1 //===- Inliner.cpp - Code common to all inliners --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the mechanics required to implement inlining without
10 // missing any calls and updating the call graph. The decisions of which calls
11 // are profitable to inline are implemented elsewhere.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/IPO/Inliner.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/ScopeExit.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/BasicAliasAnalysis.h"
29 #include "llvm/Analysis/BlockFrequencyInfo.h"
30 #include "llvm/Analysis/CGSCCPassManager.h"
31 #include "llvm/Analysis/CallGraph.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Analysis/InlineAdvisor.h"
34 #include "llvm/Analysis/InlineCost.h"
35 #include "llvm/Analysis/LazyCallGraph.h"
36 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
37 #include "llvm/Analysis/ProfileSummaryInfo.h"
38 #include "llvm/Analysis/TargetLibraryInfo.h"
39 #include "llvm/Analysis/TargetTransformInfo.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/DiagnosticInfo.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/InstIterator.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/IntrinsicInst.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/PassManager.h"
54 #include "llvm/IR/User.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
62 #include "llvm/Transforms/Utils/Cloning.h"
63 #include "llvm/Transforms/Utils/ImportedFunctionsInliningStatistics.h"
64 #include "llvm/Transforms/Utils/Local.h"
65 #include "llvm/Transforms/Utils/ModuleUtils.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <functional>
69 #include <sstream>
70 #include <tuple>
71 #include <utility>
72 #include <vector>
73
74 using namespace llvm;
75
76 #define DEBUG_TYPE "inline"
77
78 STATISTIC(NumInlined, "Number of functions inlined");
79 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
80 STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
81 STATISTIC(NumMergedAllocas, "Number of allocas merged together");
82
83 /// Flag to disable manual alloca merging.
84 ///
85 /// Merging of allocas was originally done as a stack-size saving technique
86 /// prior to LLVM's code generator having support for stack coloring based on
87 /// lifetime markers. It is now in the process of being removed. To experiment
88 /// with disabling it and relying fully on lifetime marker based stack
89 /// coloring, you can pass this flag to LLVM.
90 static cl::opt<bool>
91 DisableInlinedAllocaMerging("disable-inlined-alloca-merging",
92 cl::init(false), cl::Hidden);
93
94 namespace {
95
96 enum class InlinerFunctionImportStatsOpts {
97 No = 0,
98 Basic = 1,
99 Verbose = 2,
100 };
101
102 } // end anonymous namespace
103
104 static cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats(
105 "inliner-function-import-stats",
106 cl::init(InlinerFunctionImportStatsOpts::No),
107 cl::values(clEnumValN(InlinerFunctionImportStatsOpts::Basic, "basic",
108 "basic statistics"),
109 clEnumValN(InlinerFunctionImportStatsOpts::Verbose, "verbose",
110 "printing of statistics for each inlined function")),
111 cl::Hidden, cl::desc("Enable inliner stats for imported functions"));
112
LegacyInlinerBase(char & ID)113 LegacyInlinerBase::LegacyInlinerBase(char &ID) : CallGraphSCCPass(ID) {}
114
LegacyInlinerBase(char & ID,bool InsertLifetime)115 LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime)
116 : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {}
117
118 /// For this class, we declare that we require and preserve the call graph.
119 /// If the derived class implements this method, it should
120 /// always explicitly call the implementation here.
getAnalysisUsage(AnalysisUsage & AU) const121 void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const {
122 AU.addRequired<AssumptionCacheTracker>();
123 AU.addRequired<ProfileSummaryInfoWrapperPass>();
124 AU.addRequired<TargetLibraryInfoWrapperPass>();
125 getAAResultsAnalysisUsage(AU);
126 CallGraphSCCPass::getAnalysisUsage(AU);
127 }
128
129 using InlinedArrayAllocasTy = DenseMap<ArrayType *, std::vector<AllocaInst *>>;
130
131 /// Look at all of the allocas that we inlined through this call site. If we
132 /// have already inlined other allocas through other calls into this function,
133 /// then we know that they have disjoint lifetimes and that we can merge them.
134 ///
135 /// There are many heuristics possible for merging these allocas, and the
136 /// different options have different tradeoffs. One thing that we *really*
137 /// don't want to hurt is SRoA: once inlining happens, often allocas are no
138 /// longer address taken and so they can be promoted.
139 ///
140 /// Our "solution" for that is to only merge allocas whose outermost type is an
141 /// array type. These are usually not promoted because someone is using a
142 /// variable index into them. These are also often the most important ones to
143 /// merge.
144 ///
145 /// A better solution would be to have real memory lifetime markers in the IR
146 /// and not have the inliner do any merging of allocas at all. This would
147 /// allow the backend to do proper stack slot coloring of all allocas that
148 /// *actually make it to the backend*, which is really what we want.
149 ///
150 /// Because we don't have this information, we do this simple and useful hack.
mergeInlinedArrayAllocas(Function * Caller,InlineFunctionInfo & IFI,InlinedArrayAllocasTy & InlinedArrayAllocas,int InlineHistory)151 static void mergeInlinedArrayAllocas(Function *Caller, InlineFunctionInfo &IFI,
152 InlinedArrayAllocasTy &InlinedArrayAllocas,
153 int InlineHistory) {
154 SmallPtrSet<AllocaInst *, 16> UsedAllocas;
155
156 // When processing our SCC, check to see if the call site was inlined from
157 // some other call site. For example, if we're processing "A" in this code:
158 // A() { B() }
159 // B() { x = alloca ... C() }
160 // C() { y = alloca ... }
161 // Assume that C was not inlined into B initially, and so we're processing A
162 // and decide to inline B into A. Doing this makes an alloca available for
163 // reuse and makes a callsite (C) available for inlining. When we process
164 // the C call site we don't want to do any alloca merging between X and Y
165 // because their scopes are not disjoint. We could make this smarter by
166 // keeping track of the inline history for each alloca in the
167 // InlinedArrayAllocas but this isn't likely to be a significant win.
