149 
4150   bool verifyReturnAddressArgumentIsConstant(SDValue Op,
4151                                              SelectionDAG &DAG) const;
4152 
4153   //===--------------------------------------------------------------------===//
4154   // Inline Asm Support hooks
4155   //
4156 
4157   /// This hook allows the target to expand an inline asm call to be explicit
4158   /// llvm code if it wants to.  This is useful for turning simple inline asms
4159   /// into LLVM intrinsics, which gives the compiler more information about the
4160   /// behavior of the code.
ExpandInlineAsm(CallInst *)4161   virtual bool ExpandInlineAsm(CallInst *) const {
4162     return false;
4163   }
4164 
4165   enum ConstraintType {
4166     C_Register,            // Constraint represents specific register(s).
4167     C_RegisterClass,       // Constraint represents any of register(s) in class.
4168     C_Memory,              // Memory constraint.
4169     C_Immediate,           // Requires an immediate.
4170     C_Other,               // Something else.
4171     C_Unknown              // Unsupported constraint.
4172   };
4173 
4174   enum ConstraintWeight {
4175     // Generic weights.
4176     CW_Invalid  = -1,     // No match.
4177     CW_Okay     = 0,      // Acceptable.
4178     CW_Good     = 1,      // Good weight.
4179     CW_Better   = 2,      // Better weight.
4180     CW_Best     = 3,      // Best weight.
4181 
4182     // Well-known weights.
4183     CW_SpecificReg  = CW_Okay,    // Specific register operands.
4184     CW_Register     = CW_Good,    // Register operands.
4185     CW_Memory       = CW_Better,  // Memory operands.
4186     CW_Constant     = CW_Best,    // Constant operand.
4187     CW_Default      = CW_Okay     // Default or don't know type.
4188   };
4189 
4190   /// This contains information for each constraint that we are lowering.
4191   struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
4192     /// This contains the actual string for the code, like "m".  TargetLowering
4193     /// picks the 'best' code from ConstraintInfo::Codes that most closely
4194     /// matches the operand.
4195     std::string ConstraintCode;
4196 
4197     /// Information about the constraint code, e.g. Register, RegisterClass,
4198     /// Memory, Other, Unknown.
4199     TargetLowering::ConstraintType ConstraintType = TargetLowering::C_Unknown;
4200 
4201     /// If this is the result output operand or a clobber, this is null,
4202     /// otherwise it is the incoming operand to the CallInst.  This gets
4203     /// modified as the asm is processed.
4204     Value *CallOperandVal = nullptr;
4205 
4206     /// The ValueType for the operand value.
4207     MVT ConstraintVT = MVT::Other;
4208 
4209     /// Copy constructor for copying from a ConstraintInfo.
AsmOperandInfoAsmOperandInfo4210     AsmOperandInfo(InlineAsm::ConstraintInfo Info)
4211         : InlineAsm::ConstraintInfo(std::move(Info)) {}
4212 
4213     /// Return true of this is an input operand that is a matching constraint
4214     /// like "4".
4215     bool isMatchingInputConstraint() const;
4216 
4217     /// If this is an input matching constraint, this method returns the output
4218     /// operand it matches.
4219     unsigned getMatchedOperand() const;
4220   };
4221 
4222   using AsmOperandInfoVector = std::vector<AsmOperandInfo>;
4223 
4224   /// Split up the constraint string from the inline assembly value into the
4225   /// specific constraints and their prefixes, and also tie in the associated
4226   /// operand values.  If this returns an empty vector, and if the constraint
4227   /// string itself isn't empty, there was an error parsing.
4228   virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL,
4229                                                 const TargetRegisterInfo *TRI,
4230                                                 const CallBase &Call) const;
4231 
4232   /// Examine constraint type and operand type and determine a weight value.
4233   /// The operand object must already have been set up with the operand type.
4234   virtual ConstraintWeight getMultipleConstraintMatchWeight(
4235       AsmOperandInfo &info, int maIndex) const;
4236 
4237   /// Examine constraint string and operand type and determine a weight value.
