1 //===- Inliner.cpp - Code common to all inliners --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the mechanics required to implement inlining without
10 // missing any calls and updating the call graph.  The decisions of which calls
11 // are profitable to inline are implemented elsewhere.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/Inliner.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/ScopeExit.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/BasicAliasAnalysis.h"
29 #include "llvm/Analysis/BlockFrequencyInfo.h"
30 #include "llvm/Analysis/CGSCCPassManager.h"
31 #include "llvm/Analysis/CallGraph.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Analysis/InlineAdvisor.h"
34 #include "llvm/Analysis/InlineCost.h"
35 #include "llvm/Analysis/LazyCallGraph.h"
36 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
37 #include "llvm/Analysis/ProfileSummaryInfo.h"
38 #include "llvm/Analysis/TargetLibraryInfo.h"
39 #include "llvm/Analysis/TargetTransformInfo.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/DiagnosticInfo.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/InstIterator.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/IntrinsicInst.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/PassManager.h"
54 #include "llvm/IR/User.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
62 #include "llvm/Transforms/Utils/Cloning.h"
63 #include "llvm/Transforms/Utils/ImportedFunctionsInliningStatistics.h"
64 #include "llvm/Transforms/Utils/Local.h"
65 #include "llvm/Transforms/Utils/ModuleUtils.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <functional>
69 #include <sstream>
70 #include <tuple>
71 #include <utility>
72 #include <vector>
73 
74 using namespace llvm;
75 
76 #define DEBUG_TYPE "inline"
77 
78 STATISTIC(NumInlined, "Number of functions inlined");
79 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
80 STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
81 STATISTIC(NumMergedAllocas, "Number of allocas merged together");
82 
83 /// Flag to disable manual alloca merging.
84 ///
85 /// Merging of allocas was originally done as a stack-size saving technique
86 /// prior to LLVM's code generator having support for stack coloring based on
87 /// lifetime markers. It is now in the process of being removed. To experiment
88 /// with disabling it and relying fully on lifetime marker based stack
89 /// coloring, you can pass this flag to LLVM.
90 static cl::opt<bool>
91     DisableInlinedAllocaMerging("disable-inlined-alloca-merging",
92                                 cl::init(false), cl::Hidden);
93 
94 namespace {
95 
96 enum class InlinerFunctionImportStatsOpts {
97   No = 0,
98   Basic = 1,
99   Verbose = 2,
100 };
101 
102 } // end anonymous namespace
103 
104 static cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats(
105     "inliner-function-import-stats",
106     cl::init(InlinerFunctionImportStatsOpts::No),
107     cl::values(clEnumValN(InlinerFunctionImportStatsOpts::Basic, "basic",
108                           "basic statistics"),
109                clEnumValN(InlinerFunctionImportStatsOpts::Verbose, "verbose",
110                           "printing of statistics for each inlined function")),
111     cl::Hidden, cl::desc("Enable inliner stats for imported functions"));
112 
LegacyInlinerBase(char & ID)113 LegacyInlinerBase::LegacyInlinerBase(char &ID) : CallGraphSCCPass(ID) {}
114 
LegacyInlinerBase(char & ID,bool InsertLifetime)115 LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime)
116     : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {}
117 
118 /// For this class, we declare that we require and preserve the call graph.
119 /// If the derived class implements this method, it should
120 /// always explicitly call the implementation here.
getAnalysisUsage(AnalysisUsage & AU) const121 void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const {
122   AU.addRequired<AssumptionCacheTracker>();
123   AU.addRequired<ProfileSummaryInfoWrapperPass>();
124   AU.addRequired<TargetLibraryInfoWrapperPass>();
125   getAAResultsAnalysisUsage(AU);
126   CallGraphSCCPass::getAnalysisUsage(AU);
127 }
128 
129 using InlinedArrayAllocasTy = DenseMap<ArrayType *, std::vector<AllocaInst *>>;
130 
131 /// Look at all of the allocas that we inlined through this call site.  If we
132 /// have already inlined other allocas through other calls into this function,
133 /// then we know that they have disjoint lifetimes and that we can merge them.
134 ///
135 /// There are many heuristics possible for merging these allocas, and the
136 /// different options have different tradeoffs.  One thing that we *really*
137 /// don't want to hurt is SRoA: once inlining happens, often allocas are no
138 /// longer address taken and so they can be promoted.
139 ///
140 /// Our "solution" for that is to only merge allocas whose outermost type is an
141 /// array type.  These are usually not promoted because someone is using a
142 /// variable index into them.  These are also often the most important ones to
143 /// merge.
144 ///
145 /// A better solution would be to have real memory lifetime markers in the IR
146 /// and not have the inliner do any merging of allocas at all.  This would
147 /// allow the backend to do proper stack slot coloring of all allocas that
148 /// *actually make it to the backend*, which is really what we want.
149 ///
150 /// Because we don't have this information, we do this simple and useful hack.
mergeInlinedArrayAllocas(Function * Caller,InlineFunctionInfo & IFI,InlinedArrayAllocasTy & InlinedArrayAllocas,int InlineHistory)151 static void mergeInlinedArrayAllocas(Function *Caller, InlineFunctionInfo &IFI,
152                                      InlinedArrayAllocasTy &InlinedArrayAllocas,
153                                      int InlineHistory) {
154   SmallPtrSet<AllocaInst *, 16> UsedAllocas;
155 
156   // When processing our SCC, check to see if the call site was inlined from
157   // some other call site.  For example, if we're processing "A" in this code:
158   //   A() { B() }
159   //   B() { x = alloca ... C() }
160   //   C() { y = alloca ... }
161   // Assume that C was not inlined into B initially, and so we're processing A
162   // and decide to inline B into A.  Doing this makes an alloca available for
163   // reuse and makes a callsite (C) available for inlining.  When we process
164   // the C call site we don't want to do any alloca merging between X and Y
165   // because their scopes are not disjoint.  We could make this smarter by
166   // keeping track of the inline history for each alloca in the
167   // InlinedArrayAllocas but this isn't likely to be a significant win.
