1 //===- PeepholeOptimizer.cpp - Peephole Optimizations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Perform peephole optimizations on the machine code:
10 //
11 // - Optimize Extensions
12 //
13 //     Optimization of sign / zero extension instructions. It may be extended to
14 //     handle other instructions with similar properties.
15 //
16 //     On some targets, some instructions, e.g. X86 sign / zero extension, may
17 //     leave the source value in the lower part of the result. This optimization
18 //     will replace some uses of the pre-extension value with uses of the
19 //     sub-register of the results.
20 //
21 // - Optimize Comparisons
22 //
23 //     Optimization of comparison instructions. For instance, in this code:
24 //
25 //       sub r1, 1
26 //       cmp r1, 0
27 //       bz  L1
28 //
29 //     If the "sub" instruction all ready sets (or could be modified to set) the
30 //     same flag that the "cmp" instruction sets and that "bz" uses, then we can
31 //     eliminate the "cmp" instruction.
32 //
33 //     Another instance, in this code:
34 //
35 //       sub r1, r3 | sub r1, imm
36 //       cmp r3, r1 or cmp r1, r3 | cmp r1, imm
37 //       bge L1
38 //
39 //     If the branch instruction can use flag from "sub", then we can replace
40 //     "sub" with "subs" and eliminate the "cmp" instruction.
41 //
42 // - Optimize Loads:
43 //
44 //     Loads that can be folded into a later instruction. A load is foldable
45 //     if it loads to virtual registers and the virtual register defined has
46 //     a single use.
47 //
48 // - Optimize Copies and Bitcast (more generally, target specific copies):
49 //
50 //     Rewrite copies and bitcasts to avoid cross register bank copies
51 //     when possible.
52 //     E.g., Consider the following example, where capital and lower
53 //     letters denote different register file:
54 //     b = copy A <-- cross-bank copy
55 //     C = copy b <-- cross-bank copy
56 //   =>
57 //     b = copy A <-- cross-bank copy
58 //     C = copy A <-- same-bank copy
59 //
60 //     E.g., for bitcast:
61 //     b = bitcast A <-- cross-bank copy
62 //     C = bitcast b <-- cross-bank copy
63 //   =>
64 //     b = bitcast A <-- cross-bank copy
65 //     C = copy A    <-- same-bank copy
66 //===----------------------------------------------------------------------===//
67 
68 #include "llvm/ADT/DenseMap.h"
69 #include "llvm/ADT/Optional.h"
70 #include "llvm/ADT/SmallPtrSet.h"
71 #include "llvm/ADT/SmallSet.h"
72 #include "llvm/ADT/SmallVector.h"
73 #include "llvm/ADT/Statistic.h"
74 #include "llvm/CodeGen/MachineBasicBlock.h"
75 #include "llvm/CodeGen/MachineDominators.h"
76 #include "llvm/CodeGen/MachineFunction.h"
77 #include "llvm/CodeGen/MachineFunctionPass.h"
78 #include "llvm/CodeGen/MachineInstr.h"
79 #include "llvm/CodeGen/MachineInstrBuilder.h"
80 #include "llvm/CodeGen/MachineLoopInfo.h"
81 #include "llvm/CodeGen/MachineOperand.h"
82 #include "llvm/CodeGen/MachineRegisterInfo.h"
83 #include "llvm/CodeGen/TargetInstrInfo.h"
84 #include "llvm/CodeGen/TargetOpcodes.h"
85 #include "llvm/CodeGen/TargetRegisterInfo.h"
86 #include "llvm/CodeGen/TargetSubtargetInfo.h"
87 #include "llvm/InitializePasses.h"
88 #include "llvm/MC/LaneBitmask.h"
89 #include "llvm/MC/MCInstrDesc.h"
90 #include "llvm/Pass.h"
91 #include "llvm/Support/CommandLine.h"
92 #include "llvm/Support/Debug.h"
93 #include "llvm/Support/ErrorHandling.h"
94 #include "llvm/Support/raw_ostream.h"
95 #include <cassert>
96 #include <cstdint>
97 #include <memory>
98 #include <utility>
99 
100 using namespace llvm;
101 using RegSubRegPair = TargetInstrInfo::RegSubRegPair;
102 using RegSubRegPairAndIdx = TargetInstrInfo::RegSubRegPairAndIdx;
103 
104 #define DEBUG_TYPE "peephole-opt"
105 
106 // Optimize Extensions
107 static cl::opt<bool>
108 Aggressive("aggressive-ext-opt", cl::Hidden,
109            cl::desc("Aggressive extension optimization"));
110 
111 static cl::opt<bool>
112 DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
113                 cl::desc("Disable the peephole optimizer"));
114 
115 /// Specifiy whether or not the value tracking looks through
116 /// complex instructions. When this is true, the value tracker
117 /// bails on everything that is not a copy or a bitcast.
118 static cl::opt<bool>
119 DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false),
120                   cl::desc("Disable advanced copy optimization"));
121 
122 static cl::opt<bool> DisableNAPhysCopyOpt(
123     "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false),
124     cl::desc("Disable non-allocatable physical register copy optimization"));
125 
126 // Limit the number of PHI instructions to process
127 // in PeepholeOptimizer::getNextSource.
128 static cl::opt<unsigned> RewritePHILimit(
129     "rewrite-phi-limit", cl::Hidden, cl::init(10),
130     cl::desc("Limit the length of PHI chains to lookup"));
131 
132 // Limit the length of recurrence chain when evaluating the benefit of
133 // commuting operands.
134 static cl::opt<unsigned> MaxRecurrenceChain(
135     "recurrence-chain-limit", cl::Hidden, cl::init(3),
136     cl::desc("Maximum length of recurrence chain when evaluating the benefit "
137              "of commuting operands"));
138 
139 
140 STATISTIC(NumReuse, "Number of extension results reused");
141 STATISTIC(NumCmps, "Number of compares eliminated");
142 STATISTIC(NumImmFold, "Number of move immediate folded");
143 STATISTIC(NumLoadFold, "Number of loads folded");
144 STATISTIC(NumSelects, "Number of selects optimized");
145 STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized");
146 STATISTIC(NumRewrittenCopies, "Number of copies rewritten");
147 STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed");
148 
149 namespace {
150 
151   class ValueTrackerResult;
152   class RecurrenceInstr;
153 
154   class PeepholeOptimizer : public MachineFunctionPass {
155     const TargetInstrInfo *TII;
156     const TargetRegisterInfo *TRI;
157     MachineRegisterInfo *MRI;
158     MachineDominatorTree *DT;  // Machine dominator tree
159     MachineLoopInfo *MLI;
160 
161   public:
162     static char ID; // Pass identification
163 
PeepholeOptimizer()164     PeepholeOptimizer() : MachineFunctionPass(ID) {
165       initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
166     }
167 
168     bool runOnMachineFunction(MachineFunction &MF) override;
169 
getAnalysisUsage(AnalysisUsage & AU) const170     void getAnalysisUsage(AnalysisUsage &AU) const override {
171       AU.setPreservesCFG();
172       MachineFunctionPass::getAnalysisUsage(AU);
173       AU.addRequired<MachineLoopInfo>();
174       AU.addPreserved<MachineLoopInfo>();
175       if (Aggressive) {
176         AU.addRequired<MachineDominatorTree>();
177         AU.addPreserved<MachineDominatorTree>();
178       }
179     }
180 
181     /// Track Def -> Use info used for rewriting copies.
182     using RewriteMapTy = SmallDenseMap<RegSubRegPair, ValueTrackerResult>;
183 
184     /// Sequence of instructions that formulate recurrence cycle.
185     using RecurrenceCycle = SmallVector<RecurrenceInstr, 4>;
186 
187   private:
188     bool optimizeCmpInstr(MachineInstr &MI);
189     bool optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
190                           SmallPtrSetImpl<MachineInstr*> &LocalMIs);
191     bool optimizeSelect(MachineInstr &MI,
192                         SmallPtrSetImpl<MachineInstr *> &LocalMIs);
193     bool optimizeCondBranch(MachineInstr &MI);
194     bool optimizeCoalescableCopy(MachineInstr &MI);
195     bool optimizeUncoalescableCopy(MachineInstr &MI,
196                                    SmallPtrSetImpl<MachineInstr *> &LocalMIs);
197     bool optimizeRecurrence(MachineInstr &PHI);
198     bool findNextSource(RegSubRegPair RegSubReg, RewriteMapTy &RewriteMap);
199     bool isMoveImmediate(MachineInstr &MI,
200                          SmallSet<unsigned, 4> &ImmDefRegs,
201                          DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
202     bool foldImmediate(MachineInstr &MI, SmallSet<unsigned, 4> &ImmDefRegs,
203                        DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
204 
205     /// Finds recurrence cycles, but only ones that formulated around
206     /// a def operand and a use operand that are tied. If there is a use
207     /// operand commutable with the tied use operand, find recurrence cycle
208     /// along that operand as well.
209     bool findTargetRecurrence(unsigned Reg,
210                               const SmallSet<unsigned, 2> &TargetReg,
211                               RecurrenceCycle &RC);
212 
213     /// If copy instruction \p MI is a virtual register copy, track it in
214     /// the set \p CopySrcRegs and \p CopyMIs. If this virtual register was
215     /// previously seen as a copy, replace the uses of this copy with the
216     /// previously seen copy's destination register.
217     bool foldRedundantCopy(MachineInstr &MI,
218                            SmallSet<unsigned, 4> &CopySrcRegs,
219                            DenseMap<unsigned, MachineInstr *> &CopyMIs);
220 
221     /// Is the register \p Reg a non-allocatable physical register?
222     bool isNAPhysCopy(unsigned Reg);
223 
224     /// If copy instruction \p MI is a non-allocatable virtual<->physical
225     /// register copy, track it in the \p NAPhysToVirtMIs map. If this
226     /// non-allocatable physical register was previously copied to a virtual
227     /// registered and hasn't been clobbered, the virt->phys copy can be
228     /// deleted.
229     bool foldRedundantNAPhysCopy(MachineInstr &MI,
230         DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs);
231 
232     bool isLoadFoldable(MachineInstr &MI,
233                         SmallSet<unsigned, 16> &FoldAsLoadDefCandidates);
234 
235     /// Check whether \p MI is understood by the register coalescer
236     /// but may require some rewriting.
isCoalescableCopy(const MachineInstr & MI)237     bool isCoalescableCopy(const MachineInstr &MI) {
238       // SubregToRegs are not interesting, because they are already register
239       // coalescer friendly.
240       return MI.isCopy() || (!DisableAdvCopyOpt &&
241                              (MI.isRegSequence() || MI.isInsertSubreg() ||
242                               MI.isExtractSubreg()));
243     }
244 
245     /// Check whether \p MI is a copy like instruction that is
246     /// not recognized by the register coalescer.
isUncoalescableCopy(const MachineInstr & MI)247     bool isUncoalescableCopy(const MachineInstr &MI) {
248       return MI.isBitcast() ||
249              (!DisableAdvCopyOpt &&
250               (MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
251                MI.isExtractSubregLike()));
252     }
253 
254     MachineInstr &rewriteSource(MachineInstr &CopyLike,
255                                 RegSubRegPair Def, RewriteMapTy &RewriteMap);
256   };
257 
258   /// Helper class to hold instructions that are inside recurrence cycles.
259   /// The recurrence cycle is formulated around 1) a def operand and its
260   /// tied use operand, or 2) a def operand and a use operand that is commutable
261   /// with another use operand which is tied to the def operand. In the latter
262   /// case, index of the tied use operand and the commutable use operand are
263   /// maintained with CommutePair.
