1//===-- llvm/Support/TargetOpcodes.def - Target Indep Opcodes ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the target independent instruction opcodes.
10//
11//===----------------------------------------------------------------------===//
12
13// NOTE: NO INCLUDE GUARD DESIRED!
14
15/// HANDLE_TARGET_OPCODE defines an opcode and its associated enum value.
16///
17#ifndef HANDLE_TARGET_OPCODE
18#define HANDLE_TARGET_OPCODE(OPC, NUM)
19#endif
20
21/// HANDLE_TARGET_OPCODE_MARKER defines an alternative identifier for an opcode.
22///
23#ifndef HANDLE_TARGET_OPCODE_MARKER
24#define HANDLE_TARGET_OPCODE_MARKER(IDENT, OPC)
25#endif
26
27/// Every instruction defined here must also appear in Target.td.
28///
29HANDLE_TARGET_OPCODE(PHI)
30HANDLE_TARGET_OPCODE(INLINEASM)
31HANDLE_TARGET_OPCODE(INLINEASM_BR)
32HANDLE_TARGET_OPCODE(CFI_INSTRUCTION)
33HANDLE_TARGET_OPCODE(EH_LABEL)
34HANDLE_TARGET_OPCODE(GC_LABEL)
35HANDLE_TARGET_OPCODE(ANNOTATION_LABEL)
36
37/// KILL - This instruction is a noop that is used only to adjust the
38/// liveness of registers. This can be useful when dealing with
39/// sub-registers.
40HANDLE_TARGET_OPCODE(KILL)
41
42/// EXTRACT_SUBREG - This instruction takes two operands: a register
43/// that has subregisters, and a subregister index. It returns the
44/// extracted subregister value. This is commonly used to implement
45/// truncation operations on target architectures which support it.
46HANDLE_TARGET_OPCODE(EXTRACT_SUBREG)
47
48/// INSERT_SUBREG - This instruction takes three operands: a register that
49/// has subregisters, a register providing an insert value, and a
50/// subregister index. It returns the value of the first register with the
51/// value of the second register inserted. The first register is often
52/// defined by an IMPLICIT_DEF, because it is commonly used to implement
53/// anyext operations on target architectures which support it.
54HANDLE_TARGET_OPCODE(INSERT_SUBREG)
55
56/// IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
57HANDLE_TARGET_OPCODE(IMPLICIT_DEF)
58
59/// SUBREG_TO_REG - Assert the value of bits in a super register.
60/// The result of this instruction is the value of the second operand inserted
61/// into the subregister specified by the third operand. All other bits are
62/// assumed to be equal to the bits in the immediate integer constant in the
63/// first operand. This instruction just communicates information; No code
64/// should be generated.
65/// This is typically used after an instruction where the write to a subregister
66/// implicitly cleared the bits in the super registers.
67HANDLE_TARGET_OPCODE(SUBREG_TO_REG)
68
69/// COPY_TO_REGCLASS - This instruction is a placeholder for a plain
70/// register-to-register copy into a specific register class. This is only
71/// used between instruction selection and MachineInstr creation, before
72/// virtual registers have been created for all the instructions, and it's
73/// only needed in cases where the register classes implied by the
74/// instructions are insufficient. It is emitted as a COPY MachineInstr.
75  HANDLE_TARGET_OPCODE(COPY_TO_REGCLASS)
76
77/// DBG_VALUE - a mapping of the llvm.dbg.value intrinsic
78HANDLE_TARGET_OPCODE(DBG_VALUE)
79
80/// DBG_LABEL - a mapping of the llvm.dbg.label intrinsic
81HANDLE_TARGET_OPCODE(DBG_LABEL)
82
83/// REG_SEQUENCE - This variadic instruction is used to form a register that
84/// represents a consecutive sequence of sub-registers. It's used as a
85/// register coalescing / allocation aid and must be eliminated before code
86/// emission.
87// In SDNode form, the first operand encodes the register class created by
88// the REG_SEQUENCE, while each subsequent pair names a vreg + subreg index
89// pair.  Once it has been lowered to a MachineInstr, the regclass operand
90// is no longer present.
91/// e.g. v1027 = REG_SEQUENCE v1024, 3, v1025, 4, v1026, 5
92/// After register coalescing references of v1024 should be replace with
93/// v1027:3, v1025 with v1027:4, etc.