168   if (InlineHistory != -1) // Only do merging for top-level call sites in SCC.
169     return;
170 
171   // Loop over all the allocas we have so far and see if they can be merged with
172   // a previously inlined alloca.  If not, remember that we had it.
173   for (unsigned AllocaNo = 0, E = IFI.StaticAllocas.size(); AllocaNo != E;
174        ++AllocaNo) {
175     AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
176 
177     // Don't bother trying to merge array allocations (they will usually be
178     // canonicalized to be an allocation *of* an array), or allocations whose
179     // type is not itself an array (because we're afraid of pessimizing SRoA).
180     ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
181     if (!ATy || AI->isArrayAllocation())
182       continue;
183 
184     // Get the list of all available allocas for this array type.
185     std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy];
186 
187     // Loop over the allocas in AllocasForType to see if we can reuse one.  Note
188     // that we have to be careful not to reuse the same "available" alloca for
189     // multiple different allocas that we just inlined, we use the 'UsedAllocas'
190     // set to keep track of which "available" allocas are being used by this
191     // function.  Also, AllocasForType can be empty of course!
192     bool MergedAwayAlloca = false;
193     for (AllocaInst *AvailableAlloca : AllocasForType) {
194       Align Align1 = AI->getAlign();
195       Align Align2 = AvailableAlloca->getAlign();
196 
197       // The available alloca has to be in the right function, not in some other
198       // function in this SCC.
199       if (AvailableAlloca->getParent() != AI->getParent())
200         continue;
201 
202       // If the inlined function already uses this alloca then we can't reuse
203       // it.
204       if (!UsedAllocas.insert(AvailableAlloca).second)
205         continue;
206 
207       // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
208       // success!
209       LLVM_DEBUG(dbgs() << "    ***MERGED ALLOCA: " << *AI
210                         << "\n\t\tINTO: " << *AvailableAlloca << '\n');
211 
212       // Move affected dbg.declare calls immediately after the new alloca to
213       // avoid the situation when a dbg.declare precedes its alloca.
214       if (auto *L = LocalAsMetadata::getIfExists(AI))
215         if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
216           for (User *U : MDV->users())
217             if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
218               DDI->moveBefore(AvailableAlloca->getNextNode());
219 
220       AI->replaceAllUsesWith(AvailableAlloca);
221 
222       if (Align1 > Align2)
223         AvailableAlloca->setAlignment(AI->getAlign());
224 
225       AI->eraseFromParent();
226       MergedAwayAlloca = true;
227       ++NumMergedAllocas;
228       IFI.StaticAllocas[AllocaNo] = nullptr;
229       break;
230     }
231 
232     // If we already nuked the alloca, we're done with it.
233     if (MergedAwayAlloca)
234       continue;
235 
236     // If we were unable to merge away the alloca either because there are no
237     // allocas of the right type available or because we reused them all
238     // already, remember that this alloca came from an inlined function and mark
239     // it used so we don't reuse it for other allocas from this inline
240     // operation.
241     AllocasForType.push_back(AI);
242     UsedAllocas.insert(AI);
243   }
244 }
245 
246 /// If it is possible to inline the specified call site,
247 /// do so and update the CallGraph for this operation.
248 ///
249 /// This function also does some basic book-keeping to update the IR.  The
250 /// InlinedArrayAllocas map keeps track of any allocas that are already
251 /// available from other functions inlined into the caller.  If we are able to
252 /// inline this call site we attempt to reuse already available allocas or add
253 /// any new allocas to the set if not possible.
inlineCallIfPossible(CallBase & CB,InlineFunctionInfo & IFI,InlinedArrayAllocasTy & InlinedArrayAllocas,int InlineHistory,bool InsertLifetime,function_ref<AAResults & (Function &)> & AARGetter,ImportedFunctionsInliningStatistics & ImportedFunctionsStats)254 static InlineResult inlineCallIfPossible(
255     CallBase &CB, InlineFunctionInfo &IFI,
256     InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory,
257     bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter,
258     ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
259   Function *Callee = CB.getCalledFunction();
260   Function *Caller = CB.getCaller();
261 
262   AAResults &AAR = AARGetter(*Callee);
263 
264   // Try to inline the function.  Get the list of static allocas that were
265   // inlined.
266   InlineResult IR = InlineFunction(CB, IFI, &AAR, InsertLifetime);
267   if (!IR.isSuccess())
268     return IR;
269 
270   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
271     ImportedFunctionsStats.recordInline(*Caller, *Callee);
272 
273   AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee);
274 
275   if (!DisableInlinedAllocaMerging)
276     mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory);
277 
278   return IR; // success
279 }
280 
281 /// Return true if the specified inline history ID
282 /// indicates an inline history that includes the specified function.
inlineHistoryIncludes(Function * F,int InlineHistoryID,const SmallVectorImpl<std::pair<Function *,int>> & InlineHistory)283 static bool inlineHistoryIncludes(
284     Function *F, int InlineHistoryID,
285     const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) {
286   while (InlineHistoryID != -1) {
287     assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
288            "Invalid inline history ID");
289     if (InlineHistory[InlineHistoryID].first == F)
290       return true;
291     InlineHistoryID = InlineHistory[InlineHistoryID].second;
292   }
293   return false;
294 }
295 
doInitialization(CallGraph & CG)296 bool LegacyInlinerBase::doInitialization(CallGraph &CG) {
297   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
298     ImportedFunctionsStats.setModuleInfo(CG.getModule());
299   return false; // No changes to CallGraph.
