1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Implements semantic analysis for C++ expressions.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/Template.h"
15 #include "clang/Sema/SemaInternal.h"
16 #include "TreeTransform.h"
17 #include "TypeLocBuilder.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/ASTLambda.h"
20 #include "clang/AST/CXXInheritance.h"
21 #include "clang/AST/CharUnits.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/RecursiveASTVisitor.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/Basic/AlignedAllocation.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/Preprocessor.h"
31 #include "clang/Sema/DeclSpec.h"
32 #include "clang/Sema/Initialization.h"
33 #include "clang/Sema/Lookup.h"
34 #include "clang/Sema/ParsedTemplate.h"
35 #include "clang/Sema/Scope.h"
36 #include "clang/Sema/ScopeInfo.h"
37 #include "clang/Sema/SemaLambda.h"
38 #include "clang/Sema/TemplateDeduction.h"
39 #include "llvm/ADT/APInt.h"
40 #include "llvm/ADT/STLExtras.h"
41 #include "llvm/Support/ErrorHandling.h"
42 using namespace clang;
43 using namespace sema;
44 
45 /// Handle the result of the special case name lookup for inheriting
46 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
47 /// constructor names in member using declarations, even if 'X' is not the
48 /// name of the corresponding type.
getInheritingConstructorName(CXXScopeSpec & SS,SourceLocation NameLoc,IdentifierInfo & Name)49 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
50                                               SourceLocation NameLoc,
51                                               IdentifierInfo &Name) {
52   NestedNameSpecifier *NNS = SS.getScopeRep();
53 
54   // Convert the nested-name-specifier into a type.
55   QualType Type;
56   switch (NNS->getKind()) {
57   case NestedNameSpecifier::TypeSpec:
58   case NestedNameSpecifier::TypeSpecWithTemplate:
59     Type = QualType(NNS->getAsType(), 0);
60     break;
61 
62   case NestedNameSpecifier::Identifier:
63     // Strip off the last layer of the nested-name-specifier and build a
64     // typename type for it.
65     assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
66     Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
67                                         NNS->getAsIdentifier());
68     break;
69 
70   case NestedNameSpecifier::Global:
71   case NestedNameSpecifier::Super:
72   case NestedNameSpecifier::Namespace:
73   case NestedNameSpecifier::NamespaceAlias:
74     llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
75   }
76 
77   // This reference to the type is located entirely at the location of the
78   // final identifier in the qualified-id.
79   return CreateParsedType(Type,
80                           Context.getTrivialTypeSourceInfo(Type, NameLoc));
81 }
82 
getConstructorName(IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec & SS,bool EnteringContext)83 ParsedType Sema::getConstructorName(IdentifierInfo &II,
84                                     SourceLocation NameLoc,
85                                     Scope *S, CXXScopeSpec &SS,
86                                     bool EnteringContext) {
87   CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
88   assert(CurClass && &II == CurClass->getIdentifier() &&
89          "not a constructor name");
90 
91   // When naming a constructor as a member of a dependent context (eg, in a
92   // friend declaration or an inherited constructor declaration), form an
93   // unresolved "typename" type.
94   if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
95     QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II);
96     return ParsedType::make(T);
97   }
98 
99   if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
100     return ParsedType();
101 
102   // Find the injected-class-name declaration. Note that we make no attempt to
103   // diagnose cases where the injected-class-name is shadowed: the only
104   // declaration that can validly shadow the injected-class-name is a
105   // non-static data member, and if the class contains both a non-static data
106   // member and a constructor then it is ill-formed (we check that in
107   // CheckCompletedCXXClass).
108   CXXRecordDecl *InjectedClassName = nullptr;
109   for (NamedDecl *ND : CurClass->lookup(&II)) {
110     auto *RD = dyn_cast<CXXRecordDecl>(ND);
111     if (RD && RD->isInjectedClassName()) {
112       InjectedClassName = RD;
113       break;
114     }
115   }
116   if (!InjectedClassName) {
117     if (!CurClass->isInvalidDecl()) {
118       // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
119       // properly. Work around it here for now.
120       Diag(SS.getLastQualifierNameLoc(),
121            diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
122     }
123     return ParsedType();
124   }
125 
126   QualType T = Context.getTypeDeclType(InjectedClassName);
127   DiagnoseUseOfDecl(InjectedClassName, NameLoc);
128   MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
129 
130   return ParsedType::make(T);
131 }
132 
getDestructorName(SourceLocation TildeLoc,IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec & SS,ParsedType ObjectTypePtr,bool EnteringContext)133 ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
134                                    IdentifierInfo &II,
135                                    SourceLocation NameLoc,
136                                    Scope *S, CXXScopeSpec &SS,
137                                    ParsedType ObjectTypePtr,
138                                    bool EnteringContext) {
139   // Determine where to perform name lookup.
140 
141   // FIXME: This area of the standard is very messy, and the current
142   // wording is rather unclear about which scopes we search for the
143   // destructor name; see core issues 399 and 555. Issue 399 in
144   // particular shows where the current description of destructor name
145   // lookup is completely out of line with existing practice, e.g.,
146   // this appears to be ill-formed:
147   //
148   //   namespace N {
149   //     template <typename T> struct S {
150   //       ~S();
151   //     };
152   //   }
153   //
154   //   void f(N::S<int>* s) {
155   //     s->N::S<int>::~S();
156   //   }
157   //
158   // See also PR6358 and PR6359.
159   //
160   // For now, we accept all the cases in which the name given could plausibly
161   // be interpreted as a correct destructor name, issuing off-by-default
162   // extension diagnostics on the cases that don't strictly conform to the
163   // C++20 rules. This basically means we always consider looking in the
164   // nested-name-specifier prefix, the complete nested-name-specifier, and
165   // the scope, and accept if we find the expected type in any of the three
166   // places.
167 
168   if (SS.isInvalid())
169     return nullptr;
170 
171   // Whether we've failed with a diagnostic already.
172   bool Failed = false;
173 
174   llvm::SmallVector<NamedDecl*, 8> FoundDecls;
175   llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet;
176 
177   // If we have an object type, it's because we are in a
178   // pseudo-destructor-expression or a member access expression, and
179   // we know what type we're looking for.
180   QualType SearchType =
181       ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType();
182 
183   auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType {
184     auto IsAcceptableResult = [&](NamedDecl *D) -> bool {
185       auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl());
186       if (!Type)
187         return false;
188 
189       if (SearchType.isNull() || SearchType->isDependentType())
190         return true;
191 
192       QualType T = Context.getTypeDeclType(Type);
193       return Context.hasSameUnqualifiedType(T, SearchType);
194     };
195 
196     unsigned NumAcceptableResults = 0;
197     for (NamedDecl *D : Found) {
198       if (IsAcceptableResult(D))
199         ++NumAcceptableResults;
200 
201       // Don't list a class twice in the lookup failure diagnostic if it's
202       // found by both its injected-class-name and by the name in the enclosing
203       // scope.
204       if (auto *RD = dyn_cast<CXXRecordDecl>(D))
205         if (RD->isInjectedClassName())
206           D = cast<NamedDecl>(RD->getParent());
207 
208       if (FoundDeclSet.insert(D).second)
209         FoundDecls.push_back(D);
210     }
211 
212     // As an extension, attempt to "fix" an ambiguity by erasing all non-type
213     // results, and all non-matching results if we have a search type. It's not
214     // clear what the right behavior is if destructor lookup hits an ambiguity,
215     // but other compilers do generally accept at least some kinds of
216     // ambiguity.
217     if (Found.isAmbiguous() && NumAcceptableResults == 1) {
218       Diag(NameLoc, diag::ext_dtor_name_ambiguous);
219       LookupResult::Filter F = Found.makeFilter();
220       while (F.hasNext()) {
221         NamedDecl *D = F.next();
222         if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
223           Diag(D->getLocation(), diag::note_destructor_type_here)
224               << Context.getTypeDeclType(TD);
225         else
226           Diag(D->getLocation(), diag::note_destructor_nontype_here);
227 
228         if (!IsAcceptableResult(D))
229           F.erase();
230       }
231       F.done();
232     }
233 
234     if (Found.isAmbiguous())
235       Failed = true;
236 
237     if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
238       if (IsAcceptableResult(Type)) {
239         QualType T = Context.getTypeDeclType(Type);
240         MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
241         return CreateParsedType(T,
242                                 Context.getTrivialTypeSourceInfo(T, NameLoc));
243       }
244     }
245 
246     return nullptr;
247   };
248 
249   bool IsDependent = false;
250 
251   auto LookupInObjectType = [&]() -> ParsedType {
252     if (Failed || SearchType.isNull())
253       return nullptr;
254 
255     IsDependent |= SearchType->isDependentType();
256 
257     LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
258     DeclContext *LookupCtx = computeDeclContext(SearchType);
259     if (!LookupCtx)
260       return nullptr;
261     LookupQualifiedName(Found, LookupCtx);
262     return CheckLookupResult(Found);
263   };
264 
265   auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType {
266     if (Failed)
267       return nullptr;
268 
269     IsDependent |= isDependentScopeSpecifier(LookupSS);
270     DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext);
271     if (!LookupCtx)
272       return nullptr;
273 
274     LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
275     if (RequireCompleteDeclContext(LookupSS, LookupCtx)) {
276       Failed = true;
277       return nullptr;
278     }
279     LookupQualifiedName(Found, LookupCtx);
280     return CheckLookupResult(Found);
281   };
282 
283   auto LookupInScope = [&]() -> ParsedType {
284     if (Failed || !S)
285       return nullptr;
286 
287     LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
288     LookupName(Found, S);
289     return CheckLookupResult(Found);
290   };
291 
292   // C++2a [basic.lookup.qual]p6:
293   //   In a qualified-id of the form
294   //
295   //     nested-name-specifier[opt] type-name :: ~ type-name
296   //
297   //   the second type-name is looked up in the same scope as the first.
298   //
299   // We interpret this as meaning that if you do a dual-scope lookup for the
300   // first name, you also do a dual-scope lookup for the second name, per
301   // C++ [basic.lookup.classref]p4:
302   //
303   //   If the id-expression in a class member access is a qualified-id of the
304   //   form
305   //
306   //     class-name-or-namespace-name :: ...
307   //
308   //   the class-name-or-namespace-name following the . or -> is first looked
309   //   up in the class of the object expression and the name, if found, is used.
310   //   Otherwise, it is looked up in the context of the entire
311   //   postfix-expression.
312   //
313   // This looks in the same scopes as for an unqualified destructor name:
314   //
315   // C++ [basic.lookup.classref]p3:
316   //   If the unqualified-id is ~ type-name, the type-name is looked up
317   //   in the context of the entire postfix-expression. If the type T
318   //   of the object expression is of a class type C, the type-name is
319   //   also looked up in the scope of class C. At least one of the
320   //   lookups shall find a name that refers to cv T.
321   //
322   // FIXME: The intent is unclear here. Should type-name::~type-name look in
323   // the scope anyway if it finds a non-matching name declared in the class?
324   // If both lookups succeed and find a dependent result, which result should
325   // we retain? (Same question for p->~type-name().)
326 
327   if (NestedNameSpecifier *Prefix =
328       SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) {
329     // This is
330     //
331     //   nested-name-specifier type-name :: ~ type-name
332     //
333     // Look for the second type-name in the nested-name-specifier.
334     CXXScopeSpec PrefixSS;
335     PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
336     if (ParsedType T = LookupInNestedNameSpec(PrefixSS))
337       return T;
338   } else {
339     // This is one of
340     //
341     //   type-name :: ~ type-name
342     //   ~ type-name
343     //
344     // Look in the scope and (if any) the object type.
345     if (ParsedType T = LookupInScope())
346       return T;
347     if (ParsedType T = LookupInObjectType())
348       return T;
349   }
350 
351   if (Failed)
352     return nullptr;
353 
354   if (IsDependent) {
355     // We didn't find our type, but that's OK: it's dependent anyway.
356 
357     // FIXME: What if we have no nested-name-specifier?
358     QualType T = CheckTypenameType(ETK_None, SourceLocation(),
359                                    SS.getWithLocInContext(Context),
360                                    II, NameLoc);
361     return ParsedType::make(T);
362   }
363 
364   // The remaining cases are all non-standard extensions imitating the behavior
365   // of various other compilers.
366   unsigned NumNonExtensionDecls = FoundDecls.size();
367 
368   if (SS.isSet()) {
369     // For compatibility with older broken C++ rules and existing code,
370     //
371     //   nested-name-specifier :: ~ type-name
372     //
373     // also looks for type-name within the nested-name-specifier.
374     if (ParsedType T = LookupInNestedNameSpec(SS)) {
375       Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope)
376           << SS.getRange()
377           << FixItHint::CreateInsertion(SS.getEndLoc(),
378                                         ("::" + II.getName()).str());
379       return T;
380     }
381 
382     // For compatibility with other compilers and older versions of Clang,
383     //
384     //   nested-name-specifier type-name :: ~ type-name
385     //
386     // also looks for type-name in the scope. Unfortunately, we can't
387     // reasonably apply this fallback for dependent nested-name-specifiers.
388     if (SS.getScopeRep()->getPrefix()) {
389       if (ParsedType T = LookupInScope()) {
390         Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope)
391             << FixItHint::CreateRemoval(SS.getRange());
392         Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here)
393             << GetTypeFromParser(T);
394         return T;
395       }
396     }
397   }
398 
399   // We didn't find anything matching; tell the user what we did find (if
400   // anything).
401 
402   // Don't tell the user about declarations we shouldn't have found.
403   FoundDecls.resize(NumNonExtensionDecls);
404 
405   // List types before non-types.
406   std::stable_sort(FoundDecls.begin(), FoundDecls.end(),
407                    [](NamedDecl *A, NamedDecl *B) {
408                      return isa<TypeDecl>(A->getUnderlyingDecl()) >
409                             isa<TypeDecl>(B->getUnderlyingDecl());
410                    });
411 
412   // Suggest a fixit to properly name the destroyed type.
413   auto MakeFixItHint = [&]{
414     const CXXRecordDecl *Destroyed = nullptr;
415     // FIXME: If we have a scope specifier, suggest its last component?
416     if (!SearchType.isNull())
417       Destroyed = SearchType->getAsCXXRecordDecl();
418     else if (S)
419       Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity());
420     if (Destroyed)
421       return FixItHint::CreateReplacement(SourceRange(NameLoc),
422                                           Destroyed->getNameAsString());
423     return FixItHint();
424   };
425 
426   if (FoundDecls.empty()) {
427     // FIXME: Attempt typo-correction?
428     Diag(NameLoc, diag::err_undeclared_destructor_name)
429       << &II << MakeFixItHint();
430   } else if (!SearchType.isNull() && FoundDecls.size() == 1) {
431     if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) {
432       assert(!SearchType.isNull() &&
433              "should only reject a type result if we have a search type");
434       QualType T = Context.getTypeDeclType(TD);
435       Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
436           << T << SearchType << MakeFixItHint();
437     } else {
438       Diag(NameLoc, diag::err_destructor_expr_nontype)
439           << &II << MakeFixItHint();
440     }
441   } else {
442     Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype
443                                       : diag::err_destructor_expr_mismatch)
444         << &II << SearchType << MakeFixItHint();
445   }
446 
447   for (NamedDecl *FoundD : FoundDecls) {
448     if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl()))
449       Diag(FoundD->getLocation(), diag::note_destructor_type_here)
450           << Context.getTypeDeclType(TD);
451     else
452       Diag(FoundD->getLocation(), diag::note_destructor_nontype_here)
453           << FoundD;
454   }
455 
456   return nullptr;
457 }
458 
getDestructorTypeForDecltype(const DeclSpec & DS,ParsedType ObjectType)459 ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
460                                               ParsedType ObjectType) {
461   if (DS.getTypeSpecType() == DeclSpec::TST_error)
462     return nullptr;
463 
464   if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
465     Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
466     return nullptr;
467   }
468 
469   assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&
470          "unexpected type in getDestructorType");
471   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
472 
473   // If we know the type of the object, check that the correct destructor
474   // type was named now; we can give better diagnostics this way.
