1 //===- COFFObjectFile.cpp - COFF object file implementation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the COFFObjectFile class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/ArrayRef.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/StringSwitch.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/ADT/iterator_range.h"
18 #include "llvm/BinaryFormat/COFF.h"
19 #include "llvm/Object/Binary.h"
20 #include "llvm/Object/COFF.h"
21 #include "llvm/Object/Error.h"
22 #include "llvm/Object/ObjectFile.h"
23 #include "llvm/Support/BinaryStreamReader.h"
24 #include "llvm/Support/Endian.h"
25 #include "llvm/Support/Error.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/MemoryBuffer.h"
29 #include <algorithm>
30 #include <cassert>
31 #include <cstddef>
32 #include <cstdint>
33 #include <cstring>
34 #include <limits>
35 #include <memory>
36 #include <system_error>
37 
38 using namespace llvm;
39 using namespace object;
40 
41 using support::ulittle16_t;
42 using support::ulittle32_t;
43 using support::ulittle64_t;
44 using support::little16_t;
45 
46 // Returns false if size is greater than the buffer size. And sets ec.
checkSize(MemoryBufferRef M,std::error_code & EC,uint64_t Size)47 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) {
48   if (M.getBufferSize() < Size) {
49     EC = object_error::unexpected_eof;
50     return false;
51   }
52   return true;
53 }
54 
55 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m.
56 // Returns unexpected_eof if error.
57 template <typename T>
getObject(const T * & Obj,MemoryBufferRef M,const void * Ptr,const uint64_t Size=sizeof (T))58 static Error getObject(const T *&Obj, MemoryBufferRef M, const void *Ptr,
59                        const uint64_t Size = sizeof(T)) {
60   uintptr_t Addr = uintptr_t(Ptr);
61   if (Error E = Binary::checkOffset(M, Addr, Size))
62     return E;
63   Obj = reinterpret_cast<const T *>(Addr);
64   return Error::success();
65 }
66 
67 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without
68 // prefixed slashes.
decodeBase64StringEntry(StringRef Str,uint32_t & Result)69 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) {
70   assert(Str.size() <= 6 && "String too long, possible overflow.");
71   if (Str.size() > 6)
72     return true;
73 
74   uint64_t Value = 0;
75   while (!Str.empty()) {
76     unsigned CharVal;
77     if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25
78       CharVal = Str[0] - 'A';
79     else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51
80       CharVal = Str[0] - 'a' + 26;
81     else if (Str[0] >= '0' && Str[0] <= '9') // 52..61
82       CharVal = Str[0] - '0' + 52;
83     else if (Str[0] == '+') // 62
84       CharVal = 62;
85     else if (Str[0] == '/') // 63
86       CharVal = 63;
87     else
88       return true;
89 
90     Value = (Value * 64) + CharVal;
91     Str = Str.substr(1);
92   }
93 
94   if (Value > std::numeric_limits<uint32_t>::max())
95     return true;
96 
97   Result = static_cast<uint32_t>(Value);
98   return false;
99 }
100 
101 template <typename coff_symbol_type>
toSymb(DataRefImpl Ref) const102 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const {
103   const coff_symbol_type *Addr =
104       reinterpret_cast<const coff_symbol_type *>(Ref.p);
105 
106   assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr)));
107 #ifndef NDEBUG
108   // Verify that the symbol points to a valid entry in the symbol table.
109   uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base());
110 
111   assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 &&
112          "Symbol did not point to the beginning of a symbol");
113 #endif
114 
115   return Addr;
116 }
117 
toSec(DataRefImpl Ref) const118 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const {
119   const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p);
120 
121 #ifndef NDEBUG
122   // Verify that the section points to a valid entry in the section table.
123   if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections()))
124     report_fatal_error("Section was outside of section table.");
125 
126   uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable);
127   assert(Offset % sizeof(coff_section) == 0 &&
128          "Section did not point to the beginning of a section");
129 #endif
130 
131   return Addr;
132 }
133 
moveSymbolNext(DataRefImpl & Ref) const134 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const {
135   auto End = reinterpret_cast<uintptr_t>(StringTable);
136   if (SymbolTable16) {
137     const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref);
138     Symb += 1 + Symb->NumberOfAuxSymbols;
139     Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
140   } else if (SymbolTable32) {
141     const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref);
142     Symb += 1 + Symb->NumberOfAuxSymbols;
143     Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
144   } else {
145     llvm_unreachable("no symbol table pointer!");
146   }
147 }
148 
getSymbolName(DataRefImpl Ref) const149 Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const {
150   return getSymbolName(getCOFFSymbol(Ref));
151 }
152 
getSymbolValueImpl(DataRefImpl Ref) const153 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const {
154   return getCOFFSymbol(Ref).getValue();
155 }
156 
getSymbolAlignment(DataRefImpl Ref) const157 uint32_t COFFObjectFile::getSymbolAlignment(DataRefImpl Ref) const {
158   // MSVC/link.exe seems to align symbols to the next-power-of-2
159   // up to 32 bytes.
160   COFFSymbolRef Symb = getCOFFSymbol(Ref);
161   return std::min(uint64_t(32), PowerOf2Ceil(Symb.getValue()));
162 }
163 
getSymbolAddress(DataRefImpl Ref) const164 Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const {
165   uint64_t Result = cantFail(getSymbolValue(Ref));
166   COFFSymbolRef Symb = getCOFFSymbol(Ref);
167   int32_t SectionNumber = Symb.getSectionNumber();
168 
169   if (Symb.isAnyUndefined() || Symb.isCommon() ||
170       COFF::isReservedSectionNumber(SectionNumber))
171     return Result;
172 
173   Expected<const coff_section *> Section = getSection(SectionNumber);
174   if (!Section)
175     return Section.takeError();
176   Result += (*Section)->VirtualAddress;
177 
178   // The section VirtualAddress does not include ImageBase, and we want to
179   // return virtual addresses.
180   Result += getImageBase();
181 
182   return Result;
183 }
184 
getSymbolType(DataRefImpl Ref) const185 Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const {
186   COFFSymbolRef Symb = getCOFFSymbol(Ref);
187   int32_t SectionNumber = Symb.getSectionNumber();
188 
189   if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION)
190     return SymbolRef::ST_Function;
191   if (Symb.isAnyUndefined())
192     return SymbolRef::ST_Unknown;
193   if (Symb.isCommon())
194     return SymbolRef::ST_Data;
195   if (Symb.isFileRecord())
196     return SymbolRef::ST_File;
197 
198   // TODO: perhaps we need a new symbol type ST_Section.
199   if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition())
200     return SymbolRef::ST_Debug;
201 
202   if (!COFF::isReservedSectionNumber(SectionNumber))
203     return SymbolRef::ST_Data;
204 
205   return SymbolRef::ST_Other;
206 }
207 
getSymbolFlags(DataRefImpl Ref) const208 Expected<uint32_t> COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const {
209   COFFSymbolRef Symb = getCOFFSymbol(Ref);
210   uint32_t Result = SymbolRef::SF_None;
211 
212   if (Symb.isExternal() || Symb.isWeakExternal())
213     Result |= SymbolRef::SF_Global;
214 
215   if (const coff_aux_weak_external *AWE = Symb.getWeakExternal()) {
216     Result |= SymbolRef::SF_Weak;
217     if (AWE->Characteristics != COFF::IMAGE_WEAK_EXTERN_SEARCH_ALIAS)
218       Result |= SymbolRef::SF_Undefined;
219   }
220 
221   if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE)
222     Result |= SymbolRef::SF_Absolute;
223 
224   if (Symb.isFileRecord())
225     Result |= SymbolRef::SF_FormatSpecific;
226 
227   if (Symb.isSectionDefinition())
228     Result |= SymbolRef::SF_FormatSpecific;
229 
230   if (Symb.isCommon())
231     Result |= SymbolRef::SF_Common;
232 
233   if (Symb.isUndefined())
234     Result |= SymbolRef::SF_Undefined;
235 
236   return Result;
237 }
238 
getCommonSymbolSizeImpl(DataRefImpl Ref) const239 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const {
240   COFFSymbolRef Symb = getCOFFSymbol(Ref);
241   return Symb.getValue();
242 }
243 
244 Expected<section_iterator>
getSymbolSection(DataRefImpl Ref) const245 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const {
246   COFFSymbolRef Symb = getCOFFSymbol(Ref);
247   if (COFF::isReservedSectionNumber(Symb.getSectionNumber()))
248     return section_end();
249   Expected<const coff_section *> Sec = getSection(Symb.getSectionNumber());
250   if (!Sec)
251     return Sec.takeError();
252   DataRefImpl Ret;
253   Ret.p = reinterpret_cast<uintptr_t>(*Sec);
254   return section_iterator(SectionRef(Ret, this));
255 }
256 
getSymbolSectionID(SymbolRef Sym) const257 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const {
258   COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl());
259   return Symb.getSectionNumber();
260 }
261 
moveSectionNext(DataRefImpl & Ref) const262 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const {
263   const coff_section *Sec = toSec(Ref);
264   Sec += 1;
265   Ref.p = reinterpret_cast<uintptr_t>(Sec);
266 }
267 
getSectionName(DataRefImpl Ref) const268 Expected<StringRef> COFFObjectFile::getSectionName(DataRefImpl Ref) const {
269   const coff_section *Sec = toSec(Ref);
270   return getSectionName(Sec);
271 }
272 
getSectionAddress(DataRefImpl Ref) const273 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const {
274   const coff_section *Sec = toSec(Ref);
275   uint64_t Result = Sec->VirtualAddress;
276 
277   // The section VirtualAddress does not include ImageBase, and we want to
278   // return virtual addresses.