168 if (InlineHistory != -1) // Only do merging for top-level call sites in SCC.
169 return;
170
171 // Loop over all the allocas we have so far and see if they can be merged with
172 // a previously inlined alloca. If not, remember that we had it.
173 for (unsigned AllocaNo = 0, E = IFI.StaticAllocas.size(); AllocaNo != E;
174 ++AllocaNo) {
175 AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
176
177 // Don't bother trying to merge array allocations (they will usually be
178 // canonicalized to be an allocation *of* an array), or allocations whose
179 // type is not itself an array (because we're afraid of pessimizing SRoA).
180 ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
181 if (!ATy || AI->isArrayAllocation())
182 continue;
183
184 // Get the list of all available allocas for this array type.
185 std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy];
186
187 // Loop over the allocas in AllocasForType to see if we can reuse one. Note
188 // that we have to be careful not to reuse the same "available" alloca for
189 // multiple different allocas that we just inlined, we use the 'UsedAllocas'
190 // set to keep track of which "available" allocas are being used by this
191 // function. Also, AllocasForType can be empty of course!
192 bool MergedAwayAlloca = false;
193 for (AllocaInst *AvailableAlloca : AllocasForType) {
194 Align Align1 = AI->getAlign();
195 Align Align2 = AvailableAlloca->getAlign();
196
197 // The available alloca has to be in the right function, not in some other
198 // function in this SCC.
199 if (AvailableAlloca->getParent() != AI->getParent())
200 continue;
201
202 // If the inlined function already uses this alloca then we can't reuse
203 // it.
204 if (!UsedAllocas.insert(AvailableAlloca).second)
205 continue;
206
207 // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
208 // success!
209 LLVM_DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI
210 << "\n\t\tINTO: " << *AvailableAlloca << '\n');
211
212 // Move affected dbg.declare calls immediately after the new alloca to
213 // avoid the situation when a dbg.declare precedes its alloca.
214 if (auto *L = LocalAsMetadata::getIfExists(AI))
215 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
216 for (User *U : MDV->users())
217 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
218 DDI->moveBefore(AvailableAlloca->getNextNode());
219
220 AI->replaceAllUsesWith(AvailableAlloca);
221
222 if (Align1 > Align2)
223 AvailableAlloca->setAlignment(AI->getAlign());
224
225 AI->eraseFromParent();
226 MergedAwayAlloca = true;
227 ++NumMergedAllocas;
228 IFI.StaticAllocas[AllocaNo] = nullptr;
229 break;
230 }
231
232 // If we already nuked the alloca, we're done with it.
233 if (MergedAwayAlloca)
234 continue;
235
236 // If we were unable to merge away the alloca either because there are no
237 // allocas of the right type available or because we reused them all
238 // already, remember that this alloca came from an inlined function and mark
239 // it used so we don't reuse it for other allocas from this inline
240 // operation.
241 AllocasForType.push_back(AI);
242 UsedAllocas.insert(AI);
243 }
244 }
245
246 /// If it is possible to inline the specified call site,
247 /// do so and update the CallGraph for this operation.
248 ///
249 /// This function also does some basic book-keeping to update the IR. The
250 /// InlinedArrayAllocas map keeps track of any allocas that are already
251 /// available from other functions inlined into the caller. If we are able to
252 /// inline this call site we attempt to reuse already available allocas or add
253 /// any new allocas to the set if not possible.
inlineCallIfPossible(CallBase & CB,InlineFunctionInfo & IFI,InlinedArrayAllocasTy & InlinedArrayAllocas,int InlineHistory,bool InsertLifetime,function_ref<AAResults & (Function &)> & AARGetter,ImportedFunctionsInliningStatistics & ImportedFunctionsStats)254 static InlineResult inlineCallIfPossible(
255 CallBase &CB, InlineFunctionInfo &IFI,
256 InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory,
257 bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter,
258 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
259 Function *Callee = CB.getCalledFunction();
260 Function *Caller = CB.getCaller();
261
262 AAResults &AAR = AARGetter(*Callee);
263
264 // Try to inline the function. Get the list of static allocas that were
265 // inlined.
266 InlineResult IR = InlineFunction(CB, IFI, &AAR, InsertLifetime);
267 if (!IR.isSuccess())
268 return IR;
269
270 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
271 ImportedFunctionsStats.recordInline(*Caller, *Callee);
272
273 AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee);
274
275 if (!DisableInlinedAllocaMerging)
276 mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory);
277
278 return IR; // success
279 }
280
281 /// Return true if the specified inline history ID
282 /// indicates an inline history that includes the specified function.
inlineHistoryIncludes(Function * F,int InlineHistoryID,const SmallVectorImpl<std::pair<Function *,int>> & InlineHistory)283 static bool inlineHistoryIncludes(
284 Function *F, int InlineHistoryID,
285 const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) {
286 while (InlineHistoryID != -1) {
287 assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
288 "Invalid inline history ID");
289 if (InlineHistory[InlineHistoryID].first == F)
290 return true;
291 InlineHistoryID = InlineHistory[InlineHistoryID].second;
292 }
293 return false;
294 }
295
doInitialization(CallGraph & CG)296 bool LegacyInlinerBase::doInitialization(CallGraph &CG) {
297 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
298 ImportedFunctionsStats.setModuleInfo(CG.getModule());
299 return false; // No changes to CallGraph.