475   QualType SearchType = GetTypeFromParser(ObjectType);
476   if (!SearchType.isNull() && !SearchType->isDependentType() &&
477       !Context.hasSameUnqualifiedType(T, SearchType)) {
478     Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
479       << T << SearchType;
480     return nullptr;
481   }
482 
483   return ParsedType::make(T);
484 }
485 
checkLiteralOperatorId(const CXXScopeSpec & SS,const UnqualifiedId & Name,bool IsUDSuffix)486 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
487                                   const UnqualifiedId &Name, bool IsUDSuffix) {
488   assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId);
489   if (!IsUDSuffix) {
490     // [over.literal] p8
491     //
492     // double operator""_Bq(long double);  // OK: not a reserved identifier
493     // double operator"" _Bq(long double); // ill-formed, no diagnostic required
494     IdentifierInfo *II = Name.Identifier;
495     ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts());
496     SourceLocation Loc = Name.getEndLoc();
497     if (isReservedInAllContexts(Status) &&
498         !PP.getSourceManager().isInSystemHeader(Loc)) {
499       Diag(Loc, diag::warn_reserved_extern_symbol)
500           << II << static_cast<int>(Status)
501           << FixItHint::CreateReplacement(
502                  Name.getSourceRange(),
503                  (StringRef("operator\"\"") + II->getName()).str());
504     }
505   }
506 
507   if (!SS.isValid())
508     return false;
509 
510   switch (SS.getScopeRep()->getKind()) {
511   case NestedNameSpecifier::Identifier:
512   case NestedNameSpecifier::TypeSpec:
513   case NestedNameSpecifier::TypeSpecWithTemplate:
514     // Per C++11 [over.literal]p2, literal operators can only be declared at
515     // namespace scope. Therefore, this unqualified-id cannot name anything.
516     // Reject it early, because we have no AST representation for this in the
517     // case where the scope is dependent.
518     Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
519         << SS.getScopeRep();
520     return true;
521 
522   case NestedNameSpecifier::Global:
523   case NestedNameSpecifier::Super:
524   case NestedNameSpecifier::Namespace:
525   case NestedNameSpecifier::NamespaceAlias:
526     return false;
527   }
528 
529   llvm_unreachable("unknown nested name specifier kind");
530 }
531 
532 /// Build a C++ typeid expression with a type operand.
BuildCXXTypeId(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)533 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
534                                 SourceLocation TypeidLoc,
535                                 TypeSourceInfo *Operand,
536                                 SourceLocation RParenLoc) {
537   // C++ [expr.typeid]p4:
538   //   The top-level cv-qualifiers of the lvalue expression or the type-id
539   //   that is the operand of typeid are always ignored.
540   //   If the type of the type-id is a class type or a reference to a class
541   //   type, the class shall be completely-defined.
542   Qualifiers Quals;
543   QualType T
544     = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
545                                       Quals);
546   if (T->getAs<RecordType>() &&
547       RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
548     return ExprError();
549 
550   if (T->isVariablyModifiedType())
551     return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
552 
553   if (CheckQualifiedFunctionForTypeId(T, TypeidLoc))
554     return ExprError();
555 
556   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
557                                      SourceRange(TypeidLoc, RParenLoc));
558 }
559 
560 /// Build a C++ typeid expression with an expression operand.
BuildCXXTypeId(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * E,SourceLocation RParenLoc)561 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
562                                 SourceLocation TypeidLoc,
563                                 Expr *E,
564                                 SourceLocation RParenLoc) {
565   bool WasEvaluated = false;
566   if (E && !E->isTypeDependent()) {
567     if (E->getType()->isPlaceholderType()) {
568       ExprResult result = CheckPlaceholderExpr(E);
569       if (result.isInvalid()) return ExprError();
570       E = result.get();
571     }
572 
573     QualType T = E->getType();
574     if (const RecordType *RecordT = T->getAs<RecordType>()) {
575       CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
576       // C++ [expr.typeid]p3:
577       //   [...] If the type of the expression is a class type, the class
578       //   shall be completely-defined.
579       if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
580         return ExprError();
581 
582       // C++ [expr.typeid]p3:
583       //   When typeid is applied to an expression other than an glvalue of a
584       //   polymorphic class type [...] [the] expression is an unevaluated
585       //   operand. [...]
586       if (RecordD->isPolymorphic() && E->isGLValue()) {
587         if (isUnevaluatedContext()) {
588           // The operand was processed in unevaluated context, switch the
589           // context and recheck the subexpression.
590           ExprResult Result = TransformToPotentiallyEvaluated(E);
591           if (Result.isInvalid())
592             return ExprError();
593           E = Result.get();
594         }
595 
596         // We require a vtable to query the type at run time.
597         MarkVTableUsed(TypeidLoc, RecordD);
598         WasEvaluated = true;
599       }
600     }
601 
602     ExprResult Result = CheckUnevaluatedOperand(E);
603     if (Result.isInvalid())
604       return ExprError();
605     E = Result.get();
606 
607     // C++ [expr.typeid]p4:
608     //   [...] If the type of the type-id is a reference to a possibly
609     //   cv-qualified type, the result of the typeid expression refers to a
610     //   std::type_info object representing the cv-unqualified referenced
611     //   type.
612     Qualifiers Quals;
613     QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
614     if (!Context.hasSameType(T, UnqualT)) {
615       T = UnqualT;
616       E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
617     }
618   }
619 
620   if (E->getType()->isVariablyModifiedType())
621     return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
622                      << E->getType());
623   else if (!inTemplateInstantiation() &&
624            E->HasSideEffects(Context, WasEvaluated)) {
625     // The expression operand for typeid is in an unevaluated expression
626     // context, so side effects could result in unintended consequences.
627     Diag(E->getExprLoc(), WasEvaluated
628                               ? diag::warn_side_effects_typeid
629                               : diag::warn_side_effects_unevaluated_context);
630   }
631 
632   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
633                                      SourceRange(TypeidLoc, RParenLoc));
634 }
635 
636 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
637 ExprResult
ActOnCXXTypeid(SourceLocation OpLoc,SourceLocation LParenLoc,bool isType,void * TyOrExpr,SourceLocation RParenLoc)638 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
639                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
640   // typeid is not supported in OpenCL.
641   if (getLangOpts().OpenCLCPlusPlus) {
642     return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
643                      << "typeid");
644   }
645 
646   // Find the std::type_info type.
647   if (!getStdNamespace())
648     return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
649 
650   if (!CXXTypeInfoDecl) {
651     IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
652     LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
653     LookupQualifiedName(R, getStdNamespace());
654     CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
655     // Microsoft's typeinfo doesn't have type_info in std but in the global
656     // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
657     if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
658       LookupQualifiedName(R, Context.getTranslationUnitDecl());
659       CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
660     }
661     if (!CXXTypeInfoDecl)
662       return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
663   }
664 
665   if (!getLangOpts().RTTI) {
666     return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
667   }
668 
669   QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
670 
671   if (isType) {
672     // The operand is a type; handle it as such.
673     TypeSourceInfo *TInfo = nullptr;
674     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
675                                    &TInfo);
676     if (T.isNull())
677       return ExprError();
678 
679     if (!TInfo)
680       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
681 
682     return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
683   }
684 
685   // The operand is an expression.
686   ExprResult Result =
687       BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc);
688 
689   if (!getLangOpts().RTTIData && !Result.isInvalid())
690     if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get()))
691       if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context))
692         Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled)
693             << (getDiagnostics().getDiagnosticOptions().getFormat() ==
694                 DiagnosticOptions::MSVC);
695   return Result;
696 }
697 
698 /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
699 /// a single GUID.
700 static void
getUuidAttrOfType(Sema & SemaRef,QualType QT,llvm::SmallSetVector<const UuidAttr *,1> & UuidAttrs)701 getUuidAttrOfType(Sema &SemaRef, QualType QT,
702                   llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
703   // Optionally remove one level of pointer, reference or array indirection.
704   const Type *Ty = QT.getTypePtr();
705   if (QT->isPointerType() || QT->isReferenceType())
706     Ty = QT->getPointeeType().getTypePtr();
707   else if (QT->isArrayType())
708     Ty = Ty->getBaseElementTypeUnsafe();
709 
710   const auto *TD = Ty->getAsTagDecl();
711   if (!TD)
712     return;
713 
714   if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
715     UuidAttrs.insert(Uuid);
716     return;
717   }
718 
719   // __uuidof can grab UUIDs from template arguments.
720   if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
721     const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
722     for (const TemplateArgument &TA : TAL.asArray()) {
723       const UuidAttr *UuidForTA = nullptr;
724       if (TA.getKind() == TemplateArgument::Type)
725         getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
726       else if (TA.getKind() == TemplateArgument::Declaration)
727         getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
728 
729       if (UuidForTA)
730         UuidAttrs.insert(UuidForTA);
731     }
732   }
733 }
734 
735 /// Build a Microsoft __uuidof expression with a type operand.
BuildCXXUuidof(QualType Type,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)736 ExprResult Sema::BuildCXXUuidof(QualType Type,
737                                 SourceLocation TypeidLoc,
738                                 TypeSourceInfo *Operand,
739                                 SourceLocation RParenLoc) {
740   MSGuidDecl *Guid = nullptr;
741   if (!Operand->getType()->isDependentType()) {
742     llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
743     getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
744     if (UuidAttrs.empty())
745       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
746     if (UuidAttrs.size() > 1)
747       return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
748     Guid = UuidAttrs.back()->getGuidDecl();
749   }
750 
751   return new (Context)
752       CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc));
753 }
754 
755 /// Build a Microsoft __uuidof expression with an expression operand.
BuildCXXUuidof(QualType Type,SourceLocation TypeidLoc,Expr * E,SourceLocation RParenLoc)756 ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc,
757                                 Expr *E, SourceLocation RParenLoc) {
758   MSGuidDecl *Guid = nullptr;
759   if (!E->getType()->isDependentType()) {
760     if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
761       // A null pointer results in {00000000-0000-0000-0000-000000000000}.
762       Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{});
763     } else {
764       llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
765       getUuidAttrOfType(*this, E->getType(), UuidAttrs);
766       if (UuidAttrs.empty())
767         return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
768       if (UuidAttrs.size() > 1)
769         return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
770       Guid = UuidAttrs.back()->getGuidDecl();
771     }
772   }
773 
774   return new (Context)
775       CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc));
776 }
777 
778 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
779 ExprResult
ActOnCXXUuidof(SourceLocation OpLoc,SourceLocation LParenLoc,bool isType,void * TyOrExpr,SourceLocation RParenLoc)780 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
781                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
782   QualType GuidType = Context.getMSGuidType();
783   GuidType.addConst();
784 
785   if (isType) {
786     // The operand is a type; handle it as such.
787     TypeSourceInfo *TInfo = nullptr;
788     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
789                                    &TInfo);
790     if (T.isNull())
791       return ExprError();
792 
793     if (!TInfo)
794       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
795 
796     return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
797   }
798 
799   // The operand is an expression.
800   return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
801 }
802 
803 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
804 ExprResult
ActOnCXXBoolLiteral(SourceLocation OpLoc,tok::TokenKind Kind)805 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
806   assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
807          "Unknown C++ Boolean value!");
808   return new (Context)
809       CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
810 }
811 
812 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
813 ExprResult
ActOnCXXNullPtrLiteral(SourceLocation Loc)814 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
815   return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
816 }
817 
818 /// ActOnCXXThrow - Parse throw expressions.
819 ExprResult
ActOnCXXThrow(Scope * S,SourceLocation OpLoc,Expr * Ex)820 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
821   bool IsThrownVarInScope = false;
822   if (Ex) {
823     // C++0x [class.copymove]p31:
824     //   When certain criteria are met, an implementation is allowed to omit the
825     //   copy/move construction of a class object [...]
826     //
827     //     - in a throw-expression, when the operand is the name of a
828     //       non-volatile automatic object (other than a function or catch-
829     //       clause parameter) whose scope does not extend beyond the end of the
830     //       innermost enclosing try-block (if there is one), the copy/move
831     //       operation from the operand to the exception object (15.1) can be
832     //       omitted by constructing the automatic object directly into the
833     //       exception object
834     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
835       if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
836         if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
837           for( ; S; S = S->getParent()) {
838             if (S->isDeclScope(Var)) {
839               IsThrownVarInScope = true;
840               break;
841             }
842 
843             if (S->getFlags() &
844                 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
845                  Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
846                  Scope::TryScope))
847               break;
848           }
849         }
850       }
851   }
852 
853   return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
854 }
855 
BuildCXXThrow(SourceLocation OpLoc,Expr * Ex,bool IsThrownVarInScope)856 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
857                                bool IsThrownVarInScope) {
858   // Don't report an error if 'throw' is used in system headers.
859   if (!getLangOpts().CXXExceptions &&
860       !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
861     // Delay error emission for the OpenMP device code.
862     targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
863   }
864 
865   // Exceptions aren't allowed in CUDA device code.
866   if (getLangOpts().CUDA)
867     CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
868         << "throw" << CurrentCUDATarget();
869 
870   if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
871     Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
872 
873   if (Ex && !Ex->isTypeDependent()) {
874     // Initialize the exception result.  This implicitly weeds out
875     // abstract types or types with inaccessible copy constructors.
876 
877     // C++0x [class.copymove]p31:
878     //   When certain criteria are met, an implementation is allowed to omit the
879     //   copy/move construction of a class object [...]
880     //
881     //     - in a throw-expression, when the operand is the name of a
882     //       non-volatile automatic object (other than a function or
883     //       catch-clause
884     //       parameter) whose scope does not extend beyond the end of the
885     //       innermost enclosing try-block (if there is one), the copy/move
886     //       operation from the operand to the exception object (15.1) can be
887     //       omitted by constructing the automatic object directly into the
888     //       exception object
889     NamedReturnInfo NRInfo =
890         IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo();
891 
892     QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
893     if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
894       return ExprError();
895 
896     InitializedEntity Entity =
897         InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy);
898     ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex);
899     if (Res.isInvalid())
900       return ExprError();
901     Ex = Res.get();
902   }
903 
904   // PPC MMA non-pointer types are not allowed as throw expr types.
905   if (Ex && Context.getTargetInfo().getTriple().isPPC64())
906     CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc());
907 
908   return new (Context)
909       CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
910 }
911 
912 static void
collectPublicBases(CXXRecordDecl * RD,llvm::DenseMap<CXXRecordDecl *,unsigned> & SubobjectsSeen,llvm::SmallPtrSetImpl<CXXRecordDecl * > & VBases,llvm::SetVector<CXXRecordDecl * > & PublicSubobjectsSeen,bool ParentIsPublic)913 collectPublicBases(CXXRecordDecl *RD,
914                    llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
915                    llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
916                    llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
917                    bool ParentIsPublic) {
918   for (const CXXBaseSpecifier &BS : RD->bases()) {
919     CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
920     bool NewSubobject;
921     // Virtual bases constitute the same subobject.  Non-virtual bases are
922     // always distinct subobjects.
