1 /*
2  * Copyright 2008-2009 Katholieke Universiteit Leuven
3  * Copyright 2010      INRIA Saclay
4  * Copyright 2012-2013 Ecole Normale Superieure
5  * Copyright 2014      INRIA Rocquencourt
6  * Copyright 2016      INRIA Paris
7  *
8  * Use of this software is governed by the MIT license
9  *
10  * Written by Sven Verdoolaege, K.U.Leuven, Departement
11  * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
12  * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
13  * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
14  * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
15  * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
16  * B.P. 105 - 78153 Le Chesnay, France
17  * and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12,
18  * CS 42112, 75589 Paris Cedex 12, France
19  */
20 
21 #include <isl_ctx_private.h>
22 #include "isl_map_private.h"
23 #include <isl_seq.h>
24 #include <isl/options.h>
25 #include "isl_tab.h"
26 #include <isl_mat_private.h>
27 #include <isl_local_space_private.h>
28 #include <isl_val_private.h>
29 #include <isl_vec_private.h>
30 #include <isl_aff_private.h>
31 #include <isl_equalities.h>
32 #include <isl_constraint_private.h>
33 
34 #include <set_to_map.c>
35 #include <set_from_map.c>
36 
37 #define STATUS_ERROR		-1
38 #define STATUS_REDUNDANT	 1
39 #define STATUS_VALID	 	 2
40 #define STATUS_SEPARATE	 	 3
41 #define STATUS_CUT	 	 4
42 #define STATUS_ADJ_EQ	 	 5
43 #define STATUS_ADJ_INEQ	 	 6
44 
status_in(isl_int * ineq,struct isl_tab * tab)45 static int status_in(isl_int *ineq, struct isl_tab *tab)
46 {
47 	enum isl_ineq_type type = isl_tab_ineq_type(tab, ineq);
48 	switch (type) {
49 	default:
50 	case isl_ineq_error:		return STATUS_ERROR;
51 	case isl_ineq_redundant:	return STATUS_VALID;
52 	case isl_ineq_separate:		return STATUS_SEPARATE;
53 	case isl_ineq_cut:		return STATUS_CUT;
54 	case isl_ineq_adj_eq:		return STATUS_ADJ_EQ;
55 	case isl_ineq_adj_ineq:		return STATUS_ADJ_INEQ;
56 	}
57 }
58 
59 /* Compute the position of the equalities of basic map "bmap_i"
60  * with respect to the basic map represented by "tab_j".
61  * The resulting array has twice as many entries as the number
62  * of equalities corresponding to the two inequalities to which
63  * each equality corresponds.
64  */
eq_status_in(__isl_keep isl_basic_map * bmap_i,struct isl_tab * tab_j)65 static int *eq_status_in(__isl_keep isl_basic_map *bmap_i,
66 	struct isl_tab *tab_j)
67 {
68 	int k, l;
69 	int *eq;
70 	isl_size dim;
71 
72 	dim = isl_basic_map_dim(bmap_i, isl_dim_all);
73 	if (dim < 0)
74 		return NULL;
75 
76 	eq = isl_calloc_array(bmap_i->ctx, int, 2 * bmap_i->n_eq);
77 	if (!eq)
78 		return NULL;
79 
80 	for (k = 0; k < bmap_i->n_eq; ++k) {
81 		for (l = 0; l < 2; ++l) {
82 			isl_seq_neg(bmap_i->eq[k], bmap_i->eq[k], 1+dim);
83 			eq[2 * k + l] = status_in(bmap_i->eq[k], tab_j);
84 			if (eq[2 * k + l] == STATUS_ERROR)
85 				goto error;
86 		}
87 	}
88 
89 	return eq;
90 error:
91 	free(eq);
92 	return NULL;
93 }
94 
95 /* Compute the position of the inequalities of basic map "bmap_i"
96  * (also represented by "tab_i", if not NULL) with respect to the basic map
97  * represented by "tab_j".
98  */
ineq_status_in(__isl_keep isl_basic_map * bmap_i,struct isl_tab * tab_i,struct isl_tab * tab_j)99 static int *ineq_status_in(__isl_keep isl_basic_map *bmap_i,
100 	struct isl_tab *tab_i, struct isl_tab *tab_j)
101 {
102 	int k;
103 	unsigned n_eq = bmap_i->n_eq;
104 	int *ineq = isl_calloc_array(bmap_i->ctx, int, bmap_i->n_ineq);
105 
106 	if (!ineq)
107 		return NULL;
108 
109 	for (k = 0; k < bmap_i->n_ineq; ++k) {
110 		if (tab_i && isl_tab_is_redundant(tab_i, n_eq + k)) {
111 			ineq[k] = STATUS_REDUNDANT;
112 			continue;
113 		}
114 		ineq[k] = status_in(bmap_i->ineq[k], tab_j);
115 		if (ineq[k] == STATUS_ERROR)
116 			goto error;
117 		if (ineq[k] == STATUS_SEPARATE)
118 			break;
119 	}
120 
121 	return ineq;
122 error:
123 	free(ineq);
124 	return NULL;
125 }
126 
any(int * con,unsigned len,int status)127 static int any(int *con, unsigned len, int status)
128 {
129 	int i;
130 
131 	for (i = 0; i < len ; ++i)
132 		if (con[i] == status)
133 			return 1;
134 	return 0;
135 }
136 
137 /* Return the first position of "status" in the list "con" of length "len".
138  * Return -1 if there is no such entry.
139  */
find(int * con,unsigned len,int status)140 static int find(int *con, unsigned len, int status)
141 {
142 	int i;
143 
144 	for (i = 0; i < len ; ++i)
145 		if (con[i] == status)
146 			return i;
147 	return -1;
148 }
149 
count(int * con,unsigned len,int status)150 static int count(int *con, unsigned len, int status)
151 {
152 	int i;
153 	int c = 0;
154 
155 	for (i = 0; i < len ; ++i)
156 		if (con[i] == status)
157 			c++;
158 	return c;
159 }
160 
all(int * con,unsigned len,int status)161 static int all(int *con, unsigned len, int status)
162 {
163 	int i;
164 
165 	for (i = 0; i < len ; ++i) {
166 		if (con[i] == STATUS_REDUNDANT)
167 			continue;
168 		if (con[i] != status)
169 			return 0;
170 	}
171 	return 1;
172 }
173 
174 /* Internal information associated to a basic map in a map
175  * that is to be coalesced by isl_map_coalesce.
176  *
177  * "bmap" is the basic map itself (or NULL if "removed" is set)
178  * "tab" is the corresponding tableau (or NULL if "removed" is set)
179  * "hull_hash" identifies the affine space in which "bmap" lives.
180  * "modified" is set if this basic map may not be identical
181  * to any of the basic maps in the input.
182  * "removed" is set if this basic map has been removed from the map
183  * "simplify" is set if this basic map may have some unknown integer
184  * divisions that were not present in the input basic maps.  The basic
185  * map should then be simplified such that we may be able to find
186  * a definition among the constraints.
187  *
188  * "eq" and "ineq" are only set if we are currently trying to coalesce
189  * this basic map with another basic map, in which case they represent
190  * the position of the inequalities of this basic map with respect to
191  * the other basic map.  The number of elements in the "eq" array
192  * is twice the number of equalities in the "bmap", corresponding
193  * to the two inequalities that make up each equality.
194  */
195 struct isl_coalesce_info {
196 	isl_basic_map *bmap;
197 	struct isl_tab *tab;
198 	uint32_t hull_hash;
199 	int modified;
200 	int removed;
201 	int simplify;
202 	int *eq;
203 	int *ineq;
204 };
205 
206 /* Is there any (half of an) equality constraint in the description
207  * of the basic map represented by "info" that
208  * has position "status" with respect to the other basic map?
209  */
any_eq(struct isl_coalesce_info * info,int status)210 static int any_eq(struct isl_coalesce_info *info, int status)
211 {
212 	unsigned n_eq;
213 
214 	n_eq = isl_basic_map_n_equality(info->bmap);
215 	return any(info->eq, 2 * n_eq, status);
216 }
217 
218 /* Is there any inequality constraint in the description
219  * of the basic map represented by "info" that
220  * has position "status" with respect to the other basic map?
221  */
any_ineq(struct isl_coalesce_info * info,int status)222 static int any_ineq(struct isl_coalesce_info *info, int status)
223 {
224 	unsigned n_ineq;
225 
226 	n_ineq = isl_basic_map_n_inequality(info->bmap);
227 	return any(info->ineq, n_ineq, status);
228 }
229 
230 /* Return the position of the first half on an equality constraint
231  * in the description of the basic map represented by "info" that
232  * has position "status" with respect to the other basic map.
233  * The returned value is twice the position of the equality constraint
234  * plus zero for the negative half and plus one for the positive half.
235  * Return -1 if there is no such entry.
236  */
find_eq(struct isl_coalesce_info * info,int status)237 static int find_eq(struct isl_coalesce_info *info, int status)
238 {
239 	unsigned n_eq;
240 
241 	n_eq = isl_basic_map_n_equality(info->bmap);
242 	return find(info->eq, 2 * n_eq, status);
243 }
244 
245 /* Return the position of the first inequality constraint in the description
246  * of the basic map represented by "info" that
247  * has position "status" with respect to the other basic map.
248  * Return -1 if there is no such entry.
249  */
find_ineq(struct isl_coalesce_info * info,int status)250 static int find_ineq(struct isl_coalesce_info *info, int status)
251 {
252 	unsigned n_ineq;
253 
254 	n_ineq = isl_basic_map_n_inequality(info->bmap);
255 	return find(info->ineq, n_ineq, status);
256 }
257 
258 /* Return the number of (halves of) equality constraints in the description
259  * of the basic map represented by "info" that
260  * have position "status" with respect to the other basic map.
261  */
count_eq(struct isl_coalesce_info * info,int status)262 static int count_eq(struct isl_coalesce_info *info, int status)
263 {
264 	unsigned n_eq;
265 
266 	n_eq = isl_basic_map_n_equality(info->bmap);
267 	return count(info->eq, 2 * n_eq, status);
268 }
269 
270 /* Return the number of inequality constraints in the description
271  * of the basic map represented by "info" that
272  * have position "status" with respect to the other basic map.
273  */
count_ineq(struct isl_coalesce_info * info,int status)274 static int count_ineq(struct isl_coalesce_info *info, int status)
275 {
276 	unsigned n_ineq;
277 
278 	n_ineq = isl_basic_map_n_inequality(info->bmap);
279 	return count(info->ineq, n_ineq, status);
280 }
281 
282 /* Are all non-redundant constraints of the basic map represented by "info"
283  * either valid or cut constraints with respect to the other basic map?
284  */
all_valid_or_cut(struct isl_coalesce_info * info)285 static int all_valid_or_cut(struct isl_coalesce_info *info)
286 {
287 	int i;
288 
289 	for (i = 0; i < 2 * info->bmap->n_eq; ++i) {
290 		if (info->eq[i] == STATUS_REDUNDANT)
291 			continue;
292 		if (info->eq[i] == STATUS_VALID)
293 			continue;
294 		if (info->eq[i] == STATUS_CUT)
295 			continue;
296 		return 0;
297 	}
298 
299 	for (i = 0; i < info->bmap->n_ineq; ++i) {
300 		if (info->ineq[i] == STATUS_REDUNDANT)
301 			continue;
302 		if (info->ineq[i] == STATUS_VALID)
303 			continue;
304 		if (info->ineq[i] == STATUS_CUT)
305 			continue;
306 		return 0;
307 	}
308 
309 	return 1;
310 }
311 
312 /* Compute the hash of the (apparent) affine hull of info->bmap (with
313  * the existentially quantified variables removed) and store it
314  * in info->hash.
315  */
coalesce_info_set_hull_hash(struct isl_coalesce_info * info)316 static int coalesce_info_set_hull_hash(struct isl_coalesce_info *info)
317 {
318 	isl_basic_map *hull;
319 	isl_size n_div;
320 
321 	hull = isl_basic_map_copy(info->bmap);
322 	hull = isl_basic_map_plain_affine_hull(hull);
323 	n_div = isl_basic_map_dim(hull, isl_dim_div);
324 	if (n_div < 0)
325 		hull = isl_basic_map_free(hull);
326 	hull = isl_basic_map_drop_constraints_involving_dims(hull,
327 							isl_dim_div, 0, n_div);
328 	info->hull_hash = isl_basic_map_get_hash(hull);
329 	isl_basic_map_free(hull);
330 
331 	return hull ? 0 : -1;
332 }
333 
334 /* Free all the allocated memory in an array
335  * of "n" isl_coalesce_info elements.
336  */
clear_coalesce_info(int n,struct isl_coalesce_info * info)337 static void clear_coalesce_info(int n, struct isl_coalesce_info *info)
338 {
339 	int i;
340 
341 	if (!info)
342 		return;
343 
344 	for (i = 0; i < n; ++i) {
345 		isl_basic_map_free(info[i].bmap);
346 		isl_tab_free(info[i].tab);
347 	}
348 
349 	free(info);
350 }
351 
352 /* Clear the memory associated to "info".
353  */
clear(struct isl_coalesce_info * info)354 static void clear(struct isl_coalesce_info *info)
355 {
356 	info->bmap = isl_basic_map_free(info->bmap);
357 	isl_tab_free(info->tab);
358 	info->tab = NULL;
359 }
360 
361 /* Drop the basic map represented by "info".
362  * That is, clear the memory associated to the entry and
363  * mark it as having been removed.
364  */
drop(struct isl_coalesce_info * info)365 static void drop(struct isl_coalesce_info *info)
366 {
367 	clear(info);
368 	info->removed = 1;
369 }
370 
371 /* Exchange the information in "info1" with that in "info2".
372  */
exchange(struct isl_coalesce_info * info1,struct isl_coalesce_info * info2)373 static void exchange(struct isl_coalesce_info *info1,
374 	struct isl_coalesce_info *info2)
375 {
376 	struct isl_coalesce_info info;
377 
378 	info = *info1;
379 	*info1 = *info2;
380 	*info2 = info;
381 }
382 
383 /* This type represents the kind of change that has been performed
384  * while trying to coalesce two basic maps.
385  *
386  * isl_change_none: nothing was changed
387  * isl_change_drop_first: the first basic map was removed
388  * isl_change_drop_second: the second basic map was removed
389  * isl_change_fuse: the two basic maps were replaced by a new basic map.
390  */
391 enum isl_change {
392 	isl_change_error = -1,
393 	isl_change_none = 0,
394 	isl_change_drop_first,
395 	isl_change_drop_second,
396 	isl_change_fuse,
397 };
398 
399 /* Update "change" based on an interchange of the first and the second
400  * basic map.  That is, interchange isl_change_drop_first and
401  * isl_change_drop_second.
402  */
invert_change(enum isl_change change)403 static enum isl_change invert_change(enum isl_change change)
404 {
405 	switch (change) {
406 	case isl_change_error:
407 		return isl_change_error;
408 	case isl_change_none:
409 		return isl_change_none;
410 	case isl_change_drop_first:
411 		return isl_change_drop_second;
412 	case isl_change_drop_second:
413 		return isl_change_drop_first;
414 	case isl_change_fuse:
415 		return isl_change_fuse;
416 	}
417 
418 	return isl_change_error;
419 }
420 
421 /* Add the valid constraints of the basic map represented by "info"
422  * to "bmap".  "len" is the size of the constraints.
423  * If only one of the pair of inequalities that make up an equality
424  * is valid, then add that inequality.
425  */
add_valid_constraints(__isl_take isl_basic_map * bmap,struct isl_coalesce_info * info,unsigned len)426 static __isl_give isl_basic_map *add_valid_constraints(
427 	__isl_take isl_basic_map *bmap, struct isl_coalesce_info *info,
428 	unsigned len)
429 {
430 	int k, l;
431 
432 	if (!bmap)
433 		return NULL;
434 
435 	for (k = 0; k < info->bmap->n_eq; ++k) {
436 		if (info->eq[2 * k] == STATUS_VALID &&
437 		    info->eq[2 * k + 1] == STATUS_VALID) {
438 			l = isl_basic_map_alloc_equality(bmap);
439 			if (l < 0)
440 				return isl_basic_map_free(bmap);
441 			isl_seq_cpy(bmap->eq[l], info->bmap->eq[k], len);
442 		} else if (info->eq[2 * k] == STATUS_VALID) {
443 			l = isl_basic_map_alloc_inequality(bmap);
444 			if (l < 0)
445 				return isl_basic_map_free(bmap);
446 			isl_seq_neg(bmap->ineq[l], info->bmap->eq[k], len);
447 		} else if (info->eq[2 * k + 1] == STATUS_VALID) {
448 			l = isl_basic_map_alloc_inequality(bmap);
449 			if (l < 0)
450 				return isl_basic_map_free(bmap);
451 			isl_seq_cpy(bmap->ineq[l], info->bmap->eq[k], len);
452 		}
453 	}
454 
455 	for (k = 0; k < info->bmap->n_ineq; ++k) {
456 		if (info->ineq[k] != STATUS_VALID)
457 			continue;
458 		l = isl_basic_map_alloc_inequality(bmap);
459 		if (l < 0)
460 			return isl_basic_map_free(bmap);
461 		isl_seq_cpy(bmap->ineq[l], info->bmap->ineq[k], len);
462 	}
463 
464 	return bmap;
465 }
466 
467 /* Is "bmap" defined by a number of (non-redundant) constraints that
468  * is greater than the number of constraints of basic maps i and j combined?
469  * Equalities are counted as two inequalities.
470  */
number_of_constraints_increases(int i,int j,struct isl_coalesce_info * info,__isl_keep isl_basic_map * bmap,struct isl_tab * tab)471 static int number_of_constraints_increases(int i, int j,
472 	struct isl_coalesce_info *info,
473 	__isl_keep isl_basic_map *bmap, struct isl_tab *tab)
474 {
475 	int k, n_old, n_new;
476 
477 	n_old = 2 * info[i].bmap->n_eq + info[i].bmap->n_ineq;
478 	n_old += 2 * info[j].bmap->n_eq + info[j].bmap->n_ineq;
479 
480 	n_new = 2 * bmap->n_eq;
481 	for (k = 0; k < bmap->n_ineq; ++k)
482 		if (!isl_tab_is_redundant(tab, bmap->n_eq + k))
483 			++n_new;
484 
485 	return n_new > n_old;
486 }
487 
488 /* Replace the pair of basic maps i and j by the basic map bounded
489  * by the valid constraints in both basic maps and the constraints
490  * in extra (if not NULL).
491  * Place the fused basic map in the position that is the smallest of i and j.
492  *
493  * If "detect_equalities" is set, then look for equalities encoded
494  * as pairs of inequalities.
495  * If "check_number" is set, then the original basic maps are only
496  * replaced if the total number of constraints does not increase.
497  * While the number of integer divisions in the two basic maps
498  * is assumed to be the same, the actual definitions may be different.
499  * We only copy the definition from one of the basic map if it is
500  * the same as that of the other basic map.  Otherwise, we mark
501  * the integer division as unknown and simplify the basic map
502  * in an attempt to recover the integer division definition.
503  */
fuse(int i,int j,struct isl_coalesce_info * info,__isl_keep isl_mat * extra,int detect_equalities,int check_number)504 static enum isl_change fuse(int i, int j, struct isl_coalesce_info *info,
505 	__isl_keep isl_mat *extra, int detect_equalities, int check_number)
506 {
507 	int k, l;
508 	struct isl_basic_map *fused = NULL;
509 	struct isl_tab *fused_tab = NULL;
510 	isl_size total = isl_basic_map_dim(info[i].bmap, isl_dim_all);
511 	unsigned extra_rows = extra ? extra->n_row : 0;
512 	unsigned n_eq, n_ineq;
513 	int simplify = 0;
514 
515 	if (total < 0)
516 		return isl_change_error;
517 	if (j < i)
518 		return fuse(j, i, info, extra, detect_equalities, check_number);
519 
520 	n_eq = info[i].bmap->n_eq + info[j].bmap->n_eq;
521 	n_ineq = info[i].bmap->n_ineq + info[j].bmap->n_ineq;
522 	fused = isl_basic_map_alloc_space(isl_space_copy(info[i].bmap->dim),
523 		    info[i].bmap->n_div, n_eq, n_eq + n_ineq + extra_rows);
524 	fused = add_valid_constraints(fused, &info[i], 1 + total);
525 	fused = add_valid_constraints(fused, &info[j], 1 + total);
526 	if (!fused)
527 		goto error;
528 	if (ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_RATIONAL) &&
529 	    ISL_F_ISSET(info[j].bmap, ISL_BASIC_MAP_RATIONAL))
530 		ISL_F_SET(fused, ISL_BASIC_MAP_RATIONAL);
531 
532 	for (k = 0; k < info[i].bmap->n_div; ++k) {
533 		int l = isl_basic_map_alloc_div(fused);
534 		if (l < 0)
535 			goto error;
536 		if (isl_seq_eq(info[i].bmap->div[k], info[j].bmap->div[k],
537 				1 + 1 + total)) {
538 			isl_seq_cpy(fused->div[l], info[i].bmap->div[k],
539 				1 + 1 + total);
540 		} else {
541 			isl_int_set_si(fused->div[l][0], 0);
542 			simplify = 1;
543 		}
544 	}
545 
546 	for (k = 0; k < extra_rows; ++k) {
547 		l = isl_basic_map_alloc_inequality(fused);
548 		if (l < 0)
549 			goto error;
550 		isl_seq_cpy(fused->ineq[l], extra->row[k], 1 + total);
551 	}
552 
553 	if (detect_equalities)
554 		fused = isl_basic_map_detect_inequality_pairs(fused, NULL);
555 	fused = isl_basic_map_gauss(fused, NULL);
556 	if (simplify || info[j].simplify) {
557 		fused = isl_basic_map_simplify(fused);
558 		info[i].simplify = 0;
559 	}
560 	fused = isl_basic_map_finalize(fused);
561 
562 	fused_tab = isl_tab_from_basic_map(fused, 0);
563 	if (isl_tab_detect_redundant(fused_tab) < 0)
564 		goto error;
565 
566 	if (check_number &&
567 	    number_of_constraints_increases(i, j, info, fused, fused_tab)) {
568 		isl_tab_free(fused_tab);
569 		isl_basic_map_free(fused);
570 		return isl_change_none;
571 	}
572 
573 	clear(&info[i]);
574 	info[i].bmap = fused;
575 	info[i].tab = fused_tab;
576 	info[i].modified = 1;
577 	drop(&info[j]);
578 
579 	return isl_change_fuse;
580 error:
581 	isl_tab_free(fused_tab);
582 	isl_basic_map_free(fused);
583 	return isl_change_error;
584 }
585 
586 /* Given a pair of basic maps i and j such that all constraints are either
587  * "valid" or "cut", check if the facets corresponding to the "cut"
588  * constraints of i lie entirely within basic map j.