300 }
301
runOnSCC(CallGraphSCC & SCC)302 bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) {
303 if (skipSCC(SCC))
304 return false;
305 return inlineCalls(SCC);
306 }
307
308 static bool
inlineCallsImpl(CallGraphSCC & SCC,CallGraph & CG,std::function<AssumptionCache & (Function &)> GetAssumptionCache,ProfileSummaryInfo * PSI,std::function<const TargetLibraryInfo & (Function &)> GetTLI,bool InsertLifetime,function_ref<InlineCost (CallBase & CB)> GetInlineCost,function_ref<AAResults & (Function &)> AARGetter,ImportedFunctionsInliningStatistics & ImportedFunctionsStats)309 inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG,
310 std::function<AssumptionCache &(Function &)> GetAssumptionCache,
311 ProfileSummaryInfo *PSI,
312 std::function<const TargetLibraryInfo &(Function &)> GetTLI,
313 bool InsertLifetime,
314 function_ref<InlineCost(CallBase &CB)> GetInlineCost,
315 function_ref<AAResults &(Function &)> AARGetter,
316 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
317 SmallPtrSet<Function *, 8> SCCFunctions;
318 LLVM_DEBUG(dbgs() << "Inliner visiting SCC:");
319 for (CallGraphNode *Node : SCC) {
320 Function *F = Node->getFunction();
321 if (F)
322 SCCFunctions.insert(F);
323 LLVM_DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
324 }
325
326 // Scan through and identify all call sites ahead of time so that we only
327 // inline call sites in the original functions, not call sites that result
328 // from inlining other functions.
329 SmallVector<std::pair<CallBase *, int>, 16> CallSites;
330
331 // When inlining a callee produces new call sites, we want to keep track of
332 // the fact that they were inlined from the callee. This allows us to avoid
333 // infinite inlining in some obscure cases. To represent this, we use an
334 // index into the InlineHistory vector.
335 SmallVector<std::pair<Function *, int>, 8> InlineHistory;
336
337 for (CallGraphNode *Node : SCC) {
338 Function *F = Node->getFunction();
339 if (!F || F->isDeclaration())
340 continue;
341
342 OptimizationRemarkEmitter ORE(F);
343 for (BasicBlock &BB : *F)
344 for (Instruction &I : BB) {
345 auto *CB = dyn_cast<CallBase>(&I);
346 // If this isn't a call, or it is a call to an intrinsic, it can
347 // never be inlined.
348 if (!CB || isa<IntrinsicInst>(I))
349 continue;
350
351 // If this is a direct call to an external function, we can never inline
352 // it. If it is an indirect call, inlining may resolve it to be a
353 // direct call, so we keep it.
354 if (Function *Callee = CB->getCalledFunction())
355 if (Callee->isDeclaration()) {
356 using namespace ore;
357
358 setInlineRemark(*CB, "unavailable definition");
359 ORE.emit([&]() {
360 return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
361 << NV("Callee", Callee) << " will not be inlined into "
362 << NV("Caller", CB->getCaller())
363 << " because its definition is unavailable"
364 << setIsVerbose();
365 });
366 continue;
367 }
368
369 CallSites.push_back(std::make_pair(CB, -1));
370 }
371 }
372
373 LLVM_DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
374
375 // If there are no calls in this function, exit early.
376 if (CallSites.empty())
377 return false;
378
379 // Now that we have all of the call sites, move the ones to functions in the
380 // current SCC to the end of the list.
381 unsigned FirstCallInSCC = CallSites.size();
382 for (unsigned I = 0; I < FirstCallInSCC; ++I)
383 if (Function *F = CallSites[I].first->getCalledFunction())
384 if (SCCFunctions.count(F))
385 std::swap(CallSites[I--], CallSites[--FirstCallInSCC]);
386
387 InlinedArrayAllocasTy InlinedArrayAllocas;
388 InlineFunctionInfo InlineInfo(&CG, GetAssumptionCache, PSI);
389
390 // Now that we have all of the call sites, loop over them and inline them if
391 // it looks profitable to do so.
392 bool Changed = false;
393 bool LocalChange;
394 do {
395 LocalChange = false;
396 // Iterate over the outer loop because inlining functions can cause indirect
397 // calls to become direct calls.
398 // CallSites may be modified inside so ranged for loop can not be used.
399 for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
400 auto &P = CallSites[CSi];
401 CallBase &CB = *P.first;
402 const int InlineHistoryID = P.second;
403
404 Function *Caller = CB.getCaller();
405 Function *Callee = CB.getCalledFunction();
406
407 // We can only inline direct calls to non-declarations.
408 if (!Callee || Callee->isDeclaration())
409 continue;
410
411 bool IsTriviallyDead = isInstructionTriviallyDead(&CB, &GetTLI(*Caller));
412
413 if (!IsTriviallyDead) {
414 // If this call site was obtained by inlining another function, verify
415 // that the include path for the function did not include the callee
416 // itself. If so, we'd be recursively inlining the same function,
417 // which would provide the same callsites, which would cause us to
418 // infinitely inline.
419 if (InlineHistoryID != -1 &&
420 inlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) {
421 setInlineRemark(CB, "recursive");
422 continue;
423 }
424 }
425
426 // FIXME for new PM: because of the old PM we currently generate ORE and
427 // in turn BFI on demand. With the new PM, the ORE dependency should
428 // just become a regular analysis dependency.