279   Result += getImageBase();
280   return Result;
281 }
282 
getSectionIndex(DataRefImpl Sec) const283 uint64_t COFFObjectFile::getSectionIndex(DataRefImpl Sec) const {
284   return toSec(Sec) - SectionTable;
285 }
286 
getSectionSize(DataRefImpl Ref) const287 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const {
288   return getSectionSize(toSec(Ref));
289 }
290 
291 Expected<ArrayRef<uint8_t>>
getSectionContents(DataRefImpl Ref) const292 COFFObjectFile::getSectionContents(DataRefImpl Ref) const {
293   const coff_section *Sec = toSec(Ref);
294   ArrayRef<uint8_t> Res;
295   if (Error E = getSectionContents(Sec, Res))
296     return std::move(E);
297   return Res;
298 }
299 
getSectionAlignment(DataRefImpl Ref) const300 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const {
301   const coff_section *Sec = toSec(Ref);
302   return Sec->getAlignment();
303 }
304 
isSectionCompressed(DataRefImpl Sec) const305 bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const {
306   return false;
307 }
308 
isSectionText(DataRefImpl Ref) const309 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const {
310   const coff_section *Sec = toSec(Ref);
311   return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE;
312 }
313 
isSectionData(DataRefImpl Ref) const314 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const {
315   const coff_section *Sec = toSec(Ref);
316   return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA;
317 }
318 
isSectionBSS(DataRefImpl Ref) const319 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const {
320   const coff_section *Sec = toSec(Ref);
321   const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA |
322                             COFF::IMAGE_SCN_MEM_READ |
323                             COFF::IMAGE_SCN_MEM_WRITE;
324   return (Sec->Characteristics & BssFlags) == BssFlags;
325 }
326 
327 // The .debug sections are the only debug sections for COFF
328 // (\see MCObjectFileInfo.cpp).
isDebugSection(StringRef SectionName) const329 bool COFFObjectFile::isDebugSection(StringRef SectionName) const {
330   return SectionName.startswith(".debug");
331 }
332 
getSectionID(SectionRef Sec) const333 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const {
334   uintptr_t Offset =
335       uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable);
336   assert((Offset % sizeof(coff_section)) == 0);
337   return (Offset / sizeof(coff_section)) + 1;
338 }
339 
isSectionVirtual(DataRefImpl Ref) const340 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const {
341   const coff_section *Sec = toSec(Ref);
342   // In COFF, a virtual section won't have any in-file
343   // content, so the file pointer to the content will be zero.
344   return Sec->PointerToRawData == 0;
345 }
346 
getNumberOfRelocations(const coff_section * Sec,MemoryBufferRef M,const uint8_t * base)347 static uint32_t getNumberOfRelocations(const coff_section *Sec,
348                                        MemoryBufferRef M, const uint8_t *base) {
349   // The field for the number of relocations in COFF section table is only
350   // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to
351   // NumberOfRelocations field, and the actual relocation count is stored in the
352   // VirtualAddress field in the first relocation entry.
353   if (Sec->hasExtendedRelocations()) {
354     const coff_relocation *FirstReloc;
355     if (Error E = getObject(FirstReloc, M,
356                             reinterpret_cast<const coff_relocation *>(
357                                 base + Sec->PointerToRelocations))) {
358       consumeError(std::move(E));
359       return 0;
360     }
361     // -1 to exclude this first relocation entry.
362     return FirstReloc->VirtualAddress - 1;
363   }
364   return Sec->NumberOfRelocations;
365 }
366 
367 static const coff_relocation *
getFirstReloc(const coff_section * Sec,MemoryBufferRef M,const uint8_t * Base)368 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) {
369   uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base);
370   if (!NumRelocs)
371     return nullptr;
372   auto begin = reinterpret_cast<const coff_relocation *>(
373       Base + Sec->PointerToRelocations);
374   if (Sec->hasExtendedRelocations()) {
375     // Skip the first relocation entry repurposed to store the number of
376     // relocations.
377     begin++;
378   }
379   if (auto E = Binary::checkOffset(M, uintptr_t(begin),
380                                    sizeof(coff_relocation) * NumRelocs)) {
381     consumeError(std::move(E));
382     return nullptr;
383   }
384   return begin;
385 }
386 
section_rel_begin(DataRefImpl Ref) const387 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const {
388   const coff_section *Sec = toSec(Ref);
389   const coff_relocation *begin = getFirstReloc(Sec, Data, base());
390   if (begin && Sec->VirtualAddress != 0)
391     report_fatal_error("Sections with relocations should have an address of 0");
392   DataRefImpl Ret;
393   Ret.p = reinterpret_cast<uintptr_t>(begin);
394   return relocation_iterator(RelocationRef(Ret, this));
395 }
396 
section_rel_end(DataRefImpl Ref) const397 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const {
398   const coff_section *Sec = toSec(Ref);
399   const coff_relocation *I = getFirstReloc(Sec, Data, base());
400   if (I)
401     I += getNumberOfRelocations(Sec, Data, base());
402   DataRefImpl Ret;
403   Ret.p = reinterpret_cast<uintptr_t>(I);
404   return relocation_iterator(RelocationRef(Ret, this));
405 }
406 
407 // Initialize the pointer to the symbol table.
initSymbolTablePtr()408 Error COFFObjectFile::initSymbolTablePtr() {
409   if (COFFHeader)
410     if (Error E = getObject(
411             SymbolTable16, Data, base() + getPointerToSymbolTable(),
412             (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
413       return E;
414 
415   if (COFFBigObjHeader)
416     if (Error E = getObject(
417             SymbolTable32, Data, base() + getPointerToSymbolTable(),
418             (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
419       return E;
420 
421   // Find string table. The first four byte of the string table contains the
422   // total size of the string table, including the size field itself. If the
423   // string table is empty, the value of the first four byte would be 4.
424   uint32_t StringTableOffset = getPointerToSymbolTable() +
425                                getNumberOfSymbols() * getSymbolTableEntrySize();
426   const uint8_t *StringTableAddr = base() + StringTableOffset;
427   const ulittle32_t *StringTableSizePtr;
428   if (Error E = getObject(StringTableSizePtr, Data, StringTableAddr))
429     return E;
430   StringTableSize = *StringTableSizePtr;
431   if (Error E = getObject(StringTable, Data, StringTableAddr, StringTableSize))
432     return E;
433 
434   // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some
435   // tools like cvtres write a size of 0 for an empty table instead of 4.
436   if (StringTableSize < 4)
437     StringTableSize = 4;
438 
439   // Check that the string table is null terminated if has any in it.
440   if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0)
441     return errorCodeToError(object_error::parse_failed);
442   return Error::success();
443 }
444 
getImageBase() const445 uint64_t COFFObjectFile::getImageBase() const {
446   if (PE32Header)
447     return PE32Header->ImageBase;
448   else if (PE32PlusHeader)
449     return PE32PlusHeader->ImageBase;
450   // This actually comes up in practice.
451   return 0;
452 }
453 
454 // Returns the file offset for the given VA.
getVaPtr(uint64_t Addr,uintptr_t & Res) const455 Error COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const {
456   uint64_t ImageBase = getImageBase();
457   uint64_t Rva = Addr - ImageBase;
458   assert(Rva <= UINT32_MAX);
459   return getRvaPtr((uint32_t)Rva, Res);
460 }
461 
462 // Returns the file offset for the given RVA.
getRvaPtr(uint32_t Addr,uintptr_t & Res) const463 Error COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const {
464   for (const SectionRef &S : sections()) {
465     const coff_section *Section = getCOFFSection(S);
466     uint32_t SectionStart = Section->VirtualAddress;
467     uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize;
468     if (SectionStart <= Addr && Addr < SectionEnd) {
469       uint32_t Offset = Addr - SectionStart;
470       Res = uintptr_t(base()) + Section->PointerToRawData + Offset;
471       return Error::success();
472     }
473   }
474   return errorCodeToError(object_error::parse_failed);
475 }
476 
getRvaAndSizeAsBytes(uint32_t RVA,uint32_t Size,ArrayRef<uint8_t> & Contents) const477 Error COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size,
478                                            ArrayRef<uint8_t> &Contents) const {
479   for (const SectionRef &S : sections()) {
480     const coff_section *Section = getCOFFSection(S);
481     uint32_t SectionStart = Section->VirtualAddress;
482     // Check if this RVA is within the section bounds. Be careful about integer
483     // overflow.