264   class RecurrenceInstr {
265   public:
266     using IndexPair = std::pair<unsigned, unsigned>;
267 
RecurrenceInstr(MachineInstr * MI)268     RecurrenceInstr(MachineInstr *MI) : MI(MI) {}
RecurrenceInstr(MachineInstr * MI,unsigned Idx1,unsigned Idx2)269     RecurrenceInstr(MachineInstr *MI, unsigned Idx1, unsigned Idx2)
270       : MI(MI), CommutePair(std::make_pair(Idx1, Idx2)) {}
271 
getMI() const272     MachineInstr *getMI() const { return MI; }
getCommutePair() const273     Optional<IndexPair> getCommutePair() const { return CommutePair; }
274 
275   private:
276     MachineInstr *MI;
277     Optional<IndexPair> CommutePair;
278   };
279 
280   /// Helper class to hold a reply for ValueTracker queries.
281   /// Contains the returned sources for a given search and the instructions
282   /// where the sources were tracked from.
283   class ValueTrackerResult {
284   private:
285     /// Track all sources found by one ValueTracker query.
286     SmallVector<RegSubRegPair, 2> RegSrcs;
287 
288     /// Instruction using the sources in 'RegSrcs'.
289     const MachineInstr *Inst = nullptr;
290 
291   public:
292     ValueTrackerResult() = default;
293 
ValueTrackerResult(unsigned Reg,unsigned SubReg)294     ValueTrackerResult(unsigned Reg, unsigned SubReg) {
295       addSource(Reg, SubReg);
296     }
297 
isValid() const298     bool isValid() const { return getNumSources() > 0; }
299 
setInst(const MachineInstr * I)300     void setInst(const MachineInstr *I) { Inst = I; }
getInst() const301     const MachineInstr *getInst() const { return Inst; }
302 
clear()303     void clear() {
304       RegSrcs.clear();
305       Inst = nullptr;
306     }
307 
addSource(unsigned SrcReg,unsigned SrcSubReg)308     void addSource(unsigned SrcReg, unsigned SrcSubReg) {
309       RegSrcs.push_back(RegSubRegPair(SrcReg, SrcSubReg));
310     }
311 
setSource(int Idx,unsigned SrcReg,unsigned SrcSubReg)312     void setSource(int Idx, unsigned SrcReg, unsigned SrcSubReg) {
313       assert(Idx < getNumSources() && "Reg pair source out of index");
314       RegSrcs[Idx] = RegSubRegPair(SrcReg, SrcSubReg);
315     }
316 
getNumSources() const317     int getNumSources() const { return RegSrcs.size(); }
318 
getSrc(int Idx) const319     RegSubRegPair getSrc(int Idx) const {
320       return RegSrcs[Idx];
321     }
322 
getSrcReg(int Idx) const323     unsigned getSrcReg(int Idx) const {
324       assert(Idx < getNumSources() && "Reg source out of index");
325       return RegSrcs[Idx].Reg;
326     }
327 
getSrcSubReg(int Idx) const328     unsigned getSrcSubReg(int Idx) const {
329       assert(Idx < getNumSources() && "SubReg source out of index");
330       return RegSrcs[Idx].SubReg;
331     }
332 
operator ==(const ValueTrackerResult & Other)333     bool operator==(const ValueTrackerResult &Other) {
334       if (Other.getInst() != getInst())
335         return false;
336 
337       if (Other.getNumSources() != getNumSources())
338         return false;
339 
340       for (int i = 0, e = Other.getNumSources(); i != e; ++i)
341         if (Other.getSrcReg(i) != getSrcReg(i) ||
342             Other.getSrcSubReg(i) != getSrcSubReg(i))
343           return false;
344       return true;
345     }
346   };
347 
348   /// Helper class to track the possible sources of a value defined by
349   /// a (chain of) copy related instructions.
350   /// Given a definition (instruction and definition index), this class
351   /// follows the use-def chain to find successive suitable sources.
352   /// The given source can be used to rewrite the definition into
353   /// def = COPY src.
354   ///
355   /// For instance, let us consider the following snippet:
356   /// v0 =
357   /// v2 = INSERT_SUBREG v1, v0, sub0
358   /// def = COPY v2.sub0
359   ///
360   /// Using a ValueTracker for def = COPY v2.sub0 will give the following
361   /// suitable sources:
362   /// v2.sub0 and v0.
363   /// Then, def can be rewritten into def = COPY v0.
364   class ValueTracker {
365   private:
366     /// The current point into the use-def chain.
367     const MachineInstr *Def = nullptr;
368 
369     /// The index of the definition in Def.
370     unsigned DefIdx = 0;
371 
372     /// The sub register index of the definition.
373     unsigned DefSubReg;
374 
375     /// The register where the value can be found.
376     unsigned Reg;
377 
378     /// MachineRegisterInfo used to perform tracking.
379     const MachineRegisterInfo &MRI;
380 
381     /// Optional TargetInstrInfo used to perform some complex tracking.
382     const TargetInstrInfo *TII;
383 
384     /// Dispatcher to the right underlying implementation of getNextSource.
385     ValueTrackerResult getNextSourceImpl();
386 
387     /// Specialized version of getNextSource for Copy instructions.
388     ValueTrackerResult getNextSourceFromCopy();
389 
390     /// Specialized version of getNextSource for Bitcast instructions.
391     ValueTrackerResult getNextSourceFromBitcast();
392 
393     /// Specialized version of getNextSource for RegSequence instructions.
394     ValueTrackerResult getNextSourceFromRegSequence();
395 
396     /// Specialized version of getNextSource for InsertSubreg instructions.
397     ValueTrackerResult getNextSourceFromInsertSubreg();
398 
399     /// Specialized version of getNextSource for ExtractSubreg instructions.
400     ValueTrackerResult getNextSourceFromExtractSubreg();
401 
402     /// Specialized version of getNextSource for SubregToReg instructions.
403     ValueTrackerResult getNextSourceFromSubregToReg();
404 
405     /// Specialized version of getNextSource for PHI instructions.
406     ValueTrackerResult getNextSourceFromPHI();
407 
408   public:
409     /// Create a ValueTracker instance for the value defined by \p Reg.
410     /// \p DefSubReg represents the sub register index the value tracker will
411     /// track. It does not need to match the sub register index used in the
412     /// definition of \p Reg.
413     /// If \p Reg is a physical register, a value tracker constructed with
414     /// this constructor will not find any alternative source.
415     /// Indeed, when \p Reg is a physical register that constructor does not
416     /// know which definition of \p Reg it should track.
417     /// Use the next constructor to track a physical register.
ValueTracker(unsigned Reg,unsigned DefSubReg,const MachineRegisterInfo & MRI,const TargetInstrInfo * TII=nullptr)418     ValueTracker(unsigned Reg, unsigned DefSubReg,
419                  const MachineRegisterInfo &MRI,
420                  const TargetInstrInfo *TII = nullptr)
421         : DefSubReg(DefSubReg), Reg(Reg), MRI(MRI), TII(TII) {
422       if (!Register::isPhysicalRegister(Reg)) {
423         Def = MRI.getVRegDef(Reg);
424         DefIdx = MRI.def_begin(Reg).getOperandNo();
425       }
426     }
427 
428     /// Following the use-def chain, get the next available source
429     /// for the tracked value.
430     /// \return A ValueTrackerResult containing a set of registers
431     /// and sub registers with tracked values. A ValueTrackerResult with
432     /// an empty set of registers means no source was found.
433     ValueTrackerResult getNextSource();
434   };
435 
436 } // end anonymous namespace
437 
438 char PeepholeOptimizer::ID = 0;
439 
440 char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
441 
442 INITIALIZE_PASS_BEGIN(PeepholeOptimizer, DEBUG_TYPE,
443                       "Peephole Optimizations", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)444 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
445 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
446 INITIALIZE_PASS_END(PeepholeOptimizer, DEBUG_TYPE,
447                     "Peephole Optimizations", false, false)
448 
449 /// If instruction is a copy-like instruction, i.e. it reads a single register
450 /// and writes a single register and it does not modify the source, and if the
451 /// source value is preserved as a sub-register of the result, then replace all
452 /// reachable uses of the source with the subreg of the result.
453 ///
454 /// Do not generate an EXTRACT that is used only in a debug use, as this changes
455 /// the code. Since this code does not currently share EXTRACTs, just ignore all
456 /// debug uses.
457 bool PeepholeOptimizer::
458 optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
459                  SmallPtrSetImpl<MachineInstr*> &LocalMIs) {
460   Register SrcReg, DstReg;
461   unsigned SubIdx;
462   if (!TII->isCoalescableExtInstr(MI, SrcReg, DstReg, SubIdx))
463     return false;
464 
465   if (DstReg.isPhysical() || SrcReg.isPhysical())
466     return false;
467 
468   if (MRI->hasOneNonDBGUse(SrcReg))
469     // No other uses.
470     return false;
471 
472   // Ensure DstReg can get a register class that actually supports
473   // sub-registers. Don't change the class until we commit.
474   const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
475   DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx);
476   if (!DstRC)
477     return false;
478 
479   // The ext instr may be operating on a sub-register of SrcReg as well.
480   // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
481   // register.
482   // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
483   // SrcReg:SubIdx should be replaced.
484   bool UseSrcSubIdx =
485       TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr;
486 
487   // The source has other uses. See if we can replace the other uses with use of
488   // the result of the extension.
489   SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
490   for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
491     ReachedBBs.insert(UI.getParent());
492 
493   // Uses that are in the same BB of uses of the result of the instruction.
494   SmallVector<MachineOperand*, 8> Uses;
495 
496   // Uses that the result of the instruction can reach.
497   SmallVector<MachineOperand*, 8> ExtendedUses;
498 
499   bool ExtendLife = true;
500   for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
501     MachineInstr *UseMI = UseMO.getParent();
502     if (UseMI == &MI)
503       continue;
504 
505     if (UseMI->isPHI()) {
506       ExtendLife = false;
507       continue;
508     }
509 
510     // Only accept uses of SrcReg:SubIdx.
511     if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx)
512       continue;
513 
514     // It's an error to translate this:
515     //
516     //    %reg1025 = <sext> %reg1024
517     //     ...
518     //    %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
519     //
520     // into this:
521     //
522     //    %reg1025 = <sext> %reg1024
523     //     ...
524     //    %reg1027 = COPY %reg1025:4
525     //    %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
526     //
527     // The problem here is that SUBREG_TO_REG is there to assert that an
528     // implicit zext occurs. It doesn't insert a zext instruction. If we allow
529     // the COPY here, it will give us the value after the <sext>, not the
530     // original value of %reg1024 before <sext>.
531     if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
532       continue;
533 
534     MachineBasicBlock *UseMBB = UseMI->getParent();
535     if (UseMBB == &MBB) {
536       // Local uses that come after the extension.
537       if (!LocalMIs.count(UseMI))
538         Uses.push_back(&UseMO);
539     } else if (ReachedBBs.count(UseMBB)) {
540       // Non-local uses where the result of the extension is used. Always
541       // replace these unless it's a PHI.
542       Uses.push_back(&UseMO);
543     } else if (Aggressive && DT->dominates(&MBB, UseMBB)) {
544       // We may want to extend the live range of the extension result in order
545       // to replace these uses.
546       ExtendedUses.push_back(&UseMO);
547     } else {
548       // Both will be live out of the def MBB anyway. Don't extend live range of
549       // the extension result.
550       ExtendLife = false;
551       break;
552     }
553   }
554 
555   if (ExtendLife && !ExtendedUses.empty())
556     // Extend the liveness of the extension result.