429 OptimizationRemarkEmitter ORE(Caller);
430
431 auto OIC = shouldInline(CB, GetInlineCost, ORE);
432 // If the policy determines that we should inline this function,
433 // delete the call instead.
434 if (!OIC)
435 continue;
436
437 // If this call site is dead and it is to a readonly function, we should
438 // just delete the call instead of trying to inline it, regardless of
439 // size. This happens because IPSCCP propagates the result out of the
440 // call and then we're left with the dead call.
441 if (IsTriviallyDead) {
442 LLVM_DEBUG(dbgs() << " -> Deleting dead call: " << CB << "\n");
443 // Update the call graph by deleting the edge from Callee to Caller.
444 setInlineRemark(CB, "trivially dead");
445 CG[Caller]->removeCallEdgeFor(CB);
446 CB.eraseFromParent();
447 ++NumCallsDeleted;
448 } else {
449 // Get DebugLoc to report. CB will be invalid after Inliner.
450 DebugLoc DLoc = CB.getDebugLoc();
451 BasicBlock *Block = CB.getParent();
452
453 // Attempt to inline the function.
454 using namespace ore;
455
456 InlineResult IR = inlineCallIfPossible(
457 CB, InlineInfo, InlinedArrayAllocas, InlineHistoryID,
458 InsertLifetime, AARGetter, ImportedFunctionsStats);
459 if (!IR.isSuccess()) {
460 setInlineRemark(CB, std::string(IR.getFailureReason()) + "; " +
461 inlineCostStr(*OIC));
462 ORE.emit([&]() {
463 return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc,
464 Block)
465 << NV("Callee", Callee) << " will not be inlined into "
466 << NV("Caller", Caller) << ": "
467 << NV("Reason", IR.getFailureReason());
468 });
469 continue;
470 }
471 ++NumInlined;
472
473 emitInlinedInto(ORE, DLoc, Block, *Callee, *Caller, *OIC);
474
475 // If inlining this function gave us any new call sites, throw them
476 // onto our worklist to process. They are useful inline candidates.
477 if (!InlineInfo.InlinedCalls.empty()) {
478 // Create a new inline history entry for this, so that we remember
479 // that these new callsites came about due to inlining Callee.
480 int NewHistoryID = InlineHistory.size();
481 InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
482
483 #ifndef NDEBUG
484 // Make sure no dupplicates in the inline candidates. This could
485 // happen when a callsite is simpilfied to reusing the return value
486 // of another callsite during function cloning, thus the other
487 // callsite will be reconsidered here.
488 DenseSet<CallBase *> DbgCallSites;
489 for (auto &II : CallSites)
490 DbgCallSites.insert(II.first);
491 #endif
492
493 for (Value *Ptr : InlineInfo.InlinedCalls) {
494 #ifndef NDEBUG
495 assert(DbgCallSites.count(dyn_cast<CallBase>(Ptr)) == 0);
496 #endif
497 CallSites.push_back(
498 std::make_pair(dyn_cast<CallBase>(Ptr), NewHistoryID));
499 }
500 }
501 }
502
503 // If we inlined or deleted the last possible call site to the function,
504 // delete the function body now.
505 if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
506 // TODO: Can remove if in SCC now.
507 !SCCFunctions.count(Callee) &&
508 // The function may be apparently dead, but if there are indirect
509 // callgraph references to the node, we cannot delete it yet, this
510 // could invalidate the CGSCC iterator.
511 CG[Callee]->getNumReferences() == 0) {
512 LLVM_DEBUG(dbgs() << " -> Deleting dead function: "
513 << Callee->getName() << "\n");
514 CallGraphNode *CalleeNode = CG[Callee];
515
516 // Remove any call graph edges from the callee to its callees.
517 CalleeNode->removeAllCalledFunctions();
518
519 // Removing the node for callee from the call graph and delete it.
520 delete CG.removeFunctionFromModule(CalleeNode);
521 ++NumDeleted;
522 }
523
524 // Remove this call site from the list. If possible, use
525 // swap/pop_back for efficiency, but do not use it if doing so would
526 // move a call site to a function in this SCC before the
527 // 'FirstCallInSCC' barrier.
528 if (SCC.isSingular()) {
529 CallSites[CSi] = CallSites.back();
530 CallSites.pop_back();
531 } else {
532 CallSites.erase(CallSites.begin() + CSi);
533 }
534 --CSi;
535
536 Changed = true;
537 LocalChange = true;
538 }
539 } while (LocalChange);
540
541 return Changed;
542 }
543
inlineCalls(CallGraphSCC & SCC)544 bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) {
545 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
546 ACT = &getAnalysis<AssumptionCacheTracker>();
547 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
548 GetTLI = [&](Function &F) -> const TargetLibraryInfo & {
549 return getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
550 };
551 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
552 return ACT->getAssumptionCache(F);
553 };
554 return inlineCallsImpl(
555 SCC, CG, GetAssumptionCache, PSI, GetTLI, InsertLifetime,
556 [&](CallBase &CB) { return getInlineCost(CB); }, LegacyAARGetter(*this),
557 ImportedFunctionsStats);
558 }
559
560 /// Remove now-dead linkonce functions at the end of
561 /// processing to avoid breaking the SCC traversal.
doFinalization(CallGraph & CG)562 bool LegacyInlinerBase::doFinalization(CallGraph &CG) {
563 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
564 ImportedFunctionsStats.dump(InlinerFunctionImportStats ==
565 InlinerFunctionImportStatsOpts::Verbose);
566 return removeDeadFunctions(CG);
567 }
568
569 /// Remove dead functions that are not included in DNR (Do Not Remove) list.
removeDeadFunctions(CallGraph & CG,bool AlwaysInlineOnly)570 bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG,
571 bool AlwaysInlineOnly) {
572 SmallVector<CallGraphNode *, 16> FunctionsToRemove;
573 SmallVector<Function *, 16> DeadFunctionsInComdats;
574
575 auto RemoveCGN = [&](CallGraphNode *CGN) {
576 // Remove any call graph edges from the function to its callees.