589  * If so, replace the pair by the basic map consisting of the valid
590  * constraints in both basic maps.
591  * Checking whether the facet lies entirely within basic map j
592  * is performed by checking whether the constraints of basic map j
593  * are valid for the facet.  These tests are performed on a rational
594  * tableau to avoid the theoretical possibility that a constraint
595  * that was considered to be a cut constraint for the entire basic map i
596  * happens to be considered to be a valid constraint for the facet,
597  * even though it cuts off the same rational points.
598  *
599  * To see that we are not introducing any extra points, call the
600  * two basic maps A and B and the resulting map U and let x
601  * be an element of U \setminus ( A \cup B ).
602  * A line connecting x with an element of A \cup B meets a facet F
603  * of either A or B.  Assume it is a facet of B and let c_1 be
604  * the corresponding facet constraint.  We have c_1(x) < 0 and
605  * so c_1 is a cut constraint.  This implies that there is some
606  * (possibly rational) point x' satisfying the constraints of A
607  * and the opposite of c_1 as otherwise c_1 would have been marked
608  * valid for A.  The line connecting x and x' meets a facet of A
609  * in a (possibly rational) point that also violates c_1, but this
610  * is impossible since all cut constraints of B are valid for all
611  * cut facets of A.
612  * In case F is a facet of A rather than B, then we can apply the
613  * above reasoning to find a facet of B separating x from A \cup B first.
614  */
check_facets(int i,int j,struct isl_coalesce_info * info)615 static enum isl_change check_facets(int i, int j,
616 	struct isl_coalesce_info *info)
617 {
618 	int k, l;
619 	struct isl_tab_undo *snap, *snap2;
620 	unsigned n_eq = info[i].bmap->n_eq;
621 
622 	snap = isl_tab_snap(info[i].tab);
623 	if (isl_tab_mark_rational(info[i].tab) < 0)
624 		return isl_change_error;
625 	snap2 = isl_tab_snap(info[i].tab);
626 
627 	for (k = 0; k < info[i].bmap->n_ineq; ++k) {
628 		if (info[i].ineq[k] != STATUS_CUT)
629 			continue;
630 		if (isl_tab_select_facet(info[i].tab, n_eq + k) < 0)
631 			return isl_change_error;
632 		for (l = 0; l < info[j].bmap->n_ineq; ++l) {
633 			int stat;
634 			if (info[j].ineq[l] != STATUS_CUT)
635 				continue;
636 			stat = status_in(info[j].bmap->ineq[l], info[i].tab);
637 			if (stat < 0)
638 				return isl_change_error;
639 			if (stat != STATUS_VALID)
640 				break;
641 		}
642 		if (isl_tab_rollback(info[i].tab, snap2) < 0)
643 			return isl_change_error;
644 		if (l < info[j].bmap->n_ineq)
645 			break;
646 	}
647 
648 	if (k < info[i].bmap->n_ineq) {
649 		if (isl_tab_rollback(info[i].tab, snap) < 0)
650 			return isl_change_error;
651 		return isl_change_none;
652 	}
653 	return fuse(i, j, info, NULL, 0, 0);
654 }
655 
656 /* Check if info->bmap contains the basic map represented
657  * by the tableau "tab".
658  * For each equality, we check both the constraint itself
659  * (as an inequality) and its negation.  Make sure the
660  * equality is returned to its original state before returning.
661  */
contains(struct isl_coalesce_info * info,struct isl_tab * tab)662 static isl_bool contains(struct isl_coalesce_info *info, struct isl_tab *tab)
663 {
664 	int k;
665 	isl_size dim;
666 	isl_basic_map *bmap = info->bmap;
667 
668 	dim = isl_basic_map_dim(bmap, isl_dim_all);
669 	if (dim < 0)
670 		return isl_bool_error;
671 	for (k = 0; k < bmap->n_eq; ++k) {
672 		int stat;
673 		isl_seq_neg(bmap->eq[k], bmap->eq[k], 1 + dim);
674 		stat = status_in(bmap->eq[k], tab);
675 		isl_seq_neg(bmap->eq[k], bmap->eq[k], 1 + dim);
676 		if (stat < 0)
677 			return isl_bool_error;
678 		if (stat != STATUS_VALID)
679 			return isl_bool_false;
680 		stat = status_in(bmap->eq[k], tab);
681 		if (stat < 0)
682 			return isl_bool_error;
683 		if (stat != STATUS_VALID)
684 			return isl_bool_false;
685 	}
686 
687 	for (k = 0; k < bmap->n_ineq; ++k) {
688 		int stat;
689 		if (info->ineq[k] == STATUS_REDUNDANT)
690 			continue;
691 		stat = status_in(bmap->ineq[k], tab);
692 		if (stat < 0)
693 			return isl_bool_error;
694 		if (stat != STATUS_VALID)
695 			return isl_bool_false;
696 	}
697 	return isl_bool_true;
698 }
699 
700 /* Basic map "i" has an inequality (say "k") that is adjacent
701  * to some inequality of basic map "j".  All the other inequalities
702  * are valid for "j".
703  * Check if basic map "j" forms an extension of basic map "i".
704  *
705  * Note that this function is only called if some of the equalities or
706  * inequalities of basic map "j" do cut basic map "i".  The function is
707  * correct even if there are no such cut constraints, but in that case
708  * the additional checks performed by this function are overkill.
709  *
710  * In particular, we replace constraint k, say f >= 0, by constraint
711  * f <= -1, add the inequalities of "j" that are valid for "i"
712  * and check if the result is a subset of basic map "j".
713  * To improve the chances of the subset relation being detected,
714  * any variable that only attains a single integer value
715  * in the tableau of "i" is first fixed to that value.
716  * If the result is a subset, then we know that this result is exactly equal
717  * to basic map "j" since all its constraints are valid for basic map "j".
718  * By combining the valid constraints of "i" (all equalities and all
719  * inequalities except "k") and the valid constraints of "j" we therefore
720  * obtain a basic map that is equal to their union.
721  * In this case, there is no need to perform a rollback of the tableau
722  * since it is going to be destroyed in fuse().
723  *
724  *
725  *	|\__			|\__
726  *	|   \__			|   \__
727  *	|      \_	=>	|      \__
728  *	|_______| _		|_________\
729  *
730  *
731  *	|\			|\
732  *	| \			| \
733  *	|  \			|  \
734  *	|  |			|   \
735  *	|  ||\		=>      |    \
736  *	|  || \			|     \
737  *	|  ||  |		|      |
738  *	|__||_/			|_____/
739  */
is_adj_ineq_extension(int i,int j,struct isl_coalesce_info * info)740 static enum isl_change is_adj_ineq_extension(int i, int j,
741 	struct isl_coalesce_info *info)
742 {
743 	int k;
744 	struct isl_tab_undo *snap;
745 	unsigned n_eq = info[i].bmap->n_eq;
746 	isl_size total = isl_basic_map_dim(info[i].bmap, isl_dim_all);
747 	isl_stat r;
748 	isl_bool super;
749 
750 	if (total < 0)
751 		return isl_change_error;
752 	if (isl_tab_extend_cons(info[i].tab, 1 + info[j].bmap->n_ineq) < 0)
753 		return isl_change_error;
754 
755 	k = find_ineq(&info[i], STATUS_ADJ_INEQ);
756 	if (k < 0)
757 		isl_die(isl_basic_map_get_ctx(info[i].bmap), isl_error_internal,
758 			"info[i].ineq should have exactly one STATUS_ADJ_INEQ",
759 			return isl_change_error);
760 
761 	snap = isl_tab_snap(info[i].tab);
762 
763 	if (isl_tab_unrestrict(info[i].tab, n_eq + k) < 0)
764 		return isl_change_error;
765 
766 	isl_seq_neg(info[i].bmap->ineq[k], info[i].bmap->ineq[k], 1 + total);
767 	isl_int_sub_ui(info[i].bmap->ineq[k][0], info[i].bmap->ineq[k][0], 1);
768 	r = isl_tab_add_ineq(info[i].tab, info[i].bmap->ineq[k]);
769 	isl_seq_neg(info[i].bmap->ineq[k], info[i].bmap->ineq[k], 1 + total);
770 	isl_int_sub_ui(info[i].bmap->ineq[k][0], info[i].bmap->ineq[k][0], 1);
771 	if (r < 0)
772 		return isl_change_error;
773 
774 	for (k = 0; k < info[j].bmap->n_ineq; ++k) {
775 		if (info[j].ineq[k] != STATUS_VALID)
776 			continue;
777 		if (isl_tab_add_ineq(info[i].tab, info[j].bmap->ineq[k]) < 0)
778 			return isl_change_error;
779 	}
780 	if (isl_tab_detect_constants(info[i].tab) < 0)
781 		return isl_change_error;
782 
783 	super = contains(&info[j], info[i].tab);
784 	if (super < 0)
785 		return isl_change_error;
786 	if (super)
787 		return fuse(i, j, info, NULL, 0, 0);
788 
789 	if (isl_tab_rollback(info[i].tab, snap) < 0)
790 		return isl_change_error;
791 
792 	return isl_change_none;
793 }
794 
795 
796 /* Both basic maps have at least one inequality with and adjacent
797  * (but opposite) inequality in the other basic map.
798  * Check that there are no cut constraints and that there is only
799  * a single pair of adjacent inequalities.
800  * If so, we can replace the pair by a single basic map described
801  * by all but the pair of adjacent inequalities.
802  * Any additional points introduced lie strictly between the two
803  * adjacent hyperplanes and can therefore be integral.
804  *
805  *        ____			  _____
806  *       /    ||\		 /     \
807  *      /     || \		/       \
808  *      \     ||  \	=>	\        \
809  *       \    ||  /		 \       /
810  *        \___||_/		  \_____/
811  *
812  * The test for a single pair of adjancent inequalities is important
813  * for avoiding the combination of two basic maps like the following
814  *
815  *       /|
816  *      / |
817  *     /__|
818  *         _____
819  *         |   |
820  *         |   |
821  *         |___|
822  *
823  * If there are some cut constraints on one side, then we may
824  * still be able to fuse the two basic maps, but we need to perform
825  * some additional checks in is_adj_ineq_extension.
826  */
check_adj_ineq(int i,int j,struct isl_coalesce_info * info)827 static enum isl_change check_adj_ineq(int i, int j,
828 	struct isl_coalesce_info *info)
829 {
830 	int count_i, count_j;
831 	int cut_i, cut_j;
832 
833 	count_i = count_ineq(&info[i], STATUS_ADJ_INEQ);
834 	count_j = count_ineq(&info[j], STATUS_ADJ_INEQ);
835 
836 	if (count_i != 1 && count_j != 1)
837 		return isl_change_none;
838 
839 	cut_i = any_eq(&info[i], STATUS_CUT) || any_ineq(&info[i], STATUS_CUT);
840 	cut_j = any_eq(&info[j], STATUS_CUT) || any_ineq(&info[j], STATUS_CUT);
841 
842 	if (!cut_i && !cut_j && count_i == 1 && count_j == 1)
843 		return fuse(i, j, info, NULL, 0, 0);
844 
845 	if (count_i == 1 && !cut_i)
846 		return is_adj_ineq_extension(i, j, info);
847 
848 	if (count_j == 1 && !cut_j)
849 		return is_adj_ineq_extension(j, i, info);
850 
851 	return isl_change_none;
852 }
853 
854 /* Given an affine transformation matrix "T", does row "row" represent
855  * anything other than a unit vector (possibly shifted by a constant)
856  * that is not involved in any of the other rows?
857  *
858  * That is, if a constraint involves the variable corresponding to
859  * the row, then could its preimage by "T" have any coefficients
860  * that are different from those in the original constraint?
861  */
not_unique_unit_row(__isl_keep isl_mat * T,int row)862 static int not_unique_unit_row(__isl_keep isl_mat *T, int row)
863 {
864 	int i, j;
865 	int len = T->n_col - 1;
866 
867 	i = isl_seq_first_non_zero(T->row[row] + 1, len);
868 	if (i < 0)
869 		return 1;
870 	if (!isl_int_is_one(T->row[row][1 + i]) &&
871 	    !isl_int_is_negone(T->row[row][1 + i]))
872 		return 1;
873 
874 	j = isl_seq_first_non_zero(T->row[row] + 1 + i + 1, len - (i + 1));
875 	if (j >= 0)
876 		return 1;
877 
878 	for (j = 1; j < T->n_row; ++j) {
879 		if (j == row)
880 			continue;
881 		if (!isl_int_is_zero(T->row[j][1 + i]))
882 			return 1;
883 	}
884 
885 	return 0;
886 }
887 
888 /* Does inequality constraint "ineq" of "bmap" involve any of
889  * the variables marked in "affected"?
890  * "total" is the total number of variables, i.e., the number
891  * of entries in "affected".
892  */
is_affected(__isl_keep isl_basic_map * bmap,int ineq,int * affected,int total)893 static isl_bool is_affected(__isl_keep isl_basic_map *bmap, int ineq,
894 	int *affected, int total)
895 {
896 	int i;
897 
898 	for (i = 0; i < total; ++i) {
899 		if (!affected[i])
900 			continue;
901 		if (!isl_int_is_zero(bmap->ineq[ineq][1 + i]))
902 			return isl_bool_true;
903 	}
904 
905 	return isl_bool_false;
906 }
907 
908 /* Given the compressed version of inequality constraint "ineq"
909  * of info->bmap in "v", check if the constraint can be tightened,
910  * where the compression is based on an equality constraint valid
911  * for info->tab.
912  * If so, add the tightened version of the inequality constraint
913  * to info->tab.  "v" may be modified by this function.
914  *
915  * That is, if the compressed constraint is of the form
916  *
917  *	m f() + c >= 0
918  *
919  * with 0 < c < m, then it is equivalent to
920  *
921  *	f() >= 0
922  *
923  * This means that c can also be subtracted from the original,
924  * uncompressed constraint without affecting the integer points
925  * in info->tab.  Add this tightened constraint as an extra row
926  * to info->tab to make this information explicitly available.
927  */
try_tightening(struct isl_coalesce_info * info,int ineq,__isl_take isl_vec * v)928 static __isl_give isl_vec *try_tightening(struct isl_coalesce_info *info,
929 	int ineq, __isl_take isl_vec *v)
930 {
931 	isl_ctx *ctx;
932 	isl_stat r;
933 
934 	if (!v)
935 		return NULL;
936 
937 	ctx = isl_vec_get_ctx(v);
938 	isl_seq_gcd(v->el + 1, v->size - 1, &ctx->normalize_gcd);
939 	if (isl_int_is_zero(ctx->normalize_gcd) ||
940 	    isl_int_is_one(ctx->normalize_gcd)) {
941 		return v;
942 	}
943 
944 	v = isl_vec_cow(v);
945 	if (!v)
946 		return NULL;
947 
948 	isl_int_fdiv_r(v->el[0], v->el[0], ctx->normalize_gcd);
949 	if (isl_int_is_zero(v->el[0]))
950 		return v;
951 
952 	if (isl_tab_extend_cons(info->tab, 1) < 0)
953 		return isl_vec_free(v);
954 
955 	isl_int_sub(info->bmap->ineq[ineq][0],
956 		    info->bmap->ineq[ineq][0], v->el[0]);
957 	r = isl_tab_add_ineq(info->tab, info->bmap->ineq[ineq]);
958 	isl_int_add(info->bmap->ineq[ineq][0],
959 		    info->bmap->ineq[ineq][0], v->el[0]);
960 
961 	if (r < 0)
962 		return isl_vec_free(v);
963 
964 	return v;
965 }
966 
967 /* Tighten the (non-redundant) constraints on the facet represented
968  * by info->tab.
969  * In particular, on input, info->tab represents the result
970  * of relaxing the "n" inequality constraints of info->bmap in "relaxed"
971  * by one, i.e., replacing f_i >= 0 by f_i + 1 >= 0, and then
972  * replacing the one at index "l" by the corresponding equality,
973  * i.e., f_k + 1 = 0, with k = relaxed[l].
974  *
975  * Compute a variable compression from the equality constraint f_k + 1 = 0
976  * and use it to tighten the other constraints of info->bmap
977  * (that is, all constraints that have not been relaxed),
978  * updating info->tab (and leaving info->bmap untouched).
979  * The compression handles essentially two cases, one where a variable
980  * is assigned a fixed value and can therefore be eliminated, and one
981  * where one variable is a shifted multiple of some other variable and
982  * can therefore be replaced by that multiple.
983  * Gaussian elimination would also work for the first case, but for
984  * the second case, the effectiveness would depend on the order
985  * of the variables.
986  * After compression, some of the constraints may have coefficients
987  * with a common divisor.  If this divisor does not divide the constant
988  * term, then the constraint can be tightened.
989  * The tightening is performed on the tableau info->tab by introducing
990  * extra (temporary) constraints.
991  *
992  * Only constraints that are possibly affected by the compression are
993  * considered.  In particular, if the constraint only involves variables
994  * that are directly mapped to a distinct set of other variables, then
995  * no common divisor can be introduced and no tightening can occur.
996  *
997  * It is important to only consider the non-redundant constraints
998  * since the facet constraint has been relaxed prior to the call
999  * to this function, meaning that the constraints that were redundant
1000  * prior to the relaxation may no longer be redundant.
1001  * These constraints will be ignored in the fused result, so
1002  * the fusion detection should not exploit them.
1003  */
tighten_on_relaxed_facet(struct isl_coalesce_info * info,int n,int * relaxed,int l)1004 static isl_stat tighten_on_relaxed_facet(struct isl_coalesce_info *info,
1005 	int n, int *relaxed, int l)
1006 {
1007 	isl_size total;
1008 	isl_ctx *ctx;
1009 	isl_vec *v = NULL;
1010 	isl_mat *T;
1011 	int i;
1012 	int k;
1013 	int *affected;
1014 
1015 	k = relaxed[l];
1016 	ctx = isl_basic_map_get_ctx(info->bmap);
1017 	total = isl_basic_map_dim(info->bmap, isl_dim_all);
1018 	if (total < 0)
1019 		return isl_stat_error;
1020 	isl_int_add_ui(info->bmap->ineq[k][0], info->bmap->ineq[k][0], 1);
1021 	T = isl_mat_sub_alloc6(ctx, info->bmap->ineq, k, 1, 0, 1 + total);
1022 	T = isl_mat_variable_compression(T, NULL);
1023 	isl_int_sub_ui(info->bmap->ineq[k][0], info->bmap->ineq[k][0], 1);
1024 	if (!T)
1025 		return isl_stat_error;
1026 	if (T->n_col == 0) {
1027 		isl_mat_free(T);
1028 		return isl_stat_ok;
1029 	}
1030 
1031 	affected = isl_alloc_array(ctx, int, total);
1032 	if (!affected)
1033 		goto error;
1034 
1035 	for (i = 0; i < total; ++i)
1036 		affected[i] = not_unique_unit_row(T, 1 + i);
1037 
1038 	for (i = 0; i < info->bmap->n_ineq; ++i) {
1039 		isl_bool handle;
1040 		if (any(relaxed, n, i))
1041 			continue;
1042 		if (info->ineq[i] == STATUS_REDUNDANT)
1043 			continue;
1044 		handle = is_affected(info->bmap, i, affected, total);
1045 		if (handle < 0)
1046 			goto error;
1047 		if (!handle)
1048 			continue;
1049 		v = isl_vec_alloc(ctx, 1 + total);
1050 		if (!v)
1051 			goto error;
1052 		isl_seq_cpy(v->el, info->bmap->ineq[i], 1 + total);
1053 		v = isl_vec_mat_product(v, isl_mat_copy(T));
1054 		v = try_tightening(info, i, v);
1055 		isl_vec_free(v);
1056 		if (!v)
1057 			goto error;
1058 	}
1059 
1060 	isl_mat_free(T);
1061 	free(affected);
1062 	return isl_stat_ok;
1063 error:
1064 	isl_mat_free(T);
1065 	free(affected);
1066 	return isl_stat_error;
1067 }
1068 
1069 /* Replace the basic maps "i" and "j" by an extension of "i"
1070  * along the "n" inequality constraints in "relax" by one.
1071  * The tableau info[i].tab has already been extended.
1072  * Extend info[i].bmap accordingly by relaxing all constraints in "relax"
1073  * by one.
1074  * Each integer division that does not have exactly the same
1075  * definition in "i" and "j" is marked unknown and the basic map
1076  * is scheduled to be simplified in an attempt to recover
1077  * the integer division definition.
1078  * Place the extension in the position that is the smallest of i and j.