484     uint32_t OffsetIntoSection = RVA - SectionStart;
485     if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize &&
486         Size <= Section->VirtualSize - OffsetIntoSection) {
487       uintptr_t Begin =
488           uintptr_t(base()) + Section->PointerToRawData + OffsetIntoSection;
489       Contents =
490           ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size);
491       return Error::success();
492     }
493   }
494   return errorCodeToError(object_error::parse_failed);
495 }
496 
497 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name
498 // table entry.
getHintName(uint32_t Rva,uint16_t & Hint,StringRef & Name) const499 Error COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint,
500                                   StringRef &Name) const {
501   uintptr_t IntPtr = 0;
502   if (Error E = getRvaPtr(Rva, IntPtr))
503     return E;
504   const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr);
505   Hint = *reinterpret_cast<const ulittle16_t *>(Ptr);
506   Name = StringRef(reinterpret_cast<const char *>(Ptr + 2));
507   return Error::success();
508 }
509 
getDebugPDBInfo(const debug_directory * DebugDir,const codeview::DebugInfo * & PDBInfo,StringRef & PDBFileName) const510 Error COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir,
511                                       const codeview::DebugInfo *&PDBInfo,
512                                       StringRef &PDBFileName) const {
513   ArrayRef<uint8_t> InfoBytes;
514   if (Error E = getRvaAndSizeAsBytes(
515           DebugDir->AddressOfRawData, DebugDir->SizeOfData, InfoBytes))
516     return E;
517   if (InfoBytes.size() < sizeof(*PDBInfo) + 1)
518     return errorCodeToError(object_error::parse_failed);
519   PDBInfo = reinterpret_cast<const codeview::DebugInfo *>(InfoBytes.data());
520   InfoBytes = InfoBytes.drop_front(sizeof(*PDBInfo));
521   PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()),
522                           InfoBytes.size());
523   // Truncate the name at the first null byte. Ignore any padding.
524   PDBFileName = PDBFileName.split('\0').first;
525   return Error::success();
526 }
527 
getDebugPDBInfo(const codeview::DebugInfo * & PDBInfo,StringRef & PDBFileName) const528 Error COFFObjectFile::getDebugPDBInfo(const codeview::DebugInfo *&PDBInfo,
529                                       StringRef &PDBFileName) const {
530   for (const debug_directory &D : debug_directories())
531     if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW)
532       return getDebugPDBInfo(&D, PDBInfo, PDBFileName);
533   // If we get here, there is no PDB info to return.
534   PDBInfo = nullptr;
535   PDBFileName = StringRef();
536   return Error::success();
537 }
538 
539 // Find the import table.
initImportTablePtr()540 Error COFFObjectFile::initImportTablePtr() {
541   // First, we get the RVA of the import table. If the file lacks a pointer to
542   // the import table, do nothing.
543   const data_directory *DataEntry = getDataDirectory(COFF::IMPORT_TABLE);
544   if (!DataEntry)
545     return Error::success();
546 
547   // Do nothing if the pointer to import table is NULL.
548   if (DataEntry->RelativeVirtualAddress == 0)
549     return Error::success();
550 
551   uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress;
552 
553   // Find the section that contains the RVA. This is needed because the RVA is
554   // the import table's memory address which is different from its file offset.
555   uintptr_t IntPtr = 0;
556   if (Error E = getRvaPtr(ImportTableRva, IntPtr))
557     return E;
558   if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
559     return E;
560   ImportDirectory = reinterpret_cast<
561       const coff_import_directory_table_entry *>(IntPtr);
562   return Error::success();
563 }
564 
565 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory.
initDelayImportTablePtr()566 Error COFFObjectFile::initDelayImportTablePtr() {
567   const data_directory *DataEntry =
568       getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR);
569   if (!DataEntry)
570     return Error::success();
571   if (DataEntry->RelativeVirtualAddress == 0)
572     return Error::success();
573 
574   uint32_t RVA = DataEntry->RelativeVirtualAddress;
575   NumberOfDelayImportDirectory = DataEntry->Size /
576       sizeof(delay_import_directory_table_entry) - 1;
577 
578   uintptr_t IntPtr = 0;
579   if (Error E = getRvaPtr(RVA, IntPtr))
580     return E;
581   DelayImportDirectory = reinterpret_cast<
582       const delay_import_directory_table_entry *>(IntPtr);
583   return Error::success();
584 }
585 
586 // Find the export table.
initExportTablePtr()587 Error COFFObjectFile::initExportTablePtr() {
588   // First, we get the RVA of the export table. If the file lacks a pointer to
589   // the export table, do nothing.
590   const data_directory *DataEntry = getDataDirectory(COFF::EXPORT_TABLE);
591   if (!DataEntry)
592     return Error::success();
593 
594   // Do nothing if the pointer to export table is NULL.
595   if (DataEntry->RelativeVirtualAddress == 0)
596     return Error::success();
597 
598   uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress;
599   uintptr_t IntPtr = 0;
600   if (Error E = getRvaPtr(ExportTableRva, IntPtr))
601     return E;
602   ExportDirectory =
603       reinterpret_cast<const export_directory_table_entry *>(IntPtr);
604   return Error::success();
605 }
606 
initBaseRelocPtr()607 Error COFFObjectFile::initBaseRelocPtr() {
608   const data_directory *DataEntry =
609       getDataDirectory(COFF::BASE_RELOCATION_TABLE);
610   if (!DataEntry)
611     return Error::success();
612   if (DataEntry->RelativeVirtualAddress == 0)
613     return Error::success();
614 
615   uintptr_t IntPtr = 0;
616   if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
617     return E;
618   BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>(
619       IntPtr);
620   BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>(
621       IntPtr + DataEntry->Size);
622   // FIXME: Verify the section containing BaseRelocHeader has at least
623   // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress.
624   return Error::success();
625 }
626 
initDebugDirectoryPtr()627 Error COFFObjectFile::initDebugDirectoryPtr() {
628   // Get the RVA of the debug directory. Do nothing if it does not exist.
629   const data_directory *DataEntry = getDataDirectory(COFF::DEBUG_DIRECTORY);
630   if (!DataEntry)
631     return Error::success();
632 
633   // Do nothing if the RVA is NULL.
634   if (DataEntry->RelativeVirtualAddress == 0)
635     return Error::success();
636 
637   // Check that the size is a multiple of the entry size.
638   if (DataEntry->Size % sizeof(debug_directory) != 0)
639     return errorCodeToError(object_error::parse_failed);
640 
641   uintptr_t IntPtr = 0;
642   if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
643     return E;
644   DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr);
645   DebugDirectoryEnd = reinterpret_cast<const debug_directory *>(
646       IntPtr + DataEntry->Size);
647   // FIXME: Verify the section containing DebugDirectoryBegin has at least
648   // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress.
649   return Error::success();
650 }
651 
initLoadConfigPtr()652 Error COFFObjectFile::initLoadConfigPtr() {
653   // Get the RVA of the debug directory. Do nothing if it does not exist.
654   const data_directory *DataEntry = getDataDirectory(COFF::LOAD_CONFIG_TABLE);
655   if (!DataEntry)
656     return Error::success();
657 
658   // Do nothing if the RVA is NULL.
659   if (DataEntry->RelativeVirtualAddress == 0)
660     return Error::success();
661   uintptr_t IntPtr = 0;
662   if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
663     return E;
664 
665   LoadConfig = (const void *)IntPtr;
666   return Error::success();
667 }
668 
669 Expected<std::unique_ptr<COFFObjectFile>>
create(MemoryBufferRef Object)670 COFFObjectFile::create(MemoryBufferRef Object) {
671   std::unique_ptr<COFFObjectFile> Obj(new COFFObjectFile(std::move(Object)));
672   if (Error E = Obj->initialize())
673     return std::move(E);
674   return std::move(Obj);
675 }
676 
COFFObjectFile(MemoryBufferRef Object)677 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object)
678     : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr),
679       COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr),
680       DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr),
681       SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0),
682       ImportDirectory(nullptr), DelayImportDirectory(nullptr),
683       NumberOfDelayImportDirectory(0), ExportDirectory(nullptr),
684       BaseRelocHeader(nullptr), BaseRelocEnd(nullptr),
685       DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr) {}
686 
initialize()687 Error COFFObjectFile::initialize() {
688   // Check that we at least have enough room for a header.
689   std::error_code EC;
690   if (!checkSize(Data, EC, sizeof(coff_file_header)))
691     return errorCodeToError(EC);
692 
693   // The current location in the file where we are looking at.
694   uint64_t CurPtr = 0;
695 
696   // PE header is optional and is present only in executables. If it exists,
697   // it is placed right after COFF header.
698   bool HasPEHeader = false;
699 
700   // Check if this is a PE/COFF file.
701   if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) {
702     // PE/COFF, seek through MS-DOS compatibility stub and 4-byte
703     // PE signature to find 'normal' COFF header.
704     const auto *DH = reinterpret_cast<const dos_header *>(base());
705     if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') {
706       CurPtr = DH->AddressOfNewExeHeader;
707       // Check the PE magic bytes. ("PE\0\0")
708       if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) {
709         return errorCodeToError(object_error::parse_failed);
710       }
711       CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes.
712       HasPEHeader = true;
713     }
714   }
715 
716   if (Error E = getObject(COFFHeader, Data, base() + CurPtr))
717     return E;
718 
719   // It might be a bigobj file, let's check.  Note that COFF bigobj and COFF
720   // import libraries share a common prefix but bigobj is more restrictive.