923     if (BS.isVirtual())
924       NewSubobject = VBases.insert(BaseDecl).second;
925     else
926       NewSubobject = true;
927 
928     if (NewSubobject)
929       ++SubobjectsSeen[BaseDecl];
930 
931     // Only add subobjects which have public access throughout the entire chain.
932     bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
933     if (PublicPath)
934       PublicSubobjectsSeen.insert(BaseDecl);
935 
936     // Recurse on to each base subobject.
937     collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
938                        PublicPath);
939   }
940 }
941 
getUnambiguousPublicSubobjects(CXXRecordDecl * RD,llvm::SmallVectorImpl<CXXRecordDecl * > & Objects)942 static void getUnambiguousPublicSubobjects(
943     CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
944   llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
945   llvm::SmallSet<CXXRecordDecl *, 2> VBases;
946   llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
947   SubobjectsSeen[RD] = 1;
948   PublicSubobjectsSeen.insert(RD);
949   collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
950                      /*ParentIsPublic=*/true);
951 
952   for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
953     // Skip ambiguous objects.
954     if (SubobjectsSeen[PublicSubobject] > 1)
955       continue;
956 
957     Objects.push_back(PublicSubobject);
958   }
959 }
960 
961 /// CheckCXXThrowOperand - Validate the operand of a throw.
CheckCXXThrowOperand(SourceLocation ThrowLoc,QualType ExceptionObjectTy,Expr * E)962 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
963                                 QualType ExceptionObjectTy, Expr *E) {
964   //   If the type of the exception would be an incomplete type or a pointer
965   //   to an incomplete type other than (cv) void the program is ill-formed.
966   QualType Ty = ExceptionObjectTy;
967   bool isPointer = false;
968   if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
969     Ty = Ptr->getPointeeType();
970     isPointer = true;
971   }
972   if (!isPointer || !Ty->isVoidType()) {
973     if (RequireCompleteType(ThrowLoc, Ty,
974                             isPointer ? diag::err_throw_incomplete_ptr
975                                       : diag::err_throw_incomplete,
976                             E->getSourceRange()))
977       return true;
978 
979     if (!isPointer && Ty->isSizelessType()) {
980       Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange();
981       return true;
982     }
983 
984     if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
985                                diag::err_throw_abstract_type, E))
986       return true;
987   }
988 
989   // If the exception has class type, we need additional handling.
990   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
991   if (!RD)
992     return false;
993 
994   // If we are throwing a polymorphic class type or pointer thereof,
995   // exception handling will make use of the vtable.
996   MarkVTableUsed(ThrowLoc, RD);
997 
998   // If a pointer is thrown, the referenced object will not be destroyed.
999   if (isPointer)
1000     return false;
1001 
1002   // If the class has a destructor, we must be able to call it.
1003   if (!RD->hasIrrelevantDestructor()) {
1004     if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
1005       MarkFunctionReferenced(E->getExprLoc(), Destructor);
1006       CheckDestructorAccess(E->getExprLoc(), Destructor,
1007                             PDiag(diag::err_access_dtor_exception) << Ty);
1008       if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
1009         return true;
1010     }
1011   }
1012 
1013   // The MSVC ABI creates a list of all types which can catch the exception
1014   // object.  This list also references the appropriate copy constructor to call
1015   // if the object is caught by value and has a non-trivial copy constructor.
1016   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1017     // We are only interested in the public, unambiguous bases contained within
1018     // the exception object.  Bases which are ambiguous or otherwise
1019     // inaccessible are not catchable types.
1020     llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
1021     getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
1022 
1023     for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
1024       // Attempt to lookup the copy constructor.  Various pieces of machinery
1025       // will spring into action, like template instantiation, which means this
1026       // cannot be a simple walk of the class's decls.  Instead, we must perform
1027       // lookup and overload resolution.
1028       CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
1029       if (!CD || CD->isDeleted())
1030         continue;
1031 
1032       // Mark the constructor referenced as it is used by this throw expression.
1033       MarkFunctionReferenced(E->getExprLoc(), CD);
1034 
1035       // Skip this copy constructor if it is trivial, we don't need to record it
1036       // in the catchable type data.
1037       if (CD->isTrivial())
1038         continue;
1039 
1040       // The copy constructor is non-trivial, create a mapping from this class
1041       // type to this constructor.
1042       // N.B.  The selection of copy constructor is not sensitive to this
1043       // particular throw-site.  Lookup will be performed at the catch-site to
1044       // ensure that the copy constructor is, in fact, accessible (via
1045       // friendship or any other means).
1046       Context.addCopyConstructorForExceptionObject(Subobject, CD);
1047 
1048       // We don't keep the instantiated default argument expressions around so
1049       // we must rebuild them here.
1050       for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
1051         if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
1052           return true;
1053       }
1054     }
1055   }
1056 
1057   // Under the Itanium C++ ABI, memory for the exception object is allocated by
1058   // the runtime with no ability for the compiler to request additional
1059   // alignment. Warn if the exception type requires alignment beyond the minimum
1060   // guaranteed by the target C++ runtime.
1061   if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
1062     CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
1063     CharUnits ExnObjAlign = Context.getExnObjectAlignment();
1064     if (ExnObjAlign < TypeAlign) {
1065       Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
1066       Diag(ThrowLoc, diag::note_throw_underaligned_obj)
1067           << Ty << (unsigned)TypeAlign.getQuantity()
1068           << (unsigned)ExnObjAlign.getQuantity();
1069     }
1070   }
1071 
1072   return false;
1073 }
1074 
adjustCVQualifiersForCXXThisWithinLambda(ArrayRef<FunctionScopeInfo * > FunctionScopes,QualType ThisTy,DeclContext * CurSemaContext,ASTContext & ASTCtx)1075 static QualType adjustCVQualifiersForCXXThisWithinLambda(
1076     ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
1077     DeclContext *CurSemaContext, ASTContext &ASTCtx) {
1078 
1079   QualType ClassType = ThisTy->getPointeeType();
1080   LambdaScopeInfo *CurLSI = nullptr;
1081   DeclContext *CurDC = CurSemaContext;
1082 
1083   // Iterate through the stack of lambdas starting from the innermost lambda to
1084   // the outermost lambda, checking if '*this' is ever captured by copy - since
1085   // that could change the cv-qualifiers of the '*this' object.
1086   // The object referred to by '*this' starts out with the cv-qualifiers of its
1087   // member function.  We then start with the innermost lambda and iterate
1088   // outward checking to see if any lambda performs a by-copy capture of '*this'
1089   // - and if so, any nested lambda must respect the 'constness' of that
1090   // capturing lamdbda's call operator.
1091   //
1092 
1093   // Since the FunctionScopeInfo stack is representative of the lexical
1094   // nesting of the lambda expressions during initial parsing (and is the best
1095   // place for querying information about captures about lambdas that are
1096   // partially processed) and perhaps during instantiation of function templates
1097   // that contain lambda expressions that need to be transformed BUT not
1098   // necessarily during instantiation of a nested generic lambda's function call
1099   // operator (which might even be instantiated at the end of the TU) - at which
1100   // time the DeclContext tree is mature enough to query capture information
1101   // reliably - we use a two pronged approach to walk through all the lexically
1102   // enclosing lambda expressions:
1103   //
1104   //  1) Climb down the FunctionScopeInfo stack as long as each item represents
1105   //  a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
1106   //  enclosed by the call-operator of the LSI below it on the stack (while
1107   //  tracking the enclosing DC for step 2 if needed).  Note the topmost LSI on
1108   //  the stack represents the innermost lambda.
1109   //
1110   //  2) If we run out of enclosing LSI's, check if the enclosing DeclContext
1111   //  represents a lambda's call operator.  If it does, we must be instantiating
1112   //  a generic lambda's call operator (represented by the Current LSI, and
1113   //  should be the only scenario where an inconsistency between the LSI and the
1114   //  DeclContext should occur), so climb out the DeclContexts if they
1115   //  represent lambdas, while querying the corresponding closure types
1116   //  regarding capture information.
1117 
1118   // 1) Climb down the function scope info stack.
1119   for (int I = FunctionScopes.size();
1120        I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
1121        (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
1122                        cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
1123        CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
1124     CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1125 
1126     if (!CurLSI->isCXXThisCaptured())
1127         continue;
1128 
1129     auto C = CurLSI->getCXXThisCapture();
1130 
1131     if (C.isCopyCapture()) {
1132       ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1133       if (CurLSI->CallOperator->isConst())
1134         ClassType.addConst();
1135       return ASTCtx.getPointerType(ClassType);
1136     }
1137   }
1138 
1139   // 2) We've run out of ScopeInfos but check 1. if CurDC is a lambda (which
1140   //    can happen during instantiation of its nested generic lambda call
1141   //    operator); 2. if we're in a lambda scope (lambda body).
1142   if (CurLSI && isLambdaCallOperator(CurDC)) {
1143     assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&
1144            "While computing 'this' capture-type for a generic lambda, when we "
1145            "run out of enclosing LSI's, yet the enclosing DC is a "
1146            "lambda-call-operator we must be (i.e. Current LSI) in a generic "
1147            "lambda call oeprator");
1148     assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator));
1149 
1150     auto IsThisCaptured =
1151         [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1152       IsConst = false;
1153       IsByCopy = false;
1154       for (auto &&C : Closure->captures()) {
1155         if (C.capturesThis()) {
1156           if (C.getCaptureKind() == LCK_StarThis)
1157             IsByCopy = true;
1158           if (Closure->getLambdaCallOperator()->isConst())
1159             IsConst = true;
1160           return true;
1161         }
1162       }
1163       return false;
1164     };
1165 
1166     bool IsByCopyCapture = false;
1167     bool IsConstCapture = false;
1168     CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1169     while (Closure &&
1170            IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1171       if (IsByCopyCapture) {
1172         ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1173         if (IsConstCapture)
1174           ClassType.addConst();
1175         return ASTCtx.getPointerType(ClassType);
1176       }
1177       Closure = isLambdaCallOperator(Closure->getParent())
1178                     ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1179                     : nullptr;
1180     }
1181   }
1182   return ASTCtx.getPointerType(ClassType);
1183 }
1184 
getCurrentThisType()1185 QualType Sema::getCurrentThisType() {
1186   DeclContext *DC = getFunctionLevelDeclContext();
1187   QualType ThisTy = CXXThisTypeOverride;
1188 
1189   if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1190     if (method && method->isInstance())
1191       ThisTy = method->getThisType();
1192   }
1193 
1194   if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
1195       inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) {
1196 
1197     // This is a lambda call operator that is being instantiated as a default
1198     // initializer. DC must point to the enclosing class type, so we can recover
1199     // the 'this' type from it.
1200     QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1201     // There are no cv-qualifiers for 'this' within default initializers,
1202     // per [expr.prim.general]p4.
1203     ThisTy = Context.getPointerType(ClassTy);
1204   }
1205 
1206   // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1207   // might need to be adjusted if the lambda or any of its enclosing lambda's
1208   // captures '*this' by copy.
1209   if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1210     return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1211                                                     CurContext, Context);
1212   return ThisTy;
1213 }
1214 
CXXThisScopeRAII(Sema & S,Decl * ContextDecl,Qualifiers CXXThisTypeQuals,bool Enabled)1215 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1216                                          Decl *ContextDecl,
1217                                          Qualifiers CXXThisTypeQuals,
1218                                          bool Enabled)
1219   : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1220 {
1221   if (!Enabled || !ContextDecl)
1222     return;
1223 
1224   CXXRecordDecl *Record = nullptr;
1225   if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1226     Record = Template->getTemplatedDecl();
1227   else
1228     Record = cast<CXXRecordDecl>(ContextDecl);
1229 
1230   QualType T = S.Context.getRecordType(Record);
1231   T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1232 
1233   S.CXXThisTypeOverride = S.Context.getPointerType(T);
1234 
1235   this->Enabled = true;
1236 }
1237 
1238 
~CXXThisScopeRAII()1239 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1240   if (Enabled) {
1241     S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1242   }
1243 }
1244 
buildLambdaThisCaptureFixit(Sema & Sema,LambdaScopeInfo * LSI)1245 static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) {
1246   SourceLocation DiagLoc = LSI->IntroducerRange.getEnd();
1247   assert(!LSI->isCXXThisCaptured());
1248   //  [=, this] {};   // until C++20: Error: this when = is the default
1249   if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval &&
1250       !Sema.getLangOpts().CPlusPlus20)
1251     return;
1252   Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit)
1253       << FixItHint::CreateInsertion(
1254              DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this");
1255 }
1256 
CheckCXXThisCapture(SourceLocation Loc,const bool Explicit,bool BuildAndDiagnose,const unsigned * const FunctionScopeIndexToStopAt,const bool ByCopy)1257 bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1258     bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1259     const bool ByCopy) {
1260   // We don't need to capture this in an unevaluated context.
1261   if (isUnevaluatedContext() && !Explicit)
1262     return true;
1263 
1264   assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value");
1265 
1266   const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
1267                                          ? *FunctionScopeIndexToStopAt
1268                                          : FunctionScopes.size() - 1;
1269 
1270   // Check that we can capture the *enclosing object* (referred to by '*this')
1271   // by the capturing-entity/closure (lambda/block/etc) at
1272   // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1273 
1274   // Note: The *enclosing object* can only be captured by-value by a
1275   // closure that is a lambda, using the explicit notation:
1276   //    [*this] { ... }.
1277   // Every other capture of the *enclosing object* results in its by-reference
1278   // capture.
1279 
1280   // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1281   // stack), we can capture the *enclosing object* only if:
1282   // - 'L' has an explicit byref or byval capture of the *enclosing object*
1283   // -  or, 'L' has an implicit capture.
1284   // AND
1285   //   -- there is no enclosing closure
1286   //   -- or, there is some enclosing closure 'E' that has already captured the
1287   //      *enclosing object*, and every intervening closure (if any) between 'E'
1288   //      and 'L' can implicitly capture the *enclosing object*.
1289   //   -- or, every enclosing closure can implicitly capture the
1290   //      *enclosing object*
1291 
1292 
1293   unsigned NumCapturingClosures = 0;
1294   for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
1295     if (CapturingScopeInfo *CSI =
1296             dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1297       if (CSI->CXXThisCaptureIndex != 0) {
1298         // 'this' is already being captured; there isn't anything more to do.
1299         CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
1300         break;
1301       }
1302       LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1303       if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
1304         // This context can't implicitly capture 'this'; fail out.
1305         if (BuildAndDiagnose) {
1306           Diag(Loc, diag::err_this_capture)
1307               << (Explicit && idx == MaxFunctionScopesIndex);
1308           if (!Explicit)
1309             buildLambdaThisCaptureFixit(*this, LSI);
1310         }
1311         return true;
1312       }
1313       if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1314           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1315           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1316           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1317           (Explicit && idx == MaxFunctionScopesIndex)) {
1318         // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1319         // iteration through can be an explicit capture, all enclosing closures,
1320         // if any, must perform implicit captures.
1321 
1322         // This closure can capture 'this'; continue looking upwards.
1323         NumCapturingClosures++;
1324         continue;
1325       }
1326       // This context can't implicitly capture 'this'; fail out.
1327       if (BuildAndDiagnose)
1328         Diag(Loc, diag::err_this_capture)
1329             << (Explicit && idx == MaxFunctionScopesIndex);
1330 
1331       if (!Explicit)
1332         buildLambdaThisCaptureFixit(*this, LSI);
1333       return true;
1334     }
1335     break;
1336   }
1337   if (!BuildAndDiagnose) return false;
1338 
1339   // If we got here, then the closure at MaxFunctionScopesIndex on the
1340   // FunctionScopes stack, can capture the *enclosing object*, so capture it
1341   // (including implicit by-reference captures in any enclosing closures).