1079  */
extend(int i,int j,int n,int * relax,struct isl_coalesce_info * info)1080 static enum isl_change extend(int i, int j, int n, int *relax,
1081 	struct isl_coalesce_info *info)
1082 {
1083 	int l;
1084 	isl_size total;
1085 
1086 	info[i].bmap = isl_basic_map_cow(info[i].bmap);
1087 	total = isl_basic_map_dim(info[i].bmap, isl_dim_all);
1088 	if (total < 0)
1089 		return isl_change_error;
1090 	for (l = 0; l < info[i].bmap->n_div; ++l)
1091 		if (!isl_seq_eq(info[i].bmap->div[l],
1092 				info[j].bmap->div[l], 1 + 1 + total)) {
1093 			isl_int_set_si(info[i].bmap->div[l][0], 0);
1094 			info[i].simplify = 1;
1095 		}
1096 	for (l = 0; l < n; ++l)
1097 		isl_int_add_ui(info[i].bmap->ineq[relax[l]][0],
1098 				info[i].bmap->ineq[relax[l]][0], 1);
1099 	ISL_F_CLR(info[i].bmap, ISL_BASIC_MAP_NO_REDUNDANT);
1100 	ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_FINAL);
1101 	drop(&info[j]);
1102 	info[i].modified = 1;
1103 	if (j < i)
1104 		exchange(&info[i], &info[j]);
1105 	return isl_change_fuse;
1106 }
1107 
1108 /* Basic map "i" has "n" inequality constraints (collected in "relax")
1109  * that are such that they include basic map "j" if they are relaxed
1110  * by one.  All the other inequalities are valid for "j".
1111  * Check if basic map "j" forms an extension of basic map "i".
1112  *
1113  * In particular, relax the constraints in "relax", compute the corresponding
1114  * facets one by one and check whether each of these is included
1115  * in the other basic map.
1116  * Before testing for inclusion, the constraints on each facet
1117  * are tightened to increase the chance of an inclusion being detected.
1118  * (Adding the valid constraints of "j" to the tableau of "i", as is done
1119  * in is_adj_ineq_extension, may further increase those chances, but this
1120  * is not currently done.)
1121  * If each facet is included, we know that relaxing the constraints extends
1122  * the basic map with exactly the other basic map (we already know that this
1123  * other basic map is included in the extension, because all other
1124  * inequality constraints are valid of "j") and we can replace the
1125  * two basic maps by this extension.
1126  *
1127  * If any of the relaxed constraints turn out to be redundant, then bail out.
1128  * isl_tab_select_facet refuses to handle such constraints.  It may be
1129  * possible to handle them anyway by making a distinction between
1130  * redundant constraints with a corresponding facet that still intersects
1131  * the set (allowing isl_tab_select_facet to handle them) and
1132  * those where the facet does not intersect the set (which can be ignored
1133  * because the empty facet is trivially included in the other disjunct).
1134  * However, relaxed constraints that turn out to be redundant should
1135  * be fairly rare and no such instance has been reported where
1136  * coalescing would be successful.
1137  *        ____			  _____
1138  *       /    || 		 /     |
1139  *      /     ||  		/      |
1140  *      \     ||   	=>	\      |
1141  *       \    ||		 \     |
1142  *        \___||		  \____|
1143  *
1144  *
1145  *	 \			|\
1146  *	|\\			| \
1147  *	| \\			|  \
1148  *	|  |		=>	|  /
1149  *	| /			| /
1150  *	|/			|/
1151  */
is_relaxed_extension(int i,int j,int n,int * relax,struct isl_coalesce_info * info)1152 static enum isl_change is_relaxed_extension(int i, int j, int n, int *relax,
1153 	struct isl_coalesce_info *info)
1154 {
1155 	int l;
1156 	isl_bool super;
1157 	struct isl_tab_undo *snap, *snap2;
1158 	unsigned n_eq = info[i].bmap->n_eq;
1159 
1160 	for (l = 0; l < n; ++l)
1161 		if (isl_tab_is_equality(info[i].tab, n_eq + relax[l]))
1162 			return isl_change_none;
1163 
1164 	snap = isl_tab_snap(info[i].tab);
1165 	for (l = 0; l < n; ++l)
1166 		if (isl_tab_relax(info[i].tab, n_eq + relax[l]) < 0)
1167 			return isl_change_error;
1168 	for (l = 0; l < n; ++l) {
1169 		if (!isl_tab_is_redundant(info[i].tab, n_eq + relax[l]))
1170 			continue;
1171 		if (isl_tab_rollback(info[i].tab, snap) < 0)
1172 			return isl_change_error;
1173 		return isl_change_none;
1174 	}
1175 	snap2 = isl_tab_snap(info[i].tab);
1176 	for (l = 0; l < n; ++l) {
1177 		if (isl_tab_rollback(info[i].tab, snap2) < 0)
1178 			return isl_change_error;
1179 		if (isl_tab_select_facet(info[i].tab, n_eq + relax[l]) < 0)
1180 			return isl_change_error;
1181 		if (tighten_on_relaxed_facet(&info[i], n, relax, l) < 0)
1182 			return isl_change_error;
1183 		super = contains(&info[j], info[i].tab);
1184 		if (super < 0)
1185 			return isl_change_error;
1186 		if (super)
1187 			continue;
1188 		if (isl_tab_rollback(info[i].tab, snap) < 0)
1189 			return isl_change_error;
1190 		return isl_change_none;
1191 	}
1192 
1193 	if (isl_tab_rollback(info[i].tab, snap2) < 0)
1194 		return isl_change_error;
1195 	return extend(i, j, n, relax, info);
1196 }
1197 
1198 /* Data structure that keeps track of the wrapping constraints
1199  * and of information to bound the coefficients of those constraints.
1200  *
1201  * bound is set if we want to apply a bound on the coefficients
1202  * mat contains the wrapping constraints
1203  * max is the bound on the coefficients (if bound is set)
1204  */
1205 struct isl_wraps {
1206 	int bound;
1207 	isl_mat *mat;
1208 	isl_int max;
1209 };
1210 
1211 /* Update wraps->max to be greater than or equal to the coefficients
1212  * in the equalities and inequalities of info->bmap that can be removed
1213  * if we end up applying wrapping.
1214  */
wraps_update_max(struct isl_wraps * wraps,struct isl_coalesce_info * info)1215 static isl_stat wraps_update_max(struct isl_wraps *wraps,
1216 	struct isl_coalesce_info *info)
1217 {
1218 	int k;
1219 	isl_int max_k;
1220 	isl_size total = isl_basic_map_dim(info->bmap, isl_dim_all);
1221 
1222 	if (total < 0)
1223 		return isl_stat_error;
1224 	isl_int_init(max_k);
1225 
1226 	for (k = 0; k < info->bmap->n_eq; ++k) {
1227 		if (info->eq[2 * k] == STATUS_VALID &&
1228 		    info->eq[2 * k + 1] == STATUS_VALID)
1229 			continue;
1230 		isl_seq_abs_max(info->bmap->eq[k] + 1, total, &max_k);
1231 		if (isl_int_abs_gt(max_k, wraps->max))
1232 			isl_int_set(wraps->max, max_k);
1233 	}
1234 
1235 	for (k = 0; k < info->bmap->n_ineq; ++k) {
1236 		if (info->ineq[k] == STATUS_VALID ||
1237 		    info->ineq[k] == STATUS_REDUNDANT)
1238 			continue;
1239 		isl_seq_abs_max(info->bmap->ineq[k] + 1, total, &max_k);
1240 		if (isl_int_abs_gt(max_k, wraps->max))
1241 			isl_int_set(wraps->max, max_k);
1242 	}
1243 
1244 	isl_int_clear(max_k);
1245 
1246 	return isl_stat_ok;
1247 }
1248 
1249 /* Initialize the isl_wraps data structure.
1250  * If we want to bound the coefficients of the wrapping constraints,
1251  * we set wraps->max to the largest coefficient
1252  * in the equalities and inequalities that can be removed if we end up
1253  * applying wrapping.
1254  */
wraps_init(struct isl_wraps * wraps,__isl_take isl_mat * mat,struct isl_coalesce_info * info,int i,int j)1255 static isl_stat wraps_init(struct isl_wraps *wraps, __isl_take isl_mat *mat,
1256 	struct isl_coalesce_info *info, int i, int j)
1257 {
1258 	isl_ctx *ctx;
1259 
1260 	wraps->bound = 0;
1261 	wraps->mat = mat;
1262 	if (!mat)
1263 		return isl_stat_error;
1264 	ctx = isl_mat_get_ctx(mat);
1265 	wraps->bound = isl_options_get_coalesce_bounded_wrapping(ctx);
1266 	if (!wraps->bound)
1267 		return isl_stat_ok;
1268 	isl_int_init(wraps->max);
1269 	isl_int_set_si(wraps->max, 0);
1270 	if (wraps_update_max(wraps, &info[i]) < 0)
1271 		return isl_stat_error;
1272 	if (wraps_update_max(wraps, &info[j]) < 0)
1273 		return isl_stat_error;
1274 
1275 	return isl_stat_ok;
1276 }
1277 
1278 /* Free the contents of the isl_wraps data structure.
1279  */
wraps_free(struct isl_wraps * wraps)1280 static void wraps_free(struct isl_wraps *wraps)
1281 {
1282 	isl_mat_free(wraps->mat);
1283 	if (wraps->bound)
1284 		isl_int_clear(wraps->max);
1285 }
1286 
1287 /* Mark the wrapping as failed by resetting wraps->mat->n_row to zero.
1288  */
wraps_mark_failed(struct isl_wraps * wraps)1289 static isl_stat wraps_mark_failed(struct isl_wraps *wraps)
1290 {
1291 	wraps->mat->n_row = 0;
1292 	return isl_stat_ok;
1293 }
1294 
1295 /* Is the wrapping constraint in row "row" allowed?
1296  *
1297  * If wraps->bound is set, we check that none of the coefficients
1298  * is greater than wraps->max.
1299  */
allow_wrap(struct isl_wraps * wraps,int row)1300 static int allow_wrap(struct isl_wraps *wraps, int row)
1301 {
1302 	int i;
1303 
1304 	if (!wraps->bound)
1305 		return 1;
1306 
1307 	for (i = 1; i < wraps->mat->n_col; ++i)
1308 		if (isl_int_abs_gt(wraps->mat->row[row][i], wraps->max))
1309 			return 0;
1310 
1311 	return 1;
1312 }
1313 
1314 /* Wrap "ineq" (or its opposite if "negate" is set) around "bound"
1315  * to include "set" and add the result in position "w" of "wraps".
1316  * "len" is the total number of coefficients in "bound" and "ineq".
1317  * Return 1 on success, 0 on failure and -1 on error.
1318  * Wrapping can fail if the result of wrapping is equal to "bound"
1319  * or if we want to bound the sizes of the coefficients and
1320  * the wrapped constraint does not satisfy this bound.
1321  */
add_wrap(struct isl_wraps * wraps,int w,isl_int * bound,isl_int * ineq,unsigned len,__isl_keep isl_set * set,int negate)1322 static int add_wrap(struct isl_wraps *wraps, int w, isl_int *bound,
1323 	isl_int *ineq, unsigned len, __isl_keep isl_set *set, int negate)
1324 {
1325 	isl_seq_cpy(wraps->mat->row[w], bound, len);
1326 	if (negate) {
1327 		isl_seq_neg(wraps->mat->row[w + 1], ineq, len);
1328 		ineq = wraps->mat->row[w + 1];
1329 	}
1330 	if (!isl_set_wrap_facet(set, wraps->mat->row[w], ineq))
1331 		return -1;
1332 	if (isl_seq_eq(wraps->mat->row[w], bound, len))
1333 		return 0;
1334 	if (!allow_wrap(wraps, w))
1335 		return 0;
1336 	return 1;
1337 }
1338 
1339 /* For each constraint in info->bmap that is not redundant (as determined
1340  * by info->tab) and that is not a valid constraint for the other basic map,
1341  * wrap the constraint around "bound" such that it includes the whole
1342  * set "set" and append the resulting constraint to "wraps".
1343  * Note that the constraints that are valid for the other basic map
1344  * will be added to the combined basic map by default, so there is
1345  * no need to wrap them.
1346  * The caller wrap_in_facets even relies on this function not wrapping
1347  * any constraints that are already valid.
1348  * "wraps" is assumed to have been pre-allocated to the appropriate size.
1349  * wraps->n_row is the number of actual wrapped constraints that have
1350  * been added.
1351  * If any of the wrapping problems results in a constraint that is
1352  * identical to "bound", then this means that "set" is unbounded in such
1353  * way that no wrapping is possible.  If this happens then wraps->n_row
1354  * is reset to zero.
1355  * Similarly, if we want to bound the coefficients of the wrapping
1356  * constraints and a newly added wrapping constraint does not
1357  * satisfy the bound, then wraps->n_row is also reset to zero.
1358  */
add_wraps(struct isl_wraps * wraps,struct isl_coalesce_info * info,isl_int * bound,__isl_keep isl_set * set)1359 static isl_stat add_wraps(struct isl_wraps *wraps,
1360 	struct isl_coalesce_info *info, isl_int *bound, __isl_keep isl_set *set)
1361 {
1362 	int l, m;
1363 	int w;
1364 	int added;
1365 	isl_basic_map *bmap = info->bmap;
1366 	isl_size total = isl_basic_map_dim(bmap, isl_dim_all);
1367 	unsigned len = 1 + total;
1368 
1369 	if (total < 0)
1370 		return isl_stat_error;
1371 
1372 	w = wraps->mat->n_row;
1373 
1374 	for (l = 0; l < bmap->n_ineq; ++l) {
1375 		if (info->ineq[l] == STATUS_VALID ||
1376 		    info->ineq[l] == STATUS_REDUNDANT)
1377 			continue;
1378 		if (isl_seq_is_neg(bound, bmap->ineq[l], len))
1379 			continue;
1380 		if (isl_seq_eq(bound, bmap->ineq[l], len))
1381 			continue;
1382 		if (isl_tab_is_redundant(info->tab, bmap->n_eq + l))
1383 			continue;
1384 
1385 		added = add_wrap(wraps, w, bound, bmap->ineq[l], len, set, 0);
1386 		if (added < 0)
1387 			return isl_stat_error;
1388 		if (!added)
1389 			goto unbounded;
1390 		++w;
1391 	}
1392 	for (l = 0; l < bmap->n_eq; ++l) {
1393 		if (isl_seq_is_neg(bound, bmap->eq[l], len))
1394 			continue;
1395 		if (isl_seq_eq(bound, bmap->eq[l], len))
1396 			continue;
1397 
1398 		for (m = 0; m < 2; ++m) {
1399 			if (info->eq[2 * l + m] == STATUS_VALID)
1400 				continue;
1401 			added = add_wrap(wraps, w, bound, bmap->eq[l], len,
1402 					set, !m);
1403 			if (added < 0)
1404 				return isl_stat_error;
1405 			if (!added)
1406 				goto unbounded;
1407 			++w;
1408 		}
1409 	}
1410 
1411 	wraps->mat->n_row = w;
1412 	return isl_stat_ok;
1413 unbounded:
1414 	return wraps_mark_failed(wraps);
1415 }
1416 
1417 /* Check if the constraints in "wraps" from "first" until the last
1418  * are all valid for the basic set represented by "tab".
1419  * If not, wraps->n_row is set to zero.
1420  */
check_wraps(__isl_keep isl_mat * wraps,int first,struct isl_tab * tab)1421 static int check_wraps(__isl_keep isl_mat *wraps, int first,
1422 	struct isl_tab *tab)
1423 {
1424 	int i;
1425 
1426 	for (i = first; i < wraps->n_row; ++i) {
1427 		enum isl_ineq_type type;
1428 		type = isl_tab_ineq_type(tab, wraps->row[i]);
1429 		if (type == isl_ineq_error)
1430 			return -1;
1431 		if (type == isl_ineq_redundant)
1432 			continue;
1433 		wraps->n_row = 0;
1434 		return 0;
1435 	}
1436 
1437 	return 0;
1438 }
1439 
1440 /* Return a set that corresponds to the non-redundant constraints
1441  * (as recorded in tab) of bmap.
1442  *
1443  * It's important to remove the redundant constraints as some
1444  * of the other constraints may have been modified after the
1445  * constraints were marked redundant.
1446  * In particular, a constraint may have been relaxed.
1447  * Redundant constraints are ignored when a constraint is relaxed
1448  * and should therefore continue to be ignored ever after.
1449  * Otherwise, the relaxation might be thwarted by some of
1450  * these constraints.
1451  *
1452  * Update the underlying set to ensure that the dimension doesn't change.
1453  * Otherwise the integer divisions could get dropped if the tab
1454  * turns out to be empty.
1455  */
set_from_updated_bmap(__isl_keep isl_basic_map * bmap,struct isl_tab * tab)1456 static __isl_give isl_set *set_from_updated_bmap(__isl_keep isl_basic_map *bmap,
1457 	struct isl_tab *tab)
1458 {
1459 	isl_basic_set *bset;
1460 
1461 	bmap = isl_basic_map_copy(bmap);
1462 	bset = isl_basic_map_underlying_set(bmap);
1463 	bset = isl_basic_set_cow(bset);
1464 	bset = isl_basic_set_update_from_tab(bset, tab);
1465 	return isl_set_from_basic_set(bset);
1466 }
1467 
1468 /* Does "info" have any cut constraints that are redundant?
1469  */
has_redundant_cuts(struct isl_coalesce_info * info)1470 static isl_bool has_redundant_cuts(struct isl_coalesce_info *info)
1471 {
1472 	int l;
1473 	int n_eq, n_ineq;
1474 
1475 	n_eq = isl_basic_map_n_equality(info->bmap);
1476 	n_ineq = isl_basic_map_n_inequality(info->bmap);
1477 	if (n_eq < 0 || n_ineq < 0)
1478 		return isl_bool_error;
1479 	for (l = 0; l < n_ineq; ++l) {
1480 		int red;
1481 
1482 		if (info->ineq[l] != STATUS_CUT)
1483 			continue;
1484 		red = isl_tab_is_redundant(info->tab, n_eq + l);
1485 		if (red < 0)
1486 			return isl_bool_error;
1487 		if (red)
1488 			return isl_bool_true;
1489 	}
1490 
1491 	return isl_bool_false;
1492 }
1493 
1494 /* Wrap the constraints of info->bmap that bound the facet defined
1495  * by inequality "k" around (the opposite of) this inequality to
1496  * include "set".  "bound" may be used to store the negated inequality.
1497  * Since the wrapped constraints are not guaranteed to contain the whole
1498  * of info->bmap, we check them in check_wraps.
1499  * If any of the wrapped constraints turn out to be invalid, then
1500  * check_wraps will reset wrap->n_row to zero.
1501  *
1502  * If any of the cut constraints of info->bmap turn out
1503  * to be redundant with respect to other constraints
1504  * then these will neither be wrapped nor added directly to the result.
1505  * The result may therefore not be correct.
1506  * Skip wrapping and reset wrap->mat->n_row to zero in this case.
1507  */
add_wraps_around_facet(struct isl_wraps * wraps,struct isl_coalesce_info * info,int k,isl_int * bound,__isl_keep isl_set * set)1508 static isl_stat add_wraps_around_facet(struct isl_wraps *wraps,
1509 	struct isl_coalesce_info *info, int k, isl_int *bound,
1510 	__isl_keep isl_set *set)
1511 {
1512 	isl_bool nowrap;
1513 	struct isl_tab_undo *snap;
1514 	int n;
1515 	isl_size total = isl_basic_map_dim(info->bmap, isl_dim_all);
1516 
1517 	if (total < 0)
1518 		return isl_stat_error;
1519 
1520 	snap = isl_tab_snap(info->tab);
1521 
1522 	if (isl_tab_select_facet(info->tab, info->bmap->n_eq + k) < 0)
1523 		return isl_stat_error;
1524 	if (isl_tab_detect_redundant(info->tab) < 0)
1525 		return isl_stat_error;
1526 	nowrap = has_redundant_cuts(info);
1527 	if (nowrap < 0)
1528 		return isl_stat_error;
1529 
1530 	n = wraps->mat->n_row;
1531 	if (!nowrap) {
1532 		isl_seq_neg(bound, info->bmap->ineq[k], 1 + total);
1533 
1534 		if (add_wraps(wraps, info, bound, set) < 0)
1535 			return isl_stat_error;
1536 	}
1537 
1538 	if (isl_tab_rollback(info->tab, snap) < 0)
1539 		return isl_stat_error;
1540 	if (nowrap)
1541 		return wraps_mark_failed(wraps);
1542 	if (check_wraps(wraps->mat, n, info->tab) < 0)
1543 		return isl_stat_error;
1544 
1545 	return isl_stat_ok;
1546 }
1547 
1548 /* Given a basic set i with a constraint k that is adjacent to
1549  * basic set j, check if we can wrap
1550  * both the facet corresponding to k (if "wrap_facet" is set) and basic map j
1551  * (always) around their ridges to include the other set.
1552  * If so, replace the pair of basic sets by their union.
1553  *
1554  * All constraints of i (except k) are assumed to be valid or
1555  * cut constraints for j.
1556  * Wrapping the cut constraints to include basic map j may result
1557  * in constraints that are no longer valid of basic map i
1558  * we have to check that the resulting wrapping constraints are valid for i.
1559  * If "wrap_facet" is not set, then all constraints of i (except k)
1560  * are assumed to be valid for j.