94  HANDLE_TARGET_OPCODE(REG_SEQUENCE)
95
96/// COPY - Target-independent register copy. This instruction can also be
97/// used to copy between subregisters of virtual registers.
98  HANDLE_TARGET_OPCODE(COPY)
99
100/// BUNDLE - This instruction represents an instruction bundle. Instructions
101/// which immediately follow a BUNDLE instruction which are marked with
102/// 'InsideBundle' flag are inside the bundle.
103HANDLE_TARGET_OPCODE(BUNDLE)
104
105/// Lifetime markers.
106HANDLE_TARGET_OPCODE(LIFETIME_START)
107HANDLE_TARGET_OPCODE(LIFETIME_END)
108
109/// A Stackmap instruction captures the location of live variables at its
110/// position in the instruction stream. It is followed by a shadow of bytes
111/// that must lie within the function and not contain another stackmap.
112HANDLE_TARGET_OPCODE(STACKMAP)
113
114/// FEntry all - This is a marker instruction which gets translated into a raw fentry call.
115HANDLE_TARGET_OPCODE(FENTRY_CALL)
116
117/// Patchable call instruction - this instruction represents a call to a
118/// constant address, followed by a series of NOPs. It is intended to
119/// support optimizations for dynamic languages (such as javascript) that
120/// rewrite calls to runtimes with more efficient code sequences.
121/// This also implies a stack map.
122HANDLE_TARGET_OPCODE(PATCHPOINT)
123
124/// This pseudo-instruction loads the stack guard value. Targets which need
125/// to prevent the stack guard value or address from being spilled to the
126/// stack should override TargetLowering::emitLoadStackGuardNode and
127/// additionally expand this pseudo after register allocation.
128HANDLE_TARGET_OPCODE(LOAD_STACK_GUARD)
129
130/// These are used to support call sites that must have the stack adjusted
131/// before the call (e.g. to initialize an argument passed by value).
132/// See llvm.call.preallocated.{setup,arg} in the LangRef for more details.
133HANDLE_TARGET_OPCODE(PREALLOCATED_SETUP)
134HANDLE_TARGET_OPCODE(PREALLOCATED_ARG)
135
136/// Call instruction with associated vm state for deoptimization and list
137/// of live pointers for relocation by the garbage collector.  It is
138/// intended to support garbage collection with fully precise relocating
139/// collectors and deoptimizations in either the callee or caller.
140HANDLE_TARGET_OPCODE(STATEPOINT)
141
142/// Instruction that records the offset of a local stack allocation passed to
143/// llvm.localescape. It has two arguments: the symbol for the label and the
144/// frame index of the local stack allocation.
145HANDLE_TARGET_OPCODE(LOCAL_ESCAPE)
146
147/// Wraps a machine instruction which can fault, bundled with associated
148/// information on how to handle such a fault.
149/// For example loading instruction that may page fault, bundled with associated
150/// information on how to handle such a page fault.  It is intended to support
151/// "zero cost" null checks in managed languages by allowing LLVM to fold
152/// comparisons into existing memory operations.
153HANDLE_TARGET_OPCODE(FAULTING_OP)
154
155/// Wraps a machine instruction to add patchability constraints.  An
156/// instruction wrapped in PATCHABLE_OP has to either have a minimum
157/// size or be preceded with a nop of that size.  The first operand is
158/// an immediate denoting the minimum size of the instruction, the
159/// second operand is an immediate denoting the opcode of the original
160/// instruction.  The rest of the operands are the operands of the
161/// original instruction.
162HANDLE_TARGET_OPCODE(PATCHABLE_OP)
163
164/// This is a marker instruction which gets translated into a nop sled, useful
165/// for inserting instrumentation instructions at runtime.
166HANDLE_TARGET_OPCODE(PATCHABLE_FUNCTION_ENTER)
167
168/// Wraps a return instruction and its operands to enable adding nop sleds
169/// either before or after the return. The nop sleds are useful for inserting
170/// instrumentation instructions at runtime.
171/// The patch here replaces the return instruction.
172HANDLE_TARGET_OPCODE(PATCHABLE_RET)
173
174/// This is a marker instruction which gets translated into a nop sled, useful
175/// for inserting instrumentation instructions at runtime.