1342 
1343   // In the loop below, respect the ByCopy flag only for the closure requesting
1344   // the capture (i.e. first iteration through the loop below).  Ignore it for
1345   // all enclosing closure's up to NumCapturingClosures (since they must be
1346   // implicitly capturing the *enclosing  object* by reference (see loop
1347   // above)).
1348   assert((!ByCopy ||
1349           dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&
1350          "Only a lambda can capture the enclosing object (referred to by "
1351          "*this) by copy");
1352   QualType ThisTy = getCurrentThisType();
1353   for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
1354        --idx, --NumCapturingClosures) {
1355     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1356 
1357     // The type of the corresponding data member (not a 'this' pointer if 'by
1358     // copy').
1359     QualType CaptureType = ThisTy;
1360     if (ByCopy) {
1361       // If we are capturing the object referred to by '*this' by copy, ignore
1362       // any cv qualifiers inherited from the type of the member function for
1363       // the type of the closure-type's corresponding data member and any use
1364       // of 'this'.
1365       CaptureType = ThisTy->getPointeeType();
1366       CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1367     }
1368 
1369     bool isNested = NumCapturingClosures > 1;
1370     CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy);
1371   }
1372   return false;
1373 }
1374 
ActOnCXXThis(SourceLocation Loc)1375 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
1376   /// C++ 9.3.2: In the body of a non-static member function, the keyword this
1377   /// is a non-lvalue expression whose value is the address of the object for
1378   /// which the function is called.
1379 
1380   QualType ThisTy = getCurrentThisType();
1381   if (ThisTy.isNull())
1382     return Diag(Loc, diag::err_invalid_this_use);
1383   return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false);
1384 }
1385 
BuildCXXThisExpr(SourceLocation Loc,QualType Type,bool IsImplicit)1386 Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type,
1387                              bool IsImplicit) {
1388   auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit);
1389   MarkThisReferenced(This);
1390   return This;
1391 }
1392 
MarkThisReferenced(CXXThisExpr * This)1393 void Sema::MarkThisReferenced(CXXThisExpr *This) {
1394   CheckCXXThisCapture(This->getExprLoc());
1395 }
1396 
isThisOutsideMemberFunctionBody(QualType BaseType)1397 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
1398   // If we're outside the body of a member function, then we'll have a specified
1399   // type for 'this'.
1400   if (CXXThisTypeOverride.isNull())
1401     return false;
1402 
1403   // Determine whether we're looking into a class that's currently being
1404   // defined.
1405   CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1406   return Class && Class->isBeingDefined();
1407 }
1408 
1409 /// Parse construction of a specified type.
1410 /// Can be interpreted either as function-style casting ("int(x)")
1411 /// or class type construction ("ClassType(x,y,z)")
1412 /// or creation of a value-initialized type ("int()").
1413 ExprResult
ActOnCXXTypeConstructExpr(ParsedType TypeRep,SourceLocation LParenOrBraceLoc,MultiExprArg exprs,SourceLocation RParenOrBraceLoc,bool ListInitialization)1414 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
1415                                 SourceLocation LParenOrBraceLoc,
1416                                 MultiExprArg exprs,
1417                                 SourceLocation RParenOrBraceLoc,
1418                                 bool ListInitialization) {
1419   if (!TypeRep)
1420     return ExprError();
1421 
1422   TypeSourceInfo *TInfo;
1423   QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1424   if (!TInfo)
1425     TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
1426 
1427   auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
1428                                           RParenOrBraceLoc, ListInitialization);
1429   // Avoid creating a non-type-dependent expression that contains typos.
1430   // Non-type-dependent expressions are liable to be discarded without
1431   // checking for embedded typos.
1432   if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1433       !Result.get()->isTypeDependent())
1434     Result = CorrectDelayedTyposInExpr(Result.get());
1435   else if (Result.isInvalid())
1436     Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(),
1437                                 RParenOrBraceLoc, exprs, Ty);
1438   return Result;
1439 }
1440 
1441 ExprResult
BuildCXXTypeConstructExpr(TypeSourceInfo * TInfo,SourceLocation LParenOrBraceLoc,MultiExprArg Exprs,SourceLocation RParenOrBraceLoc,bool ListInitialization)1442 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1443                                 SourceLocation LParenOrBraceLoc,
1444                                 MultiExprArg Exprs,
1445                                 SourceLocation RParenOrBraceLoc,
1446                                 bool ListInitialization) {
1447   QualType Ty = TInfo->getType();
1448   SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1449 
1450   assert((!ListInitialization ||
1451           (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) &&
1452          "List initialization must have initializer list as expression.");
1453   SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
1454 
1455   InitializedEntity Entity =
1456       InitializedEntity::InitializeTemporary(Context, TInfo);
1457   InitializationKind Kind =
1458       Exprs.size()
1459           ? ListInitialization
1460                 ? InitializationKind::CreateDirectList(
1461                       TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
1462                 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
1463                                                    RParenOrBraceLoc)
1464           : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
1465                                             RParenOrBraceLoc);
1466 
1467   // C++1z [expr.type.conv]p1:
1468   //   If the type is a placeholder for a deduced class type, [...perform class
1469   //   template argument deduction...]
1470   DeducedType *Deduced = Ty->getContainedDeducedType();
1471   if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1472     Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity,
1473                                                      Kind, Exprs);
1474     if (Ty.isNull())
1475       return ExprError();
1476     Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1477   }
1478 
1479   if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
1480     // FIXME: CXXUnresolvedConstructExpr does not model list-initialization
1481     // directly. We work around this by dropping the locations of the braces.
1482     SourceRange Locs = ListInitialization
1483                            ? SourceRange()
1484                            : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1485     return CXXUnresolvedConstructExpr::Create(Context, Ty.getNonReferenceType(),
1486                                               TInfo, Locs.getBegin(), Exprs,
1487                                               Locs.getEnd());
1488   }
1489 
1490   // C++ [expr.type.conv]p1:
1491   // If the expression list is a parenthesized single expression, the type
1492   // conversion expression is equivalent (in definedness, and if defined in
1493   // meaning) to the corresponding cast expression.
1494   if (Exprs.size() == 1 && !ListInitialization &&
1495       !isa<InitListExpr>(Exprs[0])) {
1496     Expr *Arg = Exprs[0];
1497     return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
1498                                       RParenOrBraceLoc);
1499   }
1500 
1501   //   For an expression of the form T(), T shall not be an array type.
1502   QualType ElemTy = Ty;
1503   if (Ty->isArrayType()) {
1504     if (!ListInitialization)
1505       return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
1506                          << FullRange);
1507     ElemTy = Context.getBaseElementType(Ty);
1508   }
1509 
1510   // There doesn't seem to be an explicit rule against this but sanity demands
1511   // we only construct objects with object types.
1512   if (Ty->isFunctionType())
1513     return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
1514                        << Ty << FullRange);
1515 
1516   // C++17 [expr.type.conv]p2:
1517   //   If the type is cv void and the initializer is (), the expression is a
1518   //   prvalue of the specified type that performs no initialization.
1519   if (!Ty->isVoidType() &&
1520       RequireCompleteType(TyBeginLoc, ElemTy,
1521                           diag::err_invalid_incomplete_type_use, FullRange))
1522     return ExprError();
1523 
1524   //   Otherwise, the expression is a prvalue of the specified type whose
1525   //   result object is direct-initialized (11.6) with the initializer.
1526   InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1527   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1528 
1529   if (Result.isInvalid())
1530     return Result;
1531 
1532   Expr *Inner = Result.get();
1533   if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1534     Inner = BTE->getSubExpr();
1535   if (!isa<CXXTemporaryObjectExpr>(Inner) &&
1536       !isa<CXXScalarValueInitExpr>(Inner)) {
1537     // If we created a CXXTemporaryObjectExpr, that node also represents the
1538     // functional cast. Otherwise, create an explicit cast to represent
1539     // the syntactic form of a functional-style cast that was used here.
1540     //
1541     // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1542     // would give a more consistent AST representation than using a
1543     // CXXTemporaryObjectExpr. It's also weird that the functional cast
1544     // is sometimes handled by initialization and sometimes not.
1545     QualType ResultType = Result.get()->getType();
1546     SourceRange Locs = ListInitialization
1547                            ? SourceRange()
1548                            : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1549     Result = CXXFunctionalCastExpr::Create(
1550         Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
1551         Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(),
1552         Locs.getBegin(), Locs.getEnd());
1553   }
1554 
1555   return Result;
1556 }
1557 
isUsualDeallocationFunction(const CXXMethodDecl * Method)1558 bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) {
1559   // [CUDA] Ignore this function, if we can't call it.
1560   const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext);
1561   if (getLangOpts().CUDA) {
1562     auto CallPreference = IdentifyCUDAPreference(Caller, Method);
1563     // If it's not callable at all, it's not the right function.
1564     if (CallPreference < CFP_WrongSide)
1565       return false;
1566     if (CallPreference == CFP_WrongSide) {
1567       // Maybe. We have to check if there are better alternatives.
1568       DeclContext::lookup_result R =
1569           Method->getDeclContext()->lookup(Method->getDeclName());
1570       for (const auto *D : R) {
1571         if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1572           if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide)
1573             return false;
1574         }
1575       }
1576       // We've found no better variants.
1577     }
1578   }
1579 
1580   SmallVector<const FunctionDecl*, 4> PreventedBy;
1581   bool Result = Method->isUsualDeallocationFunction(PreventedBy);
1582 
1583   if (Result || !getLangOpts().CUDA || PreventedBy.empty())
1584     return Result;
1585 
1586   // In case of CUDA, return true if none of the 1-argument deallocator
1587   // functions are actually callable.
1588   return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) {
1589     assert(FD->getNumParams() == 1 &&
1590            "Only single-operand functions should be in PreventedBy");
1591     return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice;
1592   });
1593 }
1594 
1595 /// Determine whether the given function is a non-placement
1596 /// deallocation function.
isNonPlacementDeallocationFunction(Sema & S,FunctionDecl * FD)1597 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1598   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1599     return S.isUsualDeallocationFunction(Method);
1600 
1601   if (FD->getOverloadedOperator() != OO_Delete &&
1602       FD->getOverloadedOperator() != OO_Array_Delete)
1603     return false;
1604 
1605   unsigned UsualParams = 1;
1606 
1607   if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1608       S.Context.hasSameUnqualifiedType(
1609           FD->getParamDecl(UsualParams)->getType(),
1610           S.Context.getSizeType()))
1611     ++UsualParams;
1612 
1613   if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1614       S.Context.hasSameUnqualifiedType(
1615           FD->getParamDecl(UsualParams)->getType(),
1616           S.Context.getTypeDeclType(S.getStdAlignValT())))
1617     ++UsualParams;
1618 
1619   return UsualParams == FD->getNumParams();
1620 }
1621 
1622 namespace {
1623   struct UsualDeallocFnInfo {
UsualDeallocFnInfo__anond7c070200a11::UsualDeallocFnInfo1624     UsualDeallocFnInfo() : Found(), FD(nullptr) {}
UsualDeallocFnInfo__anond7c070200a11::UsualDeallocFnInfo1625     UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1626         : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
1627           Destroying(false), HasSizeT(false), HasAlignValT(false),
1628           CUDAPref(Sema::CFP_Native) {
1629       // A function template declaration is never a usual deallocation function.
1630       if (!FD)
1631         return;
1632       unsigned NumBaseParams = 1;
1633       if (FD->isDestroyingOperatorDelete()) {
1634         Destroying = true;
1635         ++NumBaseParams;
1636       }
1637 
1638       if (NumBaseParams < FD->getNumParams() &&
1639           S.Context.hasSameUnqualifiedType(
1640               FD->getParamDecl(NumBaseParams)->getType(),
1641               S.Context.getSizeType())) {
1642         ++NumBaseParams;
1643         HasSizeT = true;
1644       }
1645 
1646       if (NumBaseParams < FD->getNumParams() &&
1647           FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) {
1648         ++NumBaseParams;
1649         HasAlignValT = true;
1650       }
1651 
1652       // In CUDA, determine how much we'd like / dislike to call this.
1653       if (S.getLangOpts().CUDA)
1654         if (auto *Caller = dyn_cast<FunctionDecl>(S.CurContext))
1655           CUDAPref = S.IdentifyCUDAPreference(Caller, FD);
1656     }
1657 
operator bool__anond7c070200a11::UsualDeallocFnInfo1658     explicit operator bool() const { return FD; }
1659 
isBetterThan__anond7c070200a11::UsualDeallocFnInfo1660     bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1661                       bool WantAlign) const {
1662       // C++ P0722:
1663       //   A destroying operator delete is preferred over a non-destroying
1664       //   operator delete.
1665       if (Destroying != Other.Destroying)
1666         return Destroying;
1667 
1668       // C++17 [expr.delete]p10:
1669       //   If the type has new-extended alignment, a function with a parameter
1670       //   of type std::align_val_t is preferred; otherwise a function without
1671       //   such a parameter is preferred
1672       if (HasAlignValT != Other.HasAlignValT)
1673         return HasAlignValT == WantAlign;
1674 
1675       if (HasSizeT != Other.HasSizeT)
1676         return HasSizeT == WantSize;
1677 
1678       // Use CUDA call preference as a tiebreaker.
1679       return CUDAPref > Other.CUDAPref;
1680     }
1681 
1682     DeclAccessPair Found;
1683     FunctionDecl *FD;
1684     bool Destroying, HasSizeT, HasAlignValT;
1685     Sema::CUDAFunctionPreference CUDAPref;
1686   };
1687 }
1688 
1689 /// Determine whether a type has new-extended alignment. This may be called when
1690 /// the type is incomplete (for a delete-expression with an incomplete pointee
1691 /// type), in which case it will conservatively return false if the alignment is
1692 /// not known.
hasNewExtendedAlignment(Sema & S,QualType AllocType)1693 static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1694   return S.getLangOpts().AlignedAllocation &&
1695          S.getASTContext().getTypeAlignIfKnown(AllocType) >
1696              S.getASTContext().getTargetInfo().getNewAlign();
1697 }
1698 
1699 /// Select the correct "usual" deallocation function to use from a selection of
1700 /// deallocation functions (either global or class-scope).
resolveDeallocationOverload(Sema & S,LookupResult & R,bool WantSize,bool WantAlign,llvm::SmallVectorImpl<UsualDeallocFnInfo> * BestFns=nullptr)1701 static UsualDeallocFnInfo resolveDeallocationOverload(
1702     Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1703     llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1704   UsualDeallocFnInfo Best;
1705 
1706   for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1707     UsualDeallocFnInfo Info(S, I.getPair());
1708     if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
1709         Info.CUDAPref == Sema::CFP_Never)
1710       continue;
1711 
1712     if (!Best) {
1713       Best = Info;
1714       if (BestFns)
1715         BestFns->push_back(Info);
1716       continue;
1717     }
1718 
1719     if (Best.isBetterThan(Info, WantSize, WantAlign))
1720       continue;
1721 
1722     //   If more than one preferred function is found, all non-preferred
1723     //   functions are eliminated from further consideration.
1724     if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
1725       BestFns->clear();
1726 
1727     Best = Info;
1728     if (BestFns)
1729       BestFns->push_back(Info);
1730   }
1731 
1732   return Best;
1733 }
1734 
1735 /// Determine whether a given type is a class for which 'delete[]' would call
1736 /// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1737 /// we need to store the array size (even if the type is
1738 /// trivially-destructible).
doesUsualArrayDeleteWantSize(Sema & S,SourceLocation loc,QualType allocType)1739 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1740                                          QualType allocType) {
1741   const RecordType *record =
1742     allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1743   if (!record) return false;
1744 
1745   // Try to find an operator delete[] in class scope.