577 CGN->removeAllCalledFunctions();
578
579 // Remove any edges from the external node to the function's call graph
580 // node. These edges might have been made irrelegant due to
581 // optimization of the program.
582 CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
583
584 // Removing the node for callee from the call graph and delete it.
585 FunctionsToRemove.push_back(CGN);
586 };
587
588 // Scan for all of the functions, looking for ones that should now be removed
589 // from the program. Insert the dead ones in the FunctionsToRemove set.
590 for (const auto &I : CG) {
591 CallGraphNode *CGN = I.second.get();
592 Function *F = CGN->getFunction();
593 if (!F || F->isDeclaration())
594 continue;
595
596 // Handle the case when this function is called and we only want to care
597 // about always-inline functions. This is a bit of a hack to share code
598 // between here and the InlineAlways pass.
599 if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline))
600 continue;
601
602 // If the only remaining users of the function are dead constants, remove
603 // them.
604 F->removeDeadConstantUsers();
605
606 if (!F->isDefTriviallyDead())
607 continue;
608
609 // It is unsafe to drop a function with discardable linkage from a COMDAT
610 // without also dropping the other members of the COMDAT.
611 // The inliner doesn't visit non-function entities which are in COMDAT
612 // groups so it is unsafe to do so *unless* the linkage is local.
613 if (!F->hasLocalLinkage()) {
614 if (F->hasComdat()) {
615 DeadFunctionsInComdats.push_back(F);
616 continue;
617 }
618 }
619
620 RemoveCGN(CGN);
621 }
622 if (!DeadFunctionsInComdats.empty()) {
623 // Filter out the functions whose comdats remain alive.
624 filterDeadComdatFunctions(CG.getModule(), DeadFunctionsInComdats);
625 // Remove the rest.
626 for (Function *F : DeadFunctionsInComdats)
627 RemoveCGN(CG[F]);
628 }
629
630 if (FunctionsToRemove.empty())
631 return false;
632
633 // Now that we know which functions to delete, do so. We didn't want to do
634 // this inline, because that would invalidate our CallGraph::iterator
635 // objects. :(
636 //
637 // Note that it doesn't matter that we are iterating over a non-stable order
638 // here to do this, it doesn't matter which order the functions are deleted
639 // in.
640 array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
641 FunctionsToRemove.erase(
642 std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()),
643 FunctionsToRemove.end());
644 for (CallGraphNode *CGN : FunctionsToRemove) {
645 delete CG.removeFunctionFromModule(CGN);
646 ++NumDeleted;
647 }
648 return true;
649 }
650
~InlinerPass()651 InlinerPass::~InlinerPass() {
652 if (ImportedFunctionsStats) {
653 assert(InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No);
654 ImportedFunctionsStats->dump(InlinerFunctionImportStats ==
655 InlinerFunctionImportStatsOpts::Verbose);
656 }
657 }
658
659 InlineAdvisor &
getAdvisor(const ModuleAnalysisManagerCGSCCProxy::Result & MAM,FunctionAnalysisManager & FAM,Module & M)660 InlinerPass::getAdvisor(const ModuleAnalysisManagerCGSCCProxy::Result &MAM,
661 FunctionAnalysisManager &FAM, Module &M) {
662 auto *IAA = MAM.getCachedResult<InlineAdvisorAnalysis>(M);
663 if (!IAA) {
664 // It should still be possible to run the inliner as a stand-alone SCC pass,
665 // for test scenarios. In that case, we default to the
666 // DefaultInlineAdvisor, which doesn't need to keep state between SCC pass
667 // runs. It also uses just the default InlineParams.
668 // In this case, we need to use the provided FAM, which is valid for the
669 // duration of the inliner pass, and thus the lifetime of the owned advisor.
670 // The one we would get from the MAM can be invalidated as a result of the
671 // inliner's activity.
672 OwnedDefaultAdvisor.emplace(FAM, getInlineParams());
673 return *OwnedDefaultAdvisor;
674 }
675 assert(IAA->getAdvisor() &&
676 "Expected a present InlineAdvisorAnalysis also have an "
677 "InlineAdvisor initialized");
678 return *IAA->getAdvisor();
679 }
680
run(LazyCallGraph::SCC & InitialC,CGSCCAnalysisManager & AM,LazyCallGraph & CG,CGSCCUpdateResult & UR)681 PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC,
682 CGSCCAnalysisManager &AM, LazyCallGraph &CG,
683 CGSCCUpdateResult &UR) {
684 const auto &MAMProxy =
685 AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG);
686 bool Changed = false;
687
688 assert(InitialC.size() > 0 && "Cannot handle an empty SCC!");
689 Module &M = *InitialC.begin()->getFunction().getParent();
690 ProfileSummaryInfo *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(M);
691
692 FunctionAnalysisManager &FAM =
693 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG)
694 .getManager();
695
696 InlineAdvisor &Advisor = getAdvisor(MAMProxy, FAM, M);
697 Advisor.onPassEntry();
698
699 auto AdvisorOnExit = make_scope_exit([&] { Advisor.onPassExit(); });
700
701 if (!ImportedFunctionsStats &&
702 InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) {
703 ImportedFunctionsStats =
704 std::make_unique<ImportedFunctionsInliningStatistics>();
705 ImportedFunctionsStats->setModuleInfo(M);
706 }
707
708 // We use a single common worklist for calls across the entire SCC. We
709 // process these in-order and append new calls introduced during inlining to
710 // the end.