721   if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN &&
722       COFFHeader->NumberOfSections == uint16_t(0xffff) &&
723       checkSize(Data, EC, sizeof(coff_bigobj_file_header))) {
724     if (Error E = getObject(COFFBigObjHeader, Data, base() + CurPtr))
725       return E;
726 
727     // Verify that we are dealing with bigobj.
728     if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion &&
729         std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic,
730                     sizeof(COFF::BigObjMagic)) == 0) {
731       COFFHeader = nullptr;
732       CurPtr += sizeof(coff_bigobj_file_header);
733     } else {
734       // It's not a bigobj.
735       COFFBigObjHeader = nullptr;
736     }
737   }
738   if (COFFHeader) {
739     // The prior checkSize call may have failed.  This isn't a hard error
740     // because we were just trying to sniff out bigobj.
741     EC = std::error_code();
742     CurPtr += sizeof(coff_file_header);
743 
744     if (COFFHeader->isImportLibrary())
745       return errorCodeToError(EC);
746   }
747 
748   if (HasPEHeader) {
749     const pe32_header *Header;
750     if (Error E = getObject(Header, Data, base() + CurPtr))
751       return E;
752 
753     const uint8_t *DataDirAddr;
754     uint64_t DataDirSize;
755     if (Header->Magic == COFF::PE32Header::PE32) {
756       PE32Header = Header;
757       DataDirAddr = base() + CurPtr + sizeof(pe32_header);
758       DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize;
759     } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) {
760       PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header);
761       DataDirAddr = base() + CurPtr + sizeof(pe32plus_header);
762       DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize;
763     } else {
764       // It's neither PE32 nor PE32+.
765       return errorCodeToError(object_error::parse_failed);
766     }
767     if (Error E = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))
768       return E;
769   }
770 
771   if (COFFHeader)
772     CurPtr += COFFHeader->SizeOfOptionalHeader;
773 
774   assert(COFFHeader || COFFBigObjHeader);
775 
776   if (Error E =
777           getObject(SectionTable, Data, base() + CurPtr,
778                     (uint64_t)getNumberOfSections() * sizeof(coff_section)))
779     return E;
780 
781   // Initialize the pointer to the symbol table.
782   if (getPointerToSymbolTable() != 0) {
783     if (Error E = initSymbolTablePtr()) {
784       // Recover from errors reading the symbol table.
785       consumeError(std::move(E));
786       SymbolTable16 = nullptr;
787       SymbolTable32 = nullptr;
788       StringTable = nullptr;
789       StringTableSize = 0;
790     }
791   } else {
792     // We had better not have any symbols if we don't have a symbol table.
793     if (getNumberOfSymbols() != 0) {
794       return errorCodeToError(object_error::parse_failed);
795     }
796   }
797 
798   // Initialize the pointer to the beginning of the import table.
799   if (Error E = initImportTablePtr())
800     return E;
801   if (Error E = initDelayImportTablePtr())
802     return E;
803 
804   // Initialize the pointer to the export table.
805   if (Error E = initExportTablePtr())
806     return E;
807 
808   // Initialize the pointer to the base relocation table.
809   if (Error E = initBaseRelocPtr())
810     return E;
811 
812   // Initialize the pointer to the export table.
813   if (Error E = initDebugDirectoryPtr())
814     return E;
815 
816   if (Error E = initLoadConfigPtr())
817     return E;
818 
819   return Error::success();
820 }
821 
symbol_begin() const822 basic_symbol_iterator COFFObjectFile::symbol_begin() const {
823   DataRefImpl Ret;
824   Ret.p = getSymbolTable();
825   return basic_symbol_iterator(SymbolRef(Ret, this));
826 }
827 
symbol_end() const828 basic_symbol_iterator COFFObjectFile::symbol_end() const {
829   // The symbol table ends where the string table begins.
830   DataRefImpl Ret;
831   Ret.p = reinterpret_cast<uintptr_t>(StringTable);
832   return basic_symbol_iterator(SymbolRef(Ret, this));
833 }
834 
import_directory_begin() const835 import_directory_iterator COFFObjectFile::import_directory_begin() const {
836   if (!ImportDirectory)
837     return import_directory_end();
838   if (ImportDirectory->isNull())
839     return import_directory_end();
840   return import_directory_iterator(
841       ImportDirectoryEntryRef(ImportDirectory, 0, this));
842 }
843 
import_directory_end() const844 import_directory_iterator COFFObjectFile::import_directory_end() const {
845   return import_directory_iterator(
846       ImportDirectoryEntryRef(nullptr, -1, this));
847 }
848 
849 delay_import_directory_iterator
delay_import_directory_begin() const850 COFFObjectFile::delay_import_directory_begin() const {
851   return delay_import_directory_iterator(
852       DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this));
853 }
854 
855 delay_import_directory_iterator
delay_import_directory_end() const856 COFFObjectFile::delay_import_directory_end() const {
857   return delay_import_directory_iterator(
858       DelayImportDirectoryEntryRef(
859           DelayImportDirectory, NumberOfDelayImportDirectory, this));
860 }
861 
export_directory_begin() const862 export_directory_iterator COFFObjectFile::export_directory_begin() const {
863   return export_directory_iterator(
864       ExportDirectoryEntryRef(ExportDirectory, 0, this));
865 }
866 
export_directory_end() const867 export_directory_iterator COFFObjectFile::export_directory_end() const {
868   if (!ExportDirectory)
869     return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this));
870   ExportDirectoryEntryRef Ref(ExportDirectory,
871                               ExportDirectory->AddressTableEntries, this);
872   return export_directory_iterator(Ref);
873 }
874 
section_begin() const875 section_iterator COFFObjectFile::section_begin() const {
876   DataRefImpl Ret;
877   Ret.p = reinterpret_cast<uintptr_t>(SectionTable);
878   return section_iterator(SectionRef(Ret, this));
879 }
880 
section_end() const881 section_iterator COFFObjectFile::section_end() const {
882   DataRefImpl Ret;
883   int NumSections =
884       COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections();
885   Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections);
886   return section_iterator(SectionRef(Ret, this));
887 }
888 
base_reloc_begin() const889 base_reloc_iterator COFFObjectFile::base_reloc_begin() const {
890   return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this));
891 }
892 
base_reloc_end() const893 base_reloc_iterator COFFObjectFile::base_reloc_end() const {
894   return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this));
895 }
896 
getBytesInAddress() const897 uint8_t COFFObjectFile::getBytesInAddress() const {
898   return getArch() == Triple::x86_64 || getArch() == Triple::aarch64 ? 8 : 4;
899 }
900 
getFileFormatName() const901 StringRef COFFObjectFile::getFileFormatName() const {
902   switch(getMachine()) {
903   case COFF::IMAGE_FILE_MACHINE_I386:
904     return "COFF-i386";
905   case COFF::IMAGE_FILE_MACHINE_AMD64:
906     return "COFF-x86-64";
907   case COFF::IMAGE_FILE_MACHINE_ARMNT:
908     return "COFF-ARM";
909   case COFF::IMAGE_FILE_MACHINE_ARM64:
910     return "COFF-ARM64";
911   default:
912     return "COFF-<unknown arch>";
913   }
914 }
915 
getArch() const916 Triple::ArchType COFFObjectFile::getArch() const {
917   switch (getMachine()) {
918   case COFF::IMAGE_FILE_MACHINE_I386:
919     return Triple::x86;
920   case COFF::IMAGE_FILE_MACHINE_AMD64:
921     return Triple::x86_64;
922   case COFF::IMAGE_FILE_MACHINE_ARMNT:
923     return Triple::thumb;
924   case COFF::IMAGE_FILE_MACHINE_ARM64:
925     return Triple::aarch64;
926   default:
927     return Triple::UnknownArch;
928   }
929 }
930 
getStartAddress() const931 Expected<uint64_t> COFFObjectFile::getStartAddress() const {
932   if (PE32Header)
933     return PE32Header->AddressOfEntryPoint;
934   return 0;
935 }
936 
937 iterator_range<import_directory_iterator>
import_directories() const938 COFFObjectFile::import_directories() const {
939   return make_range(import_directory_begin(), import_directory_end());
940 }
941 
942 iterator_range<delay_import_directory_iterator>
delay_import_directories() const943 COFFObjectFile::delay_import_directories() const {
944   return make_range(delay_import_directory_begin(),
945                     delay_import_directory_end());
946 }
947 
948 iterator_range<export_directory_iterator>
export_directories() const949 COFFObjectFile::export_directories() const {
950   return make_range(export_directory_begin(), export_directory_end());
951 }
952 
base_relocs() const953 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const {
954   return make_range(base_reloc_begin(), base_reloc_end());
955 }
956 
getDataDirectory(uint32_t Index) const957 const data_directory *COFFObjectFile::getDataDirectory(uint32_t Index) const {
958   if (!DataDirectory)
959     return nullptr;
960   assert(PE32Header || PE32PlusHeader);
961   uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize
962                                : PE32PlusHeader->NumberOfRvaAndSize;
963   if (Index >= NumEnt)
964     return nullptr;
965   return &DataDirectory[Index];
966 }
967 
getSection(int32_t Index) const968 Expected<const coff_section *> COFFObjectFile::getSection(int32_t Index) const {
969   // Perhaps getting the section of a reserved section index should be an error,
970   // but callers rely on this to return null.