300 }
301 
runOnSCC(CallGraphSCC & SCC)302 bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) {
303   if (skipSCC(SCC))
304     return false;
305   return inlineCalls(SCC);
306 }
307 
308 static bool
inlineCallsImpl(CallGraphSCC & SCC,CallGraph & CG,std::function<AssumptionCache & (Function &)> GetAssumptionCache,ProfileSummaryInfo * PSI,std::function<const TargetLibraryInfo & (Function &)> GetTLI,bool InsertLifetime,function_ref<InlineCost (CallBase & CB)> GetInlineCost,function_ref<AAResults & (Function &)> AARGetter,ImportedFunctionsInliningStatistics & ImportedFunctionsStats)309 inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG,
310                 std::function<AssumptionCache &(Function &)> GetAssumptionCache,
311                 ProfileSummaryInfo *PSI,
312                 std::function<const TargetLibraryInfo &(Function &)> GetTLI,
313                 bool InsertLifetime,
314                 function_ref<InlineCost(CallBase &CB)> GetInlineCost,
315                 function_ref<AAResults &(Function &)> AARGetter,
316                 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
317   SmallPtrSet<Function *, 8> SCCFunctions;
318   LLVM_DEBUG(dbgs() << "Inliner visiting SCC:");
319   for (CallGraphNode *Node : SCC) {
320     Function *F = Node->getFunction();
321     if (F)
322       SCCFunctions.insert(F);
323     LLVM_DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
324   }
325 
326   // Scan through and identify all call sites ahead of time so that we only
327   // inline call sites in the original functions, not call sites that result
328   // from inlining other functions.
329   SmallVector<std::pair<CallBase *, int>, 16> CallSites;
330 
331   // When inlining a callee produces new call sites, we want to keep track of
332   // the fact that they were inlined from the callee.  This allows us to avoid
333   // infinite inlining in some obscure cases.  To represent this, we use an
334   // index into the InlineHistory vector.
335   SmallVector<std::pair<Function *, int>, 8> InlineHistory;
336 
337   for (CallGraphNode *Node : SCC) {
338     Function *F = Node->getFunction();
339     if (!F || F->isDeclaration())
340       continue;
341 
342     OptimizationRemarkEmitter ORE(F);
343     for (BasicBlock &BB : *F)
344       for (Instruction &I : BB) {
345         auto *CB = dyn_cast<CallBase>(&I);
346         // If this isn't a call, or it is a call to an intrinsic, it can
347         // never be inlined.
348         if (!CB || isa<IntrinsicInst>(I))
349           continue;
350 
351         // If this is a direct call to an external function, we can never inline
352         // it.  If it is an indirect call, inlining may resolve it to be a
353         // direct call, so we keep it.
354         if (Function *Callee = CB->getCalledFunction())
355           if (Callee->isDeclaration()) {
356             using namespace ore;
357 
358             setInlineRemark(*CB, "unavailable definition");
359             ORE.emit([&]() {
360               return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
361                      << NV("Callee", Callee) << " will not be inlined into "
362                      << NV("Caller", CB->getCaller())
363                      << " because its definition is unavailable"
364                      << setIsVerbose();
365             });
366             continue;
367           }
368 
369         CallSites.push_back(std::make_pair(CB, -1));
370       }
371   }
372 
373   LLVM_DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
374 
375   // If there are no calls in this function, exit early.
376   if (CallSites.empty())
377     return false;
378 
379   // Now that we have all of the call sites, move the ones to functions in the
380   // current SCC to the end of the list.
381   unsigned FirstCallInSCC = CallSites.size();
382   for (unsigned I = 0; I < FirstCallInSCC; ++I)
383     if (Function *F = CallSites[I].first->getCalledFunction())
384       if (SCCFunctions.count(F))
385         std::swap(CallSites[I--], CallSites[--FirstCallInSCC]);
386 
387   InlinedArrayAllocasTy InlinedArrayAllocas;
388   InlineFunctionInfo InlineInfo(&CG, GetAssumptionCache, PSI);
389 
390   // Now that we have all of the call sites, loop over them and inline them if
391   // it looks profitable to do so.
392   bool Changed = false;
393   bool LocalChange;
394   do {
395     LocalChange = false;
396     // Iterate over the outer loop because inlining functions can cause indirect
397     // calls to become direct calls.
398     // CallSites may be modified inside so ranged for loop can not be used.
399     for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
400       auto &P = CallSites[CSi];
401       CallBase &CB = *P.first;
402       const int InlineHistoryID = P.second;
403 
404       Function *Caller = CB.getCaller();
405       Function *Callee = CB.getCalledFunction();
406 
407       // We can only inline direct calls to non-declarations.
408       if (!Callee || Callee->isDeclaration())
409         continue;
410 
411       bool IsTriviallyDead = isInstructionTriviallyDead(&CB, &GetTLI(*Caller));
412 
413       if (!IsTriviallyDead) {
414         // If this call site was obtained by inlining another function, verify
415         // that the include path for the function did not include the callee
416         // itself.  If so, we'd be recursively inlining the same function,
417         // which would provide the same callsites, which would cause us to
418         // infinitely inline.
419         if (InlineHistoryID != -1 &&
420             inlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) {
421           setInlineRemark(CB, "recursive");
422           continue;
423         }
424       }
425 
426       // FIXME for new PM: because of the old PM we currently generate ORE and
427       // in turn BFI on demand.  With the new PM, the ORE dependency should
428       // just become a regular analysis dependency.