711 //
712 // Note that this particular order of processing is actually critical to
713 // avoid very bad behaviors. Consider *highly connected* call graphs where
714 // each function contains a small amonut of code and a couple of calls to
715 // other functions. Because the LLVM inliner is fundamentally a bottom-up
716 // inliner, it can handle gracefully the fact that these all appear to be
717 // reasonable inlining candidates as it will flatten things until they become
718 // too big to inline, and then move on and flatten another batch.
719 //
720 // However, when processing call edges *within* an SCC we cannot rely on this
721 // bottom-up behavior. As a consequence, with heavily connected *SCCs* of
722 // functions we can end up incrementally inlining N calls into each of
723 // N functions because each incremental inlining decision looks good and we
724 // don't have a topological ordering to prevent explosions.
725 //
726 // To compensate for this, we don't process transitive edges made immediate
727 // by inlining until we've done one pass of inlining across the entire SCC.
728 // Large, highly connected SCCs still lead to some amount of code bloat in
729 // this model, but it is uniformly spread across all the functions in the SCC
730 // and eventually they all become too large to inline, rather than
731 // incrementally maknig a single function grow in a super linear fashion.
732 SmallVector<std::pair<CallBase *, int>, 16> Calls;
733
734 // Populate the initial list of calls in this SCC.
735 for (auto &N : InitialC) {
736 auto &ORE =
737 FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction());
738 // We want to generally process call sites top-down in order for
739 // simplifications stemming from replacing the call with the returned value
740 // after inlining to be visible to subsequent inlining decisions.
741 // FIXME: Using instructions sequence is a really bad way to do this.
742 // Instead we should do an actual RPO walk of the function body.
743 for (Instruction &I : instructions(N.getFunction()))
744 if (auto *CB = dyn_cast<CallBase>(&I))
745 if (Function *Callee = CB->getCalledFunction()) {
746 if (!Callee->isDeclaration())
747 Calls.push_back({CB, -1});
748 else if (!isa<IntrinsicInst>(I)) {
749 using namespace ore;
750 setInlineRemark(*CB, "unavailable definition");
751 ORE.emit([&]() {
752 return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
753 << NV("Callee", Callee) << " will not be inlined into "
754 << NV("Caller", CB->getCaller())
755 << " because its definition is unavailable"
756 << setIsVerbose();
757 });
758 }
759 }
760 }
761 if (Calls.empty())
762 return PreservedAnalyses::all();
763
764 // Capture updatable variables for the current SCC and RefSCC.
765 auto *C = &InitialC;
766 auto *RC = &C->getOuterRefSCC();
767
768 // When inlining a callee produces new call sites, we want to keep track of
769 // the fact that they were inlined from the callee. This allows us to avoid
770 // infinite inlining in some obscure cases. To represent this, we use an
771 // index into the InlineHistory vector.
772 SmallVector<std::pair<Function *, int>, 16> InlineHistory;
773
774 // Track a set vector of inlined callees so that we can augment the caller
775 // with all of their edges in the call graph before pruning out the ones that
776 // got simplified away.
777 SmallSetVector<Function *, 4> InlinedCallees;
778
779 // Track the dead functions to delete once finished with inlining calls. We
780 // defer deleting these to make it easier to handle the call graph updates.
781 SmallVector<Function *, 4> DeadFunctions;
782
783 // Loop forward over all of the calls. Note that we cannot cache the size as
784 // inlining can introduce new calls that need to be processed.
785 for (int I = 0; I < (int)Calls.size(); ++I) {
786 // We expect the calls to typically be batched with sequences of calls that
787 // have the same caller, so we first set up some shared infrastructure for
788 // this caller. We also do any pruning we can at this layer on the caller
789 // alone.
790 Function &F = *Calls[I].first->getCaller();
791 LazyCallGraph::Node &N = *CG.lookup(F);
792 if (CG.lookupSCC(N) != C)
793 continue;
794 if (!Calls[I].first->getCalledFunction()->hasFnAttribute(
795 Attribute::AlwaysInline) &&
796 F.hasOptNone()) {
797 setInlineRemark(*Calls[I].first, "optnone attribute");
798 continue;
799 }
800
801 LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n");
802
803 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
804 return FAM.getResult<AssumptionAnalysis>(F);
805 };
806
807 // Now process as many calls as we have within this caller in the sequence.
808 // We bail out as soon as the caller has to change so we can update the
809 // call graph and prepare the context of that new caller.
810 bool DidInline = false;
811 for (; I < (int)Calls.size() && Calls[I].first->getCaller() == &F; ++I) {
812 auto &P = Calls[I];
813 CallBase *CB = P.first;
814 const int InlineHistoryID = P.second;
815 Function &Callee = *CB->getCalledFunction();
816
817 if (InlineHistoryID != -1 &&
818 inlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) {
819 setInlineRemark(*CB, "recursive");
820 continue;
821 }
822
823 // Check if this inlining may repeat breaking an SCC apart that has
824 // already been split once before. In that case, inlining here may
825 // trigger infinite inlining, much like is prevented within the inliner
826 // itself by the InlineHistory above, but spread across CGSCC iterations
827 // and thus hidden from the full inline history.