176/// The patch here prepends the return instruction.
177/// The same thing as in x86_64 is not possible for ARM because it has multiple
178/// return instructions. Furthermore, CPU allows parametrized and even
179/// conditional return instructions. In the current ARM implementation we are
180/// making use of the fact that currently LLVM doesn't seem to generate
181/// conditional return instructions.
182/// On ARM, the same instruction can be used for popping multiple registers
183/// from the stack and returning (it just pops pc register too), and LLVM
184/// generates it sometimes. So we can't insert the sled between this stack
185/// adjustment and the return without splitting the original instruction into 2
186/// instructions. So on ARM, rather than jumping into the exit trampoline, we
187/// call it, it does the tracing, preserves the stack and returns.
188HANDLE_TARGET_OPCODE(PATCHABLE_FUNCTION_EXIT)
189
190/// Wraps a tail call instruction and its operands to enable adding nop sleds
191/// either before or after the tail exit. We use this as a disambiguation from
192/// PATCHABLE_RET which specifically only works for return instructions.
193HANDLE_TARGET_OPCODE(PATCHABLE_TAIL_CALL)
194
195/// Wraps a logging call and its arguments with nop sleds. At runtime, this can
196/// be patched to insert instrumentation instructions.
197HANDLE_TARGET_OPCODE(PATCHABLE_EVENT_CALL)
198
199/// Wraps a typed logging call and its argument with nop sleds. At runtime, this
200/// can be patched to insert instrumentation instructions.
201HANDLE_TARGET_OPCODE(PATCHABLE_TYPED_EVENT_CALL)
202
203HANDLE_TARGET_OPCODE(ICALL_BRANCH_FUNNEL)
204
205/// The following generic opcodes are not supposed to appear after ISel.
206/// This is something we might want to relax, but for now, this is convenient
207/// to produce diagnostics.
208
209/// Generic ADD instruction. This is an integer add.
210HANDLE_TARGET_OPCODE(G_ADD)
211HANDLE_TARGET_OPCODE_MARKER(PRE_ISEL_GENERIC_OPCODE_START, G_ADD)
212
213/// Generic SUB instruction. This is an integer sub.
214HANDLE_TARGET_OPCODE(G_SUB)
215
216// Generic multiply instruction.
217HANDLE_TARGET_OPCODE(G_MUL)
218
219// Generic signed division instruction.
220HANDLE_TARGET_OPCODE(G_SDIV)
221
222// Generic unsigned division instruction.
223HANDLE_TARGET_OPCODE(G_UDIV)
224
225// Generic signed remainder instruction.
226HANDLE_TARGET_OPCODE(G_SREM)
227
228// Generic unsigned remainder instruction.
229HANDLE_TARGET_OPCODE(G_UREM)
230
231/// Generic bitwise and instruction.
232HANDLE_TARGET_OPCODE(G_AND)
233
234/// Generic bitwise or instruction.
235HANDLE_TARGET_OPCODE(G_OR)
236
237/// Generic bitwise exclusive-or instruction.
238HANDLE_TARGET_OPCODE(G_XOR)
239
240
241HANDLE_TARGET_OPCODE(G_IMPLICIT_DEF)
242
243/// Generic PHI instruction with types.
244HANDLE_TARGET_OPCODE(G_PHI)
245
246/// Generic instruction to materialize the address of an alloca or other
247/// stack-based object.
248HANDLE_TARGET_OPCODE(G_FRAME_INDEX)
249
250/// Generic reference to global value.
251HANDLE_TARGET_OPCODE(G_GLOBAL_VALUE)
252
253/// Generic instruction to extract blocks of bits from the register given
254/// (typically a sub-register COPY after instruction selection).
255HANDLE_TARGET_OPCODE(G_EXTRACT)
256
257HANDLE_TARGET_OPCODE(G_UNMERGE_VALUES)
258
259/// Generic instruction to insert blocks of bits from the registers given into
260/// the source.
261HANDLE_TARGET_OPCODE(G_INSERT)
262
263/// Generic instruction to paste a variable number of components together into a
264/// larger register.
265HANDLE_TARGET_OPCODE(G_MERGE_VALUES)
266
267/// Generic instruction to create a vector value from a number of scalar
268/// components.