429       OptimizationRemarkEmitter ORE(Caller);
430 
431       auto OIC = shouldInline(CB, GetInlineCost, ORE);
432       // If the policy determines that we should inline this function,
433       // delete the call instead.
434       if (!OIC)
435         continue;
436 
437       // If this call site is dead and it is to a readonly function, we should
438       // just delete the call instead of trying to inline it, regardless of
439       // size.  This happens because IPSCCP propagates the result out of the
440       // call and then we're left with the dead call.
441       if (IsTriviallyDead) {
442         LLVM_DEBUG(dbgs() << "    -> Deleting dead call: " << CB << "\n");
443         // Update the call graph by deleting the edge from Callee to Caller.
444         setInlineRemark(CB, "trivially dead");
445         CG[Caller]->removeCallEdgeFor(CB);
446         CB.eraseFromParent();
447         ++NumCallsDeleted;
448       } else {
449         // Get DebugLoc to report. CB will be invalid after Inliner.
450         DebugLoc DLoc = CB.getDebugLoc();
451         BasicBlock *Block = CB.getParent();
452 
453         // Attempt to inline the function.
454         using namespace ore;
455 
456         InlineResult IR = inlineCallIfPossible(
457             CB, InlineInfo, InlinedArrayAllocas, InlineHistoryID,
458             InsertLifetime, AARGetter, ImportedFunctionsStats);
459         if (!IR.isSuccess()) {
460           setInlineRemark(CB, std::string(IR.getFailureReason()) + "; " +
461                                   inlineCostStr(*OIC));
462           ORE.emit([&]() {
463             return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc,
464                                             Block)
465                    << NV("Callee", Callee) << " will not be inlined into "
466                    << NV("Caller", Caller) << ": "
467                    << NV("Reason", IR.getFailureReason());
468           });
469           continue;
470         }
471         ++NumInlined;
472 
473         emitInlinedInto(ORE, DLoc, Block, *Callee, *Caller, *OIC);
474 
475         // If inlining this function gave us any new call sites, throw them
476         // onto our worklist to process.  They are useful inline candidates.
477         if (!InlineInfo.InlinedCalls.empty()) {
478           // Create a new inline history entry for this, so that we remember
479           // that these new callsites came about due to inlining Callee.
480           int NewHistoryID = InlineHistory.size();
481           InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
482 
483 #ifndef NDEBUG
484           // Make sure no dupplicates in the inline candidates. This could
485           // happen when a callsite is simpilfied to reusing the return value
486           // of another callsite during function cloning, thus the other
487           // callsite will be reconsidered here.
488           DenseSet<CallBase *> DbgCallSites;
489           for (auto &II : CallSites)
490             DbgCallSites.insert(II.first);
491 #endif
492 
493           for (Value *Ptr : InlineInfo.InlinedCalls) {
494 #ifndef NDEBUG
495             assert(DbgCallSites.count(dyn_cast<CallBase>(Ptr)) == 0);
496 #endif
497             CallSites.push_back(
498                 std::make_pair(dyn_cast<CallBase>(Ptr), NewHistoryID));
499           }
500         }
501       }
502 
503       // If we inlined or deleted the last possible call site to the function,
504       // delete the function body now.
505       if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
506           // TODO: Can remove if in SCC now.
507           !SCCFunctions.count(Callee) &&
508           // The function may be apparently dead, but if there are indirect
509           // callgraph references to the node, we cannot delete it yet, this
510           // could invalidate the CGSCC iterator.
511           CG[Callee]->getNumReferences() == 0) {
512         LLVM_DEBUG(dbgs() << "    -> Deleting dead function: "
513                           << Callee->getName() << "\n");
514         CallGraphNode *CalleeNode = CG[Callee];
515 
516         // Remove any call graph edges from the callee to its callees.
517         CalleeNode->removeAllCalledFunctions();
518 
519         // Removing the node for callee from the call graph and delete it.
520         delete CG.removeFunctionFromModule(CalleeNode);
521         ++NumDeleted;
522       }
523 
524       // Remove this call site from the list.  If possible, use
525       // swap/pop_back for efficiency, but do not use it if doing so would
526       // move a call site to a function in this SCC before the
527       // 'FirstCallInSCC' barrier.
528       if (SCC.isSingular()) {
529         CallSites[CSi] = CallSites.back();
530         CallSites.pop_back();
531       } else {
532         CallSites.erase(CallSites.begin() + CSi);
533       }
534       --CSi;
535 
536       Changed = true;
537       LocalChange = true;
538     }
539   } while (LocalChange);
540 
541   return Changed;
542 }
543 
inlineCalls(CallGraphSCC & SCC)544 bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) {
545   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
546   ACT = &getAnalysis<AssumptionCacheTracker>();
547   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
548   GetTLI = [&](Function &F) -> const TargetLibraryInfo & {
549     return getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
550   };
551   auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
552     return ACT->getAssumptionCache(F);
553   };
554   return inlineCallsImpl(
555       SCC, CG, GetAssumptionCache, PSI, GetTLI, InsertLifetime,
556       [&](CallBase &CB) { return getInlineCost(CB); }, LegacyAARGetter(*this),
557       ImportedFunctionsStats);
558 }
559 
560 /// Remove now-dead linkonce functions at the end of
561 /// processing to avoid breaking the SCC traversal.
doFinalization(CallGraph & CG)562 bool LegacyInlinerBase::doFinalization(CallGraph &CG) {
563   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
564     ImportedFunctionsStats.dump(InlinerFunctionImportStats ==
565                                 InlinerFunctionImportStatsOpts::Verbose);
566   return removeDeadFunctions(CG);
567 }
568 
569 /// Remove dead functions that are not included in DNR (Do Not Remove) list.
removeDeadFunctions(CallGraph & CG,bool AlwaysInlineOnly)570 bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG,
571                                             bool AlwaysInlineOnly) {
572   SmallVector<CallGraphNode *, 16> FunctionsToRemove;
573   SmallVector<Function *, 16> DeadFunctionsInComdats;
574 
575   auto RemoveCGN = [&](CallGraphNode *CGN) {
576     // Remove any call graph edges from the function to its callees.