971   if (COFF::isReservedSectionNumber(Index))
972     return (const coff_section *)nullptr;
973   if (static_cast<uint32_t>(Index) <= getNumberOfSections()) {
974     // We already verified the section table data, so no need to check again.
975     return SectionTable + (Index - 1);
976   }
977   return errorCodeToError(object_error::parse_failed);
978 }
979 
getString(uint32_t Offset) const980 Expected<StringRef> COFFObjectFile::getString(uint32_t Offset) const {
981   if (StringTableSize <= 4)
982     // Tried to get a string from an empty string table.
983     return errorCodeToError(object_error::parse_failed);
984   if (Offset >= StringTableSize)
985     return errorCodeToError(object_error::unexpected_eof);
986   return StringRef(StringTable + Offset);
987 }
988 
getSymbolName(COFFSymbolRef Symbol) const989 Expected<StringRef> COFFObjectFile::getSymbolName(COFFSymbolRef Symbol) const {
990   return getSymbolName(Symbol.getGeneric());
991 }
992 
993 Expected<StringRef>
getSymbolName(const coff_symbol_generic * Symbol) const994 COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol) const {
995   // Check for string table entry. First 4 bytes are 0.
996   if (Symbol->Name.Offset.Zeroes == 0)
997     return getString(Symbol->Name.Offset.Offset);
998 
999   // Null terminated, let ::strlen figure out the length.
1000   if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0)
1001     return StringRef(Symbol->Name.ShortName);
1002 
1003   // Not null terminated, use all 8 bytes.
1004   return StringRef(Symbol->Name.ShortName, COFF::NameSize);
1005 }
1006 
1007 ArrayRef<uint8_t>
getSymbolAuxData(COFFSymbolRef Symbol) const1008 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const {
1009   const uint8_t *Aux = nullptr;
1010 
1011   size_t SymbolSize = getSymbolTableEntrySize();
1012   if (Symbol.getNumberOfAuxSymbols() > 0) {
1013     // AUX data comes immediately after the symbol in COFF
1014     Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize;
1015 #ifndef NDEBUG
1016     // Verify that the Aux symbol points to a valid entry in the symbol table.
1017     uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base());
1018     if (Offset < getPointerToSymbolTable() ||
1019         Offset >=
1020             getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize))
1021       report_fatal_error("Aux Symbol data was outside of symbol table.");
1022 
1023     assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 &&
1024            "Aux Symbol data did not point to the beginning of a symbol");
1025 #endif
1026   }
1027   return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize);
1028 }
1029 
getSymbolIndex(COFFSymbolRef Symbol) const1030 uint32_t COFFObjectFile::getSymbolIndex(COFFSymbolRef Symbol) const {
1031   uintptr_t Offset =
1032       reinterpret_cast<uintptr_t>(Symbol.getRawPtr()) - getSymbolTable();
1033   assert(Offset % getSymbolTableEntrySize() == 0 &&
1034          "Symbol did not point to the beginning of a symbol");
1035   size_t Index = Offset / getSymbolTableEntrySize();
1036   assert(Index < getNumberOfSymbols());
1037   return Index;
1038 }
1039 
1040 Expected<StringRef>
getSectionName(const coff_section * Sec) const1041 COFFObjectFile::getSectionName(const coff_section *Sec) const {
1042   StringRef Name;
1043   if (Sec->Name[COFF::NameSize - 1] == 0)
1044     // Null terminated, let ::strlen figure out the length.
1045     Name = Sec->Name;
1046   else
1047     // Not null terminated, use all 8 bytes.
1048     Name = StringRef(Sec->Name, COFF::NameSize);
1049 
1050   // Check for string table entry. First byte is '/'.
1051   if (Name.startswith("/")) {
1052     uint32_t Offset;
1053     if (Name.startswith("//")) {
1054       if (decodeBase64StringEntry(Name.substr(2), Offset))
1055         return createStringError(object_error::parse_failed,
1056                                  "invalid section name");
1057     } else {
1058       if (Name.substr(1).getAsInteger(10, Offset))
1059         return createStringError(object_error::parse_failed,
1060                                  "invalid section name");
1061     }
1062     return getString(Offset);
1063   }
1064 
1065   return Name;
1066 }
1067 
getSectionSize(const coff_section * Sec) const1068 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const {
1069   // SizeOfRawData and VirtualSize change what they represent depending on
1070   // whether or not we have an executable image.
1071   //
1072   // For object files, SizeOfRawData contains the size of section's data;
1073   // VirtualSize should be zero but isn't due to buggy COFF writers.
1074   //
1075   // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the
1076   // actual section size is in VirtualSize.  It is possible for VirtualSize to
1077   // be greater than SizeOfRawData; the contents past that point should be
1078   // considered to be zero.
1079   if (getDOSHeader())
1080     return std::min(Sec->VirtualSize, Sec->SizeOfRawData);
1081   return Sec->SizeOfRawData;
1082 }
1083 
getSectionContents(const coff_section * Sec,ArrayRef<uint8_t> & Res) const1084 Error COFFObjectFile::getSectionContents(const coff_section *Sec,
1085                                          ArrayRef<uint8_t> &Res) const {
1086   // In COFF, a virtual section won't have any in-file
1087   // content, so the file pointer to the content will be zero.
1088   if (Sec->PointerToRawData == 0)
1089     return Error::success();
1090   // The only thing that we need to verify is that the contents is contained
1091   // within the file bounds. We don't need to make sure it doesn't cover other
1092   // data, as there's nothing that says that is not allowed.
1093   uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData;
1094   uint32_t SectionSize = getSectionSize(Sec);
1095   if (Error E = checkOffset(Data, ConStart, SectionSize))
1096     return E;
1097   Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize);
1098   return Error::success();
1099 }
1100 
toRel(DataRefImpl Rel) const1101 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const {
1102   return reinterpret_cast<const coff_relocation*>(Rel.p);
1103 }
1104 
moveRelocationNext(DataRefImpl & Rel) const1105 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const {
1106   Rel.p = reinterpret_cast<uintptr_t>(
1107             reinterpret_cast<const coff_relocation*>(Rel.p) + 1);
1108 }
1109 
getRelocationOffset(DataRefImpl Rel) const1110 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const {
1111   const coff_relocation *R = toRel(Rel);
1112   return R->VirtualAddress;
1113 }
1114 
getRelocationSymbol(DataRefImpl Rel) const1115 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const {
1116   const coff_relocation *R = toRel(Rel);
1117   DataRefImpl Ref;
1118   if (R->SymbolTableIndex >= getNumberOfSymbols())
1119     return symbol_end();
1120   if (SymbolTable16)
1121     Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex);
1122   else if (SymbolTable32)
1123     Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex);
1124   else
1125     llvm_unreachable("no symbol table pointer!");
1126   return symbol_iterator(SymbolRef(Ref, this));
1127 }
1128 
getRelocationType(DataRefImpl Rel) const1129 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const {
1130   const coff_relocation* R = toRel(Rel);
1131   return R->Type;
1132 }
1133 
1134 const coff_section *
getCOFFSection(const SectionRef & Section) const1135 COFFObjectFile::getCOFFSection(const SectionRef &Section) const {
1136   return toSec(Section.getRawDataRefImpl());
1137 }
1138 
getCOFFSymbol(const DataRefImpl & Ref) const1139 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const {
1140   if (SymbolTable16)
1141     return toSymb<coff_symbol16>(Ref);
1142   if (SymbolTable32)
1143     return toSymb<coff_symbol32>(Ref);
1144   llvm_unreachable("no symbol table pointer!");
1145 }
1146 
getCOFFSymbol(const SymbolRef & Symbol) const1147 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const {
1148   return getCOFFSymbol(Symbol.getRawDataRefImpl());
1149 }
1150 
1151 const coff_relocation *
getCOFFRelocation(const RelocationRef & Reloc) const1152 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const {
1153   return toRel(Reloc.getRawDataRefImpl());
1154 }
1155 
1156 ArrayRef<coff_relocation>
getRelocations(const coff_section * Sec) const1157 COFFObjectFile::getRelocations(const coff_section *Sec) const {
1158   return {getFirstReloc(Sec, Data, base()),
1159           getNumberOfRelocations(Sec, Data, base())};
1160 }
1161 
1162 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type)                           \
1163   case COFF::reloc_type:                                                       \
1164     return #reloc_type;
1165 
getRelocationTypeName(uint16_t Type) const1166 StringRef COFFObjectFile::getRelocationTypeName(uint16_t Type) const {
1167   switch (getMachine()) {
1168   case COFF::IMAGE_FILE_MACHINE_AMD64:
1169     switch (Type) {
1170     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE);
1171     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64);
1172     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32);
1173     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB);
1174     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32);
1175     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1);
1176     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2);
1177     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3);
1178     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4);
1179     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5);
1180     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION);
1181     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL);
1182     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7);
1183     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN);
1184     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32);
1185     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR);
1186     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32);
1187     default:
1188       return "Unknown";
1189     }
1190     break;
1191   case COFF::IMAGE_FILE_MACHINE_ARMNT:
1192     switch (Type) {
1193     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE);
1194     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32);
1195     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB);
1196     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24);
1197     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11);
1198     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN);
1199     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24);
1200     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11);
1201     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_REL32);
1202     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION);
1203     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL);