269HANDLE_TARGET_OPCODE(G_BUILD_VECTOR)
270
271/// Generic instruction to create a vector value from a number of scalar
272/// components, which have types larger than the result vector elt type.
273HANDLE_TARGET_OPCODE(G_BUILD_VECTOR_TRUNC)
274
275/// Generic instruction to create a vector by concatenating multiple vectors.
276HANDLE_TARGET_OPCODE(G_CONCAT_VECTORS)
277
278/// Generic pointer to int conversion.
279HANDLE_TARGET_OPCODE(G_PTRTOINT)
280
281/// Generic int to pointer conversion.
282HANDLE_TARGET_OPCODE(G_INTTOPTR)
283
284/// Generic bitcast. The source and destination types must be different, or a
285/// COPY is the relevant instruction.
286HANDLE_TARGET_OPCODE(G_BITCAST)
287
288/// Generic freeze.
289HANDLE_TARGET_OPCODE(G_FREEZE)
290
291/// INTRINSIC trunc intrinsic.
292HANDLE_TARGET_OPCODE(G_INTRINSIC_TRUNC)
293
294/// INTRINSIC round intrinsic.
295HANDLE_TARGET_OPCODE(G_INTRINSIC_ROUND)
296
297/// INTRINSIC readcyclecounter
298HANDLE_TARGET_OPCODE(G_READCYCLECOUNTER)
299
300/// Generic load (including anyext load)
301HANDLE_TARGET_OPCODE(G_LOAD)
302
303/// Generic signext load
304HANDLE_TARGET_OPCODE(G_SEXTLOAD)
305
306/// Generic zeroext load
307HANDLE_TARGET_OPCODE(G_ZEXTLOAD)
308
309/// Generic indexed load (including anyext load)
310HANDLE_TARGET_OPCODE(G_INDEXED_LOAD)
311
312/// Generic indexed signext load
313HANDLE_TARGET_OPCODE(G_INDEXED_SEXTLOAD)
314
315/// Generic indexed zeroext load
316HANDLE_TARGET_OPCODE(G_INDEXED_ZEXTLOAD)
317
318/// Generic store.
319HANDLE_TARGET_OPCODE(G_STORE)
320
321/// Generic indexed store.
322HANDLE_TARGET_OPCODE(G_INDEXED_STORE)
323
324/// Generic atomic cmpxchg with internal success check.
325HANDLE_TARGET_OPCODE(G_ATOMIC_CMPXCHG_WITH_SUCCESS)
326
327/// Generic atomic cmpxchg.
328HANDLE_TARGET_OPCODE(G_ATOMIC_CMPXCHG)
329
330/// Generic atomicrmw.
331HANDLE_TARGET_OPCODE(G_ATOMICRMW_XCHG)
332HANDLE_TARGET_OPCODE(G_ATOMICRMW_ADD)
333HANDLE_TARGET_OPCODE(G_ATOMICRMW_SUB)
334HANDLE_TARGET_OPCODE(G_ATOMICRMW_AND)
335HANDLE_TARGET_OPCODE(G_ATOMICRMW_NAND)
336HANDLE_TARGET_OPCODE(G_ATOMICRMW_OR)
337HANDLE_TARGET_OPCODE(G_ATOMICRMW_XOR)
338HANDLE_TARGET_OPCODE(G_ATOMICRMW_MAX)
339HANDLE_TARGET_OPCODE(G_ATOMICRMW_MIN)
340HANDLE_TARGET_OPCODE(G_ATOMICRMW_UMAX)
341HANDLE_TARGET_OPCODE(G_ATOMICRMW_UMIN)
342HANDLE_TARGET_OPCODE(G_ATOMICRMW_FADD)
343HANDLE_TARGET_OPCODE(G_ATOMICRMW_FSUB)
344
345// Generic atomic fence
346HANDLE_TARGET_OPCODE(G_FENCE)
347
348/// Generic conditional branch instruction.
349HANDLE_TARGET_OPCODE(G_BRCOND)
350
351/// Generic indirect branch instruction.
352HANDLE_TARGET_OPCODE(G_BRINDIRECT)
353
354/// Generic intrinsic use (without side effects).
355HANDLE_TARGET_OPCODE(G_INTRINSIC)
356
357/// Generic intrinsic use (with side effects).