1746 
1747   DeclarationName deleteName =
1748     S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1749   LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1750   S.LookupQualifiedName(ops, record->getDecl());
1751 
1752   // We're just doing this for information.
1753   ops.suppressDiagnostics();
1754 
1755   // Very likely: there's no operator delete[].
1756   if (ops.empty()) return false;
1757 
1758   // If it's ambiguous, it should be illegal to call operator delete[]
1759   // on this thing, so it doesn't matter if we allocate extra space or not.
1760   if (ops.isAmbiguous()) return false;
1761 
1762   // C++17 [expr.delete]p10:
1763   //   If the deallocation functions have class scope, the one without a
1764   //   parameter of type std::size_t is selected.
1765   auto Best = resolveDeallocationOverload(
1766       S, ops, /*WantSize*/false,
1767       /*WantAlign*/hasNewExtendedAlignment(S, allocType));
1768   return Best && Best.HasSizeT;
1769 }
1770 
1771 /// Parsed a C++ 'new' expression (C++ 5.3.4).
1772 ///
1773 /// E.g.:
1774 /// @code new (memory) int[size][4] @endcode
1775 /// or
1776 /// @code ::new Foo(23, "hello") @endcode
1777 ///
1778 /// \param StartLoc The first location of the expression.
1779 /// \param UseGlobal True if 'new' was prefixed with '::'.
1780 /// \param PlacementLParen Opening paren of the placement arguments.
1781 /// \param PlacementArgs Placement new arguments.
1782 /// \param PlacementRParen Closing paren of the placement arguments.
1783 /// \param TypeIdParens If the type is in parens, the source range.
1784 /// \param D The type to be allocated, as well as array dimensions.
1785 /// \param Initializer The initializing expression or initializer-list, or null
1786 ///   if there is none.
1787 ExprResult
ActOnCXXNew(SourceLocation StartLoc,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,Declarator & D,Expr * Initializer)1788 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1789                   SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1790                   SourceLocation PlacementRParen, SourceRange TypeIdParens,
1791                   Declarator &D, Expr *Initializer) {
1792   Optional<Expr *> ArraySize;
1793   // If the specified type is an array, unwrap it and save the expression.
1794   if (D.getNumTypeObjects() > 0 &&
1795       D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1796     DeclaratorChunk &Chunk = D.getTypeObject(0);
1797     if (D.getDeclSpec().hasAutoTypeSpec())
1798       return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1799         << D.getSourceRange());
1800     if (Chunk.Arr.hasStatic)
1801       return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1802         << D.getSourceRange());
1803     if (!Chunk.Arr.NumElts && !Initializer)
1804       return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1805         << D.getSourceRange());
1806 
1807     ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1808     D.DropFirstTypeObject();
1809   }
1810 
1811   // Every dimension shall be of constant size.
1812   if (ArraySize) {
1813     for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1814       if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1815         break;
1816 
1817       DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1818       if (Expr *NumElts = (Expr *)Array.NumElts) {
1819         if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1820           // FIXME: GCC permits constant folding here. We should either do so consistently
1821           // or not do so at all, rather than changing behavior in C++14 onwards.
1822           if (getLangOpts().CPlusPlus14) {
1823             // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1824             //   shall be a converted constant expression (5.19) of type std::size_t
1825             //   and shall evaluate to a strictly positive value.
1826             llvm::APSInt Value(Context.getIntWidth(Context.getSizeType()));
1827             Array.NumElts
1828              = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1829                                                 CCEK_ArrayBound)
1830                  .get();
1831           } else {
1832             Array.NumElts =
1833                 VerifyIntegerConstantExpression(
1834                     NumElts, nullptr, diag::err_new_array_nonconst, AllowFold)
1835                     .get();
1836           }
1837           if (!Array.NumElts)
1838             return ExprError();
1839         }
1840       }
1841     }
1842   }
1843 
1844   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1845   QualType AllocType = TInfo->getType();
1846   if (D.isInvalidType())
1847     return ExprError();
1848 
1849   SourceRange DirectInitRange;
1850   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1851     DirectInitRange = List->getSourceRange();
1852 
1853   return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal,
1854                      PlacementLParen, PlacementArgs, PlacementRParen,
1855                      TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange,
1856                      Initializer);
1857 }
1858 
isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,Expr * Init)1859 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1860                                        Expr *Init) {
1861   if (!Init)
1862     return true;
1863   if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1864     return PLE->getNumExprs() == 0;
1865   if (isa<ImplicitValueInitExpr>(Init))
1866     return true;
1867   else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1868     return !CCE->isListInitialization() &&
1869            CCE->getConstructor()->isDefaultConstructor();
1870   else if (Style == CXXNewExpr::ListInit) {
1871     assert(isa<InitListExpr>(Init) &&
1872            "Shouldn't create list CXXConstructExprs for arrays.");
1873     return true;
1874   }
1875   return false;
1876 }
1877 
1878 bool
isUnavailableAlignedAllocationFunction(const FunctionDecl & FD) const1879 Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const {
1880   if (!getLangOpts().AlignedAllocationUnavailable)
1881     return false;
1882   if (FD.isDefined())
1883     return false;
1884   Optional<unsigned> AlignmentParam;
1885   if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) &&
1886       AlignmentParam.hasValue())
1887     return true;
1888   return false;
1889 }
1890 
1891 // Emit a diagnostic if an aligned allocation/deallocation function that is not
1892 // implemented in the standard library is selected.
diagnoseUnavailableAlignedAllocation(const FunctionDecl & FD,SourceLocation Loc)1893 void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
1894                                                 SourceLocation Loc) {
1895   if (isUnavailableAlignedAllocationFunction(FD)) {
1896     const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
1897     StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
1898         getASTContext().getTargetInfo().getPlatformName());
1899     VersionTuple OSVersion = alignedAllocMinVersion(T.getOS());
1900 
1901     OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator();
1902     bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete;
1903     Diag(Loc, diag::err_aligned_allocation_unavailable)
1904         << IsDelete << FD.getType().getAsString() << OSName
1905         << OSVersion.getAsString() << OSVersion.empty();
1906     Diag(Loc, diag::note_silence_aligned_allocation_unavailable);
1907   }
1908 }
1909 
1910 ExprResult
BuildCXXNew(SourceRange Range,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,QualType AllocType,TypeSourceInfo * AllocTypeInfo,Optional<Expr * > ArraySize,SourceRange DirectInitRange,Expr * Initializer)1911 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1912                   SourceLocation PlacementLParen,
1913                   MultiExprArg PlacementArgs,
1914                   SourceLocation PlacementRParen,
1915                   SourceRange TypeIdParens,
1916                   QualType AllocType,
1917                   TypeSourceInfo *AllocTypeInfo,
1918                   Optional<Expr *> ArraySize,
1919                   SourceRange DirectInitRange,
1920                   Expr *Initializer) {
1921   SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1922   SourceLocation StartLoc = Range.getBegin();
1923 
1924   CXXNewExpr::InitializationStyle initStyle;
1925   if (DirectInitRange.isValid()) {
1926     assert(Initializer && "Have parens but no initializer.");
1927     initStyle = CXXNewExpr::CallInit;
1928   } else if (Initializer && isa<InitListExpr>(Initializer))
1929     initStyle = CXXNewExpr::ListInit;
1930   else {
1931     assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1932             isa<CXXConstructExpr>(Initializer)) &&
1933            "Initializer expression that cannot have been implicitly created.");
1934     initStyle = CXXNewExpr::NoInit;
1935   }
1936 
1937   Expr **Inits = &Initializer;
1938   unsigned NumInits = Initializer ? 1 : 0;
1939   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1940     assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
1941     Inits = List->getExprs();
1942     NumInits = List->getNumExprs();
1943   }
1944 
1945   // C++11 [expr.new]p15:
1946   //   A new-expression that creates an object of type T initializes that
1947   //   object as follows:
1948   InitializationKind Kind
1949       //     - If the new-initializer is omitted, the object is default-
1950       //       initialized (8.5); if no initialization is performed,
1951       //       the object has indeterminate value
1952       = initStyle == CXXNewExpr::NoInit
1953             ? InitializationKind::CreateDefault(TypeRange.getBegin())
1954             //     - Otherwise, the new-initializer is interpreted according to
1955             //     the
1956             //       initialization rules of 8.5 for direct-initialization.
1957             : initStyle == CXXNewExpr::ListInit
1958                   ? InitializationKind::CreateDirectList(
1959                         TypeRange.getBegin(), Initializer->getBeginLoc(),
1960                         Initializer->getEndLoc())
1961                   : InitializationKind::CreateDirect(TypeRange.getBegin(),
1962                                                      DirectInitRange.getBegin(),
1963                                                      DirectInitRange.getEnd());
1964 
1965   // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1966   auto *Deduced = AllocType->getContainedDeducedType();
1967   if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1968     if (ArraySize)
1969       return ExprError(
1970           Diag(ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(),
1971                diag::err_deduced_class_template_compound_type)
1972           << /*array*/ 2
1973           << (ArraySize ? (*ArraySize)->getSourceRange() : TypeRange));
1974 
1975     InitializedEntity Entity
1976       = InitializedEntity::InitializeNew(StartLoc, AllocType);
1977     AllocType = DeduceTemplateSpecializationFromInitializer(
1978         AllocTypeInfo, Entity, Kind, MultiExprArg(Inits, NumInits));
1979     if (AllocType.isNull())
1980       return ExprError();
1981   } else if (Deduced) {
1982     bool Braced = (initStyle == CXXNewExpr::ListInit);
1983     if (NumInits == 1) {
1984       if (auto p = dyn_cast_or_null<InitListExpr>(Inits[0])) {
1985         Inits = p->getInits();
1986         NumInits = p->getNumInits();
1987         Braced = true;
1988       }
1989     }
1990 
1991     if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1992       return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1993                        << AllocType << TypeRange);
1994     if (NumInits > 1) {
1995       Expr *FirstBad = Inits[1];
1996       return ExprError(Diag(FirstBad->getBeginLoc(),
1997                             diag::err_auto_new_ctor_multiple_expressions)
1998                        << AllocType << TypeRange);
1999     }
2000     if (Braced && !getLangOpts().CPlusPlus17)
2001       Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init)
2002           << AllocType << TypeRange;
2003     Expr *Deduce = Inits[0];
2004     QualType DeducedType;
2005     if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
2006       return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
2007                        << AllocType << Deduce->getType()
2008                        << TypeRange << Deduce->getSourceRange());
2009     if (DeducedType.isNull())
2010       return ExprError();
2011     AllocType = DeducedType;
2012   }
2013 
2014   // Per C++0x [expr.new]p5, the type being constructed may be a
2015   // typedef of an array type.
2016   if (!ArraySize) {
2017     if (const ConstantArrayType *Array
2018                               = Context.getAsConstantArrayType(AllocType)) {
2019       ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
2020                                          Context.getSizeType(),
2021                                          TypeRange.getEnd());
2022       AllocType = Array->getElementType();
2023     }
2024   }
2025 
2026   if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
2027     return ExprError();
2028 
2029   // In ARC, infer 'retaining' for the allocated
2030   if (getLangOpts().ObjCAutoRefCount &&
2031       AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2032       AllocType->isObjCLifetimeType()) {
2033     AllocType = Context.getLifetimeQualifiedType(AllocType,
2034                                     AllocType->getObjCARCImplicitLifetime());
2035   }
2036 
2037   QualType ResultType = Context.getPointerType(AllocType);
2038 
2039   if (ArraySize && *ArraySize &&
2040       (*ArraySize)->getType()->isNonOverloadPlaceholderType()) {
2041     ExprResult result = CheckPlaceholderExpr(*ArraySize);
2042     if (result.isInvalid()) return ExprError();
2043     ArraySize = result.get();
2044   }
2045   // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
2046   //   integral or enumeration type with a non-negative value."
2047   // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
2048   //   enumeration type, or a class type for which a single non-explicit
2049   //   conversion function to integral or unscoped enumeration type exists.
2050   // C++1y [expr.new]p6: The expression [...] is implicitly converted to
2051   //   std::size_t.
2052   llvm::Optional<uint64_t> KnownArraySize;
2053   if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) {
2054     ExprResult ConvertedSize;
2055     if (getLangOpts().CPlusPlus14) {
2056       assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
2057 
2058       ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(),
2059                                                 AA_Converting);
2060 
2061       if (!ConvertedSize.isInvalid() &&
2062           (*ArraySize)->getType()->getAs<RecordType>())
2063         // Diagnose the compatibility of this conversion.
2064         Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
2065           << (*ArraySize)->getType() << 0 << "'size_t'";
2066     } else {
2067       class SizeConvertDiagnoser : public ICEConvertDiagnoser {
2068       protected:
2069         Expr *ArraySize;
2070 
2071       public:
2072         SizeConvertDiagnoser(Expr *ArraySize)
2073             : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
2074               ArraySize(ArraySize) {}
2075 
2076         SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
2077                                              QualType T) override {
2078           return S.Diag(Loc, diag::err_array_size_not_integral)
2079                    << S.getLangOpts().CPlusPlus11 << T;
2080         }
2081 
2082         SemaDiagnosticBuilder diagnoseIncomplete(
2083             Sema &S, SourceLocation Loc, QualType T) override {
2084           return S.Diag(Loc, diag::err_array_size_incomplete_type)
2085                    << T << ArraySize->getSourceRange();
2086         }
2087 
2088         SemaDiagnosticBuilder diagnoseExplicitConv(
2089             Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
2090           return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
2091         }
2092 
2093         SemaDiagnosticBuilder noteExplicitConv(
2094             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2095           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2096                    << ConvTy->isEnumeralType() << ConvTy;
2097         }
2098 
2099         SemaDiagnosticBuilder diagnoseAmbiguous(
2100             Sema &S, SourceLocation Loc, QualType T) override {
2101           return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
2102         }
2103 
2104         SemaDiagnosticBuilder noteAmbiguous(
2105             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2106           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2107                    << ConvTy->isEnumeralType() << ConvTy;
2108         }
2109 
2110         SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
2111                                                  QualType T,
2112                                                  QualType ConvTy) override {
2113           return S.Diag(Loc,
2114                         S.getLangOpts().CPlusPlus11
2115                           ? diag::warn_cxx98_compat_array_size_conversion
2116                           : diag::ext_array_size_conversion)
2117                    << T << ConvTy->isEnumeralType() << ConvTy;
2118         }
2119       } SizeDiagnoser(*ArraySize);
2120 
2121       ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize,
2122                                                           SizeDiagnoser);
2123     }
2124     if (ConvertedSize.isInvalid())
2125       return ExprError();
2126 
2127     ArraySize = ConvertedSize.get();
2128     QualType SizeType = (*ArraySize)->getType();
2129 
2130     if (!SizeType->isIntegralOrUnscopedEnumerationType())
2131       return ExprError();
2132 
2133     // C++98 [expr.new]p7:
2134     //   The expression in a direct-new-declarator shall have integral type
2135     //   with a non-negative value.
2136     //
2137     // Let's see if this is a constant < 0. If so, we reject it out of hand,
2138     // per CWG1464. Otherwise, if it's not a constant, we must have an
2139     // unparenthesized array type.
2140     if (!(*ArraySize)->isValueDependent()) {
2141       // We've already performed any required implicit conversion to integer or
2142       // unscoped enumeration type.