1204     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A);
1205     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T);
1206     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T);
1207     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T);
1208     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T);
1209     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_PAIR);
1210     default:
1211       return "Unknown";
1212     }
1213     break;
1214   case COFF::IMAGE_FILE_MACHINE_ARM64:
1215     switch (Type) {
1216     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ABSOLUTE);
1217     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32);
1218     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32NB);
1219     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH26);
1220     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEBASE_REL21);
1221     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL21);
1222     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12A);
1223     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12L);
1224     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL);
1225     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12A);
1226     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_HIGH12A);
1227     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12L);
1228     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_TOKEN);
1229     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECTION);
1230     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR64);
1231     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH19);
1232     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH14);
1233     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL32);
1234     default:
1235       return "Unknown";
1236     }
1237     break;
1238   case COFF::IMAGE_FILE_MACHINE_I386:
1239     switch (Type) {
1240     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE);
1241     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16);
1242     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16);
1243     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32);
1244     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB);
1245     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12);
1246     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION);
1247     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL);
1248     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN);
1249     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7);
1250     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32);
1251     default:
1252       return "Unknown";
1253     }
1254     break;
1255   default:
1256     return "Unknown";
1257   }
1258 }
1259 
1260 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME
1261 
getRelocationTypeName(DataRefImpl Rel,SmallVectorImpl<char> & Result) const1262 void COFFObjectFile::getRelocationTypeName(
1263     DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
1264   const coff_relocation *Reloc = toRel(Rel);
1265   StringRef Res = getRelocationTypeName(Reloc->Type);
1266   Result.append(Res.begin(), Res.end());
1267 }
1268 
isRelocatableObject() const1269 bool COFFObjectFile::isRelocatableObject() const {
1270   return !DataDirectory;
1271 }
1272 
mapDebugSectionName(StringRef Name) const1273 StringRef COFFObjectFile::mapDebugSectionName(StringRef Name) const {
1274   return StringSwitch<StringRef>(Name)
1275       .Case("eh_fram", "eh_frame")
1276       .Default(Name);
1277 }
1278 
1279 bool ImportDirectoryEntryRef::
operator ==(const ImportDirectoryEntryRef & Other) const1280 operator==(const ImportDirectoryEntryRef &Other) const {
1281   return ImportTable == Other.ImportTable && Index == Other.Index;
1282 }
1283 
moveNext()1284 void ImportDirectoryEntryRef::moveNext() {
1285   ++Index;
1286   if (ImportTable[Index].isNull()) {
1287     Index = -1;
1288     ImportTable = nullptr;
1289   }
1290 }
1291 
getImportTableEntry(const coff_import_directory_table_entry * & Result) const1292 Error ImportDirectoryEntryRef::getImportTableEntry(
1293     const coff_import_directory_table_entry *&Result) const {
1294   return getObject(Result, OwningObject->Data, ImportTable + Index);
1295 }
1296 
1297 static imported_symbol_iterator
makeImportedSymbolIterator(const COFFObjectFile * Object,uintptr_t Ptr,int Index)1298 makeImportedSymbolIterator(const COFFObjectFile *Object,
1299                            uintptr_t Ptr, int Index) {
1300   if (Object->getBytesInAddress() == 4) {
1301     auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr);
1302     return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1303   }
1304   auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr);
1305   return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1306 }
1307 
1308 static imported_symbol_iterator
importedSymbolBegin(uint32_t RVA,const COFFObjectFile * Object)1309 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) {
1310   uintptr_t IntPtr = 0;
1311   // FIXME: Handle errors.
1312   cantFail(Object->getRvaPtr(RVA, IntPtr));
1313   return makeImportedSymbolIterator(Object, IntPtr, 0);
1314 }
1315 
1316 static imported_symbol_iterator
importedSymbolEnd(uint32_t RVA,const COFFObjectFile * Object)1317 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) {
1318   uintptr_t IntPtr = 0;
1319   // FIXME: Handle errors.
1320   cantFail(Object->getRvaPtr(RVA, IntPtr));
1321   // Forward the pointer to the last entry which is null.
1322   int Index = 0;
1323   if (Object->getBytesInAddress() == 4) {
1324     auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr);
1325     while (*Entry++)
1326       ++Index;
1327   } else {
1328     auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr);
1329     while (*Entry++)
1330       ++Index;
1331   }
1332   return makeImportedSymbolIterator(Object, IntPtr, Index);
1333 }
1334 
1335 imported_symbol_iterator
imported_symbol_begin() const1336 ImportDirectoryEntryRef::imported_symbol_begin() const {
1337   return importedSymbolBegin(ImportTable[Index].ImportAddressTableRVA,
1338                              OwningObject);
1339 }
1340 
1341 imported_symbol_iterator
imported_symbol_end() const1342 ImportDirectoryEntryRef::imported_symbol_end() const {
1343   return importedSymbolEnd(ImportTable[Index].ImportAddressTableRVA,
1344                            OwningObject);
1345 }
1346 
1347 iterator_range<imported_symbol_iterator>
imported_symbols() const1348 ImportDirectoryEntryRef::imported_symbols() const {
1349   return make_range(imported_symbol_begin(), imported_symbol_end());
1350 }
1351 
lookup_table_begin() const1352 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_begin() const {
1353   return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA,
1354                              OwningObject);
1355 }
1356 
lookup_table_end() const1357 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_end() const {
1358   return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA,
1359                            OwningObject);
1360 }
1361 
1362 iterator_range<imported_symbol_iterator>
lookup_table_symbols() const1363 ImportDirectoryEntryRef::lookup_table_symbols() const {
1364   return make_range(lookup_table_begin(), lookup_table_end());
1365 }
1366 
getName(StringRef & Result) const1367 Error ImportDirectoryEntryRef::getName(StringRef &Result) const {
1368   uintptr_t IntPtr = 0;
1369   if (Error E = OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr))
1370     return E;
1371   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1372   return Error::success();
1373 }
1374 
1375 Error
getImportLookupTableRVA(uint32_t & Result) const1376 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t  &Result) const {
1377   Result = ImportTable[Index].ImportLookupTableRVA;
1378   return Error::success();
1379 }
1380 
getImportAddressTableRVA(uint32_t & Result) const1381 Error ImportDirectoryEntryRef::getImportAddressTableRVA(
1382     uint32_t &Result) const {
1383   Result = ImportTable[Index].ImportAddressTableRVA;
1384   return Error::success();
1385 }
1386 
1387 bool DelayImportDirectoryEntryRef::
operator ==(const DelayImportDirectoryEntryRef & Other) const1388 operator==(const DelayImportDirectoryEntryRef &Other) const {
1389   return Table == Other.Table && Index == Other.Index;
1390 }
1391 
moveNext()1392 void DelayImportDirectoryEntryRef::moveNext() {
1393   ++Index;
1394 }
1395 
1396 imported_symbol_iterator
imported_symbol_begin() const1397 DelayImportDirectoryEntryRef::imported_symbol_begin() const {
1398   return importedSymbolBegin(Table[Index].DelayImportNameTable,
1399                              OwningObject);
1400 }
1401 
1402 imported_symbol_iterator
imported_symbol_end() const1403 DelayImportDirectoryEntryRef::imported_symbol_end() const {
1404   return importedSymbolEnd(Table[Index].DelayImportNameTable,
1405                            OwningObject);
1406 }
1407 
1408 iterator_range<imported_symbol_iterator>
imported_symbols() const1409 DelayImportDirectoryEntryRef::imported_symbols() const {
1410   return make_range(imported_symbol_begin(), imported_symbol_end());
1411 }
1412 
getName(StringRef & Result) const1413 Error DelayImportDirectoryEntryRef::getName(StringRef &Result) const {
1414   uintptr_t IntPtr = 0;
1415   if (Error E = OwningObject->getRvaPtr(Table[Index].Name, IntPtr))
1416     return E;
1417   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1418   return Error::success();
1419 }
1420 
getDelayImportTable(const delay_import_directory_table_entry * & Result) const1421 Error DelayImportDirectoryEntryRef::getDelayImportTable(
1422     const delay_import_directory_table_entry *&Result) const {
1423   Result = &Table[Index];
1424   return Error::success();
1425 }
1426 
getImportAddress(int AddrIndex,uint64_t & Result) const1427 Error DelayImportDirectoryEntryRef::getImportAddress(int AddrIndex,
1428                                                      uint64_t &Result) const {
1429   uint32_t RVA = Table[Index].DelayImportAddressTable +
1430       AddrIndex * (OwningObject->is64() ? 8 : 4);
1431   uintptr_t IntPtr = 0;
1432   if (Error E = OwningObject->getRvaPtr(RVA, IntPtr))
1433     return E;
1434   if (OwningObject->is64())
1435     Result = *reinterpret_cast<const ulittle64_t *>(IntPtr);
1436   else
1437     Result = *reinterpret_cast<const ulittle32_t *>(IntPtr);
1438   return Error::success();
1439 }
1440 
1441 bool ExportDirectoryEntryRef::
operator ==(const ExportDirectoryEntryRef & Other) const1442 operator==(const ExportDirectoryEntryRef &Other) const {
1443   return ExportTable == Other.ExportTable && Index == Other.Index;
1444 }
1445 
moveNext()1446 void ExportDirectoryEntryRef::moveNext() {
1447   ++Index;
1448 }
1449 
1450 // Returns the name of the current export symbol. If the symbol is exported only
1451 // by ordinal, the empty string is set as a result.