577     CGN->removeAllCalledFunctions();
578 
579     // Remove any edges from the external node to the function's call graph
580     // node.  These edges might have been made irrelegant due to
581     // optimization of the program.
582     CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
583 
584     // Removing the node for callee from the call graph and delete it.
585     FunctionsToRemove.push_back(CGN);
586   };
587 
588   // Scan for all of the functions, looking for ones that should now be removed
589   // from the program.  Insert the dead ones in the FunctionsToRemove set.
590   for (const auto &I : CG) {
591     CallGraphNode *CGN = I.second.get();
592     Function *F = CGN->getFunction();
593     if (!F || F->isDeclaration())
594       continue;
595 
596     // Handle the case when this function is called and we only want to care
597     // about always-inline functions. This is a bit of a hack to share code
598     // between here and the InlineAlways pass.
599     if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline))
600       continue;
601 
602     // If the only remaining users of the function are dead constants, remove
603     // them.
604     F->removeDeadConstantUsers();
605 
606     if (!F->isDefTriviallyDead())
607       continue;
608 
609     // It is unsafe to drop a function with discardable linkage from a COMDAT
610     // without also dropping the other members of the COMDAT.
611     // The inliner doesn't visit non-function entities which are in COMDAT
612     // groups so it is unsafe to do so *unless* the linkage is local.
613     if (!F->hasLocalLinkage()) {
614       if (F->hasComdat()) {
615         DeadFunctionsInComdats.push_back(F);
616         continue;
617       }
618     }
619 
620     RemoveCGN(CGN);
621   }
622   if (!DeadFunctionsInComdats.empty()) {
623     // Filter out the functions whose comdats remain alive.
624     filterDeadComdatFunctions(CG.getModule(), DeadFunctionsInComdats);
625     // Remove the rest.
626     for (Function *F : DeadFunctionsInComdats)
627       RemoveCGN(CG[F]);
628   }
629 
630   if (FunctionsToRemove.empty())
631     return false;
632 
633   // Now that we know which functions to delete, do so.  We didn't want to do
634   // this inline, because that would invalidate our CallGraph::iterator
635   // objects. :(
636   //
637   // Note that it doesn't matter that we are iterating over a non-stable order
638   // here to do this, it doesn't matter which order the functions are deleted
639   // in.
640   array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
641   FunctionsToRemove.erase(
642       std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()),
643       FunctionsToRemove.end());
644   for (CallGraphNode *CGN : FunctionsToRemove) {
645     delete CG.removeFunctionFromModule(CGN);
646     ++NumDeleted;
647   }
648   return true;
649 }
650 
~InlinerPass()651 InlinerPass::~InlinerPass() {
652   if (ImportedFunctionsStats) {
653     assert(InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No);
654     ImportedFunctionsStats->dump(InlinerFunctionImportStats ==
655                                  InlinerFunctionImportStatsOpts::Verbose);
656   }
657 }
658 
659 InlineAdvisor &
getAdvisor(const ModuleAnalysisManagerCGSCCProxy::Result & MAM,FunctionAnalysisManager & FAM,Module & M)660 InlinerPass::getAdvisor(const ModuleAnalysisManagerCGSCCProxy::Result &MAM,
661                         FunctionAnalysisManager &FAM, Module &M) {
662   auto *IAA = MAM.getCachedResult<InlineAdvisorAnalysis>(M);
663   if (!IAA) {
664     // It should still be possible to run the inliner as a stand-alone SCC pass,
665     // for test scenarios. In that case, we default to the
666     // DefaultInlineAdvisor, which doesn't need to keep state between SCC pass
667     // runs. It also uses just the default InlineParams.
668     // In this case, we need to use the provided FAM, which is valid for the
669     // duration of the inliner pass, and thus the lifetime of the owned advisor.
670     // The one we would get from the MAM can be invalidated as a result of the
671     // inliner's activity.
672     OwnedDefaultAdvisor.emplace(FAM, getInlineParams());
673     return *OwnedDefaultAdvisor;
674   }
675   assert(IAA->getAdvisor() &&
676          "Expected a present InlineAdvisorAnalysis also have an "
677          "InlineAdvisor initialized");
678   return *IAA->getAdvisor();
679 }
680 
run(LazyCallGraph::SCC & InitialC,CGSCCAnalysisManager & AM,LazyCallGraph & CG,CGSCCUpdateResult & UR)681 PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC,
682                                    CGSCCAnalysisManager &AM, LazyCallGraph &CG,
683                                    CGSCCUpdateResult &UR) {
684   const auto &MAMProxy =
685       AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG);
686   bool Changed = false;
687 
688   assert(InitialC.size() > 0 && "Cannot handle an empty SCC!");
689   Module &M = *InitialC.begin()->getFunction().getParent();
690   ProfileSummaryInfo *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(M);
691 
692   FunctionAnalysisManager &FAM =
693       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG)
694           .getManager();
695 
696   InlineAdvisor &Advisor = getAdvisor(MAMProxy, FAM, M);
697   Advisor.onPassEntry();
698 
699   auto AdvisorOnExit = make_scope_exit([&] { Advisor.onPassExit(); });
700 
701   if (!ImportedFunctionsStats &&
702       InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) {
703     ImportedFunctionsStats =
704         std::make_unique<ImportedFunctionsInliningStatistics>();
705     ImportedFunctionsStats->setModuleInfo(M);
706   }
707 
708   // We use a single common worklist for calls across the entire SCC. We
709   // process these in-order and append new calls introduced during inlining to
710   // the end.