2143       // FIXME: Per CWG1464, we are required to check the value prior to
2144       // converting to size_t. This will never find a negative array size in
2145       // C++14 onwards, because Value is always unsigned here!
2146       if (Optional<llvm::APSInt> Value =
2147               (*ArraySize)->getIntegerConstantExpr(Context)) {
2148         if (Value->isSigned() && Value->isNegative()) {
2149           return ExprError(Diag((*ArraySize)->getBeginLoc(),
2150                                 diag::err_typecheck_negative_array_size)
2151                            << (*ArraySize)->getSourceRange());
2152         }
2153 
2154         if (!AllocType->isDependentType()) {
2155           unsigned ActiveSizeBits = ConstantArrayType::getNumAddressingBits(
2156               Context, AllocType, *Value);
2157           if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
2158             return ExprError(
2159                 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large)
2160                 << toString(*Value, 10) << (*ArraySize)->getSourceRange());
2161         }
2162 
2163         KnownArraySize = Value->getZExtValue();
2164       } else if (TypeIdParens.isValid()) {
2165         // Can't have dynamic array size when the type-id is in parentheses.
2166         Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst)
2167             << (*ArraySize)->getSourceRange()
2168             << FixItHint::CreateRemoval(TypeIdParens.getBegin())
2169             << FixItHint::CreateRemoval(TypeIdParens.getEnd());
2170 
2171         TypeIdParens = SourceRange();
2172       }
2173     }
2174 
2175     // Note that we do *not* convert the argument in any way.  It can
2176     // be signed, larger than size_t, whatever.
2177   }
2178 
2179   FunctionDecl *OperatorNew = nullptr;
2180   FunctionDecl *OperatorDelete = nullptr;
2181   unsigned Alignment =
2182       AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
2183   unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
2184   bool PassAlignment = getLangOpts().AlignedAllocation &&
2185                        Alignment > NewAlignment;
2186 
2187   AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both;
2188   if (!AllocType->isDependentType() &&
2189       !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
2190       FindAllocationFunctions(
2191           StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope,
2192           AllocType, ArraySize.hasValue(), PassAlignment, PlacementArgs,
2193           OperatorNew, OperatorDelete))
2194     return ExprError();
2195 
2196   // If this is an array allocation, compute whether the usual array
2197   // deallocation function for the type has a size_t parameter.
2198   bool UsualArrayDeleteWantsSize = false;
2199   if (ArraySize && !AllocType->isDependentType())
2200     UsualArrayDeleteWantsSize =
2201         doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
2202 
2203   SmallVector<Expr *, 8> AllPlaceArgs;
2204   if (OperatorNew) {
2205     auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2206     VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
2207                                                     : VariadicDoesNotApply;
2208 
2209     // We've already converted the placement args, just fill in any default
2210     // arguments. Skip the first parameter because we don't have a corresponding
2211     // argument. Skip the second parameter too if we're passing in the
2212     // alignment; we've already filled it in.
2213     unsigned NumImplicitArgs = PassAlignment ? 2 : 1;
2214     if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
2215                                NumImplicitArgs, PlacementArgs, AllPlaceArgs,
2216                                CallType))
2217       return ExprError();
2218 
2219     if (!AllPlaceArgs.empty())
2220       PlacementArgs = AllPlaceArgs;
2221 
2222     // We would like to perform some checking on the given `operator new` call,
2223     // but the PlacementArgs does not contain the implicit arguments,
2224     // namely allocation size and maybe allocation alignment,
2225     // so we need to conjure them.
2226 
2227     QualType SizeTy = Context.getSizeType();
2228     unsigned SizeTyWidth = Context.getTypeSize(SizeTy);
2229 
2230     llvm::APInt SingleEltSize(
2231         SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity());
2232 
2233     // How many bytes do we want to allocate here?
2234     llvm::Optional<llvm::APInt> AllocationSize;
2235     if (!ArraySize.hasValue() && !AllocType->isDependentType()) {
2236       // For non-array operator new, we only want to allocate one element.
2237       AllocationSize = SingleEltSize;
2238     } else if (KnownArraySize.hasValue() && !AllocType->isDependentType()) {
2239       // For array operator new, only deal with static array size case.
2240       bool Overflow;
2241       AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize)
2242                            .umul_ov(SingleEltSize, Overflow);
2243       (void)Overflow;
2244       assert(
2245           !Overflow &&
2246           "Expected that all the overflows would have been handled already.");
2247     }
2248 
2249     IntegerLiteral AllocationSizeLiteral(
2250         Context, AllocationSize.getValueOr(llvm::APInt::getZero(SizeTyWidth)),
2251         SizeTy, SourceLocation());
2252     // Otherwise, if we failed to constant-fold the allocation size, we'll
2253     // just give up and pass-in something opaque, that isn't a null pointer.
2254     OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue,
2255                                          OK_Ordinary, /*SourceExpr=*/nullptr);
2256 
2257     // Let's synthesize the alignment argument in case we will need it.
2258     // Since we *really* want to allocate these on stack, this is slightly ugly
2259     // because there might not be a `std::align_val_t` type.
2260     EnumDecl *StdAlignValT = getStdAlignValT();
2261     QualType AlignValT =
2262         StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy;
2263     IntegerLiteral AlignmentLiteral(
2264         Context,
2265         llvm::APInt(Context.getTypeSize(SizeTy),
2266                     Alignment / Context.getCharWidth()),
2267         SizeTy, SourceLocation());
2268     ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT,
2269                                       CK_IntegralCast, &AlignmentLiteral,
2270                                       VK_PRValue, FPOptionsOverride());
2271 
2272     // Adjust placement args by prepending conjured size and alignment exprs.
2273     llvm::SmallVector<Expr *, 8> CallArgs;
2274     CallArgs.reserve(NumImplicitArgs + PlacementArgs.size());
2275     CallArgs.emplace_back(AllocationSize.hasValue()
2276                               ? static_cast<Expr *>(&AllocationSizeLiteral)
2277                               : &OpaqueAllocationSize);
2278     if (PassAlignment)
2279       CallArgs.emplace_back(&DesiredAlignment);
2280     CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end());
2281 
2282     DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs);
2283 
2284     checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs,
2285               /*IsMemberFunction=*/false, StartLoc, Range, CallType);
2286 
2287     // Warn if the type is over-aligned and is being allocated by (unaligned)
2288     // global operator new.
2289     if (PlacementArgs.empty() && !PassAlignment &&
2290         (OperatorNew->isImplicit() ||
2291          (OperatorNew->getBeginLoc().isValid() &&
2292           getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) {
2293       if (Alignment > NewAlignment)
2294         Diag(StartLoc, diag::warn_overaligned_type)
2295             << AllocType
2296             << unsigned(Alignment / Context.getCharWidth())
2297             << unsigned(NewAlignment / Context.getCharWidth());
2298     }
2299   }
2300 
2301   // Array 'new' can't have any initializers except empty parentheses.
2302   // Initializer lists are also allowed, in C++11. Rely on the parser for the
2303   // dialect distinction.
2304   if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) {
2305     SourceRange InitRange(Inits[0]->getBeginLoc(),
2306                           Inits[NumInits - 1]->getEndLoc());
2307     Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
2308     return ExprError();
2309   }
2310 
2311   // If we can perform the initialization, and we've not already done so,
2312   // do it now.
2313   if (!AllocType->isDependentType() &&
2314       !Expr::hasAnyTypeDependentArguments(
2315           llvm::makeArrayRef(Inits, NumInits))) {
2316     // The type we initialize is the complete type, including the array bound.
2317     QualType InitType;
2318     if (KnownArraySize)
2319       InitType = Context.getConstantArrayType(
2320           AllocType,
2321           llvm::APInt(Context.getTypeSize(Context.getSizeType()),
2322                       *KnownArraySize),
2323           *ArraySize, ArrayType::Normal, 0);
2324     else if (ArraySize)
2325       InitType =
2326           Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0);
2327     else
2328       InitType = AllocType;
2329 
2330     InitializedEntity Entity
2331       = InitializedEntity::InitializeNew(StartLoc, InitType);
2332     InitializationSequence InitSeq(*this, Entity, Kind,
2333                                    MultiExprArg(Inits, NumInits));
2334     ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
2335                                           MultiExprArg(Inits, NumInits));
2336     if (FullInit.isInvalid())
2337       return ExprError();
2338 
2339     // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2340     // we don't want the initialized object to be destructed.
2341     // FIXME: We should not create these in the first place.
2342     if (CXXBindTemporaryExpr *Binder =
2343             dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
2344       FullInit = Binder->getSubExpr();
2345 
2346     Initializer = FullInit.get();
2347 
2348     // FIXME: If we have a KnownArraySize, check that the array bound of the
2349     // initializer is no greater than that constant value.
2350 
2351     if (ArraySize && !*ArraySize) {
2352       auto *CAT = Context.getAsConstantArrayType(Initializer->getType());
2353       if (CAT) {
2354         // FIXME: Track that the array size was inferred rather than explicitly
2355         // specified.
2356         ArraySize = IntegerLiteral::Create(
2357             Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd());
2358       } else {
2359         Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init)
2360             << Initializer->getSourceRange();
2361       }
2362     }
2363   }
2364 
2365   // Mark the new and delete operators as referenced.
2366   if (OperatorNew) {
2367     if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2368       return ExprError();
2369     MarkFunctionReferenced(StartLoc, OperatorNew);
2370   }
2371   if (OperatorDelete) {
2372     if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2373       return ExprError();
2374     MarkFunctionReferenced(StartLoc, OperatorDelete);
2375   }
2376 
2377   return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete,
2378                             PassAlignment, UsualArrayDeleteWantsSize,
2379                             PlacementArgs, TypeIdParens, ArraySize, initStyle,
2380                             Initializer, ResultType, AllocTypeInfo, Range,
2381                             DirectInitRange);
2382 }
2383 
2384 /// Checks that a type is suitable as the allocated type
2385 /// in a new-expression.
CheckAllocatedType(QualType AllocType,SourceLocation Loc,SourceRange R)2386 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
2387                               SourceRange R) {
2388   // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2389   //   abstract class type or array thereof.
2390   if (AllocType->isFunctionType())
2391     return Diag(Loc, diag::err_bad_new_type)
2392       << AllocType << 0 << R;
2393   else if (AllocType->isReferenceType())
2394     return Diag(Loc, diag::err_bad_new_type)
2395       << AllocType << 1 << R;
2396   else if (!AllocType->isDependentType() &&
2397            RequireCompleteSizedType(
2398                Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R))
2399     return true;
2400   else if (RequireNonAbstractType(Loc, AllocType,
2401                                   diag::err_allocation_of_abstract_type))
2402     return true;
2403   else if (AllocType->isVariablyModifiedType())
2404     return Diag(Loc, diag::err_variably_modified_new_type)
2405              << AllocType;
2406   else if (AllocType.getAddressSpace() != LangAS::Default &&
2407            !getLangOpts().OpenCLCPlusPlus)
2408     return Diag(Loc, diag::err_address_space_qualified_new)
2409       << AllocType.getUnqualifiedType()
2410       << AllocType.getQualifiers().getAddressSpaceAttributePrintValue();
2411   else if (getLangOpts().ObjCAutoRefCount) {
2412     if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
2413       QualType BaseAllocType = Context.getBaseElementType(AT);
2414       if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2415           BaseAllocType->isObjCLifetimeType())
2416         return Diag(Loc, diag::err_arc_new_array_without_ownership)
2417           << BaseAllocType;
2418     }
2419   }
2420 
2421   return false;
2422 }
2423 
resolveAllocationOverload(Sema & S,LookupResult & R,SourceRange Range,SmallVectorImpl<Expr * > & Args,bool & PassAlignment,FunctionDecl * & Operator,OverloadCandidateSet * AlignedCandidates,Expr * AlignArg,bool Diagnose)2424 static bool resolveAllocationOverload(
2425     Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args,
2426     bool &PassAlignment, FunctionDecl *&Operator,
2427     OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
2428   OverloadCandidateSet Candidates(R.getNameLoc(),
2429                                   OverloadCandidateSet::CSK_Normal);
2430   for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2431        Alloc != AllocEnd; ++Alloc) {
2432     // Even member operator new/delete are implicitly treated as
2433     // static, so don't use AddMemberCandidate.
2434     NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2435 
2436     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2437       S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2438                                      /*ExplicitTemplateArgs=*/nullptr, Args,
2439                                      Candidates,
2440                                      /*SuppressUserConversions=*/false);
2441       continue;
2442     }
2443 
2444     FunctionDecl *Fn = cast<FunctionDecl>(D);
2445     S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2446                            /*SuppressUserConversions=*/false);
2447   }
2448 
2449   // Do the resolution.
2450   OverloadCandidateSet::iterator Best;
2451   switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
2452   case OR_Success: {
2453     // Got one!
2454     FunctionDecl *FnDecl = Best->Function;
2455     if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
2456                                 Best->FoundDecl) == Sema::AR_inaccessible)
2457       return true;
2458 
2459     Operator = FnDecl;
2460     return false;
2461   }
2462 
2463   case OR_No_Viable_Function:
2464     // C++17 [expr.new]p13:
2465     //   If no matching function is found and the allocated object type has
2466     //   new-extended alignment, the alignment argument is removed from the
2467     //   argument list, and overload resolution is performed again.
2468     if (PassAlignment) {
2469       PassAlignment = false;
2470       AlignArg = Args[1];
2471       Args.erase(Args.begin() + 1);
2472       return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2473                                        Operator, &Candidates, AlignArg,
2474                                        Diagnose);
2475     }
2476 
2477     // MSVC will fall back on trying to find a matching global operator new
2478     // if operator new[] cannot be found.  Also, MSVC will leak by not
2479     // generating a call to operator delete or operator delete[], but we
2480     // will not replicate that bug.
2481     // FIXME: Find out how this interacts with the std::align_val_t fallback
2482     // once MSVC implements it.
2483     if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2484         S.Context.getLangOpts().MSVCCompat) {
2485       R.clear();
2486       R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New));
2487       S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
2488       // FIXME: This will give bad diagnostics pointing at the wrong functions.
2489       return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2490                                        Operator, /*Candidates=*/nullptr,
2491                                        /*AlignArg=*/nullptr, Diagnose);
2492     }
2493 
2494     if (Diagnose) {
2495       // If this is an allocation of the form 'new (p) X' for some object
2496       // pointer p (or an expression that will decay to such a pointer),
2497       // diagnose the missing inclusion of <new>.
2498       if (!R.isClassLookup() && Args.size() == 2 &&
2499           (Args[1]->getType()->isObjectPointerType() ||
2500            Args[1]->getType()->isArrayType())) {
2501         S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new)
2502             << R.getLookupName() << Range;
2503         // Listing the candidates is unlikely to be useful; skip it.
2504         return true;
2505       }
2506 
2507       // Finish checking all candidates before we note any. This checking can
2508       // produce additional diagnostics so can't be interleaved with our
2509       // emission of notes.
2510       //
2511       // For an aligned allocation, separately check the aligned and unaligned
2512       // candidates with their respective argument lists.