getDllName(StringRef & Result) const1452 Error ExportDirectoryEntryRef::getDllName(StringRef &Result) const {
1453   uintptr_t IntPtr = 0;
1454   if (Error E = OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr))
1455     return E;
1456   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1457   return Error::success();
1458 }
1459 
1460 // Returns the starting ordinal number.
getOrdinalBase(uint32_t & Result) const1461 Error ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const {
1462   Result = ExportTable->OrdinalBase;
1463   return Error::success();
1464 }
1465 
1466 // Returns the export ordinal of the current export symbol.
getOrdinal(uint32_t & Result) const1467 Error ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const {
1468   Result = ExportTable->OrdinalBase + Index;
1469   return Error::success();
1470 }
1471 
1472 // Returns the address of the current export symbol.
getExportRVA(uint32_t & Result) const1473 Error ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const {
1474   uintptr_t IntPtr = 0;
1475   if (Error EC =
1476           OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr))
1477     return EC;
1478   const export_address_table_entry *entry =
1479       reinterpret_cast<const export_address_table_entry *>(IntPtr);
1480   Result = entry[Index].ExportRVA;
1481   return Error::success();
1482 }
1483 
1484 // Returns the name of the current export symbol. If the symbol is exported only
1485 // by ordinal, the empty string is set as a result.
1486 Error
getSymbolName(StringRef & Result) const1487 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const {
1488   uintptr_t IntPtr = 0;
1489   if (Error EC =
1490           OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr))
1491     return EC;
1492   const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr);
1493 
1494   uint32_t NumEntries = ExportTable->NumberOfNamePointers;
1495   int Offset = 0;
1496   for (const ulittle16_t *I = Start, *E = Start + NumEntries;
1497        I < E; ++I, ++Offset) {
1498     if (*I != Index)
1499       continue;
1500     if (Error EC =
1501             OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr))
1502       return EC;
1503     const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr);
1504     if (Error EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr))
1505       return EC;
1506     Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1507     return Error::success();
1508   }
1509   Result = "";
1510   return Error::success();
1511 }
1512 
isForwarder(bool & Result) const1513 Error ExportDirectoryEntryRef::isForwarder(bool &Result) const {
1514   const data_directory *DataEntry =
1515       OwningObject->getDataDirectory(COFF::EXPORT_TABLE);
1516   if (!DataEntry)
1517     return errorCodeToError(object_error::parse_failed);
1518   uint32_t RVA;
1519   if (auto EC = getExportRVA(RVA))
1520     return EC;
1521   uint32_t Begin = DataEntry->RelativeVirtualAddress;
1522   uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size;
1523   Result = (Begin <= RVA && RVA < End);
1524   return Error::success();
1525 }
1526 
getForwardTo(StringRef & Result) const1527 Error ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const {
1528   uint32_t RVA;
1529   if (auto EC = getExportRVA(RVA))
1530     return EC;
1531   uintptr_t IntPtr = 0;
1532   if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr))
1533     return EC;
1534   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1535   return Error::success();
1536 }
1537 
1538 bool ImportedSymbolRef::
operator ==(const ImportedSymbolRef & Other) const1539 operator==(const ImportedSymbolRef &Other) const {
1540   return Entry32 == Other.Entry32 && Entry64 == Other.Entry64
1541       && Index == Other.Index;
1542 }
1543 
moveNext()1544 void ImportedSymbolRef::moveNext() {
1545   ++Index;
1546 }
1547 
getSymbolName(StringRef & Result) const1548 Error ImportedSymbolRef::getSymbolName(StringRef &Result) const {
1549   uint32_t RVA;
1550   if (Entry32) {
1551     // If a symbol is imported only by ordinal, it has no name.
1552     if (Entry32[Index].isOrdinal())
1553       return Error::success();
1554     RVA = Entry32[Index].getHintNameRVA();
1555   } else {
1556     if (Entry64[Index].isOrdinal())
1557       return Error::success();
1558     RVA = Entry64[Index].getHintNameRVA();
1559   }
1560   uintptr_t IntPtr = 0;
1561   if (Error EC = OwningObject->getRvaPtr(RVA, IntPtr))
1562     return EC;
1563   // +2 because the first two bytes is hint.
1564   Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2));
1565   return Error::success();
1566 }
1567 
isOrdinal(bool & Result) const1568 Error ImportedSymbolRef::isOrdinal(bool &Result) const {
1569   if (Entry32)
1570     Result = Entry32[Index].isOrdinal();
1571   else
1572     Result = Entry64[Index].isOrdinal();
1573   return Error::success();
1574 }
1575 
getHintNameRVA(uint32_t & Result) const1576 Error ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const {
1577   if (Entry32)
1578     Result = Entry32[Index].getHintNameRVA();
1579   else
1580     Result = Entry64[Index].getHintNameRVA();
1581   return Error::success();
1582 }
1583 
getOrdinal(uint16_t & Result) const1584 Error ImportedSymbolRef::getOrdinal(uint16_t &Result) const {
1585   uint32_t RVA;
1586   if (Entry32) {
1587     if (Entry32[Index].isOrdinal()) {
1588       Result = Entry32[Index].getOrdinal();
1589       return Error::success();
1590     }
1591     RVA = Entry32[Index].getHintNameRVA();
1592   } else {
1593     if (Entry64[Index].isOrdinal()) {
1594       Result = Entry64[Index].getOrdinal();
1595       return Error::success();
1596     }
1597     RVA = Entry64[Index].getHintNameRVA();
1598   }
1599   uintptr_t IntPtr = 0;
1600   if (Error EC = OwningObject->getRvaPtr(RVA, IntPtr))
1601     return EC;
1602   Result = *reinterpret_cast<const ulittle16_t *>(IntPtr);
1603   return Error::success();
1604 }
1605 
1606 Expected<std::unique_ptr<COFFObjectFile>>
createCOFFObjectFile(MemoryBufferRef Object)1607 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) {
1608   return COFFObjectFile::create(Object);
1609 }
1610 
operator ==(const BaseRelocRef & Other) const1611 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const {
1612   return Header == Other.Header && Index == Other.Index;
1613 }
1614 
moveNext()1615 void BaseRelocRef::moveNext() {
1616   // Header->BlockSize is the size of the current block, including the
1617   // size of the header itself.
1618   uint32_t Size = sizeof(*Header) +
1619       sizeof(coff_base_reloc_block_entry) * (Index + 1);
1620   if (Size == Header->BlockSize) {
1621     // .reloc contains a list of base relocation blocks. Each block
1622     // consists of the header followed by entries. The header contains
1623     // how many entories will follow. When we reach the end of the
1624     // current block, proceed to the next block.