828 if (CG.lookupSCC(*CG.lookup(Callee)) == C &&
829 UR.InlinedInternalEdges.count({&N, C})) {
830 LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node "
831 "previously split out of this SCC by inlining: "
832 << F.getName() << " -> " << Callee.getName() << "\n");
833 setInlineRemark(*CB, "recursive SCC split");
834 continue;
835 }
836
837 auto Advice = Advisor.getAdvice(*CB);
838 // Check whether we want to inline this callsite.
839 if (!Advice->isInliningRecommended()) {
840 Advice->recordUnattemptedInlining();
841 continue;
842 }
843
844 // Setup the data structure used to plumb customization into the
845 // `InlineFunction` routine.
846 InlineFunctionInfo IFI(
847 /*cg=*/nullptr, GetAssumptionCache, PSI,
848 &FAM.getResult<BlockFrequencyAnalysis>(*(CB->getCaller())),
849 &FAM.getResult<BlockFrequencyAnalysis>(Callee));
850
851 InlineResult IR = InlineFunction(*CB, IFI);
852 if (!IR.isSuccess()) {
853 Advice->recordUnsuccessfulInlining(IR);
854 continue;
855 }
856
857 DidInline = true;
858 InlinedCallees.insert(&Callee);
859 ++NumInlined;
860
861 // Add any new callsites to defined functions to the worklist.
862 if (!IFI.InlinedCallSites.empty()) {
863 int NewHistoryID = InlineHistory.size();
864 InlineHistory.push_back({&Callee, InlineHistoryID});
865
866 for (CallBase *ICB : reverse(IFI.InlinedCallSites)) {
867 Function *NewCallee = ICB->getCalledFunction();
868 if (!NewCallee) {
869 // Try to promote an indirect (virtual) call without waiting for
870 // the post-inline cleanup and the next DevirtSCCRepeatedPass
871 // iteration because the next iteration may not happen and we may
872 // miss inlining it.
873 if (tryPromoteCall(*ICB))
874 NewCallee = ICB->getCalledFunction();
875 }
876 if (NewCallee)
877 if (!NewCallee->isDeclaration())
878 Calls.push_back({ICB, NewHistoryID});
879 }
880 }
881
882 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
883 ImportedFunctionsStats->recordInline(F, Callee);
884
885 // Merge the attributes based on the inlining.
886 AttributeFuncs::mergeAttributesForInlining(F, Callee);
887
888 // For local functions, check whether this makes the callee trivially
889 // dead. In that case, we can drop the body of the function eagerly
890 // which may reduce the number of callers of other functions to one,
891 // changing inline cost thresholds.
892 bool CalleeWasDeleted = false;
893 if (Callee.hasLocalLinkage()) {
894 // To check this we also need to nuke any dead constant uses (perhaps
895 // made dead by this operation on other functions).
896 Callee.removeDeadConstantUsers();
897 if (Callee.use_empty() && !CG.isLibFunction(Callee)) {
898 Calls.erase(
899 std::remove_if(Calls.begin() + I + 1, Calls.end(),
900 [&](const std::pair<CallBase *, int> &Call) {
901 return Call.first->getCaller() == &Callee;
902 }),
903 Calls.end());
904 // Clear the body and queue the function itself for deletion when we
905 // finish inlining and call graph updates.
906 // Note that after this point, it is an error to do anything other
907 // than use the callee's address or delete it.
908 Callee.dropAllReferences();
909 assert(find(DeadFunctions, &Callee) == DeadFunctions.end() &&
910 "Cannot put cause a function to become dead twice!");
911 DeadFunctions.push_back(&Callee);
912 CalleeWasDeleted = true;
913 }
914 }
915 if (CalleeWasDeleted)
916 Advice->recordInliningWithCalleeDeleted();
917 else
918 Advice->recordInlining();
919 }
920
921 // Back the call index up by one to put us in a good position to go around
922 // the outer loop.
923 --I;
924
925 if (!DidInline)
926 continue;
927 Changed = true;
928
929 // Add all the inlined callees' edges as ref edges to the caller. These are
930 // by definition trivial edges as we always have *some* transitive ref edge
931 // chain. While in some cases these edges are direct calls inside the
932 // callee, they have to be modeled in the inliner as reference edges as
933 // there may be a reference edge anywhere along the chain from the current
934 // caller to the callee that causes the whole thing to appear like
935 // a (transitive) reference edge that will require promotion to a call edge
936 // below.
937 for (Function *InlinedCallee : InlinedCallees) {
938 LazyCallGraph::Node &CalleeN = *CG.lookup(*InlinedCallee);
939 for (LazyCallGraph::Edge &E : *CalleeN)
940 RC->insertTrivialRefEdge(N, E.getNode());
941 }
942
943 // At this point, since we have made changes we have at least removed
944 // a call instruction. However, in the process we do some incremental
945 // simplification of the surrounding code. This simplification can
946 // essentially do all of the same things as a function pass and we can
947 // re-use the exact same logic for updating the call graph to reflect the
948 // change.
949
950 // Inside the update, we also update the FunctionAnalysisManager in the
951 // proxy for this particular SCC. We do this as the SCC may have changed and
952 // as we're going to mutate this particular function we want to make sure
953 // the proxy is in place to forward any invalidation events.