1561  *        ____			  _____
1562  *       /    | 		 /     \
1563  *      /     ||  		/      |
1564  *      \     ||   	=>	\      |
1565  *       \    ||		 \     |
1566  *        \___||		  \____|
1567  *
1568  */
can_wrap_in_facet(int i,int j,int k,struct isl_coalesce_info * info,int wrap_facet)1569 static enum isl_change can_wrap_in_facet(int i, int j, int k,
1570 	struct isl_coalesce_info *info, int wrap_facet)
1571 {
1572 	enum isl_change change = isl_change_none;
1573 	struct isl_wraps wraps;
1574 	isl_ctx *ctx;
1575 	isl_mat *mat;
1576 	struct isl_set *set_i = NULL;
1577 	struct isl_set *set_j = NULL;
1578 	struct isl_vec *bound = NULL;
1579 	isl_size total = isl_basic_map_dim(info[i].bmap, isl_dim_all);
1580 
1581 	if (total < 0)
1582 		return isl_change_error;
1583 	set_i = set_from_updated_bmap(info[i].bmap, info[i].tab);
1584 	set_j = set_from_updated_bmap(info[j].bmap, info[j].tab);
1585 	ctx = isl_basic_map_get_ctx(info[i].bmap);
1586 	mat = isl_mat_alloc(ctx, 2 * (info[i].bmap->n_eq + info[j].bmap->n_eq) +
1587 				    info[i].bmap->n_ineq + info[j].bmap->n_ineq,
1588 				    1 + total);
1589 	if (wraps_init(&wraps, mat, info, i, j) < 0)
1590 		goto error;
1591 	bound = isl_vec_alloc(ctx, 1 + total);
1592 	if (!set_i || !set_j || !bound)
1593 		goto error;
1594 
1595 	isl_seq_cpy(bound->el, info[i].bmap->ineq[k], 1 + total);
1596 	isl_int_add_ui(bound->el[0], bound->el[0], 1);
1597 	isl_seq_normalize(ctx, bound->el, 1 + total);
1598 
1599 	isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total);
1600 	wraps.mat->n_row = 1;
1601 
1602 	if (add_wraps(&wraps, &info[j], bound->el, set_i) < 0)
1603 		goto error;
1604 	if (!wraps.mat->n_row)
1605 		goto unbounded;
1606 
1607 	if (wrap_facet) {
1608 		if (add_wraps_around_facet(&wraps, &info[i], k,
1609 					    bound->el, set_j) < 0)
1610 			goto error;
1611 		if (!wraps.mat->n_row)
1612 			goto unbounded;
1613 	}
1614 
1615 	change = fuse(i, j, info, wraps.mat, 0, 0);
1616 
1617 unbounded:
1618 	wraps_free(&wraps);
1619 
1620 	isl_set_free(set_i);
1621 	isl_set_free(set_j);
1622 
1623 	isl_vec_free(bound);
1624 
1625 	return change;
1626 error:
1627 	wraps_free(&wraps);
1628 	isl_vec_free(bound);
1629 	isl_set_free(set_i);
1630 	isl_set_free(set_j);
1631 	return isl_change_error;
1632 }
1633 
1634 /* Given a cut constraint t(x) >= 0 of basic map i, stored in row "w"
1635  * of wrap.mat, replace it by its relaxed version t(x) + 1 >= 0, and
1636  * add wrapping constraints to wrap.mat for all constraints
1637  * of basic map j that bound the part of basic map j that sticks out
1638  * of the cut constraint.
1639  * "set_i" is the underlying set of basic map i.
1640  * If any wrapping fails, then wraps->mat.n_row is reset to zero.
1641  *
1642  * In particular, we first intersect basic map j with t(x) + 1 = 0.
1643  * If the result is empty, then t(x) >= 0 was actually a valid constraint
1644  * (with respect to the integer points), so we add t(x) >= 0 instead.
1645  * Otherwise, we wrap the constraints of basic map j that are not
1646  * redundant in this intersection and that are not already valid
1647  * for basic map i over basic map i.
1648  * Note that it is sufficient to wrap the constraints to include
1649  * basic map i, because we will only wrap the constraints that do
1650  * not include basic map i already.  The wrapped constraint will
1651  * therefore be more relaxed compared to the original constraint.
1652  * Since the original constraint is valid for basic map j, so is
1653  * the wrapped constraint.
1654  */
wrap_in_facet(struct isl_wraps * wraps,int w,struct isl_coalesce_info * info_j,__isl_keep isl_set * set_i,struct isl_tab_undo * snap)1655 static isl_stat wrap_in_facet(struct isl_wraps *wraps, int w,
1656 	struct isl_coalesce_info *info_j, __isl_keep isl_set *set_i,
1657 	struct isl_tab_undo *snap)
1658 {
1659 	isl_int_add_ui(wraps->mat->row[w][0], wraps->mat->row[w][0], 1);
1660 	if (isl_tab_add_eq(info_j->tab, wraps->mat->row[w]) < 0)
1661 		return isl_stat_error;
1662 	if (isl_tab_detect_redundant(info_j->tab) < 0)
1663 		return isl_stat_error;
1664 
1665 	if (info_j->tab->empty)
1666 		isl_int_sub_ui(wraps->mat->row[w][0], wraps->mat->row[w][0], 1);
1667 	else if (add_wraps(wraps, info_j, wraps->mat->row[w], set_i) < 0)
1668 		return isl_stat_error;
1669 
1670 	if (isl_tab_rollback(info_j->tab, snap) < 0)
1671 		return isl_stat_error;
1672 
1673 	return isl_stat_ok;
1674 }
1675 
1676 /* Given a pair of basic maps i and j such that j sticks out
1677  * of i at n cut constraints, each time by at most one,
1678  * try to compute wrapping constraints and replace the two
1679  * basic maps by a single basic map.
1680  * The other constraints of i are assumed to be valid for j.
1681  * "set_i" is the underlying set of basic map i.
1682  * "wraps" has been initialized to be of the right size.
1683  *
1684  * For each cut constraint t(x) >= 0 of i, we add the relaxed version
1685  * t(x) + 1 >= 0, along with wrapping constraints for all constraints
1686  * of basic map j that bound the part of basic map j that sticks out
1687  * of the cut constraint.
1688  *
1689  * If any wrapping fails, i.e., if we cannot wrap to touch
1690  * the union, then we give up.
1691  * Otherwise, the pair of basic maps is replaced by their union.
1692  */
try_wrap_in_facets(int i,int j,struct isl_coalesce_info * info,struct isl_wraps * wraps,__isl_keep isl_set * set_i)1693 static enum isl_change try_wrap_in_facets(int i, int j,
1694 	struct isl_coalesce_info *info, struct isl_wraps *wraps,
1695 	__isl_keep isl_set *set_i)
1696 {
1697 	int k, l, w;
1698 	isl_size total;
1699 	struct isl_tab_undo *snap;
1700 
1701 	total = isl_basic_map_dim(info[i].bmap, isl_dim_all);
1702 	if (total < 0)
1703 		return isl_change_error;
1704 
1705 	snap = isl_tab_snap(info[j].tab);
1706 
1707 	wraps->mat->n_row = 0;
1708 
1709 	for (k = 0; k < info[i].bmap->n_eq; ++k) {
1710 		for (l = 0; l < 2; ++l) {
1711 			if (info[i].eq[2 * k + l] != STATUS_CUT)
1712 				continue;
1713 			w = wraps->mat->n_row++;
1714 			if (l == 0)
1715 				isl_seq_neg(wraps->mat->row[w],
1716 					    info[i].bmap->eq[k], 1 + total);
1717 			else
1718 				isl_seq_cpy(wraps->mat->row[w],
1719 					    info[i].bmap->eq[k], 1 + total);
1720 			if (wrap_in_facet(wraps, w, &info[j], set_i, snap) < 0)
1721 				return isl_change_error;
1722 
1723 			if (!wraps->mat->n_row)
1724 				return isl_change_none;
1725 		}
1726 	}
1727 
1728 	for (k = 0; k < info[i].bmap->n_ineq; ++k) {
1729 		if (info[i].ineq[k] != STATUS_CUT)
1730 			continue;
1731 		w = wraps->mat->n_row++;
1732 		isl_seq_cpy(wraps->mat->row[w],
1733 			    info[i].bmap->ineq[k], 1 + total);
1734 		if (wrap_in_facet(wraps, w, &info[j], set_i, snap) < 0)
1735 			return isl_change_error;
1736 
1737 		if (!wraps->mat->n_row)
1738 			return isl_change_none;
1739 	}
1740 
1741 	return fuse(i, j, info, wraps->mat, 0, 1);
1742 }
1743 
1744 /* Given a pair of basic maps i and j such that j sticks out
1745  * of i at n cut constraints, each time by at most one,
1746  * try to compute wrapping constraints and replace the two
1747  * basic maps by a single basic map.
1748  * The other constraints of i are assumed to be valid for j.
1749  *
1750  * The core computation is performed by try_wrap_in_facets.
1751  * This function simply extracts an underlying set representation
1752  * of basic map i and initializes the data structure for keeping
1753  * track of wrapping constraints.
1754  */
wrap_in_facets(int i,int j,int n,struct isl_coalesce_info * info)1755 static enum isl_change wrap_in_facets(int i, int j, int n,
1756 	struct isl_coalesce_info *info)
1757 {
1758 	enum isl_change change = isl_change_none;
1759 	struct isl_wraps wraps;
1760 	isl_ctx *ctx;
1761 	isl_mat *mat;
1762 	isl_set *set_i = NULL;
1763 	isl_size total = isl_basic_map_dim(info[i].bmap, isl_dim_all);
1764 	int max_wrap;
1765 
1766 	if (total < 0)
1767 		return isl_change_error;
1768 	if (isl_tab_extend_cons(info[j].tab, 1) < 0)
1769 		return isl_change_error;
1770 
1771 	max_wrap = 1 + 2 * info[j].bmap->n_eq + info[j].bmap->n_ineq;
1772 	max_wrap *= n;
1773 
1774 	set_i = set_from_updated_bmap(info[i].bmap, info[i].tab);
1775 	ctx = isl_basic_map_get_ctx(info[i].bmap);
1776 	mat = isl_mat_alloc(ctx, max_wrap, 1 + total);
1777 	if (wraps_init(&wraps, mat, info, i, j) < 0)
1778 		goto error;
1779 	if (!set_i)
1780 		goto error;
1781 
1782 	change = try_wrap_in_facets(i, j, info, &wraps, set_i);
1783 
1784 	wraps_free(&wraps);
1785 	isl_set_free(set_i);
1786 
1787 	return change;
1788 error:
1789 	wraps_free(&wraps);
1790 	isl_set_free(set_i);
1791 	return isl_change_error;
1792 }
1793 
1794 /* Return the effect of inequality "ineq" on the tableau "tab",
1795  * after relaxing the constant term of "ineq" by one.
1796  */
type_of_relaxed(struct isl_tab * tab,isl_int * ineq)1797 static enum isl_ineq_type type_of_relaxed(struct isl_tab *tab, isl_int *ineq)
1798 {
1799 	enum isl_ineq_type type;
1800 
1801 	isl_int_add_ui(ineq[0], ineq[0], 1);
1802 	type = isl_tab_ineq_type(tab, ineq);
1803 	isl_int_sub_ui(ineq[0], ineq[0], 1);
1804 
1805 	return type;
1806 }
1807 
1808 /* Given two basic sets i and j,
1809  * check if relaxing all the cut constraints of i by one turns
1810  * them into valid constraint for j and check if we can wrap in
1811  * the bits that are sticking out.
1812  * If so, replace the pair by their union.
1813  *
1814  * We first check if all relaxed cut inequalities of i are valid for j
1815  * and then try to wrap in the intersections of the relaxed cut inequalities
1816  * with j.
1817  *
1818  * During this wrapping, we consider the points of j that lie at a distance
1819  * of exactly 1 from i.  In particular, we ignore the points that lie in
1820  * between this lower-dimensional space and the basic map i.
1821  * We can therefore only apply this to integer maps.
1822  *        ____			  _____
1823  *       / ___|_		 /     \
1824  *      / |    |  		/      |
1825  *      \ |    |   	=>	\      |
1826  *       \|____|		 \     |
1827  *        \___| 		  \____/
1828  *
1829  *	 _____			 ______
1830  *	| ____|_		|      \
1831  *	| |     |		|       |
1832  *	| |	|	=>	|       |
1833  *	|_|     |		|       |
1834  *	  |_____|		 \______|
1835  *
1836  *	 _______
1837  *	|       |
1838  *	|  |\   |
1839  *	|  | \  |
1840  *	|  |  \ |
1841  *	|  |   \|
1842  *	|  |    \
1843  *	|  |_____\
1844  *	|       |
1845  *	|_______|
1846  *
1847  * Wrapping can fail if the result of wrapping one of the facets
1848  * around its edges does not produce any new facet constraint.
1849  * In particular, this happens when we try to wrap in unbounded sets.
1850  *
1851  *	 _______________________________________________________________________
1852  *	|
1853  *	|  ___
1854  *	| |   |
1855  *	|_|   |_________________________________________________________________
1856  *	  |___|
1857  *
1858  * The following is not an acceptable result of coalescing the above two
1859  * sets as it includes extra integer points.
1860  *	 _______________________________________________________________________
1861  *	|
1862  *	|
1863  *	|
1864  *	|
1865  *	 \______________________________________________________________________
1866  */
can_wrap_in_set(int i,int j,struct isl_coalesce_info * info)1867 static enum isl_change can_wrap_in_set(int i, int j,
1868 	struct isl_coalesce_info *info)
1869 {
1870 	int k, l;
1871 	int n;
1872 	isl_size total;
1873 
1874 	if (ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_RATIONAL) ||
1875 	    ISL_F_ISSET(info[j].bmap, ISL_BASIC_MAP_RATIONAL))
1876 		return isl_change_none;
1877 
1878 	n = count_eq(&info[i], STATUS_CUT) + count_ineq(&info[i], STATUS_CUT);
1879 	if (n == 0)
1880 		return isl_change_none;
1881 
1882 	total = isl_basic_map_dim(info[i].bmap, isl_dim_all);
1883 	if (total < 0)
1884 		return isl_change_error;
1885 	for (k = 0; k < info[i].bmap->n_eq; ++k) {
1886 		for (l = 0; l < 2; ++l) {
1887 			enum isl_ineq_type type;
1888 
1889 			if (info[i].eq[2 * k + l] != STATUS_CUT)
1890 				continue;
1891 
1892 			if (l == 0)
1893 				isl_seq_neg(info[i].bmap->eq[k],
1894 					    info[i].bmap->eq[k], 1 + total);
1895 			type = type_of_relaxed(info[j].tab,
1896 					    info[i].bmap->eq[k]);
1897 			if (l == 0)
1898 				isl_seq_neg(info[i].bmap->eq[k],
1899 					    info[i].bmap->eq[k], 1 + total);
1900 			if (type == isl_ineq_error)
1901 				return isl_change_error;
1902 			if (type != isl_ineq_redundant)
1903 				return isl_change_none;
1904 		}
1905 	}
1906 
1907 	for (k = 0; k < info[i].bmap->n_ineq; ++k) {
1908 		enum isl_ineq_type type;
1909 
1910 		if (info[i].ineq[k] != STATUS_CUT)
1911 			continue;
1912 
1913 		type = type_of_relaxed(info[j].tab, info[i].bmap->ineq[k]);
1914 		if (type == isl_ineq_error)
1915 			return isl_change_error;
1916 		if (type != isl_ineq_redundant)
1917 			return isl_change_none;
1918 	}
1919 
1920 	return wrap_in_facets(i, j, n, info);
1921 }
1922 
1923 /* Check if either i or j has only cut constraints that can
1924  * be used to wrap in (a facet of) the other basic set.
1925  * if so, replace the pair by their union.
1926  */
check_wrap(int i,int j,struct isl_coalesce_info * info)1927 static enum isl_change check_wrap(int i, int j, struct isl_coalesce_info *info)
1928 {
1929 	enum isl_change change = isl_change_none;
1930 
1931 	change = can_wrap_in_set(i, j, info);
1932 	if (change != isl_change_none)
1933 		return change;
1934 
1935 	change = can_wrap_in_set(j, i, info);
1936 	return change;
1937 }
1938 
1939 /* Check if all inequality constraints of "i" that cut "j" cease
1940  * to be cut constraints if they are relaxed by one.
1941  * If so, collect the cut constraints in "list".
1942  * The caller is responsible for allocating "list".
1943  */
all_cut_by_one(int i,int j,struct isl_coalesce_info * info,int * list)1944 static isl_bool all_cut_by_one(int i, int j, struct isl_coalesce_info *info,
1945 	int *list)
1946 {
1947 	int l, n;
1948 
1949 	n = 0;
1950 	for (l = 0; l < info[i].bmap->n_ineq; ++l) {
1951 		enum isl_ineq_type type;
1952 
1953 		if (info[i].ineq[l] != STATUS_CUT)
1954 			continue;
1955 		type = type_of_relaxed(info[j].tab, info[i].bmap->ineq[l]);
1956 		if (type == isl_ineq_error)
1957 			return isl_bool_error;
1958 		if (type != isl_ineq_redundant)
1959 			return isl_bool_false;
1960 		list[n++] = l;
1961 	}
1962 
1963 	return isl_bool_true;
1964 }
1965 
1966 /* Given two basic maps such that "j" has at least one equality constraint
1967  * that is adjacent to an inequality constraint of "i" and such that "i" has
1968  * exactly one inequality constraint that is adjacent to an equality
1969  * constraint of "j", check whether "i" can be extended to include "j" or
1970  * whether "j" can be wrapped into "i".
1971  * All remaining constraints of "i" and "j" are assumed to be valid
1972  * or cut constraints of the other basic map.
1973  * However, none of the equality constraints of "i" are cut constraints.
1974  *
1975  * If "i" has any "cut" inequality constraints, then check if relaxing
1976  * each of them by one is sufficient for them to become valid.
1977  * If so, check if the inequality constraint adjacent to an equality
1978  * constraint of "j" along with all these cut constraints
1979  * can be relaxed by one to contain exactly "j".
1980  * Otherwise, or if this fails, check if "j" can be wrapped into "i".
1981  */
check_single_adj_eq(int i,int j,struct isl_coalesce_info * info)1982 static enum isl_change check_single_adj_eq(int i, int j,
1983 	struct isl_coalesce_info *info)
1984 {
1985 	enum isl_change change = isl_change_none;
1986 	int k;
1987 	int n_cut;
1988 	int *relax;
1989 	isl_ctx *ctx;
1990 	isl_bool try_relax;
1991 
1992 	n_cut = count_ineq(&info[i], STATUS_CUT);
1993 
1994 	k = find_ineq(&info[i], STATUS_ADJ_EQ);
1995 
1996 	if (n_cut > 0) {
1997 		ctx = isl_basic_map_get_ctx(info[i].bmap);
1998 		relax = isl_calloc_array(ctx, int, 1 + n_cut);
1999 		if (!relax)
2000 			return isl_change_error;
2001 		relax[0] = k;
2002 		try_relax = all_cut_by_one(i, j, info, relax + 1);
2003 		if (try_relax < 0)
2004 			change = isl_change_error;
2005 	} else {
2006 		try_relax = isl_bool_true;
2007 		relax = &k;
2008 	}
2009 	if (try_relax && change == isl_change_none)
2010 		change = is_relaxed_extension(i, j, 1 + n_cut, relax, info);
2011 	if (n_cut > 0)
2012 		free(relax);
2013 	if (change != isl_change_none)
2014 		return change;
2015 
2016 	change = can_wrap_in_facet(i, j, k, info, n_cut > 0);
2017 
2018 	return change;
2019 }
2020 
2021 /* At least one of the basic maps has an equality that is adjacent
2022  * to an inequality.  Make sure that only one of the basic maps has
2023  * such an equality and that the other basic map has exactly one
2024  * inequality adjacent to an equality.
2025  * If the other basic map does not have such an inequality, then
2026  * check if all its constraints are either valid or cut constraints
2027  * and, if so, try wrapping in the first map into the second.
2028  * Otherwise, try to extend one basic map with the other or
2029  * wrap one basic map in the other.
2030  */
check_adj_eq(int i,int j,struct isl_coalesce_info * info)2031 static enum isl_change check_adj_eq(int i, int j,
2032 	struct isl_coalesce_info *info)
2033 {
2034 	if (any_eq(&info[i], STATUS_ADJ_INEQ) &&
2035 	    any_eq(&info[j], STATUS_ADJ_INEQ))
2036 		/* ADJ EQ TOO MANY */
2037 		return isl_change_none;
2038 
2039 	if (any_eq(&info[i], STATUS_ADJ_INEQ))
2040 		return check_adj_eq(j, i, info);
2041 
2042 	/* j has an equality adjacent to an inequality in i */
2043 
2044 	if (count_ineq(&info[i], STATUS_ADJ_EQ) != 1) {
2045 		if (all_valid_or_cut(&info[i]))
2046 			return can_wrap_in_set(i, j, info);
2047 		return isl_change_none;
2048 	}
2049 	if (any_eq(&info[i], STATUS_CUT))
2050 		return isl_change_none;
2051 	if (any_ineq(&info[j], STATUS_ADJ_EQ) ||
2052 	    any_ineq(&info[i], STATUS_ADJ_INEQ) ||
2053 	    any_ineq(&info[j], STATUS_ADJ_INEQ))
2054 		/* ADJ EQ TOO MANY */
2055 		return isl_change_none;
2056 
2057 	return check_single_adj_eq(i, j, info);
2058 }
2059 
2060 /* Disjunct "j" lies on a hyperplane that is adjacent to disjunct "i".
2061  * In particular, disjunct "i" has an inequality constraint that is adjacent
2062  * to a (combination of) equality constraint(s) of disjunct "j",
2063  * but disjunct "j" has no explicit equality constraint adjacent
2064  * to an inequality constraint of disjunct "i".