2513       SmallVector<OverloadCandidate*, 32> Cands;
2514       SmallVector<OverloadCandidate*, 32> AlignedCands;
2515       llvm::SmallVector<Expr*, 4> AlignedArgs;
2516       if (AlignedCandidates) {
2517         auto IsAligned = [](OverloadCandidate &C) {
2518           return C.Function->getNumParams() > 1 &&
2519                  C.Function->getParamDecl(1)->getType()->isAlignValT();
2520         };
2521         auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2522 
2523         AlignedArgs.reserve(Args.size() + 1);
2524         AlignedArgs.push_back(Args[0]);
2525         AlignedArgs.push_back(AlignArg);
2526         AlignedArgs.append(Args.begin() + 1, Args.end());
2527         AlignedCands = AlignedCandidates->CompleteCandidates(
2528             S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned);
2529 
2530         Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2531                                               R.getNameLoc(), IsUnaligned);
2532       } else {
2533         Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2534                                               R.getNameLoc());
2535       }
2536 
2537       S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
2538           << R.getLookupName() << Range;
2539       if (AlignedCandidates)
2540         AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "",
2541                                           R.getNameLoc());
2542       Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc());
2543     }
2544     return true;
2545 
2546   case OR_Ambiguous:
2547     if (Diagnose) {
2548       Candidates.NoteCandidates(
2549           PartialDiagnosticAt(R.getNameLoc(),
2550                               S.PDiag(diag::err_ovl_ambiguous_call)
2551                                   << R.getLookupName() << Range),
2552           S, OCD_AmbiguousCandidates, Args);
2553     }
2554     return true;
2555 
2556   case OR_Deleted: {
2557     if (Diagnose) {
2558       Candidates.NoteCandidates(
2559           PartialDiagnosticAt(R.getNameLoc(),
2560                               S.PDiag(diag::err_ovl_deleted_call)
2561                                   << R.getLookupName() << Range),
2562           S, OCD_AllCandidates, Args);
2563     }
2564     return true;
2565   }
2566   }
2567   llvm_unreachable("Unreachable, bad result from BestViableFunction");
2568 }
2569 
FindAllocationFunctions(SourceLocation StartLoc,SourceRange Range,AllocationFunctionScope NewScope,AllocationFunctionScope DeleteScope,QualType AllocType,bool IsArray,bool & PassAlignment,MultiExprArg PlaceArgs,FunctionDecl * & OperatorNew,FunctionDecl * & OperatorDelete,bool Diagnose)2570 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
2571                                    AllocationFunctionScope NewScope,
2572                                    AllocationFunctionScope DeleteScope,
2573                                    QualType AllocType, bool IsArray,
2574                                    bool &PassAlignment, MultiExprArg PlaceArgs,
2575                                    FunctionDecl *&OperatorNew,
2576                                    FunctionDecl *&OperatorDelete,
2577                                    bool Diagnose) {
2578   // --- Choosing an allocation function ---
2579   // C++ 5.3.4p8 - 14 & 18
2580   // 1) If looking in AFS_Global scope for allocation functions, only look in
2581   //    the global scope. Else, if AFS_Class, only look in the scope of the
2582   //    allocated class. If AFS_Both, look in both.
2583   // 2) If an array size is given, look for operator new[], else look for
2584   //   operator new.
2585   // 3) The first argument is always size_t. Append the arguments from the
2586   //   placement form.
2587 
2588   SmallVector<Expr*, 8> AllocArgs;
2589   AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
2590 
2591   // We don't care about the actual value of these arguments.
2592   // FIXME: Should the Sema create the expression and embed it in the syntax
2593   // tree? Or should the consumer just recalculate the value?
2594   // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2595   IntegerLiteral Size(
2596       Context, llvm::APInt::getZero(Context.getTargetInfo().getPointerWidth(0)),
2597       Context.getSizeType(), SourceLocation());
2598   AllocArgs.push_back(&Size);
2599 
2600   QualType AlignValT = Context.VoidTy;
2601   if (PassAlignment) {
2602     DeclareGlobalNewDelete();
2603     AlignValT = Context.getTypeDeclType(getStdAlignValT());
2604   }
2605   CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2606   if (PassAlignment)
2607     AllocArgs.push_back(&Align);
2608 
2609   AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
2610 
2611   // C++ [expr.new]p8:
2612   //   If the allocated type is a non-array type, the allocation
2613   //   function's name is operator new and the deallocation function's
2614   //   name is operator delete. If the allocated type is an array
2615   //   type, the allocation function's name is operator new[] and the
2616   //   deallocation function's name is operator delete[].
2617   DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
2618       IsArray ? OO_Array_New : OO_New);
2619 
2620   QualType AllocElemType = Context.getBaseElementType(AllocType);
2621 
2622   // Find the allocation function.
2623   {
2624     LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2625 
2626     // C++1z [expr.new]p9:
2627     //   If the new-expression begins with a unary :: operator, the allocation
2628     //   function's name is looked up in the global scope. Otherwise, if the
2629     //   allocated type is a class type T or array thereof, the allocation
2630     //   function's name is looked up in the scope of T.
2631     if (AllocElemType->isRecordType() && NewScope != AFS_Global)
2632       LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2633 
2634     // We can see ambiguity here if the allocation function is found in
2635     // multiple base classes.
2636     if (R.isAmbiguous())
2637       return true;
2638 
2639     //   If this lookup fails to find the name, or if the allocated type is not
2640     //   a class type, the allocation function's name is looked up in the
2641     //   global scope.
2642     if (R.empty()) {
2643       if (NewScope == AFS_Class)
2644         return true;
2645 
2646       LookupQualifiedName(R, Context.getTranslationUnitDecl());
2647     }
2648 
2649     if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
2650       if (PlaceArgs.empty()) {
2651         Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
2652       } else {
2653         Diag(StartLoc, diag::err_openclcxx_placement_new);
2654       }
2655       return true;
2656     }
2657 
2658     assert(!R.empty() && "implicitly declared allocation functions not found");
2659     assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
2660 
2661     // We do our own custom access checks below.
2662     R.suppressDiagnostics();
2663 
2664     if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
2665                                   OperatorNew, /*Candidates=*/nullptr,
2666                                   /*AlignArg=*/nullptr, Diagnose))
2667       return true;
2668   }
2669 
2670   // We don't need an operator delete if we're running under -fno-exceptions.
2671   if (!getLangOpts().Exceptions) {
2672     OperatorDelete = nullptr;
2673     return false;
2674   }
2675 
2676   // Note, the name of OperatorNew might have been changed from array to
2677   // non-array by resolveAllocationOverload.
2678   DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2679       OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2680           ? OO_Array_Delete
2681           : OO_Delete);
2682 
2683   // C++ [expr.new]p19:
2684   //
2685   //   If the new-expression begins with a unary :: operator, the
2686   //   deallocation function's name is looked up in the global
2687   //   scope. Otherwise, if the allocated type is a class type T or an
2688   //   array thereof, the deallocation function's name is looked up in
2689   //   the scope of T. If this lookup fails to find the name, or if
2690   //   the allocated type is not a class type or array thereof, the
2691   //   deallocation function's name is looked up in the global scope.
2692   LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2693   if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
2694     auto *RD =
2695         cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl());
2696     LookupQualifiedName(FoundDelete, RD);
2697   }
2698   if (FoundDelete.isAmbiguous())
2699     return true; // FIXME: clean up expressions?
2700 
2701   // Filter out any destroying operator deletes. We can't possibly call such a
2702   // function in this context, because we're handling the case where the object
2703   // was not successfully constructed.
2704   // FIXME: This is not covered by the language rules yet.
2705   {
2706     LookupResult::Filter Filter = FoundDelete.makeFilter();
2707     while (Filter.hasNext()) {
2708       auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl());
2709       if (FD && FD->isDestroyingOperatorDelete())
2710         Filter.erase();
2711     }
2712     Filter.done();
2713   }
2714 
2715   bool FoundGlobalDelete = FoundDelete.empty();
2716   if (FoundDelete.empty()) {
2717     FoundDelete.clear(LookupOrdinaryName);
2718 
2719     if (DeleteScope == AFS_Class)
2720       return true;
2721 
2722     DeclareGlobalNewDelete();
2723     LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2724   }
2725 
2726   FoundDelete.suppressDiagnostics();
2727 
2728   SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
2729 
2730   // Whether we're looking for a placement operator delete is dictated
2731   // by whether we selected a placement operator new, not by whether
2732   // we had explicit placement arguments.  This matters for things like
2733   //   struct A { void *operator new(size_t, int = 0); ... };
2734   //   A *a = new A()
2735   //
2736   // We don't have any definition for what a "placement allocation function"
2737   // is, but we assume it's any allocation function whose
2738   // parameter-declaration-clause is anything other than (size_t).
2739   //
2740   // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2741   // This affects whether an exception from the constructor of an overaligned
2742   // type uses the sized or non-sized form of aligned operator delete.
2743   bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2744                         OperatorNew->isVariadic();
2745 
2746   if (isPlacementNew) {
2747     // C++ [expr.new]p20:
2748     //   A declaration of a placement deallocation function matches the
2749     //   declaration of a placement allocation function if it has the
2750     //   same number of parameters and, after parameter transformations
2751     //   (8.3.5), all parameter types except the first are
2752     //   identical. [...]
2753     //
2754     // To perform this comparison, we compute the function type that
2755     // the deallocation function should have, and use that type both
2756     // for template argument deduction and for comparison purposes.
2757     QualType ExpectedFunctionType;
2758     {
2759       auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2760 
2761       SmallVector<QualType, 4> ArgTypes;
2762       ArgTypes.push_back(Context.VoidPtrTy);
2763       for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2764         ArgTypes.push_back(Proto->getParamType(I));
2765 
2766       FunctionProtoType::ExtProtoInfo EPI;
2767       // FIXME: This is not part of the standard's rule.
2768       EPI.Variadic = Proto->isVariadic();
2769 
2770       ExpectedFunctionType
2771         = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2772     }
2773 
2774     for (LookupResult::iterator D = FoundDelete.begin(),
2775                              DEnd = FoundDelete.end();
2776          D != DEnd; ++D) {
2777       FunctionDecl *Fn = nullptr;
2778       if (FunctionTemplateDecl *FnTmpl =
2779               dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2780         // Perform template argument deduction to try to match the
2781         // expected function type.
2782         TemplateDeductionInfo Info(StartLoc);
2783         if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2784                                     Info))
2785           continue;
2786       } else
2787         Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2788 
2789       if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(),
2790                                                   ExpectedFunctionType,
2791                                                   /*AdjustExcpetionSpec*/true),
2792                               ExpectedFunctionType))
2793         Matches.push_back(std::make_pair(D.getPair(), Fn));
2794     }
2795 
2796     if (getLangOpts().CUDA)
2797       EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches);
2798   } else {
2799     // C++1y [expr.new]p22:
2800     //   For a non-placement allocation function, the normal deallocation
2801     //   function lookup is used
2802     //
2803     // Per [expr.delete]p10, this lookup prefers a member operator delete
2804     // without a size_t argument, but prefers a non-member operator delete
2805     // with a size_t where possible (which it always is in this case).
2806     llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
2807     UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2808         *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
2809         /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
2810         &BestDeallocFns);
2811     if (Selected)
2812       Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
2813     else {
2814       // If we failed to select an operator, all remaining functions are viable
2815       // but ambiguous.
2816       for (auto Fn : BestDeallocFns)
2817         Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
2818     }
2819   }
2820 
2821   // C++ [expr.new]p20:
2822   //   [...] If the lookup finds a single matching deallocation
2823   //   function, that function will be called; otherwise, no
2824   //   deallocation function will be called.
2825   if (Matches.size() == 1) {
2826     OperatorDelete = Matches[0].second;
2827 
2828     // C++1z [expr.new]p23:
2829     //   If the lookup finds a usual deallocation function (3.7.4.2)
2830     //   with a parameter of type std::size_t and that function, considered
2831     //   as a placement deallocation function, would have been
2832     //   selected as a match for the allocation function, the program
2833     //   is ill-formed.
2834     if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2835         isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2836       UsualDeallocFnInfo Info(*this,
2837                               DeclAccessPair::make(OperatorDelete, AS_public));
2838       // Core issue, per mail to core reflector, 2016-10-09:
2839       //   If this is a member operator delete, and there is a corresponding
2840       //   non-sized member operator delete, this isn't /really/ a sized
2841       //   deallocation function, it just happens to have a size_t parameter.
2842       bool IsSizedDelete = Info.HasSizeT;
2843       if (IsSizedDelete && !FoundGlobalDelete) {
2844         auto NonSizedDelete =
2845             resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
2846                                         /*WantAlign*/Info.HasAlignValT);
2847         if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2848             NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2849           IsSizedDelete = false;
2850       }
2851 
2852       if (IsSizedDelete) {
2853         SourceRange R = PlaceArgs.empty()
2854                             ? SourceRange()
2855                             : SourceRange(PlaceArgs.front()->getBeginLoc(),
2856                                           PlaceArgs.back()->getEndLoc());
2857         Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
2858         if (!OperatorDelete->isImplicit())
2859           Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
2860               << DeleteName;
2861       }
2862     }
2863 
2864     CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
2865                           Matches[0].first);
2866   } else if (!Matches.empty()) {
2867     // We found multiple suitable operators. Per [expr.new]p20, that means we
2868     // call no 'operator delete' function, but we should at least warn the user.
2869     // FIXME: Suppress this warning if the construction cannot throw.
2870     Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
2871       << DeleteName << AllocElemType;
2872 
2873     for (auto &Match : Matches)
2874       Diag(Match.second->getLocation(),
2875            diag::note_member_declared_here) << DeleteName;
2876   }
2877 
2878   return false;
2879 }
2880 
2881 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
2882 /// delete. These are:
2883 /// @code
2884 ///   // C++03:
2885 ///   void* operator new(std::size_t) throw(std::bad_alloc);
2886 ///   void* operator new[](std::size_t) throw(std::bad_alloc);
2887 ///   void operator delete(void *) throw();
2888 ///   void operator delete[](void *) throw();
2889 ///   // C++11:
2890 ///   void* operator new(std::size_t);
2891 ///   void* operator new[](std::size_t);
2892 ///   void operator delete(void *) noexcept;
2893 ///   void operator delete[](void *) noexcept;
2894 ///   // C++1y:
2895 ///   void* operator new(std::size_t);
2896 ///   void* operator new[](std::size_t);
2897 ///   void operator delete(void *) noexcept;
2898 ///   void operator delete[](void *) noexcept;
2899 ///   void operator delete(void *, std::size_t) noexcept;
2900 ///   void operator delete[](void *, std::size_t) noexcept;
2901 /// @endcode
2902 /// Note that the placement and nothrow forms of new are *not* implicitly
2903 /// declared. Their use requires including \<new\>.
DeclareGlobalNewDelete()2904 void Sema::DeclareGlobalNewDelete() {
2905   if (GlobalNewDeleteDeclared)
2906     return;
2907 
2908   // The implicitly declared new and delete operators
2909   // are not supported in OpenCL.
2910   if (getLangOpts().OpenCLCPlusPlus)
2911     return;
2912 
2913   // C++ [basic.std.dynamic]p2:
2914   //   [...] The following allocation and deallocation functions (18.4) are
2915   //   implicitly declared in global scope in each translation unit of a
2916   //   program
2917   //
2918   //     C++03:
2919   //     void* operator new(std::size_t) throw(std::bad_alloc);
2920   //     void* operator new[](std::size_t) throw(std::bad_alloc);
2921   //     void  operator delete(void*) throw();
2922   //     void  operator delete[](void*) throw();
2923   //     C++11:
2924   //     void* operator new(std::size_t);
2925   //     void* operator new[](std::size_t);
2926   //     void  operator delete(void*) noexcept;
2927   //     void  operator delete[](void*) noexcept;
2928   //     C++1y:
2929   //     void* operator new(std::size_t);
2930   //     void* operator new[](std::size_t);
2931   //     void  operator delete(void*) noexcept;
2932   //     void  operator delete[](void*) noexcept;
2933   //     void  operator delete(void*, std::size_t) noexcept;
2934   //     void  operator delete[](void*, std::size_t) noexcept;
2935   //
2936   //   These implicit declarations introduce only the function names operator
2937   //   new, operator new[], operator delete, operator delete[].