557     Uses.append(ExtendedUses.begin(), ExtendedUses.end());
558 
559   // Now replace all uses.
560   bool Changed = false;
561   if (!Uses.empty()) {
562     SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
563 
564     // Look for PHI uses of the extended result, we don't want to extend the
565     // liveness of a PHI input. It breaks all kinds of assumptions down
566     // stream. A PHI use is expected to be the kill of its source values.
567     for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
568       if (UI.isPHI())
569         PHIBBs.insert(UI.getParent());
570 
571     const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
572     for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
573       MachineOperand *UseMO = Uses[i];
574       MachineInstr *UseMI = UseMO->getParent();
575       MachineBasicBlock *UseMBB = UseMI->getParent();
576       if (PHIBBs.count(UseMBB))
577         continue;
578 
579       // About to add uses of DstReg, clear DstReg's kill flags.
580       if (!Changed) {
581         MRI->clearKillFlags(DstReg);
582         MRI->constrainRegClass(DstReg, DstRC);
583       }
584 
585       Register NewVR = MRI->createVirtualRegister(RC);
586       MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
587                                    TII->get(TargetOpcode::COPY), NewVR)
588         .addReg(DstReg, 0, SubIdx);
589       // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set.
590       if (UseSrcSubIdx) {
591         Copy->getOperand(0).setSubReg(SubIdx);
592         Copy->getOperand(0).setIsUndef();
593       }
594       UseMO->setReg(NewVR);
595       ++NumReuse;
596       Changed = true;
597     }
598   }
599 
600   return Changed;
601 }
602 
603 /// If the instruction is a compare and the previous instruction it's comparing
604 /// against already sets (or could be modified to set) the same flag as the
605 /// compare, then we can remove the comparison and use the flag from the
606 /// previous instruction.
optimizeCmpInstr(MachineInstr & MI)607 bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr &MI) {
608   // If this instruction is a comparison against zero and isn't comparing a
609   // physical register, we can try to optimize it.
610   Register SrcReg, SrcReg2;
611   int CmpMask, CmpValue;
612   if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
613       SrcReg.isPhysical() || SrcReg2.isPhysical())
614     return false;
615 
616   // Attempt to optimize the comparison instruction.
617   LLVM_DEBUG(dbgs() << "Attempting to optimize compare: " << MI);
618   if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
619     LLVM_DEBUG(dbgs() << "  -> Successfully optimized compare!\n");
620     ++NumCmps;
621     return true;
622   }
623 
624   return false;
625 }
626 
627 /// Optimize a select instruction.
optimizeSelect(MachineInstr & MI,SmallPtrSetImpl<MachineInstr * > & LocalMIs)628 bool PeepholeOptimizer::optimizeSelect(MachineInstr &MI,
629                             SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
630   unsigned TrueOp = 0;
631   unsigned FalseOp = 0;
632   bool Optimizable = false;
633   SmallVector<MachineOperand, 4> Cond;
634   if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable))
635     return false;
636   if (!Optimizable)
637     return false;
638   if (!TII->optimizeSelect(MI, LocalMIs))
639     return false;
640   LLVM_DEBUG(dbgs() << "Deleting select: " << MI);
641   MI.eraseFromParent();
642   ++NumSelects;
643   return true;
644 }
645 
646 /// Check if a simpler conditional branch can be generated.
optimizeCondBranch(MachineInstr & MI)647 bool PeepholeOptimizer::optimizeCondBranch(MachineInstr &MI) {
648   return TII->optimizeCondBranch(MI);
649 }
650 
651 /// Try to find the next source that share the same register file
652 /// for the value defined by \p Reg and \p SubReg.
653 /// When true is returned, the \p RewriteMap can be used by the client to
654 /// retrieve all Def -> Use along the way up to the next source. Any found
655 /// Use that is not itself a key for another entry, is the next source to
656 /// use. During the search for the next source, multiple sources can be found
657 /// given multiple incoming sources of a PHI instruction. In this case, we
658 /// look in each PHI source for the next source; all found next sources must
659 /// share the same register file as \p Reg and \p SubReg. The client should
660 /// then be capable to rewrite all intermediate PHIs to get the next source.
661 /// \return False if no alternative sources are available. True otherwise.
findNextSource(RegSubRegPair RegSubReg,RewriteMapTy & RewriteMap)662 bool PeepholeOptimizer::findNextSource(RegSubRegPair RegSubReg,
663                                        RewriteMapTy &RewriteMap) {
664   // Do not try to find a new source for a physical register.
665   // So far we do not have any motivating example for doing that.
666   // Thus, instead of maintaining untested code, we will revisit that if
667   // that changes at some point.
668   Register Reg = RegSubReg.Reg;
669   if (Reg.isPhysical())
670     return false;
671   const TargetRegisterClass *DefRC = MRI->getRegClass(Reg);
672 
673   SmallVector<RegSubRegPair, 4> SrcToLook;
674   RegSubRegPair CurSrcPair = RegSubReg;
675   SrcToLook.push_back(CurSrcPair);
676 
677   unsigned PHICount = 0;
678   do {
679     CurSrcPair = SrcToLook.pop_back_val();
680     // As explained above, do not handle physical registers
681     if (Register::isPhysicalRegister(CurSrcPair.Reg))
682       return false;
683 
684     ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, TII);
685 
686     // Follow the chain of copies until we find a more suitable source, a phi
687     // or have to abort.
688     while (true) {
689       ValueTrackerResult Res = ValTracker.getNextSource();
690       // Abort at the end of a chain (without finding a suitable source).
691       if (!Res.isValid())
692         return false;
693 
694       // Insert the Def -> Use entry for the recently found source.
695       ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair);
696       if (CurSrcRes.isValid()) {
697         assert(CurSrcRes == Res && "ValueTrackerResult found must match");
698         // An existent entry with multiple sources is a PHI cycle we must avoid.
699         // Otherwise it's an entry with a valid next source we already found.
700         if (CurSrcRes.getNumSources() > 1) {
701           LLVM_DEBUG(dbgs()
702                      << "findNextSource: found PHI cycle, aborting...\n");
703           return false;
704         }
705         break;
706       }
707       RewriteMap.insert(std::make_pair(CurSrcPair, Res));
708 
709       // ValueTrackerResult usually have one source unless it's the result from
710       // a PHI instruction. Add the found PHI edges to be looked up further.
711       unsigned NumSrcs = Res.getNumSources();
712       if (NumSrcs > 1) {
713         PHICount++;
714         if (PHICount >= RewritePHILimit) {
715           LLVM_DEBUG(dbgs() << "findNextSource: PHI limit reached\n");
716           return false;
717         }
718 
719         for (unsigned i = 0; i < NumSrcs; ++i)
720           SrcToLook.push_back(Res.getSrc(i));
721         break;
722       }
723 
724       CurSrcPair = Res.getSrc(0);
725       // Do not extend the live-ranges of physical registers as they add
726       // constraints to the register allocator. Moreover, if we want to extend
727       // the live-range of a physical register, unlike SSA virtual register,
728       // we will have to check that they aren't redefine before the related use.
729       if (Register::isPhysicalRegister(CurSrcPair.Reg))
730         return false;
731 
732       // Keep following the chain if the value isn't any better yet.
733       const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg);
734       if (!TRI->shouldRewriteCopySrc(DefRC, RegSubReg.SubReg, SrcRC,
735                                      CurSrcPair.SubReg))
736         continue;
737 
738       // We currently cannot deal with subreg operands on PHI instructions
739       // (see insertPHI()).
740       if (PHICount > 0 && CurSrcPair.SubReg != 0)
741         continue;
742 
743       // We found a suitable source, and are done with this chain.
744       break;
745     }
746   } while (!SrcToLook.empty());
747 
748   // If we did not find a more suitable source, there is nothing to optimize.
749   return CurSrcPair.Reg != Reg;
750 }
751 
752 /// Insert a PHI instruction with incoming edges \p SrcRegs that are
753 /// guaranteed to have the same register class. This is necessary whenever we
754 /// successfully traverse a PHI instruction and find suitable sources coming
755 /// from its edges. By inserting a new PHI, we provide a rewritten PHI def
756 /// suitable to be used in a new COPY instruction.
757 static MachineInstr &
insertPHI(MachineRegisterInfo & MRI,const TargetInstrInfo & TII,const SmallVectorImpl<RegSubRegPair> & SrcRegs,MachineInstr & OrigPHI)758 insertPHI(MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
759           const SmallVectorImpl<RegSubRegPair> &SrcRegs,
760           MachineInstr &OrigPHI) {
761   assert(!SrcRegs.empty() && "No sources to create a PHI instruction?");
762 
763   const TargetRegisterClass *NewRC = MRI.getRegClass(SrcRegs[0].Reg);
764   // NewRC is only correct if no subregisters are involved. findNextSource()
765   // should have rejected those cases already.
766   assert(SrcRegs[0].SubReg == 0 && "should not have subreg operand");
767   Register NewVR = MRI.createVirtualRegister(NewRC);
768   MachineBasicBlock *MBB = OrigPHI.getParent();
769   MachineInstrBuilder MIB = BuildMI(*MBB, &OrigPHI, OrigPHI.getDebugLoc(),
770                                     TII.get(TargetOpcode::PHI), NewVR);
771 
772   unsigned MBBOpIdx = 2;
773   for (const RegSubRegPair &RegPair : SrcRegs) {
774     MIB.addReg(RegPair.Reg, 0, RegPair.SubReg);
775     MIB.addMBB(OrigPHI.getOperand(MBBOpIdx).getMBB());
776     // Since we're extended the lifetime of RegPair.Reg, clear the
777     // kill flags to account for that and make RegPair.Reg reaches
778     // the new PHI.
779     MRI.clearKillFlags(RegPair.Reg);
780     MBBOpIdx += 2;
781   }
782 
783   return *MIB;
784 }
785 
786 namespace {
787 
788 /// Interface to query instructions amenable to copy rewriting.
789 class Rewriter {
790 protected:
791   MachineInstr &CopyLike;
792   unsigned CurrentSrcIdx = 0;   ///< The index of the source being rewritten.
793 public:
Rewriter(MachineInstr & CopyLike)794   Rewriter(MachineInstr &CopyLike) : CopyLike(CopyLike) {}
~Rewriter()795   virtual ~Rewriter() {}
796 
797   /// Get the next rewritable source (SrcReg, SrcSubReg) and
798   /// the related value that it affects (DstReg, DstSubReg).
799   /// A source is considered rewritable if its register class and the
800   /// register class of the related DstReg may not be register
801   /// coalescer friendly. In other words, given a copy-like instruction
802   /// not all the arguments may be returned at rewritable source, since
803   /// some arguments are none to be register coalescer friendly.
804   ///
805   /// Each call of this method moves the current source to the next
806   /// rewritable source.
807   /// For instance, let CopyLike be the instruction to rewrite.
808   /// CopyLike has one definition and one source:
809   /// dst.dstSubIdx = CopyLike src.srcSubIdx.
810   ///
811   /// The first call will give the first rewritable source, i.e.,
812   /// the only source this instruction has:
813   /// (SrcReg, SrcSubReg) = (src, srcSubIdx).
814   /// This source defines the whole definition, i.e.,
815   /// (DstReg, DstSubReg) = (dst, dstSubIdx).
816   ///
817   /// The second and subsequent calls will return false, as there is only one
818   /// rewritable source.
819   ///
820   /// \return True if a rewritable source has been found, false otherwise.
821   /// The output arguments are valid if and only if true is returned.