954 LazyCallGraph::SCC *OldC = C;
955 C = &updateCGAndAnalysisManagerForFunctionPass(CG, *C, N, AM, UR, FAM);
956 LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n");
957 RC = &C->getOuterRefSCC();
958
959 // If this causes an SCC to split apart into multiple smaller SCCs, there
960 // is a subtle risk we need to prepare for. Other transformations may
961 // expose an "infinite inlining" opportunity later, and because of the SCC
962 // mutation, we will revisit this function and potentially re-inline. If we
963 // do, and that re-inlining also has the potentially to mutate the SCC
964 // structure, the infinite inlining problem can manifest through infinite
965 // SCC splits and merges. To avoid this, we capture the originating caller
966 // node and the SCC containing the call edge. This is a slight over
967 // approximation of the possible inlining decisions that must be avoided,
968 // but is relatively efficient to store. We use C != OldC to know when
969 // a new SCC is generated and the original SCC may be generated via merge
970 // in later iterations.
971 //
972 // It is also possible that even if no new SCC is generated
973 // (i.e., C == OldC), the original SCC could be split and then merged
974 // into the same one as itself. and the original SCC will be added into
975 // UR.CWorklist again, we want to catch such cases too.
976 //
977 // FIXME: This seems like a very heavyweight way of retaining the inline
978 // history, we should look for a more efficient way of tracking it.
979 if ((C != OldC || UR.CWorklist.count(OldC)) &&
980 llvm::any_of(InlinedCallees, [&](Function *Callee) {
981 return CG.lookupSCC(*CG.lookup(*Callee)) == OldC;
982 })) {
983 LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, "
984 "retaining this to avoid infinite inlining.\n");
985 UR.InlinedInternalEdges.insert({&N, OldC});
986 }
987 InlinedCallees.clear();
988 }
989
990 // Now that we've finished inlining all of the calls across this SCC, delete
991 // all of the trivially dead functions, updating the call graph and the CGSCC
992 // pass manager in the process.
993 //
994 // Note that this walks a pointer set which has non-deterministic order but
995 // that is OK as all we do is delete things and add pointers to unordered
996 // sets.
997 for (Function *DeadF : DeadFunctions) {
998 // Get the necessary information out of the call graph and nuke the
999 // function there. Also, clear out any cached analyses.
1000 auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF));
1001 FAM.clear(*DeadF, DeadF->getName());
1002 AM.clear(DeadC, DeadC.getName());
1003 auto &DeadRC = DeadC.getOuterRefSCC();
1004 CG.removeDeadFunction(*DeadF);
1005
1006 // Mark the relevant parts of the call graph as invalid so we don't visit
1007 // them.
1008 UR.InvalidatedSCCs.insert(&DeadC);
1009 UR.InvalidatedRefSCCs.insert(&DeadRC);
1010
1011 // And delete the actual function from the module.
1012 // The Advisor may use Function pointers to efficiently index various
1013 // internal maps, e.g. for memoization. Function cleanup passes like
1014 // argument promotion create new functions. It is possible for a new
1015 // function to be allocated at the address of a deleted function. We could
1016 // index using names, but that's inefficient. Alternatively, we let the
1017 // Advisor free the functions when it sees fit.
1018 DeadF->getBasicBlockList().clear();
1019 M.getFunctionList().remove(DeadF);
1020
1021 ++NumDeleted;
1022 }
1023
1024 if (!Changed)
1025 return PreservedAnalyses::all();
1026
1027 // Even if we change the IR, we update the core CGSCC data structures and so
1028 // can preserve the proxy to the function analysis manager.
1029 PreservedAnalyses PA;
1030 PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1031 return PA;
1032 }
1033
ModuleInlinerWrapperPass(InlineParams Params,bool Debugging,InliningAdvisorMode Mode,unsigned MaxDevirtIterations)1034 ModuleInlinerWrapperPass::ModuleInlinerWrapperPass(InlineParams Params,
1035 bool Debugging,
1036 InliningAdvisorMode Mode,
1037 unsigned MaxDevirtIterations)
1038 : Params(Params), Mode(Mode), MaxDevirtIterations(MaxDevirtIterations),
1039 PM(Debugging), MPM(Debugging) {
1040 // Run the inliner first. The theory is that we are walking bottom-up and so
1041 // the callees have already been fully optimized, and we want to inline them
1042 // into the callers so that our optimizations can reflect that.
1043 // For PreLinkThinLTO pass, we disable hot-caller heuristic for sample PGO
1044 // because it makes profile annotation in the backend inaccurate.
1045 PM.addPass(InlinerPass());
1046 }
1047
run(Module & M,ModuleAnalysisManager & MAM)1048 PreservedAnalyses ModuleInlinerWrapperPass::run(Module &M,
1049 ModuleAnalysisManager &MAM) {
1050 auto &IAA = MAM.getResult<InlineAdvisorAnalysis>(M);
1051 if (!IAA.tryCreate(Params, Mode)) {
1052 M.getContext().emitError(
1053 "Could not setup Inlining Advisor for the requested "
1054 "mode and/or options");
1055 return PreservedAnalyses::all();
1056 }
1057
1058 // We wrap the CGSCC pipeline in a devirtualization repeater. This will try
1059 // to detect when we devirtualize indirect calls and iterate the SCC passes
1060 // in that case to try and catch knock-on inlining or function attrs
1061 // opportunities. Then we add it to the module pipeline by walking the SCCs
1062 // in postorder (or bottom-up).
1063 // If MaxDevirtIterations is 0, we just don't use the devirtualization
1064 // wrapper.
1065 if (MaxDevirtIterations == 0)
1066 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(PM)));
1067 else
1068 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(
1069 createDevirtSCCRepeatedPass(std::move(PM), MaxDevirtIterations)));
1070 auto Ret = MPM.run(M, MAM);
1071
1072 IAA.clear();
1073 return Ret;
1074 }
1075