4238   /// The operand object must already have been set up with the operand type.
4239   virtual ConstraintWeight getSingleConstraintMatchWeight(
4240       AsmOperandInfo &info, const char *constraint) const;
4241 
4242   /// Determines the constraint code and constraint type to use for the specific
4243   /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4244   /// If the actual operand being passed in is available, it can be passed in as
4245   /// Op, otherwise an empty SDValue can be passed.
4246   virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4247                                       SDValue Op,
4248                                       SelectionDAG *DAG = nullptr) const;
4249 
4250   /// Given a constraint, return the type of constraint it is for this target.
4251   virtual ConstraintType getConstraintType(StringRef Constraint) const;
4252 
4253   /// Given a physical register constraint (e.g.  {edx}), return the register
4254   /// number and the register class for the register.
4255   ///
4256   /// Given a register class constraint, like 'r', if this corresponds directly
4257   /// to an LLVM register class, return a register of 0 and the register class
4258   /// pointer.
4259   ///
4260   /// This should only be used for C_Register constraints.  On error, this
4261   /// returns a register number of 0 and a null register class pointer.
4262   virtual std::pair<unsigned, const TargetRegisterClass *>
4263   getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
4264                                StringRef Constraint, MVT VT) const;
4265 
getInlineAsmMemConstraint(StringRef ConstraintCode)4266   virtual unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const {
4267     if (ConstraintCode == "m")
4268       return InlineAsm::Constraint_m;
4269     return InlineAsm::Constraint_Unknown;
4270   }
4271 
4272   /// Try to replace an X constraint, which matches anything, with another that
4273   /// has more specific requirements based on the type of the corresponding
4274   /// operand.  This returns null if there is no replacement to make.
4275   virtual const char *LowerXConstraint(EVT ConstraintVT) const;
4276 
4277   /// Lower the specified operand into the Ops vector.  If it is invalid, don't
4278   /// add anything to Ops.
4279   virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
4280                                             std::vector<SDValue> &Ops,
4281                                             SelectionDAG &DAG) const;
4282 
4283   // Lower custom output constraints. If invalid, return SDValue().
4284   virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Flag,
4285                                               SDLoc DL,
4286                                               const AsmOperandInfo &OpInfo,
4287                                               SelectionDAG &DAG) const;
4288 
4289   //===--------------------------------------------------------------------===//
4290   // Div utility functions
4291   //
4292   SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
4293                     SmallVectorImpl<SDNode *> &Created) const;
4294   SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
4295                     SmallVectorImpl<SDNode *> &Created) const;
4296 
4297   /// Targets may override this function to provide custom SDIV lowering for
4298   /// power-of-2 denominators.  If the target returns an empty SDValue, LLVM
4299   /// assumes SDIV is expensive and replaces it with a series of other integer
4300   /// operations.
4301   virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4302                                 SelectionDAG &DAG,
4303                                 SmallVectorImpl<SDNode *> &Created) const;
4304 
4305   /// Indicate whether this target prefers to combine FDIVs with the same
4306   /// divisor. If the transform should never be done, return zero. If the
4307   /// transform should be done, return the minimum number of divisor uses
4308   /// that must exist.
combineRepeatedFPDivisors()4309   virtual unsigned combineRepeatedFPDivisors() const {
4310     return 0;
4311   }
4312 
4313   /// Hooks for building estimates in place of slower divisions and square
4314   /// roots.
4315 
4316   /// Return either a square root or its reciprocal estimate value for the input
4317   /// operand.
4318   /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
4319   /// 'Enabled' as set by a potential default override attribute.
4320   /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
4321   /// refinement iterations required to generate a sufficient (though not
4322   /// necessarily IEEE-754 compliant) estimate is returned in that parameter.
4323   /// The boolean UseOneConstNR output is used to select a Newton-Raphson
4324   /// algorithm implementation that uses either one or two constants.
4325   /// The boolean Reciprocal is used to select whether the estimate is for the
4326   /// square root of the input operand or the reciprocal of its square root.