711   //
712   // Note that this particular order of processing is actually critical to
713   // avoid very bad behaviors. Consider *highly connected* call graphs where
714   // each function contains a small amonut of code and a couple of calls to
715   // other functions. Because the LLVM inliner is fundamentally a bottom-up
716   // inliner, it can handle gracefully the fact that these all appear to be
717   // reasonable inlining candidates as it will flatten things until they become
718   // too big to inline, and then move on and flatten another batch.
719   //
720   // However, when processing call edges *within* an SCC we cannot rely on this
721   // bottom-up behavior. As a consequence, with heavily connected *SCCs* of
722   // functions we can end up incrementally inlining N calls into each of
723   // N functions because each incremental inlining decision looks good and we
724   // don't have a topological ordering to prevent explosions.
725   //
726   // To compensate for this, we don't process transitive edges made immediate
727   // by inlining until we've done one pass of inlining across the entire SCC.
728   // Large, highly connected SCCs still lead to some amount of code bloat in
729   // this model, but it is uniformly spread across all the functions in the SCC
730   // and eventually they all become too large to inline, rather than
731   // incrementally maknig a single function grow in a super linear fashion.
732   SmallVector<std::pair<CallBase *, int>, 16> Calls;
733 
734   // Populate the initial list of calls in this SCC.
735   for (auto &N : InitialC) {
736     auto &ORE =
737         FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction());
738     // We want to generally process call sites top-down in order for
739     // simplifications stemming from replacing the call with the returned value
740     // after inlining to be visible to subsequent inlining decisions.
741     // FIXME: Using instructions sequence is a really bad way to do this.
742     // Instead we should do an actual RPO walk of the function body.
743     for (Instruction &I : instructions(N.getFunction()))
744       if (auto *CB = dyn_cast<CallBase>(&I))
745         if (Function *Callee = CB->getCalledFunction()) {
746           if (!Callee->isDeclaration())
747             Calls.push_back({CB, -1});
748           else if (!isa<IntrinsicInst>(I)) {
749             using namespace ore;
750             setInlineRemark(*CB, "unavailable definition");
751             ORE.emit([&]() {
752               return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
753                      << NV("Callee", Callee) << " will not be inlined into "
754                      << NV("Caller", CB->getCaller())
755                      << " because its definition is unavailable"
756                      << setIsVerbose();
757             });
758           }
759         }
760   }
761   if (Calls.empty())
762     return PreservedAnalyses::all();
763 
764   // Capture updatable variables for the current SCC and RefSCC.
765   auto *C = &InitialC;
766   auto *RC = &C->getOuterRefSCC();
767 
768   // When inlining a callee produces new call sites, we want to keep track of
769   // the fact that they were inlined from the callee.  This allows us to avoid
770   // infinite inlining in some obscure cases.  To represent this, we use an
771   // index into the InlineHistory vector.
772   SmallVector<std::pair<Function *, int>, 16> InlineHistory;
773 
774   // Track a set vector of inlined callees so that we can augment the caller
775   // with all of their edges in the call graph before pruning out the ones that
776   // got simplified away.
777   SmallSetVector<Function *, 4> InlinedCallees;
778 
779   // Track the dead functions to delete once finished with inlining calls. We
780   // defer deleting these to make it easier to handle the call graph updates.
781   SmallVector<Function *, 4> DeadFunctions;
782 
783   // Loop forward over all of the calls. Note that we cannot cache the size as
784   // inlining can introduce new calls that need to be processed.
785   for (int I = 0; I < (int)Calls.size(); ++I) {
786     // We expect the calls to typically be batched with sequences of calls that
787     // have the same caller, so we first set up some shared infrastructure for
788     // this caller. We also do any pruning we can at this layer on the caller
789     // alone.
790     Function &F = *Calls[I].first->getCaller();
791     LazyCallGraph::Node &N = *CG.lookup(F);
792     if (CG.lookupSCC(N) != C)
793       continue;
794     if (!Calls[I].first->getCalledFunction()->hasFnAttribute(
795             Attribute::AlwaysInline) &&
796         F.hasOptNone()) {
797       setInlineRemark(*Calls[I].first, "optnone attribute");
798       continue;
799     }
800 
801     LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n");
802 
803     auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
804       return FAM.getResult<AssumptionAnalysis>(F);
805     };
806 
807     // Now process as many calls as we have within this caller in the sequence.
808     // We bail out as soon as the caller has to change so we can update the
809     // call graph and prepare the context of that new caller.
810     bool DidInline = false;
811     for (; I < (int)Calls.size() && Calls[I].first->getCaller() == &F; ++I) {
812       auto &P = Calls[I];
813       CallBase *CB = P.first;
814       const int InlineHistoryID = P.second;
815       Function &Callee = *CB->getCalledFunction();
816 
817       if (InlineHistoryID != -1 &&
818           inlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) {
819         setInlineRemark(*CB, "recursive");
820         continue;
821       }
822 
823       // Check if this inlining may repeat breaking an SCC apart that has
824       // already been split once before. In that case, inlining here may
825       // trigger infinite inlining, much like is prevented within the inliner
826       // itself by the InlineHistory above, but spread across CGSCC iterations
827       // and thus hidden from the full inline history.