2065  *
2066  * Disjunct "i" is already known not to have any equality constraints
2067  * that are adjacent to an equality or inequality constraint.
2068  * Check that, other than the inequality constraint mentioned above,
2069  * all other constraints of disjunct "i" are valid for disjunct "j".
2070  * If so, try and wrap in disjunct "j".
2071  */
check_ineq_adj_eq(int i,int j,struct isl_coalesce_info * info)2072 static enum isl_change check_ineq_adj_eq(int i, int j,
2073 	struct isl_coalesce_info *info)
2074 {
2075 	int k;
2076 
2077 	if (any_eq(&info[i], STATUS_CUT))
2078 		return isl_change_none;
2079 	if (any_ineq(&info[i], STATUS_CUT))
2080 		return isl_change_none;
2081 	if (any_ineq(&info[i], STATUS_ADJ_INEQ))
2082 		return isl_change_none;
2083 	if (count_ineq(&info[i], STATUS_ADJ_EQ) != 1)
2084 		return isl_change_none;
2085 
2086 	k = find_ineq(&info[i], STATUS_ADJ_EQ);
2087 
2088 	return can_wrap_in_facet(i, j, k, info, 0);
2089 }
2090 
2091 /* The two basic maps lie on adjacent hyperplanes.  In particular,
2092  * basic map "i" has an equality that lies parallel to basic map "j".
2093  * Check if we can wrap the facets around the parallel hyperplanes
2094  * to include the other set.
2095  *
2096  * We perform basically the same operations as can_wrap_in_facet,
2097  * except that we don't need to select a facet of one of the sets.
2098  *				_
2099  *	\\			\\
2100  *	 \\		=>	 \\
2101  *	  \			  \|
2102  *
2103  * If there is more than one equality of "i" adjacent to an equality of "j",
2104  * then the result will satisfy one or more equalities that are a linear
2105  * combination of these equalities.  These will be encoded as pairs
2106  * of inequalities in the wrapping constraints and need to be made
2107  * explicit.
2108  */
check_eq_adj_eq(int i,int j,struct isl_coalesce_info * info)2109 static enum isl_change check_eq_adj_eq(int i, int j,
2110 	struct isl_coalesce_info *info)
2111 {
2112 	int k;
2113 	enum isl_change change = isl_change_none;
2114 	int detect_equalities = 0;
2115 	struct isl_wraps wraps;
2116 	isl_ctx *ctx;
2117 	isl_mat *mat;
2118 	struct isl_set *set_i = NULL;
2119 	struct isl_set *set_j = NULL;
2120 	struct isl_vec *bound = NULL;
2121 	isl_size total = isl_basic_map_dim(info[i].bmap, isl_dim_all);
2122 
2123 	if (total < 0)
2124 		return isl_change_error;
2125 	if (count_eq(&info[i], STATUS_ADJ_EQ) != 1)
2126 		detect_equalities = 1;
2127 
2128 	k = find_eq(&info[i], STATUS_ADJ_EQ);
2129 
2130 	set_i = set_from_updated_bmap(info[i].bmap, info[i].tab);
2131 	set_j = set_from_updated_bmap(info[j].bmap, info[j].tab);
2132 	ctx = isl_basic_map_get_ctx(info[i].bmap);
2133 	mat = isl_mat_alloc(ctx, 2 * (info[i].bmap->n_eq + info[j].bmap->n_eq) +
2134 				    info[i].bmap->n_ineq + info[j].bmap->n_ineq,
2135 				    1 + total);
2136 	if (wraps_init(&wraps, mat, info, i, j) < 0)
2137 		goto error;
2138 	bound = isl_vec_alloc(ctx, 1 + total);
2139 	if (!set_i || !set_j || !bound)
2140 		goto error;
2141 
2142 	if (k % 2 == 0)
2143 		isl_seq_neg(bound->el, info[i].bmap->eq[k / 2], 1 + total);
2144 	else
2145 		isl_seq_cpy(bound->el, info[i].bmap->eq[k / 2], 1 + total);
2146 	isl_int_add_ui(bound->el[0], bound->el[0], 1);
2147 
2148 	isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total);
2149 	wraps.mat->n_row = 1;
2150 
2151 	if (add_wraps(&wraps, &info[j], bound->el, set_i) < 0)
2152 		goto error;
2153 	if (!wraps.mat->n_row)
2154 		goto unbounded;
2155 
2156 	isl_int_sub_ui(bound->el[0], bound->el[0], 1);
2157 	isl_seq_neg(bound->el, bound->el, 1 + total);
2158 
2159 	isl_seq_cpy(wraps.mat->row[wraps.mat->n_row], bound->el, 1 + total);
2160 	wraps.mat->n_row++;
2161 
2162 	if (add_wraps(&wraps, &info[i], bound->el, set_j) < 0)
2163 		goto error;
2164 	if (!wraps.mat->n_row)
2165 		goto unbounded;
2166 
2167 	change = fuse(i, j, info, wraps.mat, detect_equalities, 0);
2168 
2169 	if (0) {
2170 error:		change = isl_change_error;
2171 	}
2172 unbounded:
2173 
2174 	wraps_free(&wraps);
2175 	isl_set_free(set_i);
2176 	isl_set_free(set_j);
2177 	isl_vec_free(bound);
2178 
2179 	return change;
2180 }
2181 
2182 /* Initialize the "eq" and "ineq" fields of "info".
2183  */
init_status(struct isl_coalesce_info * info)2184 static void init_status(struct isl_coalesce_info *info)
2185 {
2186 	info->eq = info->ineq = NULL;
2187 }
2188 
2189 /* Set info->eq to the positions of the equalities of info->bmap
2190  * with respect to the basic map represented by "tab".
2191  * If info->eq has already been computed, then do not compute it again.
2192  */
set_eq_status_in(struct isl_coalesce_info * info,struct isl_tab * tab)2193 static void set_eq_status_in(struct isl_coalesce_info *info,
2194 	struct isl_tab *tab)
2195 {
2196 	if (info->eq)
2197 		return;
2198 	info->eq = eq_status_in(info->bmap, tab);
2199 }
2200 
2201 /* Set info->ineq to the positions of the inequalities of info->bmap
2202  * with respect to the basic map represented by "tab".
2203  * If info->ineq has already been computed, then do not compute it again.
2204  */
set_ineq_status_in(struct isl_coalesce_info * info,struct isl_tab * tab)2205 static void set_ineq_status_in(struct isl_coalesce_info *info,
2206 	struct isl_tab *tab)
2207 {
2208 	if (info->ineq)
2209 		return;
2210 	info->ineq = ineq_status_in(info->bmap, info->tab, tab);
2211 }
2212 
2213 /* Free the memory allocated by the "eq" and "ineq" fields of "info".
2214  * This function assumes that init_status has been called on "info" first,
2215  * after which the "eq" and "ineq" fields may or may not have been
2216  * assigned a newly allocated array.
2217  */
clear_status(struct isl_coalesce_info * info)2218 static void clear_status(struct isl_coalesce_info *info)
2219 {
2220 	free(info->eq);
2221 	free(info->ineq);
2222 }
2223 
2224 /* Are all inequality constraints of the basic map represented by "info"
2225  * valid for the other basic map, except for a single constraint
2226  * that is adjacent to an inequality constraint of the other basic map?
2227  */
all_ineq_valid_or_single_adj_ineq(struct isl_coalesce_info * info)2228 static int all_ineq_valid_or_single_adj_ineq(struct isl_coalesce_info *info)
2229 {
2230 	int i;
2231 	int k = -1;
2232 
2233 	for (i = 0; i < info->bmap->n_ineq; ++i) {
2234 		if (info->ineq[i] == STATUS_REDUNDANT)
2235 			continue;
2236 		if (info->ineq[i] == STATUS_VALID)
2237 			continue;
2238 		if (info->ineq[i] != STATUS_ADJ_INEQ)
2239 			return 0;
2240 		if (k != -1)
2241 			return 0;
2242 		k = i;
2243 	}
2244 
2245 	return k != -1;
2246 }
2247 
2248 /* Basic map "i" has one or more equality constraints that separate it
2249  * from basic map "j".  Check if it happens to be an extension
2250  * of basic map "j".
2251  * In particular, check that all constraints of "j" are valid for "i",
2252  * except for one inequality constraint that is adjacent
2253  * to an inequality constraints of "i".
2254  * If so, check for "i" being an extension of "j" by calling
2255  * is_adj_ineq_extension.
2256  *
2257  * Clean up the memory allocated for keeping track of the status
2258  * of the constraints before returning.
2259  */
separating_equality(int i,int j,struct isl_coalesce_info * info)2260 static enum isl_change separating_equality(int i, int j,
2261 	struct isl_coalesce_info *info)
2262 {
2263 	enum isl_change change = isl_change_none;
2264 
2265 	if (all(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_VALID) &&
2266 	    all_ineq_valid_or_single_adj_ineq(&info[j]))
2267 		change = is_adj_ineq_extension(j, i, info);
2268 
2269 	clear_status(&info[i]);
2270 	clear_status(&info[j]);
2271 	return change;
2272 }
2273 
2274 /* Check if the union of the given pair of basic maps
2275  * can be represented by a single basic map.
2276  * If so, replace the pair by the single basic map and return
2277  * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
2278  * Otherwise, return isl_change_none.
2279  * The two basic maps are assumed to live in the same local space.
2280  * The "eq" and "ineq" fields of info[i] and info[j] are assumed
2281  * to have been initialized by the caller, either to NULL or
2282  * to valid information.
2283  *
2284  * We first check the effect of each constraint of one basic map
2285  * on the other basic map.
2286  * The constraint may be
2287  *	redundant	the constraint is redundant in its own
2288  *			basic map and should be ignore and removed
2289  *			in the end
2290  *	valid		all (integer) points of the other basic map
2291  *			satisfy the constraint
2292  *	separate	no (integer) point of the other basic map
2293  *			satisfies the constraint
2294  *	cut		some but not all points of the other basic map
2295  *			satisfy the constraint
2296  *	adj_eq		the given constraint is adjacent (on the outside)
2297  *			to an equality of the other basic map
2298  *	adj_ineq	the given constraint is adjacent (on the outside)
2299  *			to an inequality of the other basic map
2300  *
2301  * We consider seven cases in which we can replace the pair by a single
2302  * basic map.  We ignore all "redundant" constraints.
2303  *
2304  *	1. all constraints of one basic map are valid
2305  *		=> the other basic map is a subset and can be removed
2306  *
2307  *	2. all constraints of both basic maps are either "valid" or "cut"
2308  *	   and the facets corresponding to the "cut" constraints
2309  *	   of one of the basic maps lies entirely inside the other basic map
2310  *		=> the pair can be replaced by a basic map consisting
2311  *		   of the valid constraints in both basic maps
2312  *
2313  *	3. there is a single pair of adjacent inequalities
2314  *	   (all other constraints are "valid")
2315  *		=> the pair can be replaced by a basic map consisting
2316  *		   of the valid constraints in both basic maps
2317  *
2318  *	4. one basic map has a single adjacent inequality, while the other
2319  *	   constraints are "valid".  The other basic map has some
2320  *	   "cut" constraints, but replacing the adjacent inequality by
2321  *	   its opposite and adding the valid constraints of the other
2322  *	   basic map results in a subset of the other basic map
2323  *		=> the pair can be replaced by a basic map consisting
2324  *		   of the valid constraints in both basic maps
2325  *
2326  *	5. there is a single adjacent pair of an inequality and an equality,
2327  *	   the other constraints of the basic map containing the inequality are
2328  *	   "valid".  Moreover, if the inequality the basic map is relaxed
2329  *	   and then turned into an equality, then resulting facet lies
2330  *	   entirely inside the other basic map
2331  *		=> the pair can be replaced by the basic map containing
2332  *		   the inequality, with the inequality relaxed.
2333  *
2334  *	6. there is a single inequality adjacent to an equality,
2335  *	   the other constraints of the basic map containing the inequality are
2336  *	   "valid".  Moreover, the facets corresponding to both
2337  *	   the inequality and the equality can be wrapped around their
2338  *	   ridges to include the other basic map
2339  *		=> the pair can be replaced by a basic map consisting
2340  *		   of the valid constraints in both basic maps together
2341  *		   with all wrapping constraints
2342  *
2343  *	7. one of the basic maps extends beyond the other by at most one.
2344  *	   Moreover, the facets corresponding to the cut constraints and
2345  *	   the pieces of the other basic map at offset one from these cut
2346  *	   constraints can be wrapped around their ridges to include
2347  *	   the union of the two basic maps
2348  *		=> the pair can be replaced by a basic map consisting
2349  *		   of the valid constraints in both basic maps together
2350  *		   with all wrapping constraints
2351  *
2352  *	8. the two basic maps live in adjacent hyperplanes.  In principle
2353  *	   such sets can always be combined through wrapping, but we impose
2354  *	   that there is only one such pair, to avoid overeager coalescing.
2355  *
2356  * Throughout the computation, we maintain a collection of tableaus
2357  * corresponding to the basic maps.  When the basic maps are dropped
2358  * or combined, the tableaus are modified accordingly.
2359  */
coalesce_local_pair_reuse(int i,int j,struct isl_coalesce_info * info)2360 static enum isl_change coalesce_local_pair_reuse(int i, int j,
2361 	struct isl_coalesce_info *info)
2362 {
2363 	enum isl_change change = isl_change_none;
2364 
2365 	set_ineq_status_in(&info[i], info[j].tab);
2366 	if (info[i].bmap->n_ineq && !info[i].ineq)
2367 		goto error;
2368 	if (any_ineq(&info[i], STATUS_ERROR))
2369 		goto error;
2370 	if (any_ineq(&info[i], STATUS_SEPARATE))
2371 		goto done;
2372 
2373 	set_ineq_status_in(&info[j], info[i].tab);
2374 	if (info[j].bmap->n_ineq && !info[j].ineq)
2375 		goto error;
2376 	if (any_ineq(&info[j], STATUS_ERROR))
2377 		goto error;
2378 	if (any_ineq(&info[j], STATUS_SEPARATE))
2379 		goto done;
2380 
2381 	set_eq_status_in(&info[i], info[j].tab);
2382 	if (info[i].bmap->n_eq && !info[i].eq)
2383 		goto error;
2384 	if (any_eq(&info[i], STATUS_ERROR))
2385 		goto error;
2386 
2387 	set_eq_status_in(&info[j], info[i].tab);
2388 	if (info[j].bmap->n_eq && !info[j].eq)
2389 		goto error;
2390 	if (any_eq(&info[j], STATUS_ERROR))
2391 		goto error;
2392 
2393 	if (any_eq(&info[i], STATUS_SEPARATE))
2394 		return separating_equality(i, j, info);
2395 	if (any_eq(&info[j], STATUS_SEPARATE))
2396 		return separating_equality(j, i, info);
2397 
2398 	if (all(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_VALID) &&
2399 	    all(info[i].ineq, info[i].bmap->n_ineq, STATUS_VALID)) {
2400 		drop(&info[j]);
2401 		change = isl_change_drop_second;
2402 	} else if (all(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_VALID) &&
2403 		   all(info[j].ineq, info[j].bmap->n_ineq, STATUS_VALID)) {
2404 		drop(&info[i]);
2405 		change = isl_change_drop_first;
2406 	} else if (any_eq(&info[i], STATUS_ADJ_EQ)) {
2407 		change = check_eq_adj_eq(i, j, info);
2408 	} else if (any_eq(&info[j], STATUS_ADJ_EQ)) {
2409 		change = check_eq_adj_eq(j, i, info);
2410 	} else if (any_eq(&info[i], STATUS_ADJ_INEQ) ||
2411 		   any_eq(&info[j], STATUS_ADJ_INEQ)) {
2412 		change = check_adj_eq(i, j, info);
2413 	} else if (any_ineq(&info[i], STATUS_ADJ_EQ)) {
2414 		change = check_ineq_adj_eq(i, j, info);
2415 	} else if (any_ineq(&info[j], STATUS_ADJ_EQ)) {
2416 		change = check_ineq_adj_eq(j, i, info);
2417 	} else if (any_ineq(&info[i], STATUS_ADJ_INEQ) ||
2418 		   any_ineq(&info[j], STATUS_ADJ_INEQ)) {
2419 		change = check_adj_ineq(i, j, info);
2420 	} else {
2421 		if (!any_eq(&info[i], STATUS_CUT) &&
2422 		    !any_eq(&info[j], STATUS_CUT))
2423 			change = check_facets(i, j, info);
2424 		if (change == isl_change_none)
2425 			change = check_wrap(i, j, info);
2426 	}
2427 
2428 done:
2429 	clear_status(&info[i]);
2430 	clear_status(&info[j]);
2431 	return change;
2432 error:
2433 	clear_status(&info[i]);
2434 	clear_status(&info[j]);
2435 	return isl_change_error;
2436 }
2437 
2438 /* Check if the union of the given pair of basic maps
2439  * can be represented by a single basic map.
2440  * If so, replace the pair by the single basic map and return
2441  * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
2442  * Otherwise, return isl_change_none.
2443  * The two basic maps are assumed to live in the same local space.
2444  */
coalesce_local_pair(int i,int j,struct isl_coalesce_info * info)2445 static enum isl_change coalesce_local_pair(int i, int j,
2446 	struct isl_coalesce_info *info)
2447 {
2448 	init_status(&info[i]);
2449 	init_status(&info[j]);
2450 	return coalesce_local_pair_reuse(i, j, info);
2451 }
2452 
2453 /* Shift the integer division at position "div" of the basic map
2454  * represented by "info" by "shift".
2455  *
2456  * That is, if the integer division has the form
2457  *
2458  *	floor(f(x)/d)
2459  *
2460  * then replace it by
2461  *
2462  *	floor((f(x) + shift * d)/d) - shift
2463  */
shift_div(struct isl_coalesce_info * info,int div,isl_int shift)2464 static isl_stat shift_div(struct isl_coalesce_info *info, int div,
2465 	isl_int shift)
2466 {
2467 	isl_size total, n_div;
2468 
2469 	info->bmap = isl_basic_map_shift_div(info->bmap, div, 0, shift);
2470 	if (!info->bmap)
2471 		return isl_stat_error;
2472 
2473 	total = isl_basic_map_dim(info->bmap, isl_dim_all);
2474 	n_div = isl_basic_map_dim(info->bmap, isl_dim_div);
2475 	if (total < 0 || n_div < 0)
2476 		return isl_stat_error;
2477 	total -= n_div;
2478 	if (isl_tab_shift_var(info->tab, total + div, shift) < 0)
2479 		return isl_stat_error;
2480 
2481 	return isl_stat_ok;
2482 }
2483 
2484 /* If the integer division at position "div" is defined by an equality,
2485  * i.e., a stride constraint, then change the integer division expression
2486  * to have a constant term equal to zero.
2487  *
2488  * Let the equality constraint be
2489  *
2490  *	c + f + m a = 0
2491  *
2492  * The integer division expression is then typically of the form
2493  *
2494  *	a = floor((-f - c')/m)
2495  *
2496  * The integer division is first shifted by t = floor(c/m),
2497  * turning the equality constraint into
2498  *
2499  *	c - m floor(c/m) + f + m a' = 0
2500  *
2501  * i.e.,
2502  *
2503  *	(c mod m) + f + m a' = 0
2504  *
2505  * That is,
2506  *
2507  *	a' = (-f - (c mod m))/m = floor((-f)/m)
2508  *
2509  * because a' is an integer and 0 <= (c mod m) < m.
2510  * The constant term of a' can therefore be zeroed out,
2511  * but only if the integer division expression is of the expected form.
2512  */
normalize_stride_div(struct isl_coalesce_info * info,int div)2513 static isl_stat normalize_stride_div(struct isl_coalesce_info *info, int div)
2514 {
2515 	isl_bool defined, valid;
2516 	isl_stat r;
2517 	isl_constraint *c;
2518 	isl_int shift, stride;
2519 
2520 	defined = isl_basic_map_has_defining_equality(info->bmap, isl_dim_div,
2521 							div, &c);
2522 	if (defined < 0)
2523 		return isl_stat_error;
2524 	if (!defined)
2525 		return isl_stat_ok;
2526 	if (!c)
2527 		return isl_stat_error;
2528 	valid = isl_constraint_is_div_equality(c, div);
2529 	isl_int_init(shift);
2530 	isl_int_init(stride);
2531 	isl_constraint_get_constant(c, &shift);
2532 	isl_constraint_get_coefficient(c, isl_dim_div, div, &stride);
2533 	isl_int_fdiv_q(shift, shift, stride);
2534 	r = shift_div(info, div, shift);
2535 	isl_int_clear(stride);
2536 	isl_int_clear(shift);
2537 	isl_constraint_free(c);
2538 	if (r < 0 || valid < 0)
2539 		return isl_stat_error;
2540 	if (!valid)
2541 		return isl_stat_ok;
2542 	info->bmap = isl_basic_map_set_div_expr_constant_num_si_inplace(
2543 							    info->bmap, div, 0);
2544 	if (!info->bmap)
2545 		return isl_stat_error;
2546 	return isl_stat_ok;
2547 }
2548 
2549 /* The basic maps represented by "info1" and "info2" are known
2550  * to have the same number of integer divisions.
2551  * Check if pairs of integer divisions are equal to each other
2552  * despite the fact that they differ by a rational constant.
2553  *
2554  * In particular, look for any pair of integer divisions that
2555  * only differ in their constant terms.
2556  * If either of these integer divisions is defined
2557  * by stride constraints, then modify it to have a zero constant term.
2558  * If both are defined by stride constraints then in the end they will have
2559  * the same (zero) constant term.