358HANDLE_TARGET_OPCODE(G_INTRINSIC_W_SIDE_EFFECTS)
359
360/// Generic extension allowing rubbish in high bits.
361HANDLE_TARGET_OPCODE(G_ANYEXT)
362
363/// Generic instruction to discard the high bits of a register. This differs
364/// from (G_EXTRACT val, 0) on its action on vectors: G_TRUNC will truncate
365/// each element individually, G_EXTRACT will typically discard the high
366/// elements of the vector.
367HANDLE_TARGET_OPCODE(G_TRUNC)
368
369/// Generic integer constant.
370HANDLE_TARGET_OPCODE(G_CONSTANT)
371
372/// Generic floating constant.
373HANDLE_TARGET_OPCODE(G_FCONSTANT)
374
375/// Generic va_start instruction. Stores to its one pointer operand.
376HANDLE_TARGET_OPCODE(G_VASTART)
377
378/// Generic va_start instruction. Stores to its one pointer operand.
379HANDLE_TARGET_OPCODE(G_VAARG)
380
381// Generic sign extend
382HANDLE_TARGET_OPCODE(G_SEXT)
383HANDLE_TARGET_OPCODE(G_SEXT_INREG)
384
385// Generic zero extend
386HANDLE_TARGET_OPCODE(G_ZEXT)
387
388// Generic left-shift
389HANDLE_TARGET_OPCODE(G_SHL)
390
391// Generic logical right-shift
392HANDLE_TARGET_OPCODE(G_LSHR)
393
394// Generic arithmetic right-shift
395HANDLE_TARGET_OPCODE(G_ASHR)
396
397// Generic funnel left shift
398HANDLE_TARGET_OPCODE(G_FSHL)
399
400// Generic funnel right shift
401HANDLE_TARGET_OPCODE(G_FSHR)
402
403/// Generic integer-base comparison, also applicable to vectors of integers.
404HANDLE_TARGET_OPCODE(G_ICMP)
405
406/// Generic floating-point comparison, also applicable to vectors.
407HANDLE_TARGET_OPCODE(G_FCMP)
408
409/// Generic select.
410HANDLE_TARGET_OPCODE(G_SELECT)
411
412/// Generic unsigned add instruction, consuming the normal operands and
413/// producing the result and a carry flag.
414HANDLE_TARGET_OPCODE(G_UADDO)
415
416/// Generic unsigned add instruction, consuming the normal operands plus a carry
417/// flag, and similarly producing the result and a carry flag.
418HANDLE_TARGET_OPCODE(G_UADDE)
419
420/// Generic unsigned sub instruction, consuming the normal operands and
421/// producing the result and a carry flag.
422HANDLE_TARGET_OPCODE(G_USUBO)
423
424/// Generic unsigned subtract instruction, consuming the normal operands plus a
425/// carry flag, and similarly producing the result and a carry flag.
426HANDLE_TARGET_OPCODE(G_USUBE)
427
428/// Generic signed add instruction, producing the result and a signed overflow
429/// flag.
430HANDLE_TARGET_OPCODE(G_SADDO)
431
432/// Generic signed add instruction, consuming the normal operands plus a carry
433/// flag, and similarly producing the result and a carry flag.
434HANDLE_TARGET_OPCODE(G_SADDE)
435
436/// Generic signed subtract instruction, producing the result and a signed
437/// overflow flag.
438HANDLE_TARGET_OPCODE(G_SSUBO)
439
440/// Generic signed sub instruction, consuming the normal operands plus a carry
441/// flag, and similarly producing the result and a carry flag.
442HANDLE_TARGET_OPCODE(G_SSUBE)
443
444/// Generic unsigned multiply instruction, producing the result and a signed
445/// overflow flag.
446HANDLE_TARGET_OPCODE(G_UMULO)
447
448/// Generic signed multiply instruction, producing the result and a signed
449/// overflow flag.
450HANDLE_TARGET_OPCODE(G_SMULO)
451
452// Multiply two numbers at twice the incoming bit width (unsigned) and return
453// the high half of the result.
454HANDLE_TARGET_OPCODE(G_UMULH)
455
456// Multiply two numbers at twice the incoming bit width (signed) and return
457// the high half of the result.
458HANDLE_TARGET_OPCODE(G_SMULH)
459
460/// Generic saturating unsigned addition.