828       if (CG.lookupSCC(*CG.lookup(Callee)) == C &&
829           UR.InlinedInternalEdges.count({&N, C})) {
830         LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node "
831                              "previously split out of this SCC by inlining: "
832                           << F.getName() << " -> " << Callee.getName() << "\n");
833         setInlineRemark(*CB, "recursive SCC split");
834         continue;
835       }
836 
837       auto Advice = Advisor.getAdvice(*CB);
838       // Check whether we want to inline this callsite.
839       if (!Advice->isInliningRecommended()) {
840         Advice->recordUnattemptedInlining();
841         continue;
842       }
843 
844       // Setup the data structure used to plumb customization into the
845       // `InlineFunction` routine.
846       InlineFunctionInfo IFI(
847           /*cg=*/nullptr, GetAssumptionCache, PSI,
848           &FAM.getResult<BlockFrequencyAnalysis>(*(CB->getCaller())),
849           &FAM.getResult<BlockFrequencyAnalysis>(Callee));
850 
851       InlineResult IR = InlineFunction(*CB, IFI);
852       if (!IR.isSuccess()) {
853         Advice->recordUnsuccessfulInlining(IR);
854         continue;
855       }
856 
857       DidInline = true;
858       InlinedCallees.insert(&Callee);
859       ++NumInlined;
860 
861       // Add any new callsites to defined functions to the worklist.
862       if (!IFI.InlinedCallSites.empty()) {
863         int NewHistoryID = InlineHistory.size();
864         InlineHistory.push_back({&Callee, InlineHistoryID});
865 
866         for (CallBase *ICB : reverse(IFI.InlinedCallSites)) {
867           Function *NewCallee = ICB->getCalledFunction();
868           if (!NewCallee) {
869             // Try to promote an indirect (virtual) call without waiting for
870             // the post-inline cleanup and the next DevirtSCCRepeatedPass
871             // iteration because the next iteration may not happen and we may
872             // miss inlining it.
873             if (tryPromoteCall(*ICB))
874               NewCallee = ICB->getCalledFunction();
875           }
876           if (NewCallee)
877             if (!NewCallee->isDeclaration())
878               Calls.push_back({ICB, NewHistoryID});
879         }
880       }
881 
882       if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
883         ImportedFunctionsStats->recordInline(F, Callee);
884 
885       // Merge the attributes based on the inlining.
886       AttributeFuncs::mergeAttributesForInlining(F, Callee);
887 
888       // For local functions, check whether this makes the callee trivially
889       // dead. In that case, we can drop the body of the function eagerly
890       // which may reduce the number of callers of other functions to one,
891       // changing inline cost thresholds.
892       bool CalleeWasDeleted = false;
893       if (Callee.hasLocalLinkage()) {
894         // To check this we also need to nuke any dead constant uses (perhaps
895         // made dead by this operation on other functions).
896         Callee.removeDeadConstantUsers();
897         if (Callee.use_empty() && !CG.isLibFunction(Callee)) {
898           Calls.erase(
899               std::remove_if(Calls.begin() + I + 1, Calls.end(),
900                              [&](const std::pair<CallBase *, int> &Call) {
901                                return Call.first->getCaller() == &Callee;
902                              }),
903               Calls.end());
904           // Clear the body and queue the function itself for deletion when we
905           // finish inlining and call graph updates.
906           // Note that after this point, it is an error to do anything other
907           // than use the callee's address or delete it.
908           Callee.dropAllReferences();
909           assert(find(DeadFunctions, &Callee) == DeadFunctions.end() &&
910                  "Cannot put cause a function to become dead twice!");
911           DeadFunctions.push_back(&Callee);
912           CalleeWasDeleted = true;
913         }
914       }
915       if (CalleeWasDeleted)
916         Advice->recordInliningWithCalleeDeleted();
917       else
918         Advice->recordInlining();
919     }
920 
921     // Back the call index up by one to put us in a good position to go around
922     // the outer loop.
923     --I;
924 
925     if (!DidInline)
926       continue;
927     Changed = true;
928 
929     // Add all the inlined callees' edges as ref edges to the caller. These are
930     // by definition trivial edges as we always have *some* transitive ref edge
931     // chain. While in some cases these edges are direct calls inside the
932     // callee, they have to be modeled in the inliner as reference edges as
933     // there may be a reference edge anywhere along the chain from the current
934     // caller to the callee that causes the whole thing to appear like
935     // a (transitive) reference edge that will require promotion to a call edge
936     // below.
937     for (Function *InlinedCallee : InlinedCallees) {
938       LazyCallGraph::Node &CalleeN = *CG.lookup(*InlinedCallee);
939       for (LazyCallGraph::Edge &E : *CalleeN)
940         RC->insertTrivialRefEdge(N, E.getNode());
941     }
942 
943     // At this point, since we have made changes we have at least removed
944     // a call instruction. However, in the process we do some incremental
945     // simplification of the surrounding code. This simplification can
946     // essentially do all of the same things as a function pass and we can
947     // re-use the exact same logic for updating the call graph to reflect the
948     // change.
949 
950     // Inside the update, we also update the FunctionAnalysisManager in the
951     // proxy for this particular SCC. We do this as the SCC may have changed and
952     // as we're going to mutate this particular function we want to make sure
953     // the proxy is in place to forward any invalidation events.