822   virtual bool getNextRewritableSource(RegSubRegPair &Src,
823                                        RegSubRegPair &Dst) = 0;
824 
825   /// Rewrite the current source with \p NewReg and \p NewSubReg if possible.
826   /// \return True if the rewriting was possible, false otherwise.
827   virtual bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) = 0;
828 };
829 
830 /// Rewriter for COPY instructions.
831 class CopyRewriter : public Rewriter {
832 public:
CopyRewriter(MachineInstr & MI)833   CopyRewriter(MachineInstr &MI) : Rewriter(MI) {
834     assert(MI.isCopy() && "Expected copy instruction");
835   }
836   virtual ~CopyRewriter() = default;
837 
getNextRewritableSource(RegSubRegPair & Src,RegSubRegPair & Dst)838   bool getNextRewritableSource(RegSubRegPair &Src,
839                                RegSubRegPair &Dst) override {
840     // CurrentSrcIdx > 0 means this function has already been called.
841     if (CurrentSrcIdx > 0)
842       return false;
843     // This is the first call to getNextRewritableSource.
844     // Move the CurrentSrcIdx to remember that we made that call.
845     CurrentSrcIdx = 1;
846     // The rewritable source is the argument.
847     const MachineOperand &MOSrc = CopyLike.getOperand(1);
848     Src = RegSubRegPair(MOSrc.getReg(), MOSrc.getSubReg());
849     // What we track are the alternative sources of the definition.
850     const MachineOperand &MODef = CopyLike.getOperand(0);
851     Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
852     return true;
853   }
854 
RewriteCurrentSource(unsigned NewReg,unsigned NewSubReg)855   bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
856     if (CurrentSrcIdx != 1)
857       return false;
858     MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx);
859     MOSrc.setReg(NewReg);
860     MOSrc.setSubReg(NewSubReg);
861     return true;
862   }
863 };
864 
865 /// Helper class to rewrite uncoalescable copy like instructions
866 /// into new COPY (coalescable friendly) instructions.
867 class UncoalescableRewriter : public Rewriter {
868   unsigned NumDefs;  ///< Number of defs in the bitcast.
869 
870 public:
UncoalescableRewriter(MachineInstr & MI)871   UncoalescableRewriter(MachineInstr &MI) : Rewriter(MI) {
872     NumDefs = MI.getDesc().getNumDefs();
873   }
874 
875   /// \see See Rewriter::getNextRewritableSource()
876   /// All such sources need to be considered rewritable in order to
877   /// rewrite a uncoalescable copy-like instruction. This method return
878   /// each definition that must be checked if rewritable.
getNextRewritableSource(RegSubRegPair & Src,RegSubRegPair & Dst)879   bool getNextRewritableSource(RegSubRegPair &Src,
880                                RegSubRegPair &Dst) override {
881     // Find the next non-dead definition and continue from there.
882     if (CurrentSrcIdx == NumDefs)
883       return false;
884 
885     while (CopyLike.getOperand(CurrentSrcIdx).isDead()) {
886       ++CurrentSrcIdx;
887       if (CurrentSrcIdx == NumDefs)
888         return false;
889     }
890 
891     // What we track are the alternative sources of the definition.
892     Src = RegSubRegPair(0, 0);
893     const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx);
894     Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
895 
896     CurrentSrcIdx++;
897     return true;
898   }
899 
RewriteCurrentSource(unsigned NewReg,unsigned NewSubReg)900   bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
901     return false;
902   }
903 };
904 
905 /// Specialized rewriter for INSERT_SUBREG instruction.
906 class InsertSubregRewriter : public Rewriter {
907 public:
InsertSubregRewriter(MachineInstr & MI)908   InsertSubregRewriter(MachineInstr &MI) : Rewriter(MI) {
909     assert(MI.isInsertSubreg() && "Invalid instruction");
910   }
911 
912   /// \see See Rewriter::getNextRewritableSource()
913   /// Here CopyLike has the following form:
914   /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx.
915   /// Src1 has the same register class has dst, hence, there is
916   /// nothing to rewrite.
917   /// Src2.src2SubIdx, may not be register coalescer friendly.
918   /// Therefore, the first call to this method returns:
919   /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
920   /// (DstReg, DstSubReg) = (dst, subIdx).
921   ///
922   /// Subsequence calls will return false.
getNextRewritableSource(RegSubRegPair & Src,RegSubRegPair & Dst)923   bool getNextRewritableSource(RegSubRegPair &Src,
924                                RegSubRegPair &Dst) override {
925     // If we already get the only source we can rewrite, return false.
926     if (CurrentSrcIdx == 2)
927       return false;
928     // We are looking at v2 = INSERT_SUBREG v0, v1, sub0.
929     CurrentSrcIdx = 2;
930     const MachineOperand &MOInsertedReg = CopyLike.getOperand(2);
931     Src = RegSubRegPair(MOInsertedReg.getReg(), MOInsertedReg.getSubReg());
932     const MachineOperand &MODef = CopyLike.getOperand(0);
933 
934     // We want to track something that is compatible with the
935     // partial definition.
936     if (MODef.getSubReg())
937       // Bail if we have to compose sub-register indices.
938       return false;
939     Dst = RegSubRegPair(MODef.getReg(),
940                         (unsigned)CopyLike.getOperand(3).getImm());
941     return true;
942   }
943 
RewriteCurrentSource(unsigned NewReg,unsigned NewSubReg)944   bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
945     if (CurrentSrcIdx != 2)
946       return false;
947     // We are rewriting the inserted reg.
948     MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
949     MO.setReg(NewReg);
950     MO.setSubReg(NewSubReg);
951     return true;
952   }
953 };
954 
955 /// Specialized rewriter for EXTRACT_SUBREG instruction.
956 class ExtractSubregRewriter : public Rewriter {
957   const TargetInstrInfo &TII;
958 
959 public:
ExtractSubregRewriter(MachineInstr & MI,const TargetInstrInfo & TII)960   ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII)
961       : Rewriter(MI), TII(TII) {
962     assert(MI.isExtractSubreg() && "Invalid instruction");
963   }
964 
965   /// \see Rewriter::getNextRewritableSource()
966   /// Here CopyLike has the following form:
967   /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx.
968   /// There is only one rewritable source: Src.subIdx,
969   /// which defines dst.dstSubIdx.
getNextRewritableSource(RegSubRegPair & Src,RegSubRegPair & Dst)970   bool getNextRewritableSource(RegSubRegPair &Src,
971                                RegSubRegPair &Dst) override {
972     // If we already get the only source we can rewrite, return false.
973     if (CurrentSrcIdx == 1)
974       return false;
975     // We are looking at v1 = EXTRACT_SUBREG v0, sub0.
976     CurrentSrcIdx = 1;
977     const MachineOperand &MOExtractedReg = CopyLike.getOperand(1);
978     // If we have to compose sub-register indices, bail out.
979     if (MOExtractedReg.getSubReg())
980       return false;
981 
982     Src = RegSubRegPair(MOExtractedReg.getReg(),
983                         CopyLike.getOperand(2).getImm());
984 
985     // We want to track something that is compatible with the definition.
986     const MachineOperand &MODef = CopyLike.getOperand(0);
987     Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
988     return true;
989   }
990 
RewriteCurrentSource(unsigned NewReg,unsigned NewSubReg)991   bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
992     // The only source we can rewrite is the input register.
993     if (CurrentSrcIdx != 1)
994       return false;
995 
996     CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg);
997 
998     // If we find a source that does not require to extract something,
999     // rewrite the operation with a copy.
1000     if (!NewSubReg) {
1001       // Move the current index to an invalid position.
1002       // We do not want another call to this method to be able
1003       // to do any change.
1004       CurrentSrcIdx = -1;
1005       // Rewrite the operation as a COPY.
1006       // Get rid of the sub-register index.
1007       CopyLike.RemoveOperand(2);
1008       // Morph the operation into a COPY.
1009       CopyLike.setDesc(TII.get(TargetOpcode::COPY));
1010       return true;
1011     }
1012     CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg);
1013     return true;
1014   }
1015 };
1016 
1017 /// Specialized rewriter for REG_SEQUENCE instruction.
1018 class RegSequenceRewriter : public Rewriter {
1019 public:
RegSequenceRewriter(MachineInstr & MI)1020   RegSequenceRewriter(MachineInstr &MI) : Rewriter(MI) {
1021     assert(MI.isRegSequence() && "Invalid instruction");
1022   }
1023 
1024   /// \see Rewriter::getNextRewritableSource()
1025   /// Here CopyLike has the following form:
1026   /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2.
1027   /// Each call will return a different source, walking all the available
1028   /// source.
1029   ///
1030   /// The first call returns:
1031   /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx).
1032   /// (DstReg, DstSubReg) = (dst, subIdx1).
1033   ///
1034   /// The second call returns:
1035   /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
1036   /// (DstReg, DstSubReg) = (dst, subIdx2).
1037   ///
1038   /// And so on, until all the sources have been traversed, then
1039   /// it returns false.
getNextRewritableSource(RegSubRegPair & Src,RegSubRegPair & Dst)1040   bool getNextRewritableSource(RegSubRegPair &Src,
1041                                RegSubRegPair &Dst) override {
1042     // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc.
1043 
1044     // If this is the first call, move to the first argument.
1045     if (CurrentSrcIdx == 0) {
1046       CurrentSrcIdx = 1;
1047     } else {
1048       // Otherwise, move to the next argument and check that it is valid.
1049       CurrentSrcIdx += 2;
1050       if (CurrentSrcIdx >= CopyLike.getNumOperands())
1051         return false;
1052     }
1053     const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx);
1054     Src.Reg = MOInsertedReg.getReg();
1055     // If we have to compose sub-register indices, bail out.
1056     if ((Src.SubReg = MOInsertedReg.getSubReg()))
1057       return false;
1058 
1059     // We want to track something that is compatible with the related
1060     // partial definition.
1061     Dst.SubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm();
1062 
1063     const MachineOperand &MODef = CopyLike.getOperand(0);
1064     Dst.Reg = MODef.getReg();
1065     // If we have to compose sub-registers, bail.
1066     return MODef.getSubReg() == 0;
1067   }
1068 
RewriteCurrentSource(unsigned NewReg,unsigned NewSubReg)1069   bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
1070     // We cannot rewrite out of bound operands.
1071     // Moreover, rewritable sources are at odd positions.
1072     if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands())
1073       return false;
1074 
1075     MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
1076     MO.setReg(NewReg);
1077     MO.setSubReg(NewSubReg);
1078     return true;
1079   }
1080 };
1081 
1082 } // end anonymous namespace
1083 
1084 /// Get the appropriated Rewriter for \p MI.
1085 /// \return A pointer to a dynamically allocated Rewriter or nullptr if no
1086 /// rewriter works for \p MI.
getCopyRewriter(MachineInstr & MI,const TargetInstrInfo & TII)1087 static Rewriter *getCopyRewriter(MachineInstr &MI, const TargetInstrInfo &TII) {
1088   // Handle uncoalescable copy-like instructions.
1089   if (MI.isBitcast() || MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
1090       MI.isExtractSubregLike())
1091     return new UncoalescableRewriter(MI);
1092 
1093   switch (MI.getOpcode()) {
1094   default:
1095     return nullptr;
1096   case TargetOpcode::COPY:
1097     return new CopyRewriter(MI);
1098   case TargetOpcode::INSERT_SUBREG:
1099     return new InsertSubregRewriter(MI);
1100   case TargetOpcode::EXTRACT_SUBREG:
1101     return new ExtractSubregRewriter(MI, TII);
1102   case TargetOpcode::REG_SEQUENCE:
1103     return new RegSequenceRewriter(MI);
1104   }
1105 }
1106 
1107 /// Given a \p Def.Reg and Def.SubReg  pair, use \p RewriteMap to find
1108 /// the new source to use for rewrite. If \p HandleMultipleSources is true and
1109 /// multiple sources for a given \p Def are found along the way, we found a
1110 /// PHI instructions that needs to be rewritten.