461HANDLE_TARGET_OPCODE(G_UADDSAT)
462
463/// Generic saturating signed addition.
464HANDLE_TARGET_OPCODE(G_SADDSAT)
465
466/// Generic saturating unsigned subtraction.
467HANDLE_TARGET_OPCODE(G_USUBSAT)
468
469/// Generic saturating signed subtraction.
470HANDLE_TARGET_OPCODE(G_SSUBSAT)
471
472/// Generic FP addition.
473HANDLE_TARGET_OPCODE(G_FADD)
474
475/// Generic FP subtraction.
476HANDLE_TARGET_OPCODE(G_FSUB)
477
478/// Generic FP multiplication.
479HANDLE_TARGET_OPCODE(G_FMUL)
480
481/// Generic FMA multiplication. Behaves like llvm fma intrinsic
482HANDLE_TARGET_OPCODE(G_FMA)
483
484/// Generic FP multiply and add. Behaves as separate fmul and fadd.
485HANDLE_TARGET_OPCODE(G_FMAD)
486
487/// Generic FP division.
488HANDLE_TARGET_OPCODE(G_FDIV)
489
490/// Generic FP remainder.
491HANDLE_TARGET_OPCODE(G_FREM)
492
493/// Generic FP exponentiation.
494HANDLE_TARGET_OPCODE(G_FPOW)
495
496/// Generic base-e exponential of a value.
497HANDLE_TARGET_OPCODE(G_FEXP)
498
499/// Generic base-2 exponential of a value.
500HANDLE_TARGET_OPCODE(G_FEXP2)
501
502/// Floating point base-e logarithm of a value.
503HANDLE_TARGET_OPCODE(G_FLOG)
504
505/// Floating point base-2 logarithm of a value.
506HANDLE_TARGET_OPCODE(G_FLOG2)
507
508/// Floating point base-10 logarithm of a value.
509HANDLE_TARGET_OPCODE(G_FLOG10)
510
511/// Generic FP negation.
512HANDLE_TARGET_OPCODE(G_FNEG)
513
514/// Generic FP extension.
515HANDLE_TARGET_OPCODE(G_FPEXT)
516
517/// Generic float to signed-int conversion
518HANDLE_TARGET_OPCODE(G_FPTRUNC)
519
520/// Generic float to signed-int conversion
521HANDLE_TARGET_OPCODE(G_FPTOSI)
522
523/// Generic float to unsigned-int conversion
524HANDLE_TARGET_OPCODE(G_FPTOUI)
525
526/// Generic signed-int to float conversion
527HANDLE_TARGET_OPCODE(G_SITOFP)
528
529/// Generic unsigned-int to float conversion
530HANDLE_TARGET_OPCODE(G_UITOFP)
531
532/// Generic FP absolute value.
533HANDLE_TARGET_OPCODE(G_FABS)
534
535/// FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This does
536/// not require that X and Y have the same type, just that they are both
537/// floating point. X and the result must have the same type.  FCOPYSIGN(f32,
538/// f64) is allowed.
539HANDLE_TARGET_OPCODE(G_FCOPYSIGN)
540
541/// Generic FP canonicalize value.
542HANDLE_TARGET_OPCODE(G_FCANONICALIZE)
543
544/// FP min/max matching libm's fmin/fmax
545HANDLE_TARGET_OPCODE(G_FMINNUM)
546HANDLE_TARGET_OPCODE(G_FMAXNUM)
547
548/// FP min/max matching IEEE-754 2008's minnum/maxnum semantics.
549HANDLE_TARGET_OPCODE(G_FMINNUM_IEEE)
550HANDLE_TARGET_OPCODE(G_FMAXNUM_IEEE)
551
552/// FP min/max matching IEEE-754 2018 draft semantics.
553HANDLE_TARGET_OPCODE(G_FMINIMUM)
554HANDLE_TARGET_OPCODE(G_FMAXIMUM)
555
556/// Generic pointer offset
557HANDLE_TARGET_OPCODE(G_PTR_ADD)
558
559/// Clear the specified bits in a pointer.
560HANDLE_TARGET_OPCODE(G_PTRMASK)
561
562/// Generic signed integer minimum.
563HANDLE_TARGET_OPCODE(G_SMIN)
564
565/// Generic signed integer maximum.