2560  */
harmonize_stride_divs(struct isl_coalesce_info * info1,struct isl_coalesce_info * info2)2561 static isl_stat harmonize_stride_divs(struct isl_coalesce_info *info1,
2562 	struct isl_coalesce_info *info2)
2563 {
2564 	int i;
2565 	isl_size n;
2566 
2567 	n = isl_basic_map_dim(info1->bmap, isl_dim_div);
2568 	if (n < 0)
2569 		return isl_stat_error;
2570 	for (i = 0; i < n; ++i) {
2571 		isl_bool known, harmonize;
2572 
2573 		known = isl_basic_map_div_is_known(info1->bmap, i);
2574 		if (known >= 0 && known)
2575 			known = isl_basic_map_div_is_known(info2->bmap, i);
2576 		if (known < 0)
2577 			return isl_stat_error;
2578 		if (!known)
2579 			continue;
2580 		harmonize = isl_basic_map_equal_div_expr_except_constant(
2581 					    info1->bmap, i, info2->bmap, i);
2582 		if (harmonize < 0)
2583 			return isl_stat_error;
2584 		if (!harmonize)
2585 			continue;
2586 		if (normalize_stride_div(info1, i) < 0)
2587 			return isl_stat_error;
2588 		if (normalize_stride_div(info2, i) < 0)
2589 			return isl_stat_error;
2590 	}
2591 
2592 	return isl_stat_ok;
2593 }
2594 
2595 /* If "shift" is an integer constant, then shift the integer division
2596  * at position "div" of the basic map represented by "info" by "shift".
2597  * If "shift" is not an integer constant, then do nothing.
2598  * If "shift" is equal to zero, then no shift needs to be performed either.
2599  *
2600  * That is, if the integer division has the form
2601  *
2602  *	floor(f(x)/d)
2603  *
2604  * then replace it by
2605  *
2606  *	floor((f(x) + shift * d)/d) - shift
2607  */
shift_if_cst_int(struct isl_coalesce_info * info,int div,__isl_keep isl_aff * shift)2608 static isl_stat shift_if_cst_int(struct isl_coalesce_info *info, int div,
2609 	__isl_keep isl_aff *shift)
2610 {
2611 	isl_bool cst;
2612 	isl_stat r;
2613 	isl_int d;
2614 	isl_val *c;
2615 
2616 	cst = isl_aff_is_cst(shift);
2617 	if (cst < 0 || !cst)
2618 		return cst < 0 ? isl_stat_error : isl_stat_ok;
2619 
2620 	c = isl_aff_get_constant_val(shift);
2621 	cst = isl_val_is_int(c);
2622 	if (cst >= 0 && cst)
2623 		cst = isl_bool_not(isl_val_is_zero(c));
2624 	if (cst < 0 || !cst) {
2625 		isl_val_free(c);
2626 		return cst < 0 ? isl_stat_error : isl_stat_ok;
2627 	}
2628 
2629 	isl_int_init(d);
2630 	r = isl_val_get_num_isl_int(c, &d);
2631 	if (r >= 0)
2632 		r = shift_div(info, div, d);
2633 	isl_int_clear(d);
2634 
2635 	isl_val_free(c);
2636 
2637 	return r;
2638 }
2639 
2640 /* Check if some of the divs in the basic map represented by "info1"
2641  * are shifts of the corresponding divs in the basic map represented
2642  * by "info2", taking into account the equality constraints "eq1" of "info1"
2643  * and "eq2" of "info2".  If so, align them with those of "info2".
2644  * "info1" and "info2" are assumed to have the same number
2645  * of integer divisions.
2646  *
2647  * An integer division is considered to be a shift of another integer
2648  * division if, after simplification with respect to the equality
2649  * constraints of the other basic map, one is equal to the other
2650  * plus a constant.
2651  *
2652  * In particular, for each pair of integer divisions, if both are known,
2653  * have the same denominator and are not already equal to each other,
2654  * simplify each with respect to the equality constraints
2655  * of the other basic map.  If the difference is an integer constant,
2656  * then move this difference outside.
2657  * That is, if, after simplification, one integer division is of the form
2658  *
2659  *	floor((f(x) + c_1)/d)
2660  *
2661  * while the other is of the form
2662  *
2663  *	floor((f(x) + c_2)/d)
2664  *
2665  * and n = (c_2 - c_1)/d is an integer, then replace the first
2666  * integer division by
2667  *
2668  *	floor((f_1(x) + c_1 + n * d)/d) - n,
2669  *
2670  * where floor((f_1(x) + c_1 + n * d)/d) = floor((f2(x) + c_2)/d)
2671  * after simplification with respect to the equality constraints.
2672  */
harmonize_divs_with_hulls(struct isl_coalesce_info * info1,struct isl_coalesce_info * info2,__isl_keep isl_basic_set * eq1,__isl_keep isl_basic_set * eq2)2673 static isl_stat harmonize_divs_with_hulls(struct isl_coalesce_info *info1,
2674 	struct isl_coalesce_info *info2, __isl_keep isl_basic_set *eq1,
2675 	__isl_keep isl_basic_set *eq2)
2676 {
2677 	int i;
2678 	isl_size total;
2679 	isl_local_space *ls1, *ls2;
2680 
2681 	total = isl_basic_map_dim(info1->bmap, isl_dim_all);
2682 	if (total < 0)
2683 		return isl_stat_error;
2684 	ls1 = isl_local_space_wrap(isl_basic_map_get_local_space(info1->bmap));
2685 	ls2 = isl_local_space_wrap(isl_basic_map_get_local_space(info2->bmap));
2686 	for (i = 0; i < info1->bmap->n_div; ++i) {
2687 		isl_stat r;
2688 		isl_aff *div1, *div2;
2689 
2690 		if (!isl_local_space_div_is_known(ls1, i) ||
2691 		    !isl_local_space_div_is_known(ls2, i))
2692 			continue;
2693 		if (isl_int_ne(info1->bmap->div[i][0], info2->bmap->div[i][0]))
2694 			continue;
2695 		if (isl_seq_eq(info1->bmap->div[i] + 1,
2696 				info2->bmap->div[i] + 1, 1 + total))
2697 			continue;
2698 		div1 = isl_local_space_get_div(ls1, i);
2699 		div2 = isl_local_space_get_div(ls2, i);
2700 		div1 = isl_aff_substitute_equalities(div1,
2701 						    isl_basic_set_copy(eq2));
2702 		div2 = isl_aff_substitute_equalities(div2,
2703 						    isl_basic_set_copy(eq1));
2704 		div2 = isl_aff_sub(div2, div1);
2705 		r = shift_if_cst_int(info1, i, div2);
2706 		isl_aff_free(div2);
2707 		if (r < 0)
2708 			break;
2709 	}
2710 	isl_local_space_free(ls1);
2711 	isl_local_space_free(ls2);
2712 
2713 	if (i < info1->bmap->n_div)
2714 		return isl_stat_error;
2715 	return isl_stat_ok;
2716 }
2717 
2718 /* Check if some of the divs in the basic map represented by "info1"
2719  * are shifts of the corresponding divs in the basic map represented
2720  * by "info2".  If so, align them with those of "info2".
2721  * Only do this if "info1" and "info2" have the same number
2722  * of integer divisions.
2723  *
2724  * An integer division is considered to be a shift of another integer
2725  * division if, after simplification with respect to the equality
2726  * constraints of the other basic map, one is equal to the other
2727  * plus a constant.
2728  *
2729  * First check if pairs of integer divisions are equal to each other
2730  * despite the fact that they differ by a rational constant.
2731  * If so, try and arrange for them to have the same constant term.
2732  *
2733  * Then, extract the equality constraints and continue with
2734  * harmonize_divs_with_hulls.
2735  *
2736  * If the equality constraints of both basic maps are the same,
2737  * then there is no need to perform any shifting since
2738  * the coefficients of the integer divisions should have been
2739  * reduced in the same way.
2740  */
harmonize_divs(struct isl_coalesce_info * info1,struct isl_coalesce_info * info2)2741 static isl_stat harmonize_divs(struct isl_coalesce_info *info1,
2742 	struct isl_coalesce_info *info2)
2743 {
2744 	isl_bool equal;
2745 	isl_basic_map *bmap1, *bmap2;
2746 	isl_basic_set *eq1, *eq2;
2747 	isl_stat r;
2748 
2749 	if (!info1->bmap || !info2->bmap)
2750 		return isl_stat_error;
2751 
2752 	if (info1->bmap->n_div != info2->bmap->n_div)
2753 		return isl_stat_ok;
2754 	if (info1->bmap->n_div == 0)
2755 		return isl_stat_ok;
2756 
2757 	if (harmonize_stride_divs(info1, info2) < 0)
2758 		return isl_stat_error;
2759 
2760 	bmap1 = isl_basic_map_copy(info1->bmap);
2761 	bmap2 = isl_basic_map_copy(info2->bmap);
2762 	eq1 = isl_basic_map_wrap(isl_basic_map_plain_affine_hull(bmap1));
2763 	eq2 = isl_basic_map_wrap(isl_basic_map_plain_affine_hull(bmap2));
2764 	equal = isl_basic_set_plain_is_equal(eq1, eq2);
2765 	if (equal < 0)
2766 		r = isl_stat_error;
2767 	else if (equal)
2768 		r = isl_stat_ok;
2769 	else
2770 		r = harmonize_divs_with_hulls(info1, info2, eq1, eq2);
2771 	isl_basic_set_free(eq1);
2772 	isl_basic_set_free(eq2);
2773 
2774 	return r;
2775 }
2776 
2777 /* Do the two basic maps live in the same local space, i.e.,
2778  * do they have the same (known) divs?
2779  * If either basic map has any unknown divs, then we can only assume
2780  * that they do not live in the same local space.
2781  */
same_divs(__isl_keep isl_basic_map * bmap1,__isl_keep isl_basic_map * bmap2)2782 static isl_bool same_divs(__isl_keep isl_basic_map *bmap1,
2783 	__isl_keep isl_basic_map *bmap2)
2784 {
2785 	int i;
2786 	isl_bool known;
2787 	isl_size total;
2788 
2789 	if (!bmap1 || !bmap2)
2790 		return isl_bool_error;
2791 	if (bmap1->n_div != bmap2->n_div)
2792 		return isl_bool_false;
2793 
2794 	if (bmap1->n_div == 0)
2795 		return isl_bool_true;
2796 
2797 	known = isl_basic_map_divs_known(bmap1);
2798 	if (known < 0 || !known)
2799 		return known;
2800 	known = isl_basic_map_divs_known(bmap2);
2801 	if (known < 0 || !known)
2802 		return known;
2803 
2804 	total = isl_basic_map_dim(bmap1, isl_dim_all);
2805 	if (total < 0)
2806 		return isl_bool_error;
2807 	for (i = 0; i < bmap1->n_div; ++i)
2808 		if (!isl_seq_eq(bmap1->div[i], bmap2->div[i], 2 + total))
2809 			return isl_bool_false;
2810 
2811 	return isl_bool_true;
2812 }
2813 
2814 /* Assuming that "tab" contains the equality constraints and
2815  * the initial inequality constraints of "bmap", copy the remaining
2816  * inequality constraints of "bmap" to "Tab".
2817  */
copy_ineq(struct isl_tab * tab,__isl_keep isl_basic_map * bmap)2818 static isl_stat copy_ineq(struct isl_tab *tab, __isl_keep isl_basic_map *bmap)
2819 {
2820 	int i, n_ineq;
2821 
2822 	if (!bmap)
2823 		return isl_stat_error;
2824 
2825 	n_ineq = tab->n_con - tab->n_eq;
2826 	for (i = n_ineq; i < bmap->n_ineq; ++i)
2827 		if (isl_tab_add_ineq(tab, bmap->ineq[i]) < 0)
2828 			return isl_stat_error;
2829 
2830 	return isl_stat_ok;
2831 }
2832 
2833 /* Description of an integer division that is added
2834  * during an expansion.
2835  * "pos" is the position of the corresponding variable.
2836  * "cst" indicates whether this integer division has a fixed value.
2837  * "val" contains the fixed value, if the value is fixed.
2838  */
2839 struct isl_expanded {
2840 	int pos;
2841 	isl_bool cst;
2842 	isl_int val;
2843 };
2844 
2845 /* For each of the "n" integer division variables "expanded",
2846  * if the variable has a fixed value, then add two inequality
2847  * constraints expressing the fixed value.
2848  * Otherwise, add the corresponding div constraints.
2849  * The caller is responsible for removing the div constraints
2850  * that it added for all these "n" integer divisions.
2851  *
2852  * The div constraints and the pair of inequality constraints
2853  * forcing the fixed value cannot both be added for a given variable
2854  * as the combination may render some of the original constraints redundant.
2855  * These would then be ignored during the coalescing detection,
2856  * while they could remain in the fused result.
2857  *
2858  * The two added inequality constraints are
2859  *
2860  *	-a + v >= 0
2861  *	a - v >= 0
2862  *
2863  * with "a" the variable and "v" its fixed value.
2864  * The facet corresponding to one of these two constraints is selected
2865  * in the tableau to ensure that the pair of inequality constraints
2866  * is treated as an equality constraint.
2867  *
2868  * The information in info->ineq is thrown away because it was
2869  * computed in terms of div constraints, while some of those
2870  * have now been replaced by these pairs of inequality constraints.
2871  */
fix_constant_divs(struct isl_coalesce_info * info,int n,struct isl_expanded * expanded)2872 static isl_stat fix_constant_divs(struct isl_coalesce_info *info,
2873 	int n, struct isl_expanded *expanded)
2874 {
2875 	unsigned o_div;
2876 	int i;
2877 	isl_vec *ineq;
2878 
2879 	o_div = isl_basic_map_offset(info->bmap, isl_dim_div) - 1;
2880 	ineq = isl_vec_alloc(isl_tab_get_ctx(info->tab), 1 + info->tab->n_var);
2881 	if (!ineq)
2882 		return isl_stat_error;
2883 	isl_seq_clr(ineq->el + 1, info->tab->n_var);
2884 
2885 	for (i = 0; i < n; ++i) {
2886 		if (!expanded[i].cst) {
2887 			info->bmap = isl_basic_map_extend_constraints(
2888 						info->bmap, 0, 2);
2889 			info->bmap = isl_basic_map_add_div_constraints(
2890 					info->bmap, expanded[i].pos - o_div);
2891 		} else {
2892 			isl_int_set_si(ineq->el[1 + expanded[i].pos], -1);
2893 			isl_int_set(ineq->el[0], expanded[i].val);
2894 			info->bmap = isl_basic_map_add_ineq(info->bmap,
2895 								ineq->el);
2896 			isl_int_set_si(ineq->el[1 + expanded[i].pos], 1);
2897 			isl_int_neg(ineq->el[0], expanded[i].val);
2898 			info->bmap = isl_basic_map_add_ineq(info->bmap,
2899 								ineq->el);
2900 			isl_int_set_si(ineq->el[1 + expanded[i].pos], 0);
2901 		}
2902 		if (copy_ineq(info->tab, info->bmap) < 0)
2903 			break;
2904 		if (expanded[i].cst &&
2905 		    isl_tab_select_facet(info->tab, info->tab->n_con - 1) < 0)
2906 			break;
2907 	}
2908 
2909 	isl_vec_free(ineq);
2910 
2911 	clear_status(info);
2912 	init_status(info);
2913 
2914 	return i < n ? isl_stat_error : isl_stat_ok;
2915 }
2916 
2917 /* Insert the "n" integer division variables "expanded"
2918  * into info->tab and info->bmap and
2919  * update info->ineq with respect to the redundant constraints
2920  * in the resulting tableau.
2921  * "bmap" contains the result of this insertion in info->bmap,
2922  * while info->bmap is the original version
2923  * of "bmap", i.e., the one that corresponds to the current
2924  * state of info->tab.  The number of constraints in info->bmap
2925  * is assumed to be the same as the number of constraints
2926  * in info->tab.  This is required to be able to detect
2927  * the extra constraints in "bmap".
2928  *
2929  * In particular, introduce extra variables corresponding
2930  * to the extra integer divisions and add the div constraints
2931  * that were added to "bmap" after info->tab was created
2932  * from info->bmap.
2933  * Furthermore, check if these extra integer divisions happen
2934  * to attain a fixed integer value in info->tab.
2935  * If so, replace the corresponding div constraints by pairs
2936  * of inequality constraints that fix these
2937  * integer divisions to their single integer values.
2938  * Replace info->bmap by "bmap" to match the changes to info->tab.
2939  * info->ineq was computed without a tableau and therefore
2940  * does not take into account the redundant constraints
2941  * in the tableau.  Mark them here.
2942  * There is no need to check the newly added div constraints
2943  * since they cannot be redundant.
2944  * The redundancy check is not performed when constants have been discovered
2945  * since info->ineq is completely thrown away in this case.
2946  */
tab_insert_divs(struct isl_coalesce_info * info,int n,struct isl_expanded * expanded,__isl_take isl_basic_map * bmap)2947 static isl_stat tab_insert_divs(struct isl_coalesce_info *info,
2948 	int n, struct isl_expanded *expanded, __isl_take isl_basic_map *bmap)
2949 {
2950 	int i, n_ineq;
2951 	unsigned n_eq;
2952 	struct isl_tab_undo *snap;
2953 	int any;
2954 
2955 	if (!bmap)
2956 		return isl_stat_error;
2957 	if (info->bmap->n_eq + info->bmap->n_ineq != info->tab->n_con)
2958 		isl_die(isl_basic_map_get_ctx(bmap), isl_error_internal,
2959 			"original tableau does not correspond "
2960 			"to original basic map", goto error);
2961 
2962 	if (isl_tab_extend_vars(info->tab, n) < 0)
2963 		goto error;
2964 	if (isl_tab_extend_cons(info->tab, 2 * n) < 0)
2965 		goto error;
2966 
2967 	for (i = 0; i < n; ++i) {
2968 		if (isl_tab_insert_var(info->tab, expanded[i].pos) < 0)
2969 			goto error;
2970 	}
2971 
2972 	snap = isl_tab_snap(info->tab);
2973 
2974 	n_ineq = info->tab->n_con - info->tab->n_eq;
2975 	if (copy_ineq(info->tab, bmap) < 0)
2976 		goto error;
2977 
2978 	isl_basic_map_free(info->bmap);
2979 	info->bmap = bmap;
2980 
2981 	any = 0;
2982 	for (i = 0; i < n; ++i) {
2983 		expanded[i].cst = isl_tab_is_constant(info->tab,
2984 					    expanded[i].pos, &expanded[i].val);
2985 		if (expanded[i].cst < 0)
2986 			return isl_stat_error;
2987 		if (expanded[i].cst)
2988 			any = 1;
2989 	}
2990 
2991 	if (any) {
2992 		if (isl_tab_rollback(info->tab, snap) < 0)
2993 			return isl_stat_error;
2994 		info->bmap = isl_basic_map_cow(info->bmap);
2995 		info->bmap = isl_basic_map_free_inequality(info->bmap, 2 * n);
2996 		if (info->bmap < 0)
2997 			return isl_stat_error;
2998 
2999 		return fix_constant_divs(info, n, expanded);
3000 	}
3001 
3002 	n_eq = info->bmap->n_eq;
3003 	for (i = 0; i < n_ineq; ++i) {
3004 		if (isl_tab_is_redundant(info->tab, n_eq + i))
3005 			info->ineq[i] = STATUS_REDUNDANT;
3006 	}
3007 
3008 	return isl_stat_ok;
3009 error:
3010 	isl_basic_map_free(bmap);
3011 	return isl_stat_error;
3012 }
3013 
3014 /* Expand info->tab and info->bmap in the same way "bmap" was expanded
3015  * in isl_basic_map_expand_divs using the expansion "exp" and
3016  * update info->ineq with respect to the redundant constraints
3017  * in the resulting tableau. info->bmap is the original version
3018  * of "bmap", i.e., the one that corresponds to the current
3019  * state of info->tab.  The number of constraints in info->bmap
3020  * is assumed to be the same as the number of constraints
3021  * in info->tab.  This is required to be able to detect
3022  * the extra constraints in "bmap".
3023  *
3024  * Extract the positions where extra local variables are introduced
3025  * from "exp" and call tab_insert_divs.
3026  */
expand_tab(struct isl_coalesce_info * info,int * exp,__isl_take isl_basic_map * bmap)3027 static isl_stat expand_tab(struct isl_coalesce_info *info, int *exp,
3028 	__isl_take isl_basic_map *bmap)
3029 {
3030 	isl_ctx *ctx;
3031 	struct isl_expanded *expanded;
3032 	int i, j, k, n;
3033 	int extra_var;
3034 	isl_size total, n_div;
3035 	unsigned pos;
3036 	isl_stat r;
3037 
3038 	total = isl_basic_map_dim(bmap, isl_dim_all);
3039 	n_div = isl_basic_map_dim(bmap, isl_dim_div);
3040 	if (total < 0 || n_div < 0)
3041 		return isl_stat_error;
3042 	pos = total - n_div;
3043 	extra_var = total - info->tab->n_var;
3044 	n = n_div - extra_var;
3045 
3046 	ctx = isl_basic_map_get_ctx(bmap);
3047 	expanded = isl_calloc_array(ctx, struct isl_expanded, extra_var);
3048 	if (extra_var && !expanded)
3049 		goto error;
3050 
3051 	i = 0;
3052 	k = 0;
3053 	for (j = 0; j < n_div; ++j) {
3054 		if (i < n && exp[i] == j) {
3055 			++i;
3056 			continue;
3057 		}
3058 		expanded[k++].pos = pos + j;
3059 	}
3060 
3061 	for (k = 0; k < extra_var; ++k)
3062 		isl_int_init(expanded[k].val);
3063 
3064 	r = tab_insert_divs(info, extra_var, expanded, bmap);
3065 
3066 	for (k = 0; k < extra_var; ++k)
3067 		isl_int_clear(expanded[k].val);
3068 	free(expanded);
3069 
3070 	return r;
3071 error:
3072 	isl_basic_map_free(bmap);
3073 	return isl_stat_error;
3074 }
3075 
3076 /* Check if the union of the basic maps represented by info[i] and info[j]
3077  * can be represented by a single basic map,
3078  * after expanding the divs of info[i] to match those of info[j].