1111 /// TODO: HandleMultipleSources should be removed once we test PHI handling
1112 /// with coalescable copies.
1113 static RegSubRegPair
getNewSource(MachineRegisterInfo * MRI,const TargetInstrInfo * TII,RegSubRegPair Def,const PeepholeOptimizer::RewriteMapTy & RewriteMap,bool HandleMultipleSources=true)1114 getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
1115              RegSubRegPair Def,
1116              const PeepholeOptimizer::RewriteMapTy &RewriteMap,
1117              bool HandleMultipleSources = true) {
1118   RegSubRegPair LookupSrc(Def.Reg, Def.SubReg);
1119   while (true) {
1120     ValueTrackerResult Res = RewriteMap.lookup(LookupSrc);
1121     // If there are no entries on the map, LookupSrc is the new source.
1122     if (!Res.isValid())
1123       return LookupSrc;
1124 
1125     // There's only one source for this definition, keep searching...
1126     unsigned NumSrcs = Res.getNumSources();
1127     if (NumSrcs == 1) {
1128       LookupSrc.Reg = Res.getSrcReg(0);
1129       LookupSrc.SubReg = Res.getSrcSubReg(0);
1130       continue;
1131     }
1132 
1133     // TODO: Remove once multiple srcs w/ coalescable copies are supported.
1134     if (!HandleMultipleSources)
1135       break;
1136 
1137     // Multiple sources, recurse into each source to find a new source
1138     // for it. Then, rewrite the PHI accordingly to its new edges.
1139     SmallVector<RegSubRegPair, 4> NewPHISrcs;
1140     for (unsigned i = 0; i < NumSrcs; ++i) {
1141       RegSubRegPair PHISrc(Res.getSrcReg(i), Res.getSrcSubReg(i));
1142       NewPHISrcs.push_back(
1143           getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources));
1144     }
1145 
1146     // Build the new PHI node and return its def register as the new source.
1147     MachineInstr &OrigPHI = const_cast<MachineInstr &>(*Res.getInst());
1148     MachineInstr &NewPHI = insertPHI(*MRI, *TII, NewPHISrcs, OrigPHI);
1149     LLVM_DEBUG(dbgs() << "-- getNewSource\n");
1150     LLVM_DEBUG(dbgs() << "   Replacing: " << OrigPHI);
1151     LLVM_DEBUG(dbgs() << "        With: " << NewPHI);
1152     const MachineOperand &MODef = NewPHI.getOperand(0);
1153     return RegSubRegPair(MODef.getReg(), MODef.getSubReg());
1154   }
1155 
1156   return RegSubRegPair(0, 0);
1157 }
1158 
1159 /// Optimize generic copy instructions to avoid cross register bank copy.
1160 /// The optimization looks through a chain of copies and tries to find a source
1161 /// that has a compatible register class.
1162 /// Two register classes are considered to be compatible if they share the same
1163 /// register bank.
1164 /// New copies issued by this optimization are register allocator
1165 /// friendly. This optimization does not remove any copy as it may
1166 /// overconstrain the register allocator, but replaces some operands
1167 /// when possible.
1168 /// \pre isCoalescableCopy(*MI) is true.
1169 /// \return True, when \p MI has been rewritten. False otherwise.
optimizeCoalescableCopy(MachineInstr & MI)1170 bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr &MI) {
1171   assert(isCoalescableCopy(MI) && "Invalid argument");
1172   assert(MI.getDesc().getNumDefs() == 1 &&
1173          "Coalescer can understand multiple defs?!");
1174   const MachineOperand &MODef = MI.getOperand(0);
1175   // Do not rewrite physical definitions.
1176   if (Register::isPhysicalRegister(MODef.getReg()))
1177     return false;
1178 
1179   bool Changed = false;
1180   // Get the right rewriter for the current copy.
1181   std::unique_ptr<Rewriter> CpyRewriter(getCopyRewriter(MI, *TII));
1182   // If none exists, bail out.
1183   if (!CpyRewriter)
1184     return false;
1185   // Rewrite each rewritable source.
1186   RegSubRegPair Src;
1187   RegSubRegPair TrackPair;
1188   while (CpyRewriter->getNextRewritableSource(Src, TrackPair)) {
1189     // Keep track of PHI nodes and its incoming edges when looking for sources.
1190     RewriteMapTy RewriteMap;
1191     // Try to find a more suitable source. If we failed to do so, or get the
1192     // actual source, move to the next source.
1193     if (!findNextSource(TrackPair, RewriteMap))
1194       continue;
1195 
1196     // Get the new source to rewrite. TODO: Only enable handling of multiple
1197     // sources (PHIs) once we have a motivating example and testcases for it.
1198     RegSubRegPair NewSrc = getNewSource(MRI, TII, TrackPair, RewriteMap,
1199                                         /*HandleMultipleSources=*/false);
1200     if (Src.Reg == NewSrc.Reg || NewSrc.Reg == 0)
1201       continue;
1202 
1203     // Rewrite source.
1204     if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) {
1205       // We may have extended the live-range of NewSrc, account for that.
1206       MRI->clearKillFlags(NewSrc.Reg);
1207       Changed = true;
1208     }
1209   }
1210   // TODO: We could have a clean-up method to tidy the instruction.
1211   // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0
1212   // => v0 = COPY v1
1213   // Currently we haven't seen motivating example for that and we
1214   // want to avoid untested code.
1215   NumRewrittenCopies += Changed;
1216   return Changed;
1217 }
1218 
1219 /// Rewrite the source found through \p Def, by using the \p RewriteMap
1220 /// and create a new COPY instruction. More info about RewriteMap in
1221 /// PeepholeOptimizer::findNextSource. Right now this is only used to handle
1222 /// Uncoalescable copies, since they are copy like instructions that aren't
1223 /// recognized by the register allocator.
1224 MachineInstr &
rewriteSource(MachineInstr & CopyLike,RegSubRegPair Def,RewriteMapTy & RewriteMap)1225 PeepholeOptimizer::rewriteSource(MachineInstr &CopyLike,
1226                                  RegSubRegPair Def, RewriteMapTy &RewriteMap) {
1227   assert(!Register::isPhysicalRegister(Def.Reg) &&
1228          "We do not rewrite physical registers");
1229 
1230   // Find the new source to use in the COPY rewrite.
1231   RegSubRegPair NewSrc = getNewSource(MRI, TII, Def, RewriteMap);
1232 
1233   // Insert the COPY.
1234   const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg);
1235   Register NewVReg = MRI->createVirtualRegister(DefRC);
1236 
1237   MachineInstr *NewCopy =
1238       BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(),
1239               TII->get(TargetOpcode::COPY), NewVReg)
1240           .addReg(NewSrc.Reg, 0, NewSrc.SubReg);
1241 
1242   if (Def.SubReg) {
1243     NewCopy->getOperand(0).setSubReg(Def.SubReg);
1244     NewCopy->getOperand(0).setIsUndef();
1245   }
1246 
1247   LLVM_DEBUG(dbgs() << "-- RewriteSource\n");
1248   LLVM_DEBUG(dbgs() << "   Replacing: " << CopyLike);
1249   LLVM_DEBUG(dbgs() << "        With: " << *NewCopy);
1250   MRI->replaceRegWith(Def.Reg, NewVReg);
1251   MRI->clearKillFlags(NewVReg);
1252 
1253   // We extended the lifetime of NewSrc.Reg, clear the kill flags to
1254   // account for that.
1255   MRI->clearKillFlags(NewSrc.Reg);
1256 
1257   return *NewCopy;
1258 }
1259 
1260 /// Optimize copy-like instructions to create
1261 /// register coalescer friendly instruction.
1262 /// The optimization tries to kill-off the \p MI by looking
1263 /// through a chain of copies to find a source that has a compatible
1264 /// register class.
1265 /// If such a source is found, it replace \p MI by a generic COPY
1266 /// operation.
1267 /// \pre isUncoalescableCopy(*MI) is true.
1268 /// \return True, when \p MI has been optimized. In that case, \p MI has
1269 /// been removed from its parent.
1270 /// All COPY instructions created, are inserted in \p LocalMIs.
optimizeUncoalescableCopy(MachineInstr & MI,SmallPtrSetImpl<MachineInstr * > & LocalMIs)1271 bool PeepholeOptimizer::optimizeUncoalescableCopy(
1272     MachineInstr &MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
1273   assert(isUncoalescableCopy(MI) && "Invalid argument");
1274   UncoalescableRewriter CpyRewriter(MI);
1275 
1276   // Rewrite each rewritable source by generating new COPYs. This works
1277   // differently from optimizeCoalescableCopy since it first makes sure that all
1278   // definitions can be rewritten.
1279   RewriteMapTy RewriteMap;
1280   RegSubRegPair Src;
1281   RegSubRegPair Def;
1282   SmallVector<RegSubRegPair, 4> RewritePairs;
1283   while (CpyRewriter.getNextRewritableSource(Src, Def)) {
1284     // If a physical register is here, this is probably for a good reason.
1285     // Do not rewrite that.
1286     if (Register::isPhysicalRegister(Def.Reg))
1287       return false;
1288 
1289     // If we do not know how to rewrite this definition, there is no point
1290     // in trying to kill this instruction.
1291     if (!findNextSource(Def, RewriteMap))
1292       return false;
1293 
1294     RewritePairs.push_back(Def);
1295   }
1296 
1297   // The change is possible for all defs, do it.
1298   for (const RegSubRegPair &Def : RewritePairs) {
1299     // Rewrite the "copy" in a way the register coalescer understands.
1300     MachineInstr &NewCopy = rewriteSource(MI, Def, RewriteMap);
1301     LocalMIs.insert(&NewCopy);
1302   }
1303 
1304   // MI is now dead.
1305   LLVM_DEBUG(dbgs() << "Deleting uncoalescable copy: " << MI);
1306   MI.eraseFromParent();
1307   ++NumUncoalescableCopies;
1308   return true;
1309 }
1310 
1311 /// Check whether MI is a candidate for folding into a later instruction.
1312 /// We only fold loads to virtual registers and the virtual register defined
1313 /// has a single user.
isLoadFoldable(MachineInstr & MI,SmallSet<unsigned,16> & FoldAsLoadDefCandidates)1314 bool PeepholeOptimizer::isLoadFoldable(
1315     MachineInstr &MI, SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) {
1316   if (!MI.canFoldAsLoad() || !MI.mayLoad())
1317     return false;
1318   const MCInstrDesc &MCID = MI.getDesc();
1319   if (MCID.getNumDefs() != 1)
1320     return false;
1321 
1322   Register Reg = MI.getOperand(0).getReg();
1323   // To reduce compilation time, we check MRI->hasOneNonDBGUser when inserting
1324   // loads. It should be checked when processing uses of the load, since
1325   // uses can be removed during peephole.