4327   /// A target may choose to implement its own refinement within this function.
4328   /// If that's true, then return '0' as the number of RefinementSteps to avoid
4329   /// any further refinement of the estimate.
4330   /// An empty SDValue return means no estimate sequence can be created.
getSqrtEstimate(SDValue Operand,SelectionDAG & DAG,int Enabled,int & RefinementSteps,bool & UseOneConstNR,bool Reciprocal)4331   virtual SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
4332                                   int Enabled, int &RefinementSteps,
4333                                   bool &UseOneConstNR, bool Reciprocal) const {
4334     return SDValue();
4335   }
4336 
4337   /// Return a reciprocal estimate value for the input operand.
4338   /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
4339   /// 'Enabled' as set by a potential default override attribute.
4340   /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
4341   /// refinement iterations required to generate a sufficient (though not
4342   /// necessarily IEEE-754 compliant) estimate is returned in that parameter.
4343   /// A target may choose to implement its own refinement within this function.
4344   /// If that's true, then return '0' as the number of RefinementSteps to avoid
4345   /// any further refinement of the estimate.
4346   /// An empty SDValue return means no estimate sequence can be created.
getRecipEstimate(SDValue Operand,SelectionDAG & DAG,int Enabled,int & RefinementSteps)4347   virtual SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
4348                                    int Enabled, int &RefinementSteps) const {
4349     return SDValue();
4350   }
4351 
4352   //===--------------------------------------------------------------------===//
4353   // Legalization utility functions
4354   //
4355 
4356   /// Expand a MUL or [US]MUL_LOHI of n-bit values into two or four nodes,
4357   /// respectively, each computing an n/2-bit part of the result.
4358   /// \param Result A vector that will be filled with the parts of the result
4359   ///        in little-endian order.
4360   /// \param LL Low bits of the LHS of the MUL.  You can use this parameter
4361   ///        if you want to control how low bits are extracted from the LHS.
4362   /// \param LH High bits of the LHS of the MUL.  See LL for meaning.
4363   /// \param RL Low bits of the RHS of the MUL.  See LL for meaning
4364   /// \param RH High bits of the RHS of the MUL.  See LL for meaning.
4365   /// \returns true if the node has been expanded, false if it has not
4366   bool expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, SDValue LHS,
4367                       SDValue RHS, SmallVectorImpl<SDValue> &Result, EVT HiLoVT,
4368                       SelectionDAG &DAG, MulExpansionKind Kind,
4369                       SDValue LL = SDValue(), SDValue LH = SDValue(),
4370                       SDValue RL = SDValue(), SDValue RH = SDValue()) const;
4371 
4372   /// Expand a MUL into two nodes.  One that computes the high bits of
4373   /// the result and one that computes the low bits.
4374   /// \param HiLoVT The value type to use for the Lo and Hi nodes.
4375   /// \param LL Low bits of the LHS of the MUL.  You can use this parameter
4376   ///        if you want to control how low bits are extracted from the LHS.
4377   /// \param LH High bits of the LHS of the MUL.  See LL for meaning.
4378   /// \param RL Low bits of the RHS of the MUL.  See LL for meaning
4379   /// \param RH High bits of the RHS of the MUL.  See LL for meaning.
4380   /// \returns true if the node has been expanded. false if it has not
4381   bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
4382                  SelectionDAG &DAG, MulExpansionKind Kind,
4383                  SDValue LL = SDValue(), SDValue LH = SDValue(),
4384                  SDValue RL = SDValue(), SDValue RH = SDValue()) const;
4385 
4386   /// Expand funnel shift.
4387   /// \param N Node to expand
4388   /// \param Result output after conversion
4389   /// \returns True, if the expansion was successful, false otherwise
4390   bool expandFunnelShift(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
4391 
4392   /// Expand rotations.