954     LazyCallGraph::SCC *OldC = C;
955     C = &updateCGAndAnalysisManagerForFunctionPass(CG, *C, N, AM, UR, FAM);
956     LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n");
957     RC = &C->getOuterRefSCC();
958 
959     // If this causes an SCC to split apart into multiple smaller SCCs, there
960     // is a subtle risk we need to prepare for. Other transformations may
961     // expose an "infinite inlining" opportunity later, and because of the SCC
962     // mutation, we will revisit this function and potentially re-inline. If we
963     // do, and that re-inlining also has the potentially to mutate the SCC
964     // structure, the infinite inlining problem can manifest through infinite
965     // SCC splits and merges. To avoid this, we capture the originating caller
966     // node and the SCC containing the call edge. This is a slight over
967     // approximation of the possible inlining decisions that must be avoided,
968     // but is relatively efficient to store. We use C != OldC to know when
969     // a new SCC is generated and the original SCC may be generated via merge
970     // in later iterations.
971     //
972     // It is also possible that even if no new SCC is generated
973     // (i.e., C == OldC), the original SCC could be split and then merged
974     // into the same one as itself. and the original SCC will be added into
975     // UR.CWorklist again, we want to catch such cases too.
976     //
977     // FIXME: This seems like a very heavyweight way of retaining the inline
978     // history, we should look for a more efficient way of tracking it.
979     if ((C != OldC || UR.CWorklist.count(OldC)) &&
980         llvm::any_of(InlinedCallees, [&](Function *Callee) {
981           return CG.lookupSCC(*CG.lookup(*Callee)) == OldC;
982         })) {
983       LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, "
984                            "retaining this to avoid infinite inlining.\n");
985       UR.InlinedInternalEdges.insert({&N, OldC});
986     }
987     InlinedCallees.clear();
988   }
989 
990   // Now that we've finished inlining all of the calls across this SCC, delete
991   // all of the trivially dead functions, updating the call graph and the CGSCC
992   // pass manager in the process.
993   //
994   // Note that this walks a pointer set which has non-deterministic order but
995   // that is OK as all we do is delete things and add pointers to unordered
996   // sets.
997   for (Function *DeadF : DeadFunctions) {
998     // Get the necessary information out of the call graph and nuke the
999     // function there. Also, clear out any cached analyses.
1000     auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF));
1001     FAM.clear(*DeadF, DeadF->getName());
1002     AM.clear(DeadC, DeadC.getName());
1003     auto &DeadRC = DeadC.getOuterRefSCC();
1004     CG.removeDeadFunction(*DeadF);
1005 
1006     // Mark the relevant parts of the call graph as invalid so we don't visit
1007     // them.
1008     UR.InvalidatedSCCs.insert(&DeadC);
1009     UR.InvalidatedRefSCCs.insert(&DeadRC);
1010 
1011     // And delete the actual function from the module.
1012     // The Advisor may use Function pointers to efficiently index various
1013     // internal maps, e.g. for memoization. Function cleanup passes like
1014     // argument promotion create new functions. It is possible for a new
1015     // function to be allocated at the address of a deleted function. We could
1016     // index using names, but that's inefficient. Alternatively, we let the
1017     // Advisor free the functions when it sees fit.
1018     DeadF->getBasicBlockList().clear();
1019     M.getFunctionList().remove(DeadF);
1020 
1021     ++NumDeleted;
1022   }
1023 
1024   if (!Changed)
1025     return PreservedAnalyses::all();
1026 
1027   // Even if we change the IR, we update the core CGSCC data structures and so
1028   // can preserve the proxy to the function analysis manager.
1029   PreservedAnalyses PA;
1030   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1031   return PA;
1032 }
1033 
ModuleInlinerWrapperPass(InlineParams Params,bool Debugging,InliningAdvisorMode Mode,unsigned MaxDevirtIterations)1034 ModuleInlinerWrapperPass::ModuleInlinerWrapperPass(InlineParams Params,
1035                                                    bool Debugging,
1036                                                    InliningAdvisorMode Mode,
1037                                                    unsigned MaxDevirtIterations)
1038     : Params(Params), Mode(Mode), MaxDevirtIterations(MaxDevirtIterations),
1039       PM(Debugging), MPM(Debugging) {
1040   // Run the inliner first. The theory is that we are walking bottom-up and so
1041   // the callees have already been fully optimized, and we want to inline them
1042   // into the callers so that our optimizations can reflect that.
1043   // For PreLinkThinLTO pass, we disable hot-caller heuristic for sample PGO
1044   // because it makes profile annotation in the backend inaccurate.
1045   PM.addPass(InlinerPass());
1046 }
1047 
run(Module & M,ModuleAnalysisManager & MAM)1048 PreservedAnalyses ModuleInlinerWrapperPass::run(Module &M,
1049                                                 ModuleAnalysisManager &MAM) {
1050   auto &IAA = MAM.getResult<InlineAdvisorAnalysis>(M);
1051   if (!IAA.tryCreate(Params, Mode)) {
1052     M.getContext().emitError(
1053         "Could not setup Inlining Advisor for the requested "
1054         "mode and/or options");
1055     return PreservedAnalyses::all();
1056   }
1057 
1058   // We wrap the CGSCC pipeline in a devirtualization repeater. This will try
1059   // to detect when we devirtualize indirect calls and iterate the SCC passes
1060   // in that case to try and catch knock-on inlining or function attrs
1061   // opportunities. Then we add it to the module pipeline by walking the SCCs
1062   // in postorder (or bottom-up).
1063   // If MaxDevirtIterations is 0, we just don't use the devirtualization
1064   // wrapper.
1065   if (MaxDevirtIterations == 0)
1066     MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(PM)));
1067   else
1068     MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(
1069         createDevirtSCCRepeatedPass(std::move(PM), MaxDevirtIterations)));
1070   auto Ret = MPM.run(M, MAM);
1071 
1072   IAA.clear();
1073   return Ret;
1074 }
1075