1326   if (!MI.getOperand(0).getSubReg() && Register::isVirtualRegister(Reg) &&
1327       MRI->hasOneNonDBGUser(Reg)) {
1328     FoldAsLoadDefCandidates.insert(Reg);
1329     return true;
1330   }
1331   return false;
1332 }
1333 
isMoveImmediate(MachineInstr & MI,SmallSet<unsigned,4> & ImmDefRegs,DenseMap<unsigned,MachineInstr * > & ImmDefMIs)1334 bool PeepholeOptimizer::isMoveImmediate(
1335     MachineInstr &MI, SmallSet<unsigned, 4> &ImmDefRegs,
1336     DenseMap<unsigned, MachineInstr *> &ImmDefMIs) {
1337   const MCInstrDesc &MCID = MI.getDesc();
1338   if (!MI.isMoveImmediate())
1339     return false;
1340   if (MCID.getNumDefs() != 1)
1341     return false;
1342   Register Reg = MI.getOperand(0).getReg();
1343   if (Register::isVirtualRegister(Reg)) {
1344     ImmDefMIs.insert(std::make_pair(Reg, &MI));
1345     ImmDefRegs.insert(Reg);
1346     return true;
1347   }
1348 
1349   return false;
1350 }
1351 
1352 /// Try folding register operands that are defined by move immediate
1353 /// instructions, i.e. a trivial constant folding optimization, if
1354 /// and only if the def and use are in the same BB.
foldImmediate(MachineInstr & MI,SmallSet<unsigned,4> & ImmDefRegs,DenseMap<unsigned,MachineInstr * > & ImmDefMIs)1355 bool PeepholeOptimizer::foldImmediate(MachineInstr &MI,
1356     SmallSet<unsigned, 4> &ImmDefRegs,
1357     DenseMap<unsigned, MachineInstr *> &ImmDefMIs) {
1358   for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1359     MachineOperand &MO = MI.getOperand(i);
1360     if (!MO.isReg() || MO.isDef())
1361       continue;
1362     // Ignore dead implicit defs.
1363     if (MO.isImplicit() && MO.isDead())
1364       continue;
1365     Register Reg = MO.getReg();
1366     if (!Register::isVirtualRegister(Reg))
1367       continue;
1368     if (ImmDefRegs.count(Reg) == 0)
1369       continue;
1370     DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg);
1371     assert(II != ImmDefMIs.end() && "couldn't find immediate definition");
1372     if (TII->FoldImmediate(MI, *II->second, Reg, MRI)) {
1373       ++NumImmFold;
1374       return true;
1375     }
1376   }
1377   return false;
1378 }
1379 
1380 // FIXME: This is very simple and misses some cases which should be handled when
1381 // motivating examples are found.
1382 //
1383 // The copy rewriting logic should look at uses as well as defs and be able to
1384 // eliminate copies across blocks.
1385 //
1386 // Later copies that are subregister extracts will also not be eliminated since
1387 // only the first copy is considered.
1388 //
1389 // e.g.
1390 // %1 = COPY %0
1391 // %2 = COPY %0:sub1
1392 //
1393 // Should replace %2 uses with %1:sub1
foldRedundantCopy(MachineInstr & MI,SmallSet<unsigned,4> & CopySrcRegs,DenseMap<unsigned,MachineInstr * > & CopyMIs)1394 bool PeepholeOptimizer::foldRedundantCopy(MachineInstr &MI,
1395     SmallSet<unsigned, 4> &CopySrcRegs,
1396     DenseMap<unsigned, MachineInstr *> &CopyMIs) {
1397   assert(MI.isCopy() && "expected a COPY machine instruction");
1398 
1399   Register SrcReg = MI.getOperand(1).getReg();
1400   if (!Register::isVirtualRegister(SrcReg))
1401     return false;
1402 
1403   Register DstReg = MI.getOperand(0).getReg();
1404   if (!Register::isVirtualRegister(DstReg))
1405     return false;
1406 
1407   if (CopySrcRegs.insert(SrcReg).second) {
1408     // First copy of this reg seen.
1409     CopyMIs.insert(std::make_pair(SrcReg, &MI));
1410     return false;
1411   }
1412 
1413   MachineInstr *PrevCopy = CopyMIs.find(SrcReg)->second;
1414 
1415   unsigned SrcSubReg = MI.getOperand(1).getSubReg();
1416   unsigned PrevSrcSubReg = PrevCopy->getOperand(1).getSubReg();
1417 
1418   // Can't replace different subregister extracts.
1419   if (SrcSubReg != PrevSrcSubReg)
1420     return false;
1421 
1422   Register PrevDstReg = PrevCopy->getOperand(0).getReg();
1423 
1424   // Only replace if the copy register class is the same.
1425   //
1426   // TODO: If we have multiple copies to different register classes, we may want
1427   // to track multiple copies of the same source register.
1428   if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg))
1429     return false;
1430 
1431   MRI->replaceRegWith(DstReg, PrevDstReg);
1432 
1433   // Lifetime of the previous copy has been extended.
1434   MRI->clearKillFlags(PrevDstReg);
1435   return true;
1436 }
1437 
isNAPhysCopy(unsigned Reg)1438 bool PeepholeOptimizer::isNAPhysCopy(unsigned Reg) {
1439   return Register::isPhysicalRegister(Reg) && !MRI->isAllocatable(Reg);
1440 }
1441 
foldRedundantNAPhysCopy(MachineInstr & MI,DenseMap<unsigned,MachineInstr * > & NAPhysToVirtMIs)1442 bool PeepholeOptimizer::foldRedundantNAPhysCopy(
1443     MachineInstr &MI, DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs) {
1444   assert(MI.isCopy() && "expected a COPY machine instruction");
1445 
1446   if (DisableNAPhysCopyOpt)
1447     return false;
1448 
1449   Register DstReg = MI.getOperand(0).getReg();
1450   Register SrcReg = MI.getOperand(1).getReg();
1451   if (isNAPhysCopy(SrcReg) && Register::isVirtualRegister(DstReg)) {
1452     // %vreg = COPY %physreg
1453     // Avoid using a datastructure which can track multiple live non-allocatable
1454     // phys->virt copies since LLVM doesn't seem to do this.
1455     NAPhysToVirtMIs.insert({SrcReg, &MI});
1456     return false;
1457   }
1458 
1459   if (!(Register::isVirtualRegister(SrcReg) && isNAPhysCopy(DstReg)))
1460     return false;
1461 
1462   // %physreg = COPY %vreg
1463   auto PrevCopy = NAPhysToVirtMIs.find(DstReg);
1464   if (PrevCopy == NAPhysToVirtMIs.end()) {
1465     // We can't remove the copy: there was an intervening clobber of the
1466     // non-allocatable physical register after the copy to virtual.
1467     LLVM_DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing "
1468                       << MI);
1469     return false;
1470   }
1471 
1472   Register PrevDstReg = PrevCopy->second->getOperand(0).getReg();
1473   if (PrevDstReg == SrcReg) {
1474     // Remove the virt->phys copy: we saw the virtual register definition, and
1475     // the non-allocatable physical register's state hasn't changed since then.
1476     LLVM_DEBUG(dbgs() << "NAPhysCopy: erasing " << MI);
1477     ++NumNAPhysCopies;
1478     return true;
1479   }
1480 
1481   // Potential missed optimization opportunity: we saw a different virtual
1482   // register get a copy of the non-allocatable physical register, and we only
1483   // track one such copy. Avoid getting confused by this new non-allocatable
1484   // physical register definition, and remove it from the tracked copies.
1485   LLVM_DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << MI);
1486   NAPhysToVirtMIs.erase(PrevCopy);
1487   return false;
1488 }
1489 
1490 /// \bried Returns true if \p MO is a virtual register operand.
isVirtualRegisterOperand(MachineOperand & MO)1491 static bool isVirtualRegisterOperand(MachineOperand &MO) {
1492   if (!MO.isReg())
1493     return false;
1494   return Register::isVirtualRegister(MO.getReg());
1495 }
1496 
findTargetRecurrence(unsigned Reg,const SmallSet<unsigned,2> & TargetRegs,RecurrenceCycle & RC)1497 bool PeepholeOptimizer::findTargetRecurrence(
1498     unsigned Reg, const SmallSet<unsigned, 2> &TargetRegs,
1499     RecurrenceCycle &RC) {
1500   // Recurrence found if Reg is in TargetRegs.
1501   if (TargetRegs.count(Reg))
1502     return true;
1503 
1504   // TODO: Curerntly, we only allow the last instruction of the recurrence
1505   // cycle (the instruction that feeds the PHI instruction) to have more than
1506   // one uses to guarantee that commuting operands does not tie registers
1507   // with overlapping live range. Once we have actual live range info of
1508   // each register, this constraint can be relaxed.
1509   if (!MRI->hasOneNonDBGUse(Reg))
1510     return false;
1511 
1512   // Give up if the reccurrence chain length is longer than the limit.
1513   if (RC.size() >= MaxRecurrenceChain)
1514     return false;
1515 
1516   MachineInstr &MI = *(MRI->use_instr_nodbg_begin(Reg));
1517   unsigned Idx = MI.findRegisterUseOperandIdx(Reg);
1518 
1519   // Only interested in recurrences whose instructions have only one def, which
1520   // is a virtual register.
1521   if (MI.getDesc().getNumDefs() != 1)
1522     return false;
1523 
1524   MachineOperand &DefOp = MI.getOperand(0);
1525   if (!isVirtualRegisterOperand(DefOp))
1526     return false;
1527 
1528   // Check if def operand of MI is tied to any use operand. We are only
1529   // interested in the case that all the instructions in the recurrence chain
1530   // have there def operand tied with one of the use operand.
1531   unsigned TiedUseIdx;
1532   if (!MI.isRegTiedToUseOperand(0, &TiedUseIdx))
1533     return false;
1534 
1535   if (Idx == TiedUseIdx) {
1536     RC.push_back(RecurrenceInstr(&MI));
1537     return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1538   } else {
1539     // If Idx is not TiedUseIdx, check if Idx is commutable with TiedUseIdx.
1540     unsigned CommIdx = TargetInstrInfo::CommuteAnyOperandIndex;
1541     if (TII->findCommutedOpIndices(MI, Idx, CommIdx) && CommIdx == TiedUseIdx) {
1542       RC.push_back(RecurrenceInstr(&MI, Idx, CommIdx));
1543       return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1544     }
1545   }
1546 
1547   return false;
1548 }
1549 
1550 /// Phi instructions will eventually be lowered to copy instructions.
1551 /// If phi is in a loop header, a recurrence may formulated around the source
1552 /// and destination of the phi. For such case commuting operands of the
1553 /// instructions in the recurrence may enable coalescing of the copy instruction
1554 /// generated from the phi. For example, if there is a recurrence of
1555 ///
1556 /// LoopHeader:
1557 ///   %1 = phi(%0, %100)
1558 /// LoopLatch:
1559 ///   %0<def, tied1> = ADD %2<def, tied0>, %1
1560 ///
1561 /// , the fact that %0 and %2 are in the same tied operands set makes
1562 /// the coalescing of copy instruction generated from the phi in
1563 /// LoopHeader(i.e. %1 = COPY %0) impossible, because %1 and
1564 /// %2 have overlapping live range. This introduces additional move
1565 /// instruction to the final assembly. However, if we commute %2 and
1566 /// %1 of ADD instruction, the redundant move instruction can be
1567 /// avoided.
optimizeRecurrence(MachineInstr & PHI)1568 bool PeepholeOptimizer::optimizeRecurrence(MachineInstr &PHI) {
1569   SmallSet<unsigned, 2> TargetRegs;
1570   for (unsigned Idx = 1; Idx < PHI.getNumOperands(); Idx += 2) {
1571     MachineOperand &MO = PHI.getOperand(Idx);
1572     assert(isVirtualRegisterOperand(MO) && "Invalid PHI instruction");
1573     TargetRegs.insert(MO.getReg());
1574   }
1575 
1576   bool Changed = false;
1577   RecurrenceCycle RC;
1578   if (findTargetRecurrence(PHI.getOperand(0).getReg(), TargetRegs, RC)) {
1579     // Commutes operands of instructions in RC if necessary so that the copy to
1580     // be generated from PHI can be coalesced.