3079  * If so, replace the pair by the single basic map and return
3080  * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
3081  * Otherwise, return isl_change_none.
3082  *
3083  * The caller has already checked for info[j] being a subset of info[i].
3084  * If some of the divs of info[j] are unknown, then the expanded info[i]
3085  * will not have the corresponding div constraints.  The other patterns
3086  * therefore cannot apply.  Skip the computation in this case.
3087  *
3088  * The expansion is performed using the divs "div" and expansion "exp"
3089  * computed by the caller.
3090  * info[i].bmap has already been expanded and the result is passed in
3091  * as "bmap".
3092  * The "eq" and "ineq" fields of info[i] reflect the status of
3093  * the constraints of the expanded "bmap" with respect to info[j].tab.
3094  * However, inequality constraints that are redundant in info[i].tab
3095  * have not yet been marked as such because no tableau was available.
3096  *
3097  * Replace info[i].bmap by "bmap" and expand info[i].tab as well,
3098  * updating info[i].ineq with respect to the redundant constraints.
3099  * Then try and coalesce the expanded info[i] with info[j],
3100  * reusing the information in info[i].eq and info[i].ineq.
3101  * If this does not result in any coalescing or if it results in info[j]
3102  * getting dropped (which should not happen in practice, since the case
3103  * of info[j] being a subset of info[i] has already been checked by
3104  * the caller), then revert info[i] to its original state.
3105  */
coalesce_expand_tab_divs(__isl_take isl_basic_map * bmap,int i,int j,struct isl_coalesce_info * info,__isl_keep isl_mat * div,int * exp)3106 static enum isl_change coalesce_expand_tab_divs(__isl_take isl_basic_map *bmap,
3107 	int i, int j, struct isl_coalesce_info *info, __isl_keep isl_mat *div,
3108 	int *exp)
3109 {
3110 	isl_bool known;
3111 	isl_basic_map *bmap_i;
3112 	struct isl_tab_undo *snap;
3113 	enum isl_change change = isl_change_none;
3114 
3115 	known = isl_basic_map_divs_known(info[j].bmap);
3116 	if (known < 0 || !known) {
3117 		clear_status(&info[i]);
3118 		isl_basic_map_free(bmap);
3119 		return known < 0 ? isl_change_error : isl_change_none;
3120 	}
3121 
3122 	bmap_i = isl_basic_map_copy(info[i].bmap);
3123 	snap = isl_tab_snap(info[i].tab);
3124 	if (expand_tab(&info[i], exp, bmap) < 0)
3125 		change = isl_change_error;
3126 
3127 	init_status(&info[j]);
3128 	if (change == isl_change_none)
3129 		change = coalesce_local_pair_reuse(i, j, info);
3130 	else
3131 		clear_status(&info[i]);
3132 	if (change != isl_change_none && change != isl_change_drop_second) {
3133 		isl_basic_map_free(bmap_i);
3134 	} else {
3135 		isl_basic_map_free(info[i].bmap);
3136 		info[i].bmap = bmap_i;
3137 
3138 		if (isl_tab_rollback(info[i].tab, snap) < 0)
3139 			change = isl_change_error;
3140 	}
3141 
3142 	return change;
3143 }
3144 
3145 /* Check if the union of "bmap" and the basic map represented by info[j]
3146  * can be represented by a single basic map,
3147  * after expanding the divs of "bmap" to match those of info[j].
3148  * If so, replace the pair by the single basic map and return
3149  * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
3150  * Otherwise, return isl_change_none.
3151  *
3152  * In particular, check if the expanded "bmap" contains the basic map
3153  * represented by the tableau info[j].tab.
3154  * The expansion is performed using the divs "div" and expansion "exp"
3155  * computed by the caller.
3156  * Then we check if all constraints of the expanded "bmap" are valid for
3157  * info[j].tab.
3158  *
3159  * If "i" is not equal to -1, then "bmap" is equal to info[i].bmap.
3160  * In this case, the positions of the constraints of info[i].bmap
3161  * with respect to the basic map represented by info[j] are stored
3162  * in info[i].
3163  *
3164  * If the expanded "bmap" does not contain the basic map
3165  * represented by the tableau info[j].tab and if "i" is not -1,
3166  * i.e., if the original "bmap" is info[i].bmap, then expand info[i].tab
3167  * as well and check if that results in coalescing.
3168  */
coalesce_with_expanded_divs(__isl_keep isl_basic_map * bmap,int i,int j,struct isl_coalesce_info * info,__isl_keep isl_mat * div,int * exp)3169 static enum isl_change coalesce_with_expanded_divs(
3170 	__isl_keep isl_basic_map *bmap, int i, int j,
3171 	struct isl_coalesce_info *info, __isl_keep isl_mat *div, int *exp)
3172 {
3173 	enum isl_change change = isl_change_none;
3174 	struct isl_coalesce_info info_local, *info_i;
3175 
3176 	info_i = i >= 0 ? &info[i] : &info_local;
3177 	init_status(info_i);
3178 	bmap = isl_basic_map_copy(bmap);
3179 	bmap = isl_basic_map_expand_divs(bmap, isl_mat_copy(div), exp);
3180 	bmap = isl_basic_map_mark_final(bmap);
3181 
3182 	if (!bmap)
3183 		goto error;
3184 
3185 	info_local.bmap = bmap;
3186 	info_i->eq = eq_status_in(bmap, info[j].tab);
3187 	if (bmap->n_eq && !info_i->eq)
3188 		goto error;
3189 	if (any_eq(info_i, STATUS_ERROR))
3190 		goto error;
3191 	if (any_eq(info_i, STATUS_SEPARATE))
3192 		goto done;
3193 
3194 	info_i->ineq = ineq_status_in(bmap, NULL, info[j].tab);
3195 	if (bmap->n_ineq && !info_i->ineq)
3196 		goto error;
3197 	if (any_ineq(info_i, STATUS_ERROR))
3198 		goto error;
3199 	if (any_ineq(info_i, STATUS_SEPARATE))
3200 		goto done;
3201 
3202 	if (all(info_i->eq, 2 * bmap->n_eq, STATUS_VALID) &&
3203 	    all(info_i->ineq, bmap->n_ineq, STATUS_VALID)) {
3204 		drop(&info[j]);
3205 		change = isl_change_drop_second;
3206 	}
3207 
3208 	if (change == isl_change_none && i != -1)
3209 		return coalesce_expand_tab_divs(bmap, i, j, info, div, exp);
3210 
3211 done:
3212 	isl_basic_map_free(bmap);
3213 	clear_status(info_i);
3214 	return change;
3215 error:
3216 	isl_basic_map_free(bmap);
3217 	clear_status(info_i);
3218 	return isl_change_error;
3219 }
3220 
3221 /* Check if the union of "bmap_i" and the basic map represented by info[j]
3222  * can be represented by a single basic map,
3223  * after aligning the divs of "bmap_i" to match those of info[j].
3224  * If so, replace the pair by the single basic map and return
3225  * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
3226  * Otherwise, return isl_change_none.
3227  *
3228  * In particular, check if "bmap_i" contains the basic map represented by
3229  * info[j] after aligning the divs of "bmap_i" to those of info[j].
3230  * Note that this can only succeed if the number of divs of "bmap_i"
3231  * is smaller than (or equal to) the number of divs of info[j].
3232  *
3233  * We first check if the divs of "bmap_i" are all known and form a subset
3234  * of those of info[j].bmap.  If so, we pass control over to
3235  * coalesce_with_expanded_divs.
3236  *
3237  * If "i" is not equal to -1, then "bmap" is equal to info[i].bmap.
3238  */
coalesce_after_aligning_divs(__isl_keep isl_basic_map * bmap_i,int i,int j,struct isl_coalesce_info * info)3239 static enum isl_change coalesce_after_aligning_divs(
3240 	__isl_keep isl_basic_map *bmap_i, int i, int j,
3241 	struct isl_coalesce_info *info)
3242 {
3243 	isl_bool known;
3244 	isl_mat *div_i, *div_j, *div;
3245 	int *exp1 = NULL;
3246 	int *exp2 = NULL;
3247 	isl_ctx *ctx;
3248 	enum isl_change change;
3249 
3250 	known = isl_basic_map_divs_known(bmap_i);
3251 	if (known < 0)
3252 		return isl_change_error;
3253 	if (!known)
3254 		return isl_change_none;
3255 
3256 	ctx = isl_basic_map_get_ctx(bmap_i);
3257 
3258 	div_i = isl_basic_map_get_divs(bmap_i);
3259 	div_j = isl_basic_map_get_divs(info[j].bmap);
3260 
3261 	if (!div_i || !div_j)
3262 		goto error;
3263 
3264 	exp1 = isl_alloc_array(ctx, int, div_i->n_row);
3265 	exp2 = isl_alloc_array(ctx, int, div_j->n_row);
3266 	if ((div_i->n_row && !exp1) || (div_j->n_row && !exp2))
3267 		goto error;
3268 
3269 	div = isl_merge_divs(div_i, div_j, exp1, exp2);
3270 	if (!div)
3271 		goto error;
3272 
3273 	if (div->n_row == div_j->n_row)
3274 		change = coalesce_with_expanded_divs(bmap_i,
3275 							i, j, info, div, exp1);
3276 	else
3277 		change = isl_change_none;
3278 
3279 	isl_mat_free(div);
3280 
3281 	isl_mat_free(div_i);
3282 	isl_mat_free(div_j);
3283 
3284 	free(exp2);
3285 	free(exp1);
3286 
3287 	return change;
3288 error:
3289 	isl_mat_free(div_i);
3290 	isl_mat_free(div_j);
3291 	free(exp1);
3292 	free(exp2);
3293 	return isl_change_error;
3294 }
3295 
3296 /* Check if basic map "j" is a subset of basic map "i" after
3297  * exploiting the extra equalities of "j" to simplify the divs of "i".
3298  * If so, remove basic map "j" and return isl_change_drop_second.
3299  *
3300  * If "j" does not have any equalities or if they are the same
3301  * as those of "i", then we cannot exploit them to simplify the divs.
3302  * Similarly, if there are no divs in "i", then they cannot be simplified.
3303  * If, on the other hand, the affine hulls of "i" and "j" do not intersect,
3304  * then "j" cannot be a subset of "i".
3305  *
3306  * Otherwise, we intersect "i" with the affine hull of "j" and then
3307  * check if "j" is a subset of the result after aligning the divs.
3308  * If so, then "j" is definitely a subset of "i" and can be removed.
3309  * Note that if after intersection with the affine hull of "j".
3310  * "i" still has more divs than "j", then there is no way we can
3311  * align the divs of "i" to those of "j".
3312  */
coalesce_subset_with_equalities(int i,int j,struct isl_coalesce_info * info)3313 static enum isl_change coalesce_subset_with_equalities(int i, int j,
3314 	struct isl_coalesce_info *info)
3315 {
3316 	isl_basic_map *hull_i, *hull_j, *bmap_i;
3317 	int equal, empty;
3318 	enum isl_change change;
3319 
3320 	if (info[j].bmap->n_eq == 0)
3321 		return isl_change_none;
3322 	if (info[i].bmap->n_div == 0)
3323 		return isl_change_none;
3324 
3325 	hull_i = isl_basic_map_copy(info[i].bmap);
3326 	hull_i = isl_basic_map_plain_affine_hull(hull_i);
3327 	hull_j = isl_basic_map_copy(info[j].bmap);
3328 	hull_j = isl_basic_map_plain_affine_hull(hull_j);
3329 
3330 	hull_j = isl_basic_map_intersect(hull_j, isl_basic_map_copy(hull_i));
3331 	equal = isl_basic_map_plain_is_equal(hull_i, hull_j);
3332 	empty = isl_basic_map_plain_is_empty(hull_j);
3333 	isl_basic_map_free(hull_i);
3334 
3335 	if (equal < 0 || equal || empty < 0 || empty) {
3336 		isl_basic_map_free(hull_j);
3337 		if (equal < 0 || empty < 0)
3338 			return isl_change_error;
3339 		return isl_change_none;
3340 	}
3341 
3342 	bmap_i = isl_basic_map_copy(info[i].bmap);
3343 	bmap_i = isl_basic_map_intersect(bmap_i, hull_j);
3344 	if (!bmap_i)
3345 		return isl_change_error;
3346 
3347 	if (bmap_i->n_div > info[j].bmap->n_div) {
3348 		isl_basic_map_free(bmap_i);
3349 		return isl_change_none;
3350 	}
3351 
3352 	change = coalesce_after_aligning_divs(bmap_i, -1, j, info);
3353 
3354 	isl_basic_map_free(bmap_i);
3355 
3356 	return change;
3357 }
3358 
3359 /* Check if the union of and the basic maps represented by info[i] and info[j]
3360  * can be represented by a single basic map, by aligning or equating
3361  * their integer divisions.
3362  * If so, replace the pair by the single basic map and return
3363  * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
3364  * Otherwise, return isl_change_none.
3365  *
3366  * Note that we only perform any test if the number of divs is different
3367  * in the two basic maps.  In case the number of divs is the same,
3368  * we have already established that the divs are different
3369  * in the two basic maps.
3370  * In particular, if the number of divs of basic map i is smaller than
3371  * the number of divs of basic map j, then we check if j is a subset of i
3372  * and vice versa.
3373  */
coalesce_divs(int i,int j,struct isl_coalesce_info * info)3374 static enum isl_change coalesce_divs(int i, int j,
3375 	struct isl_coalesce_info *info)
3376 {
3377 	enum isl_change change = isl_change_none;
3378 
3379 	if (info[i].bmap->n_div < info[j].bmap->n_div)
3380 		change = coalesce_after_aligning_divs(info[i].bmap, i, j, info);
3381 	if (change != isl_change_none)
3382 		return change;
3383 
3384 	if (info[j].bmap->n_div < info[i].bmap->n_div)
3385 		change = coalesce_after_aligning_divs(info[j].bmap, j, i, info);
3386 	if (change != isl_change_none)
3387 		return invert_change(change);
3388 
3389 	change = coalesce_subset_with_equalities(i, j, info);
3390 	if (change != isl_change_none)
3391 		return change;
3392 
3393 	change = coalesce_subset_with_equalities(j, i, info);
3394 	if (change != isl_change_none)
3395 		return invert_change(change);
3396 
3397 	return isl_change_none;
3398 }
3399 
3400 /* Does "bmap" involve any divs that themselves refer to divs?
3401  */
has_nested_div(__isl_keep isl_basic_map * bmap)3402 static isl_bool has_nested_div(__isl_keep isl_basic_map *bmap)
3403 {
3404 	int i;
3405 	isl_size total;
3406 	isl_size n_div;
3407 
3408 	total = isl_basic_map_dim(bmap, isl_dim_all);
3409 	n_div = isl_basic_map_dim(bmap, isl_dim_div);
3410 	if (total < 0 || n_div < 0)
3411 		return isl_bool_error;
3412 	total -= n_div;
3413 
3414 	for (i = 0; i < n_div; ++i)
3415 		if (isl_seq_first_non_zero(bmap->div[i] + 2 + total,
3416 					    n_div) != -1)
3417 			return isl_bool_true;
3418 
3419 	return isl_bool_false;
3420 }
3421 
3422 /* Return a list of affine expressions, one for each integer division
3423  * in "bmap_i".  For each integer division that also appears in "bmap_j",
3424  * the affine expression is set to NaN.  The number of NaNs in the list
3425  * is equal to the number of integer divisions in "bmap_j".
3426  * For the other integer divisions of "bmap_i", the corresponding
3427  * element in the list is a purely affine expression equal to the integer
3428  * division in "hull".
3429  * If no such list can be constructed, then the number of elements
3430  * in the returned list is smaller than the number of integer divisions
3431  * in "bmap_i".
3432  */
set_up_substitutions(__isl_keep isl_basic_map * bmap_i,__isl_keep isl_basic_map * bmap_j,__isl_take isl_basic_map * hull)3433 static __isl_give isl_aff_list *set_up_substitutions(
3434 	__isl_keep isl_basic_map *bmap_i, __isl_keep isl_basic_map *bmap_j,
3435 	__isl_take isl_basic_map *hull)
3436 {
3437 	isl_size n_div_i, n_div_j, total;
3438 	isl_ctx *ctx;
3439 	isl_local_space *ls;
3440 	isl_basic_set *wrap_hull;
3441 	isl_aff *aff_nan;
3442 	isl_aff_list *list;
3443 	int i, j;
3444 
3445 	n_div_i = isl_basic_map_dim(bmap_i, isl_dim_div);
3446 	n_div_j = isl_basic_map_dim(bmap_j, isl_dim_div);
3447 	total = isl_basic_map_dim(bmap_i, isl_dim_all);
3448 	if (!hull || n_div_i < 0 || n_div_j < 0 || total < 0)
3449 		return NULL;
3450 
3451 	ctx = isl_basic_map_get_ctx(hull);
3452 	total -= n_div_i;
3453 
3454 	ls = isl_basic_map_get_local_space(bmap_i);
3455 	ls = isl_local_space_wrap(ls);
3456 	wrap_hull = isl_basic_map_wrap(hull);
3457 
3458 	aff_nan = isl_aff_nan_on_domain(isl_local_space_copy(ls));
3459 	list = isl_aff_list_alloc(ctx, n_div_i);
3460 
3461 	j = 0;
3462 	for (i = 0; i < n_div_i; ++i) {
3463 		isl_aff *aff;
3464 		isl_size n_div;
3465 
3466 		if (j < n_div_j &&
3467 		    isl_basic_map_equal_div_expr_part(bmap_i, i, bmap_j, j,
3468 						    0, 2 + total)) {
3469 			++j;
3470 			list = isl_aff_list_add(list, isl_aff_copy(aff_nan));
3471 			continue;
3472 		}
3473 		if (n_div_i - i <= n_div_j - j)
3474 			break;
3475 
3476 		aff = isl_local_space_get_div(ls, i);
3477 		aff = isl_aff_substitute_equalities(aff,
3478 						isl_basic_set_copy(wrap_hull));
3479 		aff = isl_aff_floor(aff);
3480 		n_div = isl_aff_dim(aff, isl_dim_div);
3481 		if (n_div < 0)
3482 			goto error;
3483 		if (n_div != 0) {
3484 			isl_aff_free(aff);
3485 			break;
3486 		}
3487 
3488 		list = isl_aff_list_add(list, aff);
3489 	}
3490 
3491 	isl_aff_free(aff_nan);
3492 	isl_local_space_free(ls);
3493 	isl_basic_set_free(wrap_hull);
3494 
3495 	return list;
3496 error:
3497 	isl_aff_free(aff_nan);
3498 	isl_local_space_free(ls);
3499 	isl_basic_set_free(wrap_hull);
3500 	isl_aff_list_free(list);
3501 	return NULL;
3502 }
3503 
3504 /* Add variables to info->bmap and info->tab corresponding to the elements
3505  * in "list" that are not set to NaN.
3506  * "extra_var" is the number of these elements.
3507  * "dim" is the offset in the variables of "tab" where we should
3508  * start considering the elements in "list".
3509  * When this function returns, the total number of variables in "tab"
3510  * is equal to "dim" plus the number of elements in "list".
3511  *
3512  * The newly added existentially quantified variables are not given
3513  * an explicit representation because the corresponding div constraints
3514  * do not appear in info->bmap.  These constraints are not added
3515  * to info->bmap because for internal consistency, they would need to
3516  * be added to info->tab as well, where they could combine with the equality
3517  * that is added later to result in constraints that do not hold
3518  * in the original input.
3519  */
add_sub_vars(struct isl_coalesce_info * info,__isl_keep isl_aff_list * list,int dim,int extra_var)3520 static isl_stat add_sub_vars(struct isl_coalesce_info *info,
3521 	__isl_keep isl_aff_list *list, int dim, int extra_var)
3522 {
3523 	int i, j, d;
3524 	isl_size n;
3525 
3526 	info->bmap = isl_basic_map_cow(info->bmap);
3527 	info->bmap = isl_basic_map_extend(info->bmap, extra_var, 0, 0);
3528 	n = isl_aff_list_n_aff(list);
3529 	if (!info->bmap || n < 0)
3530 		return isl_stat_error;
3531 	for (i = 0; i < n; ++i) {
3532 		int is_nan;
3533 		isl_aff *aff;
3534 
3535 		aff = isl_aff_list_get_aff(list, i);
3536 		is_nan = isl_aff_is_nan(aff);
3537 		isl_aff_free(aff);
3538 		if (is_nan < 0)
3539 			return isl_stat_error;
3540 		if (is_nan)
3541 			continue;
3542 
3543 		if (isl_tab_insert_var(info->tab, dim + i) < 0)
3544 			return isl_stat_error;
3545 		d = isl_basic_map_alloc_div(info->bmap);
3546 		if (d < 0)
3547 			return isl_stat_error;
3548 		info->bmap = isl_basic_map_mark_div_unknown(info->bmap, d);
3549 		for (j = d; j > i; --j)
3550 			info->bmap = isl_basic_map_swap_div(info->bmap,
3551 							    j - 1, j);
3552 		if (!info->bmap)
3553 			return isl_stat_error;
3554 	}
3555 
3556 	return isl_stat_ok;
3557 }
3558 
3559 /* For each element in "list" that is not set to NaN, fix the corresponding
3560  * variable in "tab" to the purely affine expression defined by the element.