4393   /// \param N Node to expand
4394   /// \param Result output after conversion
4395   /// \returns True, if the expansion was successful, false otherwise
4396   bool expandROT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
4397 
4398   /// Expand float(f32) to SINT(i64) conversion
4399   /// \param N Node to expand
4400   /// \param Result output after conversion
4401   /// \returns True, if the expansion was successful, false otherwise
4402   bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
4403 
4404   /// Expand float to UINT conversion
4405   /// \param N Node to expand
4406   /// \param Result output after conversion
4407   /// \param Chain output chain after conversion
4408   /// \returns True, if the expansion was successful, false otherwise
4409   bool expandFP_TO_UINT(SDNode *N, SDValue &Result, SDValue &Chain,
4410                         SelectionDAG &DAG) const;
4411 
4412   /// Expand UINT(i64) to double(f64) conversion
4413   /// \param N Node to expand
4414   /// \param Result output after conversion
4415   /// \param Chain output chain after conversion
4416   /// \returns True, if the expansion was successful, false otherwise
4417   bool expandUINT_TO_FP(SDNode *N, SDValue &Result, SDValue &Chain,
4418                         SelectionDAG &DAG) const;
4419 
4420   /// Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs.
4421   SDValue expandFMINNUM_FMAXNUM(SDNode *N, SelectionDAG &DAG) const;
4422 
4423   /// Expand CTPOP nodes. Expands vector/scalar CTPOP nodes,
4424   /// vector nodes can only succeed if all operations are legal/custom.
4425   /// \param N Node to expand
4426   /// \param Result output after conversion
4427   /// \returns True, if the expansion was successful, false otherwise
4428   bool expandCTPOP(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
4429 
4430   /// Expand CTLZ/CTLZ_ZERO_UNDEF nodes. Expands vector/scalar CTLZ nodes,
4431   /// vector nodes can only succeed if all operations are legal/custom.
4432   /// \param N Node to expand
4433   /// \param Result output after conversion
4434   /// \returns True, if the expansion was successful, false otherwise
4435   bool expandCTLZ(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
4436 
4437   /// Expand CTTZ/CTTZ_ZERO_UNDEF nodes. Expands vector/scalar CTTZ nodes,
4438   /// vector nodes can only succeed if all operations are legal/custom.
4439   /// \param N Node to expand
4440   /// \param Result output after conversion
4441   /// \returns True, if the expansion was successful, false otherwise
4442   bool expandCTTZ(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
4443 
4444   /// Expand ABS nodes. Expands vector/scalar ABS nodes,
4445   /// vector nodes can only succeed if all operations are legal/custom.
4446   /// (ABS x) -> (XOR (ADD x, (SRA x, type_size)), (SRA x, type_size))
4447   /// \param N Node to expand
4448   /// \param Result output after conversion
4449   /// \returns True, if the expansion was successful, false otherwise
4450   bool expandABS(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
4451 
4452   /// Turn load of vector type into a load of the individual elements.
4453   /// \param LD load to expand
4454   /// \returns BUILD_VECTOR and TokenFactor nodes.
4455   std::pair<SDValue, SDValue> scalarizeVectorLoad(LoadSDNode *LD,
4456                                                   SelectionDAG &DAG) const;
4457 
4458   // Turn a store of a vector type into stores of the individual elements.
4459   /// \param ST Store with a vector value type
4460   /// \returns TokenFactor of the individual store chains.
4461   SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const;
4462 
4463   /// Expands an unaligned load to 2 half-size loads for an integer, and
4464   /// possibly more for vectors.
4465   std::pair<SDValue, SDValue> expandUnalignedLoad(LoadSDNode *LD,
4466                                                   SelectionDAG &DAG) const;
4467 
4468   SDValue unalignedLoadStoreCSetbounds(const char *loadOrStore, SDValue Ptr,
4469                                        const SDLoc &DL, unsigned CapSize,
4470                                        SelectionDAG &DAG) const;
4471 
4472   /// Expands an unaligned store to 2 half-size stores for integer values, and
4473   /// possibly more for vectors.