1581     LLVM_DEBUG(dbgs() << "Optimize recurrence chain from " << PHI);
1582     for (auto &RI : RC) {
1583       LLVM_DEBUG(dbgs() << "\tInst: " << *(RI.getMI()));
1584       auto CP = RI.getCommutePair();
1585       if (CP) {
1586         Changed = true;
1587         TII->commuteInstruction(*(RI.getMI()), false, (*CP).first,
1588                                 (*CP).second);
1589         LLVM_DEBUG(dbgs() << "\t\tCommuted: " << *(RI.getMI()));
1590       }
1591     }
1592   }
1593 
1594   return Changed;
1595 }
1596 
runOnMachineFunction(MachineFunction & MF)1597 bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
1598   if (skipFunction(MF.getFunction()))
1599     return false;
1600 
1601   LLVM_DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n");
1602   LLVM_DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n');
1603 
1604   if (DisablePeephole)
1605     return false;
1606 
1607   TII = MF.getSubtarget().getInstrInfo();
1608   TRI = MF.getSubtarget().getRegisterInfo();
1609   MRI = &MF.getRegInfo();
1610   DT  = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr;
1611   MLI = &getAnalysis<MachineLoopInfo>();
1612 
1613   bool Changed = false;
1614 
1615   for (MachineBasicBlock &MBB : MF) {
1616     bool SeenMoveImm = false;
1617 
1618     // During this forward scan, at some point it needs to answer the question
1619     // "given a pointer to an MI in the current BB, is it located before or
1620     // after the current instruction".
1621     // To perform this, the following set keeps track of the MIs already seen
1622     // during the scan, if a MI is not in the set, it is assumed to be located
1623     // after. Newly created MIs have to be inserted in the set as well.
1624     SmallPtrSet<MachineInstr*, 16> LocalMIs;
1625     SmallSet<unsigned, 4> ImmDefRegs;
1626     DenseMap<unsigned, MachineInstr*> ImmDefMIs;
1627     SmallSet<unsigned, 16> FoldAsLoadDefCandidates;
1628 
1629     // Track when a non-allocatable physical register is copied to a virtual
1630     // register so that useless moves can be removed.
1631     //
1632     // %physreg is the map index; MI is the last valid `%vreg = COPY %physreg`
1633     // without any intervening re-definition of %physreg.
1634     DenseMap<unsigned, MachineInstr *> NAPhysToVirtMIs;
1635 
1636     // Set of virtual registers that are copied from.
1637     SmallSet<unsigned, 4> CopySrcRegs;
1638     DenseMap<unsigned, MachineInstr *> CopySrcMIs;
1639 
1640     bool IsLoopHeader = MLI->isLoopHeader(&MBB);
1641 
1642     for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end();
1643          MII != MIE; ) {
1644       MachineInstr *MI = &*MII;
1645       // We may be erasing MI below, increment MII now.
1646       ++MII;
1647       LocalMIs.insert(MI);
1648 
1649       // Skip debug instructions. They should not affect this peephole optimization.
1650       if (MI->isDebugInstr())
1651           continue;
1652 
1653       if (MI->isPosition())
1654         continue;
1655 
1656       if (IsLoopHeader && MI->isPHI()) {
1657         if (optimizeRecurrence(*MI)) {
1658           Changed = true;
1659           continue;
1660         }
1661       }
1662 
1663       if (!MI->isCopy()) {
1664         for (const MachineOperand &MO : MI->operands()) {
1665           // Visit all operands: definitions can be implicit or explicit.
1666           if (MO.isReg()) {
1667             Register Reg = MO.getReg();
1668             if (MO.isDef() && isNAPhysCopy(Reg)) {
1669               const auto &Def = NAPhysToVirtMIs.find(Reg);
1670               if (Def != NAPhysToVirtMIs.end()) {
1671                 // A new definition of the non-allocatable physical register
1672                 // invalidates previous copies.
1673                 LLVM_DEBUG(dbgs()
1674                            << "NAPhysCopy: invalidating because of " << *MI);
1675                 NAPhysToVirtMIs.erase(Def);
1676               }
1677             }
1678           } else if (MO.isRegMask()) {
1679             const uint32_t *RegMask = MO.getRegMask();
1680             for (auto &RegMI : NAPhysToVirtMIs) {
1681               unsigned Def = RegMI.first;
1682               if (MachineOperand::clobbersPhysReg(RegMask, Def)) {
1683                 LLVM_DEBUG(dbgs()
1684                            << "NAPhysCopy: invalidating because of " << *MI);
1685                 NAPhysToVirtMIs.erase(Def);
1686               }
1687             }
1688           }
1689         }
1690       }
1691 
1692       if (MI->isImplicitDef() || MI->isKill())
1693         continue;
1694 
1695       if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) {
1696         // Blow away all non-allocatable physical registers knowledge since we
1697         // don't know what's correct anymore.
1698         //
1699         // FIXME: handle explicit asm clobbers.
1700         LLVM_DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to "
1701                           << *MI);
1702         NAPhysToVirtMIs.clear();
1703       }
1704 
1705       if ((isUncoalescableCopy(*MI) &&
1706            optimizeUncoalescableCopy(*MI, LocalMIs)) ||
1707           (MI->isCompare() && optimizeCmpInstr(*MI)) ||
1708           (MI->isSelect() && optimizeSelect(*MI, LocalMIs))) {
1709         // MI is deleted.
1710         LocalMIs.erase(MI);
1711         Changed = true;
1712         continue;
1713       }
1714 
1715       if (MI->isConditionalBranch() && optimizeCondBranch(*MI)) {
1716         Changed = true;
1717         continue;
1718       }
1719 
1720       if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(*MI)) {
1721         // MI is just rewritten.
1722         Changed = true;
1723         continue;
1724       }
1725 
1726       if (MI->isCopy() &&
1727           (foldRedundantCopy(*MI, CopySrcRegs, CopySrcMIs) ||
1728            foldRedundantNAPhysCopy(*MI, NAPhysToVirtMIs))) {
1729         LocalMIs.erase(MI);
1730         LLVM_DEBUG(dbgs() << "Deleting redundant copy: " << *MI << "\n");
1731         MI->eraseFromParent();
1732         Changed = true;
1733         continue;
1734       }
1735 
1736       if (isMoveImmediate(*MI, ImmDefRegs, ImmDefMIs)) {
1737         SeenMoveImm = true;
1738       } else {
1739         Changed |= optimizeExtInstr(*MI, MBB, LocalMIs);
1740         // optimizeExtInstr might have created new instructions after MI
1741         // and before the already incremented MII. Adjust MII so that the
1742         // next iteration sees the new instructions.
1743         MII = MI;
1744         ++MII;
1745         if (SeenMoveImm)
1746           Changed |= foldImmediate(*MI, ImmDefRegs, ImmDefMIs);
1747       }
1748 
1749       // Check whether MI is a load candidate for folding into a later
1750       // instruction. If MI is not a candidate, check whether we can fold an
1751       // earlier load into MI.
1752       if (!isLoadFoldable(*MI, FoldAsLoadDefCandidates) &&
1753           !FoldAsLoadDefCandidates.empty()) {
1754 
1755         // We visit each operand even after successfully folding a previous
1756         // one.  This allows us to fold multiple loads into a single
1757         // instruction.  We do assume that optimizeLoadInstr doesn't insert
1758         // foldable uses earlier in the argument list.  Since we don't restart
1759         // iteration, we'd miss such cases.
1760         const MCInstrDesc &MIDesc = MI->getDesc();
1761         for (unsigned i = MIDesc.getNumDefs(); i != MI->getNumOperands();
1762              ++i) {
1763           const MachineOperand &MOp = MI->getOperand(i);
1764           if (!MOp.isReg())
1765             continue;
1766           unsigned FoldAsLoadDefReg = MOp.getReg();
1767           if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) {
1768             // We need to fold load after optimizeCmpInstr, since
1769             // optimizeCmpInstr can enable folding by converting SUB to CMP.
1770             // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and
1771             // we need it for markUsesInDebugValueAsUndef().
1772             unsigned FoldedReg = FoldAsLoadDefReg;
1773             MachineInstr *DefMI = nullptr;
1774             if (MachineInstr *FoldMI =
1775                     TII->optimizeLoadInstr(*MI, MRI, FoldAsLoadDefReg, DefMI)) {
1776               // Update LocalMIs since we replaced MI with FoldMI and deleted
1777               // DefMI.
1778               LLVM_DEBUG(dbgs() << "Replacing: " << *MI);
1779               LLVM_DEBUG(dbgs() << "     With: " << *FoldMI);
1780               LocalMIs.erase(MI);
1781               LocalMIs.erase(DefMI);
1782               LocalMIs.insert(FoldMI);
1783               // Update the call site info.
1784               if (MI->shouldUpdateCallSiteInfo())
1785                 MI->getMF()->moveCallSiteInfo(MI, FoldMI);
1786               MI->eraseFromParent();
1787               DefMI->eraseFromParent();
1788               MRI->markUsesInDebugValueAsUndef(FoldedReg);
1789               FoldAsLoadDefCandidates.erase(FoldedReg);
1790               ++NumLoadFold;
1791 
1792               // MI is replaced with FoldMI so we can continue trying to fold
1793               Changed = true;
1794               MI = FoldMI;
1795             }
1796           }
1797         }
1798       }
1799 
1800       // If we run into an instruction we can't fold across, discard
1801       // the load candidates.  Note: We might be able to fold *into* this
1802       // instruction, so this needs to be after the folding logic.
1803       if (MI->isLoadFoldBarrier()) {
1804         LLVM_DEBUG(dbgs() << "Encountered load fold barrier on " << *MI);
1805         FoldAsLoadDefCandidates.clear();
1806       }
1807     }
1808   }
1809 
1810   return Changed;
1811 }
1812 
getNextSourceFromCopy()1813 ValueTrackerResult ValueTracker::getNextSourceFromCopy() {
1814   assert(Def->isCopy() && "Invalid definition");
1815   // Copy instruction are supposed to be: Def = Src.
1816   // If someone breaks this assumption, bad things will happen everywhere.
1817   // There may be implicit uses preventing the copy to be moved across
1818   // some target specific register definitions
1819   assert(Def->getNumOperands() - Def->getNumImplicitOperands() == 2 &&
1820          "Invalid number of operands");
1821   assert(!Def->hasImplicitDef() && "Only implicit uses are allowed");
1822 
1823   if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
1824     // If we look for a different subreg, it means we want a subreg of src.
1825     // Bails as we do not support composing subregs yet.
1826     return ValueTrackerResult();
1827   // Otherwise, we want the whole source.
1828   const MachineOperand &Src = Def->getOperand(1);
1829   if (Src.isUndef())
1830     return ValueTrackerResult();
1831   return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1832 }
1833 
getNextSourceFromBitcast()1834 ValueTrackerResult ValueTracker::getNextSourceFromBitcast() {
1835   assert(Def->isBitcast() && "Invalid definition");
1836 
1837   // Bail if there are effects that a plain copy will not expose.
1838   if (Def->mayRaiseFPException() || Def->hasUnmodeledSideEffects())
1839     return ValueTrackerResult();
1840 
1841   // Bitcasts with more than one def are not supported.