3561  * "dim" is the offset in the variables of "tab" where we should
3562  * start considering the elements in "list".
3563  *
3564  * This function assumes that a sufficient number of rows and
3565  * elements in the constraint array are available in the tableau.
3566  */
add_sub_equalities(struct isl_tab * tab,__isl_keep isl_aff_list * list,int dim)3567 static isl_stat add_sub_equalities(struct isl_tab *tab,
3568 	__isl_keep isl_aff_list *list, int dim)
3569 {
3570 	int i;
3571 	isl_size n;
3572 	isl_ctx *ctx;
3573 	isl_vec *sub;
3574 	isl_aff *aff;
3575 
3576 	n = isl_aff_list_n_aff(list);
3577 	if (n < 0)
3578 		return isl_stat_error;
3579 
3580 	ctx = isl_tab_get_ctx(tab);
3581 	sub = isl_vec_alloc(ctx, 1 + dim + n);
3582 	if (!sub)
3583 		return isl_stat_error;
3584 	isl_seq_clr(sub->el + 1 + dim, n);
3585 
3586 	for (i = 0; i < n; ++i) {
3587 		aff = isl_aff_list_get_aff(list, i);
3588 		if (!aff)
3589 			goto error;
3590 		if (isl_aff_is_nan(aff)) {
3591 			isl_aff_free(aff);
3592 			continue;
3593 		}
3594 		isl_seq_cpy(sub->el, aff->v->el + 1, 1 + dim);
3595 		isl_int_neg(sub->el[1 + dim + i], aff->v->el[0]);
3596 		if (isl_tab_add_eq(tab, sub->el) < 0)
3597 			goto error;
3598 		isl_int_set_si(sub->el[1 + dim + i], 0);
3599 		isl_aff_free(aff);
3600 	}
3601 
3602 	isl_vec_free(sub);
3603 	return isl_stat_ok;
3604 error:
3605 	isl_aff_free(aff);
3606 	isl_vec_free(sub);
3607 	return isl_stat_error;
3608 }
3609 
3610 /* Add variables to info->tab and info->bmap corresponding to the elements
3611  * in "list" that are not set to NaN.  The value of the added variable
3612  * in info->tab is fixed to the purely affine expression defined by the element.
3613  * "dim" is the offset in the variables of info->tab where we should
3614  * start considering the elements in "list".
3615  * When this function returns, the total number of variables in info->tab
3616  * is equal to "dim" plus the number of elements in "list".
3617  */
add_subs(struct isl_coalesce_info * info,__isl_keep isl_aff_list * list,int dim)3618 static isl_stat add_subs(struct isl_coalesce_info *info,
3619 	__isl_keep isl_aff_list *list, int dim)
3620 {
3621 	int extra_var;
3622 	isl_size n;
3623 
3624 	n = isl_aff_list_n_aff(list);
3625 	if (n < 0)
3626 		return isl_stat_error;
3627 
3628 	extra_var = n - (info->tab->n_var - dim);
3629 
3630 	if (isl_tab_extend_vars(info->tab, extra_var) < 0)
3631 		return isl_stat_error;
3632 	if (isl_tab_extend_cons(info->tab, 2 * extra_var) < 0)
3633 		return isl_stat_error;
3634 	if (add_sub_vars(info, list, dim, extra_var) < 0)
3635 		return isl_stat_error;
3636 
3637 	return add_sub_equalities(info->tab, list, dim);
3638 }
3639 
3640 /* Coalesce basic map "j" into basic map "i" after adding the extra integer
3641  * divisions in "i" but not in "j" to basic map "j", with values
3642  * specified by "list".  The total number of elements in "list"
3643  * is equal to the number of integer divisions in "i", while the number
3644  * of NaN elements in the list is equal to the number of integer divisions
3645  * in "j".
3646  *
3647  * If no coalescing can be performed, then we need to revert basic map "j"
3648  * to its original state.  We do the same if basic map "i" gets dropped
3649  * during the coalescing, even though this should not happen in practice
3650  * since we have already checked for "j" being a subset of "i"
3651  * before we reach this stage.
3652  */
coalesce_with_subs(int i,int j,struct isl_coalesce_info * info,__isl_keep isl_aff_list * list)3653 static enum isl_change coalesce_with_subs(int i, int j,
3654 	struct isl_coalesce_info *info, __isl_keep isl_aff_list *list)
3655 {
3656 	isl_basic_map *bmap_j;
3657 	struct isl_tab_undo *snap;
3658 	isl_size dim, n_div;
3659 	enum isl_change change;
3660 
3661 	bmap_j = isl_basic_map_copy(info[j].bmap);
3662 	snap = isl_tab_snap(info[j].tab);
3663 
3664 	dim = isl_basic_map_dim(bmap_j, isl_dim_all);
3665 	n_div = isl_basic_map_dim(bmap_j, isl_dim_div);
3666 	if (dim < 0 || n_div < 0)
3667 		goto error;
3668 	dim -= n_div;
3669 	if (add_subs(&info[j], list, dim) < 0)
3670 		goto error;
3671 
3672 	change = coalesce_local_pair(i, j, info);
3673 	if (change != isl_change_none && change != isl_change_drop_first) {
3674 		isl_basic_map_free(bmap_j);
3675 	} else {
3676 		isl_basic_map_free(info[j].bmap);
3677 		info[j].bmap = bmap_j;
3678 
3679 		if (isl_tab_rollback(info[j].tab, snap) < 0)
3680 			return isl_change_error;
3681 	}
3682 
3683 	return change;
3684 error:
3685 	isl_basic_map_free(bmap_j);
3686 	return isl_change_error;
3687 }
3688 
3689 /* Check if we can coalesce basic map "j" into basic map "i" after copying
3690  * those extra integer divisions in "i" that can be simplified away
3691  * using the extra equalities in "j".
3692  * All divs are assumed to be known and not contain any nested divs.
3693  *
3694  * We first check if there are any extra equalities in "j" that we
3695  * can exploit.  Then we check if every integer division in "i"
3696  * either already appears in "j" or can be simplified using the
3697  * extra equalities to a purely affine expression.
3698  * If these tests succeed, then we try to coalesce the two basic maps
3699  * by introducing extra dimensions in "j" corresponding to
3700  * the extra integer divisions "i" fixed to the corresponding
3701  * purely affine expression.
3702  */
check_coalesce_into_eq(int i,int j,struct isl_coalesce_info * info)3703 static enum isl_change check_coalesce_into_eq(int i, int j,
3704 	struct isl_coalesce_info *info)
3705 {
3706 	isl_size n_div_i, n_div_j, n;
3707 	isl_basic_map *hull_i, *hull_j;
3708 	isl_bool equal, empty;
3709 	isl_aff_list *list;
3710 	enum isl_change change;
3711 
3712 	n_div_i = isl_basic_map_dim(info[i].bmap, isl_dim_div);
3713 	n_div_j = isl_basic_map_dim(info[j].bmap, isl_dim_div);
3714 	if (n_div_i < 0 || n_div_j < 0)
3715 		return isl_change_error;
3716 	if (n_div_i <= n_div_j)
3717 		return isl_change_none;
3718 	if (info[j].bmap->n_eq == 0)
3719 		return isl_change_none;
3720 
3721 	hull_i = isl_basic_map_copy(info[i].bmap);
3722 	hull_i = isl_basic_map_plain_affine_hull(hull_i);
3723 	hull_j = isl_basic_map_copy(info[j].bmap);
3724 	hull_j = isl_basic_map_plain_affine_hull(hull_j);
3725 
3726 	hull_j = isl_basic_map_intersect(hull_j, isl_basic_map_copy(hull_i));
3727 	equal = isl_basic_map_plain_is_equal(hull_i, hull_j);
3728 	empty = isl_basic_map_plain_is_empty(hull_j);
3729 	isl_basic_map_free(hull_i);
3730 
3731 	if (equal < 0 || empty < 0)
3732 		goto error;
3733 	if (equal || empty) {
3734 		isl_basic_map_free(hull_j);
3735 		return isl_change_none;
3736 	}
3737 
3738 	list = set_up_substitutions(info[i].bmap, info[j].bmap, hull_j);
3739 	if (!list)
3740 		return isl_change_error;
3741 	n = isl_aff_list_n_aff(list);
3742 	if (n < 0)
3743 		change = isl_change_error;
3744 	else if (n < n_div_i)
3745 		change = isl_change_none;
3746 	else
3747 		change = coalesce_with_subs(i, j, info, list);
3748 
3749 	isl_aff_list_free(list);
3750 
3751 	return change;
3752 error:
3753 	isl_basic_map_free(hull_j);
3754 	return isl_change_error;
3755 }
3756 
3757 /* Check if we can coalesce basic maps "i" and "j" after copying
3758  * those extra integer divisions in one of the basic maps that can
3759  * be simplified away using the extra equalities in the other basic map.
3760  * We require all divs to be known in both basic maps.
3761  * Furthermore, to simplify the comparison of div expressions,
3762  * we do not allow any nested integer divisions.
3763  */
check_coalesce_eq(int i,int j,struct isl_coalesce_info * info)3764 static enum isl_change check_coalesce_eq(int i, int j,
3765 	struct isl_coalesce_info *info)
3766 {
3767 	isl_bool known, nested;
3768 	enum isl_change change;
3769 
3770 	known = isl_basic_map_divs_known(info[i].bmap);
3771 	if (known < 0 || !known)
3772 		return known < 0 ? isl_change_error : isl_change_none;
3773 	known = isl_basic_map_divs_known(info[j].bmap);
3774 	if (known < 0 || !known)
3775 		return known < 0 ? isl_change_error : isl_change_none;
3776 	nested = has_nested_div(info[i].bmap);
3777 	if (nested < 0 || nested)
3778 		return nested < 0 ? isl_change_error : isl_change_none;
3779 	nested = has_nested_div(info[j].bmap);
3780 	if (nested < 0 || nested)
3781 		return nested < 0 ? isl_change_error : isl_change_none;
3782 
3783 	change = check_coalesce_into_eq(i, j, info);
3784 	if (change != isl_change_none)
3785 		return change;
3786 	change = check_coalesce_into_eq(j, i, info);
3787 	if (change != isl_change_none)
3788 		return invert_change(change);
3789 
3790 	return isl_change_none;
3791 }
3792 
3793 /* Check if the union of the given pair of basic maps
3794  * can be represented by a single basic map.
3795  * If so, replace the pair by the single basic map and return
3796  * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
3797  * Otherwise, return isl_change_none.
3798  *
3799  * We first check if the two basic maps live in the same local space,
3800  * after aligning the divs that differ by only an integer constant.
3801  * If so, we do the complete check.  Otherwise, we check if they have
3802  * the same number of integer divisions and can be coalesced, if one is
3803  * an obvious subset of the other or if the extra integer divisions
3804  * of one basic map can be simplified away using the extra equalities
3805  * of the other basic map.
3806  *
3807  * Note that trying to coalesce pairs of disjuncts with the same
3808  * number, but different local variables may drop the explicit
3809  * representation of some of these local variables.
3810  * This operation is therefore not performed when
3811  * the "coalesce_preserve_locals" option is set.
3812  */
coalesce_pair(int i,int j,struct isl_coalesce_info * info)3813 static enum isl_change coalesce_pair(int i, int j,
3814 	struct isl_coalesce_info *info)
3815 {
3816 	int preserve;
3817 	isl_bool same;
3818 	enum isl_change change;
3819 	isl_ctx *ctx;
3820 
3821 	if (harmonize_divs(&info[i], &info[j]) < 0)
3822 		return isl_change_error;
3823 	same = same_divs(info[i].bmap, info[j].bmap);
3824 	if (same < 0)
3825 		return isl_change_error;
3826 	if (same)
3827 		return coalesce_local_pair(i, j, info);
3828 
3829 	ctx = isl_basic_map_get_ctx(info[i].bmap);
3830 	preserve = isl_options_get_coalesce_preserve_locals(ctx);
3831 	if (!preserve && info[i].bmap->n_div == info[j].bmap->n_div) {
3832 		change = coalesce_local_pair(i, j, info);
3833 		if (change != isl_change_none)
3834 			return change;
3835 	}
3836 
3837 	change = coalesce_divs(i, j, info);
3838 	if (change != isl_change_none)
3839 		return change;
3840 
3841 	return check_coalesce_eq(i, j, info);
3842 }
3843 
3844 /* Return the maximum of "a" and "b".
3845  */
isl_max(int a,int b)3846 static int isl_max(int a, int b)
3847 {
3848 	return a > b ? a : b;
3849 }
3850 
3851 /* Pairwise coalesce the basic maps in the range [start1, end1[ of "info"
3852  * with those in the range [start2, end2[, skipping basic maps
3853  * that have been removed (either before or within this function).
3854  *
3855  * For each basic map i in the first range, we check if it can be coalesced
3856  * with respect to any previously considered basic map j in the second range.
3857  * If i gets dropped (because it was a subset of some j), then
3858  * we can move on to the next basic map.
3859  * If j gets dropped, we need to continue checking against the other
3860  * previously considered basic maps.
3861  * If the two basic maps got fused, then we recheck the fused basic map
3862  * against the previously considered basic maps, starting at i + 1
3863  * (even if start2 is greater than i + 1).
3864  */
coalesce_range(isl_ctx * ctx,struct isl_coalesce_info * info,int start1,int end1,int start2,int end2)3865 static int coalesce_range(isl_ctx *ctx, struct isl_coalesce_info *info,
3866 	int start1, int end1, int start2, int end2)
3867 {
3868 	int i, j;
3869 
3870 	for (i = end1 - 1; i >= start1; --i) {
3871 		if (info[i].removed)
3872 			continue;
3873 		for (j = isl_max(i + 1, start2); j < end2; ++j) {
3874 			enum isl_change changed;
3875 
3876 			if (info[j].removed)
3877 				continue;
3878 			if (info[i].removed)
3879 				isl_die(ctx, isl_error_internal,
3880 					"basic map unexpectedly removed",
3881 					return -1);
3882 			changed = coalesce_pair(i, j, info);
3883 			switch (changed) {
3884 			case isl_change_error:
3885 				return -1;
3886 			case isl_change_none:
3887 			case isl_change_drop_second:
3888 				continue;
3889 			case isl_change_drop_first:
3890 				j = end2;
3891 				break;
3892 			case isl_change_fuse:
3893 				j = i;
3894 				break;
3895 			}
3896 		}
3897 	}
3898 
3899 	return 0;
3900 }
3901 
3902 /* Pairwise coalesce the basic maps described by the "n" elements of "info".
3903  *
3904  * We consider groups of basic maps that live in the same apparent
3905  * affine hull and we first coalesce within such a group before we
3906  * coalesce the elements in the group with elements of previously
3907  * considered groups.  If a fuse happens during the second phase,
3908  * then we also reconsider the elements within the group.
3909  */
coalesce(isl_ctx * ctx,int n,struct isl_coalesce_info * info)3910 static int coalesce(isl_ctx *ctx, int n, struct isl_coalesce_info *info)
3911 {
3912 	int start, end;
3913 
3914 	for (end = n; end > 0; end = start) {
3915 		start = end - 1;
3916 		while (start >= 1 &&
3917 		    info[start - 1].hull_hash == info[start].hull_hash)
3918 			start--;
3919 		if (coalesce_range(ctx, info, start, end, start, end) < 0)
3920 			return -1;
3921 		if (coalesce_range(ctx, info, start, end, end, n) < 0)
3922 			return -1;
3923 	}
3924 
3925 	return 0;
3926 }
3927 
3928 /* Update the basic maps in "map" based on the information in "info".
3929  * In particular, remove the basic maps that have been marked removed and
3930  * update the others based on the information in the corresponding tableau.
3931  * Since we detected implicit equalities without calling
3932  * isl_basic_map_gauss, we need to do it now.
3933  * Also call isl_basic_map_simplify if we may have lost the definition
3934  * of one or more integer divisions.
3935  * If a basic map is still equal to the one from which the corresponding "info"
3936  * entry was created, then redundant constraint and
3937  * implicit equality constraint detection have been performed
3938  * on the corresponding tableau and the basic map can be marked as such.
3939  */
update_basic_maps(__isl_take isl_map * map,int n,struct isl_coalesce_info * info)3940 static __isl_give isl_map *update_basic_maps(__isl_take isl_map *map,
3941 	int n, struct isl_coalesce_info *info)
3942 {
3943 	int i;
3944 
3945 	if (!map)
3946 		return NULL;
3947 
3948 	for (i = n - 1; i >= 0; --i) {
3949 		if (info[i].removed) {
3950 			isl_basic_map_free(map->p[i]);
3951 			if (i != map->n - 1)
3952 				map->p[i] = map->p[map->n - 1];
3953 			map->n--;
3954 			continue;
3955 		}
3956 
3957 		info[i].bmap = isl_basic_map_update_from_tab(info[i].bmap,
3958 							info[i].tab);
3959 		info[i].bmap = isl_basic_map_gauss(info[i].bmap, NULL);
3960 		if (info[i].simplify)
3961 			info[i].bmap = isl_basic_map_simplify(info[i].bmap);
3962 		info[i].bmap = isl_basic_map_finalize(info[i].bmap);
3963 		if (!info[i].bmap)
3964 			return isl_map_free(map);
3965 		if (!info[i].modified) {
3966 			ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_NO_IMPLICIT);
3967 			ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_NO_REDUNDANT);
3968 		}
3969 		isl_basic_map_free(map->p[i]);
3970 		map->p[i] = info[i].bmap;
3971 		info[i].bmap = NULL;
3972 	}
3973 
3974 	return map;
3975 }
3976 
3977 /* For each pair of basic maps in the map, check if the union of the two
3978  * can be represented by a single basic map.
3979  * If so, replace the pair by the single basic map and start over.
3980  *
3981  * We factor out any (hidden) common factor from the constraint
3982  * coefficients to improve the detection of adjacent constraints.
3983  * Note that this function does not call isl_basic_map_gauss,
3984  * but it does make sure that only a single copy of the basic map
3985  * is affected.  This means that isl_basic_map_gauss may have
3986  * to be called at the end of the computation (in update_basic_maps)
3987  * on this single copy to ensure that
3988  * the basic maps are not left in an unexpected state.
3989  *
3990  * Since we are constructing the tableaus of the basic maps anyway,
3991  * we exploit them to detect implicit equalities and redundant constraints.
3992  * This also helps the coalescing as it can ignore the redundant constraints.
3993  * In order to avoid confusion, we make all implicit equalities explicit
3994  * in the basic maps.  If the basic map only has a single reference
3995  * (this happens in particular if it was modified by
3996  * isl_basic_map_reduce_coefficients), then isl_basic_map_gauss
3997  * does not get called on the result.  The call to
3998  * isl_basic_map_gauss in update_basic_maps resolves this as well.
3999  * For each basic map, we also compute the hash of the apparent affine hull
4000  * for use in coalesce.
4001  */
isl_map_coalesce(__isl_take isl_map * map)4002 __isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map)
4003 {
4004 	int i;
4005 	unsigned n;
4006 	isl_ctx *ctx;
4007 	struct isl_coalesce_info *info = NULL;
4008 
4009 	map = isl_map_remove_empty_parts(map);
4010 	if (!map)
4011 		return NULL;
4012 
4013 	if (map->n <= 1)
4014 		return map;
4015 
4016 	ctx = isl_map_get_ctx(map);
4017 	map = isl_map_sort_divs(map);
4018 	map = isl_map_cow(map);
4019 
4020 	if (!map)
4021 		return NULL;
4022 
4023 	n = map->n;
4024 
4025 	info = isl_calloc_array(map->ctx, struct isl_coalesce_info, n);
4026 	if (!info)
4027 		goto error;
4028 
4029 	for (i = 0; i < map->n; ++i) {
4030 		map->p[i] = isl_basic_map_reduce_coefficients(map->p[i]);
4031 		if (!map->p[i])
4032 			goto error;
4033 		info[i].bmap = isl_basic_map_copy(map->p[i]);
4034 		info[i].tab = isl_tab_from_basic_map(info[i].bmap, 0);
4035 		if (!info[i].tab)
4036 			goto error;
4037 		if (!ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_NO_IMPLICIT))
4038 			if (isl_tab_detect_implicit_equalities(info[i].tab) < 0)
4039 				goto error;
4040 		info[i].bmap = isl_tab_make_equalities_explicit(info[i].tab,
4041 								info[i].bmap);
4042 		if (!info[i].bmap)
4043 			goto error;
4044 		if (!ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_NO_REDUNDANT))
4045 			if (isl_tab_detect_redundant(info[i].tab) < 0)
4046 				goto error;
4047 		if (coalesce_info_set_hull_hash(&info[i]) < 0)
4048 			goto error;
4049 	}
4050 	for (i = map->n - 1; i >= 0; --i)
4051 		if (info[i].tab->empty)
4052 			drop(&info[i]);
4053 
4054 	if (coalesce(ctx, n, info) < 0)
4055 		goto error;
4056 
4057 	map = update_basic_maps(map, n, info);
4058 
4059 	clear_coalesce_info(n, info);
4060 
4061 	return map;
4062 error:
4063 	clear_coalesce_info(n, info);
4064 	isl_map_free(map);
4065 	return NULL;
4066 }
4067 
4068 /* For each pair of basic sets in the set, check if the union of the two
4069  * can be represented by a single basic set.
4070  * If so, replace the pair by the single basic set and start over.
4071  */
isl_set_coalesce(struct isl_set * set)4072 struct isl_set *isl_set_coalesce(struct isl_set *set)
4073 {
4074 	return set_from_map(isl_map_coalesce(set_to_map(set)));
4075 }
4076