4474   SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const;
4475 
4476   /// Increments memory address \p Addr according to the type of the value
4477   /// \p DataVT that should be stored. If the data is stored in compressed
4478   /// form, the memory address should be incremented according to the number of
4479   /// the stored elements. This number is equal to the number of '1's bits
4480   /// in the \p Mask.
4481   /// \p DataVT is a vector type. \p Mask is a vector value.
4482   /// \p DataVT and \p Mask have the same number of vector elements.
4483   SDValue IncrementMemoryAddress(SDValue Addr, SDValue Mask, const SDLoc &DL,
4484                                  EVT DataVT, SelectionDAG &DAG,
4485                                  bool IsCompressedMemory) const;
4486 
4487   /// Get a pointer to vector element \p Idx located in memory for a vector of
4488   /// type \p VecVT starting at a base address of \p VecPtr. If \p Idx is out of
4489   /// bounds the returned pointer is unspecified, but will be within the vector
4490   /// bounds.
4491   SDValue getVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT,
4492                                   SDValue Index) const;
4493 
4494   /// Method for building the DAG expansion of ISD::[US][ADD|SUB]SAT. This
4495   /// method accepts integers as its arguments.
4496   SDValue expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const;
4497 
4498   /// Method for building the DAG expansion of ISD::[U|S]MULFIX[SAT]. This
4499   /// method accepts integers as its arguments.
4500   SDValue expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const;
4501 
4502   /// Method for building the DAG expansion of ISD::[US]DIVFIX[SAT]. This
4503   /// method accepts integers as its arguments.
4504   /// Note: This method may fail if the division could not be performed
4505   /// within the type. Clients must retry with a wider type if this happens.
4506   SDValue expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
4507                               SDValue LHS, SDValue RHS,
4508                               unsigned Scale, SelectionDAG &DAG) const;
4509 
4510   /// Method for building the DAG expansion of ISD::U(ADD|SUB)O. Expansion
4511   /// always suceeds and populates the Result and Overflow arguments.
4512   void expandUADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow,
4513                       SelectionDAG &DAG) const;
4514 
4515   /// Method for building the DAG expansion of ISD::S(ADD|SUB)O. Expansion
4516   /// always suceeds and populates the Result and Overflow arguments.
4517   void expandSADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow,
4518                       SelectionDAG &DAG) const;
4519 
4520   /// Method for building the DAG expansion of ISD::[US]MULO. Returns whether
4521   /// expansion was successful and populates the Result and Overflow arguments.
4522   bool expandMULO(SDNode *Node, SDValue &Result, SDValue &Overflow,
4523                   SelectionDAG &DAG) const;
4524 
4525   /// Expand a VECREDUCE_* into an explicit calculation. If Count is specified,
4526   /// only the first Count elements of the vector are used.
4527   SDValue expandVecReduce(SDNode *Node, SelectionDAG &DAG) const;
4528 
4529   /// Expand an SREM or UREM using SDIV/UDIV or SDIVREM/UDIVREM, if legal.
4530   /// Returns true if the expansion was successful.
4531   bool expandREM(SDNode *Node, SDValue &Result, SelectionDAG &DAG) const;
4532 
4533   //===--------------------------------------------------------------------===//
4534   // Instruction Emitting Hooks
4535   //
4536 
4537   /// This method should be implemented by targets that mark instructions with
4538   /// the 'usesCustomInserter' flag.  These instructions are special in various
4539   /// ways, which require special support to insert.  The specified MachineInstr
4540   /// is created but not inserted into any basic blocks, and this method is
4541   /// called to expand it into a sequence of instructions, potentially also
4542   /// creating new basic blocks and control flow.
4543   /// As long as the returned basic block is different (i.e., we created a new
4544   /// one), the custom inserter is free to modify the rest of \p MBB.
4545   virtual MachineBasicBlock *
4546   EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const;
4547 
4548   /// This method should be implemented by targets that mark instructions with
4549   /// the 'hasPostISelHook' flag. These instructions must be adjusted after
4550   /// instruction selection by target hooks.  e.g. To fill in optional defs for
4551   /// ARM 's' setting instructions.