566HANDLE_TARGET_OPCODE(G_SMAX)
567
568/// Generic unsigned integer maximum.
569HANDLE_TARGET_OPCODE(G_UMIN)
570
571/// Generic unsigned integer maximum.
572HANDLE_TARGET_OPCODE(G_UMAX)
573
574/// Generic BRANCH instruction. This is an unconditional branch.
575HANDLE_TARGET_OPCODE(G_BR)
576
577/// Generic branch to jump table entry.
578HANDLE_TARGET_OPCODE(G_BRJT)
579
580/// Generic insertelement.
581HANDLE_TARGET_OPCODE(G_INSERT_VECTOR_ELT)
582
583/// Generic extractelement.
584HANDLE_TARGET_OPCODE(G_EXTRACT_VECTOR_ELT)
585
586/// Generic shufflevector.
587HANDLE_TARGET_OPCODE(G_SHUFFLE_VECTOR)
588
589/// Generic count trailing zeroes.
590HANDLE_TARGET_OPCODE(G_CTTZ)
591
592/// Same as above, undefined for zero inputs.
593HANDLE_TARGET_OPCODE(G_CTTZ_ZERO_UNDEF)
594
595/// Generic count leading zeroes.
596HANDLE_TARGET_OPCODE(G_CTLZ)
597
598/// Same as above, undefined for zero inputs.
599HANDLE_TARGET_OPCODE(G_CTLZ_ZERO_UNDEF)
600
601/// Generic count bits.
602HANDLE_TARGET_OPCODE(G_CTPOP)
603
604/// Generic byte swap.
605HANDLE_TARGET_OPCODE(G_BSWAP)
606
607/// Generic bit reverse.
608HANDLE_TARGET_OPCODE(G_BITREVERSE)
609
610/// Floating point ceil.
611HANDLE_TARGET_OPCODE(G_FCEIL)
612
613/// Floating point cosine.
614HANDLE_TARGET_OPCODE(G_FCOS)
615
616/// Floating point sine.
617HANDLE_TARGET_OPCODE(G_FSIN)
618
619/// Floating point square root.
620HANDLE_TARGET_OPCODE(G_FSQRT)
621
622/// Floating point floor.
623HANDLE_TARGET_OPCODE(G_FFLOOR)
624
625/// Floating point round to next integer.
626HANDLE_TARGET_OPCODE(G_FRINT)
627
628/// Floating point round to nearest integer.
629HANDLE_TARGET_OPCODE(G_FNEARBYINT)
630
631/// Generic AddressSpaceCast.
632HANDLE_TARGET_OPCODE(G_ADDRSPACE_CAST)
633
634/// Generic block address
635HANDLE_TARGET_OPCODE(G_BLOCK_ADDR)
636
637/// Generic jump table address
638HANDLE_TARGET_OPCODE(G_JUMP_TABLE)
639
640/// Generic dynamic stack allocation.
641HANDLE_TARGET_OPCODE(G_DYN_STACKALLOC)
642
643/// Strict floating point instructions.
644HANDLE_TARGET_OPCODE(G_STRICT_FADD)
645HANDLE_TARGET_OPCODE(G_STRICT_FSUB)
646HANDLE_TARGET_OPCODE(G_STRICT_FMUL)
647HANDLE_TARGET_OPCODE(G_STRICT_FDIV)
648HANDLE_TARGET_OPCODE(G_STRICT_FREM)
649HANDLE_TARGET_OPCODE(G_STRICT_FMA)
650HANDLE_TARGET_OPCODE(G_STRICT_FSQRT)
651
652/// read_register intrinsic
653HANDLE_TARGET_OPCODE(G_READ_REGISTER)
654
655/// write_register intrinsic
656HANDLE_TARGET_OPCODE(G_WRITE_REGISTER)
657
658/// Marker for the end of the generic opcode.
659/// This is used to check if an opcode is in the range of the
660/// generic opcodes.
661HANDLE_TARGET_OPCODE_MARKER(PRE_ISEL_GENERIC_OPCODE_END, G_WRITE_REGISTER)
662
663/// BUILTIN_OP_END - This must be the last enum value in this list.
664/// The target-specific post-isel opcode values start here.
665HANDLE_TARGET_OPCODE_MARKER(GENERIC_OP_END, PRE_ISEL_GENERIC_OPCODE_END)
666