1625     Header = reinterpret_cast<const coff_base_reloc_block_header *>(
1626         reinterpret_cast<const uint8_t *>(Header) + Size);
1627     Index = 0;
1628   } else {
1629     ++Index;
1630   }
1631 }
1632 
getType(uint8_t & Type) const1633 Error BaseRelocRef::getType(uint8_t &Type) const {
1634   auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1635   Type = Entry[Index].getType();
1636   return Error::success();
1637 }
1638 
getRVA(uint32_t & Result) const1639 Error BaseRelocRef::getRVA(uint32_t &Result) const {
1640   auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1641   Result = Header->PageRVA + Entry[Index].getOffset();
1642   return Error::success();
1643 }
1644 
1645 #define RETURN_IF_ERROR(Expr)                                                  \
1646   do {                                                                         \
1647     Error E = (Expr);                                                          \
1648     if (E)                                                                     \
1649       return std::move(E);                                                     \
1650   } while (0)
1651 
1652 Expected<ArrayRef<UTF16>>
getDirStringAtOffset(uint32_t Offset)1653 ResourceSectionRef::getDirStringAtOffset(uint32_t Offset) {
1654   BinaryStreamReader Reader = BinaryStreamReader(BBS);
1655   Reader.setOffset(Offset);
1656   uint16_t Length;
1657   RETURN_IF_ERROR(Reader.readInteger(Length));
1658   ArrayRef<UTF16> RawDirString;
1659   RETURN_IF_ERROR(Reader.readArray(RawDirString, Length));
1660   return RawDirString;
1661 }
1662 
1663 Expected<ArrayRef<UTF16>>
getEntryNameString(const coff_resource_dir_entry & Entry)1664 ResourceSectionRef::getEntryNameString(const coff_resource_dir_entry &Entry) {
1665   return getDirStringAtOffset(Entry.Identifier.getNameOffset());
1666 }
1667 
1668 Expected<const coff_resource_dir_table &>
getTableAtOffset(uint32_t Offset)1669 ResourceSectionRef::getTableAtOffset(uint32_t Offset) {
1670   const coff_resource_dir_table *Table = nullptr;
1671 
1672   BinaryStreamReader Reader(BBS);
1673   Reader.setOffset(Offset);
1674   RETURN_IF_ERROR(Reader.readObject(Table));
1675   assert(Table != nullptr);
1676   return *Table;
1677 }
1678 
1679 Expected<const coff_resource_dir_entry &>
getTableEntryAtOffset(uint32_t Offset)1680 ResourceSectionRef::getTableEntryAtOffset(uint32_t Offset) {
1681   const coff_resource_dir_entry *Entry = nullptr;
1682 
1683   BinaryStreamReader Reader(BBS);
1684   Reader.setOffset(Offset);
1685   RETURN_IF_ERROR(Reader.readObject(Entry));
1686   assert(Entry != nullptr);
1687   return *Entry;
1688 }
1689 
1690 Expected<const coff_resource_data_entry &>
getDataEntryAtOffset(uint32_t Offset)1691 ResourceSectionRef::getDataEntryAtOffset(uint32_t Offset) {
1692   const coff_resource_data_entry *Entry = nullptr;
1693 
1694   BinaryStreamReader Reader(BBS);
1695   Reader.setOffset(Offset);
1696   RETURN_IF_ERROR(Reader.readObject(Entry));
1697   assert(Entry != nullptr);
1698   return *Entry;
1699 }
1700 
1701 Expected<const coff_resource_dir_table &>
getEntrySubDir(const coff_resource_dir_entry & Entry)1702 ResourceSectionRef::getEntrySubDir(const coff_resource_dir_entry &Entry) {
1703   assert(Entry.Offset.isSubDir());
1704   return getTableAtOffset(Entry.Offset.value());
1705 }
1706 
1707 Expected<const coff_resource_data_entry &>
getEntryData(const coff_resource_dir_entry & Entry)1708 ResourceSectionRef::getEntryData(const coff_resource_dir_entry &Entry) {
1709   assert(!Entry.Offset.isSubDir());
1710   return getDataEntryAtOffset(Entry.Offset.value());
1711 }
1712 
getBaseTable()1713 Expected<const coff_resource_dir_table &> ResourceSectionRef::getBaseTable() {
1714   return getTableAtOffset(0);
1715 }
1716 
1717 Expected<const coff_resource_dir_entry &>
getTableEntry(const coff_resource_dir_table & Table,uint32_t Index)1718 ResourceSectionRef::getTableEntry(const coff_resource_dir_table &Table,
1719                                   uint32_t Index) {
1720   if (Index >= (uint32_t)(Table.NumberOfNameEntries + Table.NumberOfIDEntries))
1721     return createStringError(object_error::parse_failed, "index out of range");
1722   const uint8_t *TablePtr = reinterpret_cast<const uint8_t *>(&Table);
1723   ptrdiff_t TableOffset = TablePtr - BBS.data().data();
1724   return getTableEntryAtOffset(TableOffset + sizeof(Table) +
1725                                Index * sizeof(coff_resource_dir_entry));
1726 }
1727 
load(const COFFObjectFile * O)1728 Error ResourceSectionRef::load(const COFFObjectFile *O) {
1729   for (const SectionRef &S : O->sections()) {
1730     Expected<StringRef> Name = S.getName();
1731     if (!Name)
1732       return Name.takeError();
1733 
1734     if (*Name == ".rsrc" || *Name == ".rsrc$01")
1735       return load(O, S);
1736   }
1737   return createStringError(object_error::parse_failed,
1738                            "no resource section found");
1739 }
1740 
load(const COFFObjectFile * O,const SectionRef & S)1741 Error ResourceSectionRef::load(const COFFObjectFile *O, const SectionRef &S) {
1742   Obj = O;
1743   Section = S;
1744   Expected<StringRef> Contents = Section.getContents();
1745   if (!Contents)
1746     return Contents.takeError();
1747   BBS = BinaryByteStream(*Contents, support::little);
1748   const coff_section *COFFSect = Obj->getCOFFSection(Section);
1749   ArrayRef<coff_relocation> OrigRelocs = Obj->getRelocations(COFFSect);
1750   Relocs.reserve(OrigRelocs.size());
1751   for (const coff_relocation &R : OrigRelocs)
1752     Relocs.push_back(&R);
1753   std::sort(Relocs.begin(), Relocs.end(),
1754             [](const coff_relocation *A, const coff_relocation *B) {
1755               return A->VirtualAddress < B->VirtualAddress;
1756             });
1757   return Error::success();
1758 }
1759 
1760 Expected<StringRef>
getContents(const coff_resource_data_entry & Entry)1761 ResourceSectionRef::getContents(const coff_resource_data_entry &Entry) {
1762   if (!Obj)
1763     return createStringError(object_error::parse_failed, "no object provided");
1764 
1765   // Find a potential relocation at the DataRVA field (first member of
1766   // the coff_resource_data_entry struct).
1767   const uint8_t *EntryPtr = reinterpret_cast<const uint8_t *>(&Entry);
1768   ptrdiff_t EntryOffset = EntryPtr - BBS.data().data();
1769   coff_relocation RelocTarget{ulittle32_t(EntryOffset), ulittle32_t(0),
1770                               ulittle16_t(0)};
1771   auto RelocsForOffset =
1772       std::equal_range(Relocs.begin(), Relocs.end(), &RelocTarget,
1773                        [](const coff_relocation *A, const coff_relocation *B) {
1774                          return A->VirtualAddress < B->VirtualAddress;
1775                        });
1776 
1777   if (RelocsForOffset.first != RelocsForOffset.second) {
1778     // We found a relocation with the right offset. Check that it does have
1779     // the expected type.
1780     const coff_relocation &R = **RelocsForOffset.first;
1781     uint16_t RVAReloc;
1782     switch (Obj->getMachine()) {
1783     case COFF::IMAGE_FILE_MACHINE_I386:
1784       RVAReloc = COFF::IMAGE_REL_I386_DIR32NB;
1785       break;
1786     case COFF::IMAGE_FILE_MACHINE_AMD64:
1787       RVAReloc = COFF::IMAGE_REL_AMD64_ADDR32NB;
1788       break;
1789     case COFF::IMAGE_FILE_MACHINE_ARMNT:
1790       RVAReloc = COFF::IMAGE_REL_ARM_ADDR32NB;
1791       break;
1792     case COFF::IMAGE_FILE_MACHINE_ARM64:
1793       RVAReloc = COFF::IMAGE_REL_ARM64_ADDR32NB;
1794       break;
1795     default:
1796       return createStringError(object_error::parse_failed,
1797                                "unsupported architecture");
1798     }
1799     if (R.Type != RVAReloc)
1800       return createStringError(object_error::parse_failed,
1801                                "unexpected relocation type");
1802     // Get the relocation's symbol
1803     Expected<COFFSymbolRef> Sym = Obj->getSymbol(R.SymbolTableIndex);
1804     if (!Sym)
1805       return Sym.takeError();
1806     // And the symbol's section
1807     Expected<const coff_section *> Section =
1808         Obj->getSection(Sym->getSectionNumber());
1809     if (!Section)
1810       return Section.takeError();
1811     // Add the initial value of DataRVA to the symbol's offset to find the
1812     // data it points at.
1813     uint64_t Offset = Entry.DataRVA + Sym->getValue();
1814     ArrayRef<uint8_t> Contents;
1815     if (Error E = Obj->getSectionContents(*Section, Contents))
1816       return std::move(E);
1817     if (Offset + Entry.DataSize > Contents.size())
1818       return createStringError(object_error::parse_failed,
1819                                "data outside of section");
1820     // Return a reference to the data inside the section.
1821     return StringRef(reinterpret_cast<const char *>(Contents.data()) + Offset,
1822                      Entry.DataSize);
1823   } else {
1824     // Relocatable objects need a relocation for the DataRVA field.
1825     if (Obj->isRelocatableObject())
1826       return createStringError(object_error::parse_failed,
1827                                "no relocation found for DataRVA");
1828 
1829     // Locate the section that contains the address that DataRVA points at.
1830     uint64_t VA = Entry.DataRVA + Obj->getImageBase();
1831     for (const SectionRef &S : Obj->sections()) {
1832       if (VA >= S.getAddress() &&
1833           VA + Entry.DataSize <= S.getAddress() + S.getSize()) {
1834         uint64_t Offset = VA - S.getAddress();
1835         Expected<StringRef> Contents = S.getContents();
1836         if (!Contents)
1837           return Contents.takeError();
1838         return Contents->slice(Offset, Offset + Entry.DataSize);
1839       }
1840     }
1841     return createStringError(object_error::parse_failed,
1842                              "address not found in image");
1843   }
1844 }
1845