4552   virtual void AdjustInstrPostInstrSelection(MachineInstr &MI,
4553                                              SDNode *Node) const;
4554 
4555   /// If this function returns true, SelectionDAGBuilder emits a
4556   /// LOAD_STACK_GUARD node when it is lowering Intrinsic::stackprotector.
useLoadStackGuardNode()4557   virtual bool useLoadStackGuardNode() const {
4558     return false;
4559   }
4560 
emitStackGuardXorFP(SelectionDAG & DAG,SDValue Val,const SDLoc & DL)4561   virtual SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val,
4562                                       const SDLoc &DL) const {
4563     llvm_unreachable("not implemented for this target");
4564   }
4565 
4566   /// Lower TLS global address SDNode for target independent emulated TLS model.
4567   virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
4568                                           SelectionDAG &DAG) const;
4569 
4570   /// Expands target specific indirect branch for the case of JumpTable
4571   /// expanasion.
expandIndirectJTBranch(const SDLoc & dl,SDValue Value,SDValue Addr,SelectionDAG & DAG)4572   virtual SDValue expandIndirectJTBranch(const SDLoc& dl, SDValue Value, SDValue Addr,
4573                                          SelectionDAG &DAG) const {
4574     return DAG.getNode(ISD::BRIND, dl, MVT::Other, Value, Addr);
4575   }
4576 
4577   // seteq(x, 0) -> truncate(srl(ctlz(zext(x)), log2(#bits)))
4578   // If we're comparing for equality to zero and isCtlzFast is true, expose the
4579   // fact that this can be implemented as a ctlz/srl pair, so that the dag
4580   // combiner can fold the new nodes.
4581   SDValue lowerCmpEqZeroToCtlzSrl(SDValue Op, SelectionDAG &DAG) const;
4582 
4583 private:
4584   SDValue foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
4585                            const SDLoc &DL, DAGCombinerInfo &DCI) const;
4586   SDValue foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
4587                              const SDLoc &DL, DAGCombinerInfo &DCI) const;
4588 
4589   SDValue optimizeSetCCOfSignedTruncationCheck(EVT SCCVT, SDValue N0,
4590                                                SDValue N1, ISD::CondCode Cond,
4591                                                DAGCombinerInfo &DCI,
4592                                                const SDLoc &DL) const;
4593 
4594   // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4595   SDValue optimizeSetCCByHoistingAndByConstFromLogicalShift(
4596       EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
4597       DAGCombinerInfo &DCI, const SDLoc &DL) const;
4598 
4599   SDValue prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
4600                             SDValue CompTargetNode, ISD::CondCode Cond,
4601                             DAGCombinerInfo &DCI, const SDLoc &DL,
4602                             SmallVectorImpl<SDNode *> &Created) const;
4603   SDValue buildUREMEqFold(EVT SETCCVT, SDValue REMNode, SDValue CompTargetNode,
4604                           ISD::CondCode Cond, DAGCombinerInfo &DCI,
4605                           const SDLoc &DL) const;
4606 
4607   SDValue prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
4608                             SDValue CompTargetNode, ISD::CondCode Cond,
4609                             DAGCombinerInfo &DCI, const SDLoc &DL,
4610                             SmallVectorImpl<SDNode *> &Created) const;
4611   SDValue buildSREMEqFold(EVT SETCCVT, SDValue REMNode, SDValue CompTargetNode,
4612                           ISD::CondCode Cond, DAGCombinerInfo &DCI,
4613                           const SDLoc &DL) const;
4614 };
4615 
4616 /// Given an LLVM IR type and return type attributes, compute the return value
4617 /// EVTs and flags, and optionally also the offsets, if the return value is
4618 /// being lowered to memory.
4619 void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr,
4620                    SmallVectorImpl<ISD::OutputArg> &Outs,
4621                    const TargetLowering &TLI, const DataLayout &DL);
4622 
4623 } // end namespace llvm
4624 
4625 #endif // LLVM_CODEGEN_TARGETLOWERING_H
4626