1842   if (Def->getDesc().getNumDefs() != 1)
1843     return ValueTrackerResult();
1844   const MachineOperand DefOp = Def->getOperand(DefIdx);
1845   if (DefOp.getSubReg() != DefSubReg)
1846     // If we look for a different subreg, it means we want a subreg of the src.
1847     // Bails as we do not support composing subregs yet.
1848     return ValueTrackerResult();
1849 
1850   unsigned SrcIdx = Def->getNumOperands();
1851   for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx;
1852        ++OpIdx) {
1853     const MachineOperand &MO = Def->getOperand(OpIdx);
1854     if (!MO.isReg() || !MO.getReg())
1855       continue;
1856     // Ignore dead implicit defs.
1857     if (MO.isImplicit() && MO.isDead())
1858       continue;
1859     assert(!MO.isDef() && "We should have skipped all the definitions by now");
1860     if (SrcIdx != EndOpIdx)
1861       // Multiple sources?
1862       return ValueTrackerResult();
1863     SrcIdx = OpIdx;
1864   }
1865 
1866   // In some rare case, Def has no input, SrcIdx is out of bound,
1867   // getOperand(SrcIdx) will fail below.
1868   if (SrcIdx >= Def->getNumOperands())
1869     return ValueTrackerResult();
1870 
1871   // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY
1872   // will break the assumed guarantees for the upper bits.
1873   for (const MachineInstr &UseMI : MRI.use_nodbg_instructions(DefOp.getReg())) {
1874     if (UseMI.isSubregToReg())
1875       return ValueTrackerResult();
1876   }
1877 
1878   const MachineOperand &Src = Def->getOperand(SrcIdx);
1879   if (Src.isUndef())
1880     return ValueTrackerResult();
1881   return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1882 }
1883 
getNextSourceFromRegSequence()1884 ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() {
1885   assert((Def->isRegSequence() || Def->isRegSequenceLike()) &&
1886          "Invalid definition");
1887 
1888   if (Def->getOperand(DefIdx).getSubReg())
1889     // If we are composing subregs, bail out.
1890     // The case we are checking is Def.<subreg> = REG_SEQUENCE.
1891     // This should almost never happen as the SSA property is tracked at
1892     // the register level (as opposed to the subreg level).
1893     // I.e.,
1894     // Def.sub0 =
1895     // Def.sub1 =
1896     // is a valid SSA representation for Def.sub0 and Def.sub1, but not for
1897     // Def. Thus, it must not be generated.
1898     // However, some code could theoretically generates a single
1899     // Def.sub0 (i.e, not defining the other subregs) and we would
1900     // have this case.
1901     // If we can ascertain (or force) that this never happens, we could
1902     // turn that into an assertion.
1903     return ValueTrackerResult();
1904 
1905   if (!TII)
1906     // We could handle the REG_SEQUENCE here, but we do not want to
1907     // duplicate the code from the generic TII.
1908     return ValueTrackerResult();
1909 
1910   SmallVector<RegSubRegPairAndIdx, 8> RegSeqInputRegs;
1911   if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs))
1912     return ValueTrackerResult();
1913 
1914   // We are looking at:
1915   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1916   // Check if one of the operand defines the subreg we are interested in.
1917   for (const RegSubRegPairAndIdx &RegSeqInput : RegSeqInputRegs) {
1918     if (RegSeqInput.SubIdx == DefSubReg)
1919       return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg);
1920   }
1921 
1922   // If the subreg we are tracking is super-defined by another subreg,
1923   // we could follow this value. However, this would require to compose
1924   // the subreg and we do not do that for now.
1925   return ValueTrackerResult();
1926 }
1927 
getNextSourceFromInsertSubreg()1928 ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() {
1929   assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) &&
1930          "Invalid definition");
1931 
1932   if (Def->getOperand(DefIdx).getSubReg())
1933     // If we are composing subreg, bail out.
1934     // Same remark as getNextSourceFromRegSequence.
1935     // I.e., this may be turned into an assert.
1936     return ValueTrackerResult();
1937 
1938   if (!TII)
1939     // We could handle the REG_SEQUENCE here, but we do not want to
1940     // duplicate the code from the generic TII.
1941     return ValueTrackerResult();
1942 
1943   RegSubRegPair BaseReg;
1944   RegSubRegPairAndIdx InsertedReg;
1945   if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg))
1946     return ValueTrackerResult();
1947 
1948   // We are looking at:
1949   // Def = INSERT_SUBREG v0, v1, sub1
1950   // There are two cases:
1951   // 1. DefSubReg == sub1, get v1.
1952   // 2. DefSubReg != sub1, the value may be available through v0.
1953 
1954   // #1 Check if the inserted register matches the required sub index.
1955   if (InsertedReg.SubIdx == DefSubReg) {
1956     return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg);
1957   }
1958   // #2 Otherwise, if the sub register we are looking for is not partial
1959   // defined by the inserted element, we can look through the main
1960   // register (v0).
1961   const MachineOperand &MODef = Def->getOperand(DefIdx);
1962   // If the result register (Def) and the base register (v0) do not
1963   // have the same register class or if we have to compose
1964   // subregisters, bail out.
1965   if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) ||
1966       BaseReg.SubReg)
1967     return ValueTrackerResult();
1968 
1969   // Get the TRI and check if the inserted sub-register overlaps with the
1970   // sub-register we are tracking.
1971   const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
1972   if (!TRI ||
1973       !(TRI->getSubRegIndexLaneMask(DefSubReg) &
1974         TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)).none())
1975     return ValueTrackerResult();
1976   // At this point, the value is available in v0 via the same subreg
1977   // we used for Def.
1978   return ValueTrackerResult(BaseReg.Reg, DefSubReg);
1979 }
1980 
getNextSourceFromExtractSubreg()1981 ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() {
1982   assert((Def->isExtractSubreg() ||
1983           Def->isExtractSubregLike()) && "Invalid definition");
1984   // We are looking at:
1985   // Def = EXTRACT_SUBREG v0, sub0
1986 
1987   // Bail if we have to compose sub registers.
1988   // Indeed, if DefSubReg != 0, we would have to compose it with sub0.
1989   if (DefSubReg)
1990     return ValueTrackerResult();
1991 
1992   if (!TII)
1993     // We could handle the EXTRACT_SUBREG here, but we do not want to
1994     // duplicate the code from the generic TII.
1995     return ValueTrackerResult();
1996 
1997   RegSubRegPairAndIdx ExtractSubregInputReg;
1998   if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg))
1999     return ValueTrackerResult();
2000 
2001   // Bail if we have to compose sub registers.
2002   // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0.
2003   if (ExtractSubregInputReg.SubReg)
2004     return ValueTrackerResult();
2005   // Otherwise, the value is available in the v0.sub0.
2006   return ValueTrackerResult(ExtractSubregInputReg.Reg,
2007                             ExtractSubregInputReg.SubIdx);
2008 }
2009 
getNextSourceFromSubregToReg()2010 ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() {
2011   assert(Def->isSubregToReg() && "Invalid definition");
2012   // We are looking at:
2013   // Def = SUBREG_TO_REG Imm, v0, sub0
2014 
2015   // Bail if we have to compose sub registers.
2016   // If DefSubReg != sub0, we would have to check that all the bits
2017   // we track are included in sub0 and if yes, we would have to
2018   // determine the right subreg in v0.
2019   if (DefSubReg != Def->getOperand(3).getImm())
2020     return ValueTrackerResult();
2021   // Bail if we have to compose sub registers.
2022   // Likewise, if v0.subreg != 0, we would have to compose it with sub0.
2023   if (Def->getOperand(2).getSubReg())
2024     return ValueTrackerResult();
2025 
2026   return ValueTrackerResult(Def->getOperand(2).getReg(),
2027                             Def->getOperand(3).getImm());
2028 }
2029 
2030 /// Explore each PHI incoming operand and return its sources.
getNextSourceFromPHI()2031 ValueTrackerResult ValueTracker::getNextSourceFromPHI() {
2032   assert(Def->isPHI() && "Invalid definition");
2033   ValueTrackerResult Res;
2034 
2035   // If we look for a different subreg, bail as we do not support composing
2036   // subregs yet.
2037   if (Def->getOperand(0).getSubReg() != DefSubReg)
2038     return ValueTrackerResult();
2039 
2040   // Return all register sources for PHI instructions.
2041   for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) {
2042     const MachineOperand &MO = Def->getOperand(i);
2043     assert(MO.isReg() && "Invalid PHI instruction");
2044     // We have no code to deal with undef operands. They shouldn't happen in
2045     // normal programs anyway.
2046     if (MO.isUndef())
2047       return ValueTrackerResult();
2048     Res.addSource(MO.getReg(), MO.getSubReg());
2049   }
2050 
2051   return Res;
2052 }
2053 
getNextSourceImpl()2054 ValueTrackerResult ValueTracker::getNextSourceImpl() {
2055   assert(Def && "This method needs a valid definition");
2056 
2057   assert(((Def->getOperand(DefIdx).isDef() &&
2058            (DefIdx < Def->getDesc().getNumDefs() ||
2059             Def->getDesc().isVariadic())) ||
2060           Def->getOperand(DefIdx).isImplicit()) &&
2061          "Invalid DefIdx");
2062   if (Def->isCopy())
2063     return getNextSourceFromCopy();
2064   if (Def->isBitcast())
2065     return getNextSourceFromBitcast();
2066   // All the remaining cases involve "complex" instructions.
2067   // Bail if we did not ask for the advanced tracking.
2068   if (DisableAdvCopyOpt)
2069     return ValueTrackerResult();
2070   if (Def->isRegSequence() || Def->isRegSequenceLike())
2071     return getNextSourceFromRegSequence();
2072   if (Def->isInsertSubreg() || Def->isInsertSubregLike())
2073     return getNextSourceFromInsertSubreg();
2074   if (Def->isExtractSubreg() || Def->isExtractSubregLike())
2075     return getNextSourceFromExtractSubreg();
2076   if (Def->isSubregToReg())
2077     return getNextSourceFromSubregToReg();
2078   if (Def->isPHI())
2079     return getNextSourceFromPHI();
2080   return ValueTrackerResult();
2081 }
2082 
getNextSource()2083 ValueTrackerResult ValueTracker::getNextSource() {
2084   // If we reach a point where we cannot move up in the use-def chain,
2085   // there is nothing we can get.
2086   if (!Def)
2087     return ValueTrackerResult();
2088 
2089   ValueTrackerResult Res = getNextSourceImpl();
2090   if (Res.isValid()) {
2091     // Update definition, definition index, and subregister for the
2092     // next call of getNextSource.
2093     // Update the current register.
2094     bool OneRegSrc = Res.getNumSources() == 1;
2095     if (OneRegSrc)
2096       Reg = Res.getSrcReg(0);
2097     // Update the result before moving up in the use-def chain
2098     // with the instruction containing the last found sources.
2099     Res.setInst(Def);
2100 
2101     // If we can still move up in the use-def chain, move to the next
2102     // definition.
2103     if (!Register::isPhysicalRegister(Reg) && OneRegSrc) {
2104       MachineRegisterInfo::def_iterator DI = MRI.def_begin(Reg);
2105       if (DI != MRI.def_end()) {
2106         Def = DI->getParent();
2107         DefIdx = DI.getOperandNo();
2108         DefSubReg = Res.getSrcSubReg(0);
2109       } else {
2110         Def = nullptr;
2111       }
2112       return Res;
2113     }
2114   }
2115   // If we end up here, this means we will not be able to find another source
2116   // for the next iteration. Make sure any new call to getNextSource bails out
2117   // early by cutting the use-def chain.
2118   Def = nullptr;
2119   return Res;
2120 }
2121