2938   //
2939   // Here, we need to refer to std::bad_alloc, so we will implicitly declare
2940   // "std" or "bad_alloc" as necessary to form the exception specification.
2941   // However, we do not make these implicit declarations visible to name
2942   // lookup.
2943   if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
2944     // The "std::bad_alloc" class has not yet been declared, so build it
2945     // implicitly.
2946     StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
2947                                         getOrCreateStdNamespace(),
2948                                         SourceLocation(), SourceLocation(),
2949                                       &PP.getIdentifierTable().get("bad_alloc"),
2950                                         nullptr);
2951     getStdBadAlloc()->setImplicit(true);
2952   }
2953   if (!StdAlignValT && getLangOpts().AlignedAllocation) {
2954     // The "std::align_val_t" enum class has not yet been declared, so build it
2955     // implicitly.
2956     auto *AlignValT = EnumDecl::Create(
2957         Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
2958         &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
2959     AlignValT->setIntegerType(Context.getSizeType());
2960     AlignValT->setPromotionType(Context.getSizeType());
2961     AlignValT->setImplicit(true);
2962     StdAlignValT = AlignValT;
2963   }
2964 
2965   GlobalNewDeleteDeclared = true;
2966 
2967   QualType VoidPtr = Context.getPointerType(Context.VoidTy);
2968   QualType SizeT = Context.getSizeType();
2969 
2970   auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
2971                                               QualType Return, QualType Param) {
2972     llvm::SmallVector<QualType, 3> Params;
2973     Params.push_back(Param);
2974 
2975     // Create up to four variants of the function (sized/aligned).
2976     bool HasSizedVariant = getLangOpts().SizedDeallocation &&
2977                            (Kind == OO_Delete || Kind == OO_Array_Delete);
2978     bool HasAlignedVariant = getLangOpts().AlignedAllocation;
2979 
2980     int NumSizeVariants = (HasSizedVariant ? 2 : 1);
2981     int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
2982     for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
2983       if (Sized)
2984         Params.push_back(SizeT);
2985 
2986       for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
2987         if (Aligned)
2988           Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
2989 
2990         DeclareGlobalAllocationFunction(
2991             Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
2992 
2993         if (Aligned)
2994           Params.pop_back();
2995       }
2996     }
2997   };
2998 
2999   DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
3000   DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
3001   DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
3002   DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
3003 }
3004 
3005 /// DeclareGlobalAllocationFunction - Declares a single implicit global
3006 /// allocation function if it doesn't already exist.
DeclareGlobalAllocationFunction(DeclarationName Name,QualType Return,ArrayRef<QualType> Params)3007 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
3008                                            QualType Return,
3009                                            ArrayRef<QualType> Params) {
3010   DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
3011 
3012   // Check if this function is already declared.
3013   DeclContext::lookup_result R = GlobalCtx->lookup(Name);
3014   for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
3015        Alloc != AllocEnd; ++Alloc) {
3016     // Only look at non-template functions, as it is the predefined,
3017     // non-templated allocation function we are trying to declare here.
3018     if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
3019       if (Func->getNumParams() == Params.size()) {
3020         llvm::SmallVector<QualType, 3> FuncParams;
3021         for (auto *P : Func->parameters())
3022           FuncParams.push_back(
3023               Context.getCanonicalType(P->getType().getUnqualifiedType()));
3024         if (llvm::makeArrayRef(FuncParams) == Params) {
3025           // Make the function visible to name lookup, even if we found it in
3026           // an unimported module. It either is an implicitly-declared global
3027           // allocation function, or is suppressing that function.
3028           Func->setVisibleDespiteOwningModule();
3029           return;
3030         }
3031       }
3032     }
3033   }
3034 
3035   FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
3036       /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
3037 
3038   QualType BadAllocType;
3039   bool HasBadAllocExceptionSpec
3040     = (Name.getCXXOverloadedOperator() == OO_New ||
3041        Name.getCXXOverloadedOperator() == OO_Array_New);
3042   if (HasBadAllocExceptionSpec) {
3043     if (!getLangOpts().CPlusPlus11) {
3044       BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
3045       assert(StdBadAlloc && "Must have std::bad_alloc declared");
3046       EPI.ExceptionSpec.Type = EST_Dynamic;
3047       EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
3048     }
3049     if (getLangOpts().NewInfallible) {
3050       EPI.ExceptionSpec.Type = EST_DynamicNone;
3051     }
3052   } else {
3053     EPI.ExceptionSpec =
3054         getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
3055   }
3056 
3057   auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
3058     QualType FnType = Context.getFunctionType(Return, Params, EPI);
3059     FunctionDecl *Alloc = FunctionDecl::Create(
3060         Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, FnType,
3061         /*TInfo=*/nullptr, SC_None, getCurFPFeatures().isFPConstrained(), false,
3062         true);
3063     Alloc->setImplicit();
3064     // Global allocation functions should always be visible.
3065     Alloc->setVisibleDespiteOwningModule();
3066 
3067     if (HasBadAllocExceptionSpec && getLangOpts().NewInfallible)
3068       Alloc->addAttr(
3069           ReturnsNonNullAttr::CreateImplicit(Context, Alloc->getLocation()));
3070 
3071     Alloc->addAttr(VisibilityAttr::CreateImplicit(
3072         Context, LangOpts.GlobalAllocationFunctionVisibilityHidden
3073                      ? VisibilityAttr::Hidden
3074                      : VisibilityAttr::Default));
3075 
3076     llvm::SmallVector<ParmVarDecl *, 3> ParamDecls;
3077     for (QualType T : Params) {
3078       ParamDecls.push_back(ParmVarDecl::Create(
3079           Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
3080           /*TInfo=*/nullptr, SC_None, nullptr));
3081       ParamDecls.back()->setImplicit();
3082     }
3083     Alloc->setParams(ParamDecls);
3084     if (ExtraAttr)
3085       Alloc->addAttr(ExtraAttr);
3086     AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc);
3087     Context.getTranslationUnitDecl()->addDecl(Alloc);
3088     IdResolver.tryAddTopLevelDecl(Alloc, Name);
3089   };
3090 
3091   if (!LangOpts.CUDA)
3092     CreateAllocationFunctionDecl(nullptr);
3093   else {
3094     // Host and device get their own declaration so each can be
3095     // defined or re-declared independently.
3096     CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
3097     CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
3098   }
3099 }
3100 
FindUsualDeallocationFunction(SourceLocation StartLoc,bool CanProvideSize,bool Overaligned,DeclarationName Name)3101 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
3102                                                   bool CanProvideSize,
3103                                                   bool Overaligned,
3104                                                   DeclarationName Name) {
3105   DeclareGlobalNewDelete();
3106 
3107   LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
3108   LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
3109 
3110   // FIXME: It's possible for this to result in ambiguity, through a
3111   // user-declared variadic operator delete or the enable_if attribute. We
3112   // should probably not consider those cases to be usual deallocation
3113   // functions. But for now we just make an arbitrary choice in that case.
3114   auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
3115                                             Overaligned);
3116   assert(Result.FD && "operator delete missing from global scope?");
3117   return Result.FD;
3118 }
3119 
FindDeallocationFunctionForDestructor(SourceLocation Loc,CXXRecordDecl * RD)3120 FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc,
3121                                                           CXXRecordDecl *RD) {
3122   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3123 
3124   FunctionDecl *OperatorDelete = nullptr;
3125   if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3126     return nullptr;
3127   if (OperatorDelete)
3128     return OperatorDelete;
3129 
3130   // If there's no class-specific operator delete, look up the global
3131   // non-array delete.
3132   return FindUsualDeallocationFunction(
3133       Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
3134       Name);
3135 }
3136 
FindDeallocationFunction(SourceLocation StartLoc,CXXRecordDecl * RD,DeclarationName Name,FunctionDecl * & Operator,bool Diagnose)3137 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
3138                                     DeclarationName Name,
3139                                     FunctionDecl *&Operator, bool Diagnose) {
3140   LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
3141   // Try to find operator delete/operator delete[] in class scope.
3142   LookupQualifiedName(Found, RD);
3143 
3144   if (Found.isAmbiguous())
3145     return true;
3146 
3147   Found.suppressDiagnostics();
3148 
3149   bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD));
3150 
3151   // C++17 [expr.delete]p10:
3152   //   If the deallocation functions have class scope, the one without a
3153   //   parameter of type std::size_t is selected.
3154   llvm::SmallVector<UsualDeallocFnInfo, 4> Matches;
3155   resolveDeallocationOverload(*this, Found, /*WantSize*/ false,
3156                               /*WantAlign*/ Overaligned, &Matches);
3157 
3158   // If we could find an overload, use it.
3159   if (Matches.size() == 1) {
3160     Operator = cast<CXXMethodDecl>(Matches[0].FD);
3161 
3162     // FIXME: DiagnoseUseOfDecl?
3163     if (Operator->isDeleted()) {
3164       if (Diagnose) {
3165         Diag(StartLoc, diag::err_deleted_function_use);
3166         NoteDeletedFunction(Operator);
3167       }
3168       return true;
3169     }
3170 
3171     if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
3172                               Matches[0].Found, Diagnose) == AR_inaccessible)
3173       return true;
3174 
3175     return false;
3176   }
3177 
3178   // We found multiple suitable operators; complain about the ambiguity.
3179   // FIXME: The standard doesn't say to do this; it appears that the intent
3180   // is that this should never happen.
3181   if (!Matches.empty()) {
3182     if (Diagnose) {
3183       Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
3184         << Name << RD;
3185       for (auto &Match : Matches)
3186         Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
3187     }
3188     return true;
3189   }
3190 
3191   // We did find operator delete/operator delete[] declarations, but
3192   // none of them were suitable.
3193   if (!Found.empty()) {
3194     if (Diagnose) {
3195       Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
3196         << Name << RD;
3197 
3198       for (NamedDecl *D : Found)
3199         Diag(D->getUnderlyingDecl()->getLocation(),
3200              diag::note_member_declared_here) << Name;
3201     }
3202     return true;
3203   }
3204 
3205   Operator = nullptr;
3206   return false;
3207 }
3208 
3209 namespace {
3210 /// Checks whether delete-expression, and new-expression used for
3211 ///  initializing deletee have the same array form.
3212 class MismatchingNewDeleteDetector {
3213 public:
3214   enum MismatchResult {
3215     /// Indicates that there is no mismatch or a mismatch cannot be proven.
3216     NoMismatch,
3217     /// Indicates that variable is initialized with mismatching form of \a new.
3218     VarInitMismatches,
3219     /// Indicates that member is initialized with mismatching form of \a new.
3220     MemberInitMismatches,
3221     /// Indicates that 1 or more constructors' definitions could not been
3222     /// analyzed, and they will be checked again at the end of translation unit.
3223     AnalyzeLater
3224   };
3225 
3226   /// \param EndOfTU True, if this is the final analysis at the end of
3227   /// translation unit. False, if this is the initial analysis at the point
3228   /// delete-expression was encountered.
MismatchingNewDeleteDetector(bool EndOfTU)3229   explicit MismatchingNewDeleteDetector(bool EndOfTU)
3230       : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
3231         HasUndefinedConstructors(false) {}
3232 
3233   /// Checks whether pointee of a delete-expression is initialized with
3234   /// matching form of new-expression.
3235   ///
3236   /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
3237   /// point where delete-expression is encountered, then a warning will be
3238   /// issued immediately. If return value is \c AnalyzeLater at the point where
3239   /// delete-expression is seen, then member will be analyzed at the end of
3240   /// translation unit. \c AnalyzeLater is returned iff at least one constructor
3241   /// couldn't be analyzed. If at least one constructor initializes the member
3242   /// with matching type of new, the return value is \c NoMismatch.
3243   MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
3244   /// Analyzes a class member.
3245   /// \param Field Class member to analyze.
3246   /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
3247   /// for deleting the \p Field.
3248   MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
3249   FieldDecl *Field;
3250   /// List of mismatching new-expressions used for initialization of the pointee
3251   llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
3252   /// Indicates whether delete-expression was in array form.
3253   bool IsArrayForm;
3254 
3255 private:
3256   const bool EndOfTU;
3257   /// Indicates that there is at least one constructor without body.
3258   bool HasUndefinedConstructors;
3259   /// Returns \c CXXNewExpr from given initialization expression.
3260   /// \param E Expression used for initializing pointee in delete-expression.
3261   /// E can be a single-element \c InitListExpr consisting of new-expression.
3262   const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
3263   /// Returns whether member is initialized with mismatching form of
3264   /// \c new either by the member initializer or in-class initialization.
3265   ///
3266   /// If bodies of all constructors are not visible at the end of translation
3267   /// unit or at least one constructor initializes member with the matching
3268   /// form of \c new, mismatch cannot be proven, and this function will return
3269   /// \c NoMismatch.
3270   MismatchResult analyzeMemberExpr(const MemberExpr *ME);
3271   /// Returns whether variable is initialized with mismatching form of
3272   /// \c new.
3273   ///
3274   /// If variable is initialized with matching form of \c new or variable is not
3275   /// initialized with a \c new expression, this function will return true.
3276   /// If variable is initialized with mismatching form of \c new, returns false.
3277   /// \param D Variable to analyze.
3278   bool hasMatchingVarInit(const DeclRefExpr *D);
3279   /// Checks whether the constructor initializes pointee with mismatching
3280   /// form of \c new.
3281   ///
3282   /// Returns true, if member is initialized with matching form of \c new in
3283   /// member initializer list. Returns false, if member is initialized with the
3284   /// matching form of \c new in this constructor's initializer or given
3285   /// constructor isn't defined at the point where delete-expression is seen, or
3286   /// member isn't initialized by the constructor.
3287   bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
3288   /// Checks whether member is initialized with matching form of
3289   /// \c new in member initializer list.
3290   bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
3291   /// Checks whether member is initialized with mismatching form of \c new by
3292   /// in-class initializer.
3293   MismatchResult analyzeInClassInitializer();
3294 };
3295 }
3296 
3297 MismatchingNewDeleteDetector::MismatchResult
analyzeDeleteExpr(const CXXDeleteExpr * DE)3298 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
3299   NewExprs.clear();
3300   assert(DE && "Expected delete-expression");
3301   IsArrayForm = DE->isArrayForm();
3302   const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
3303   if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
3304     return analyzeMemberExpr(ME);
3305   } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
3306     if (!hasMatchingVarInit(D))
3307       return VarInitMismatches;
3308   }
3309   return NoMismatch;
3310 }
3311 
3312 const CXXNewExpr *
getNewExprFromInitListOrExpr(const Expr * E)3313 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
3314   assert(E != nullptr && "Expected a valid initializer expression");
3315   E = E->IgnoreParenImpCasts();
3316   if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
3317     if (ILE->getNumInits() == 1)
3318       E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
3319   }
3320 
3321   return dyn_cast_or_null<const CXXNewExpr>(E);
3322 }
3323 
hasMatchingNewInCtorInit(const CXXCtorInitializer * CI)3324 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
3325     const CXXCtorInitializer *CI) {
3326   const CXXNewExpr *NE = nullptr;
3327   if (Field == CI->getMember() &&
3328       (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
3329     if (NE->isArray() == IsArrayForm)
3330       return true;
3331     else
3332       NewExprs.push_back(NE);
3333   }
3334   return false;
3335 }
3336 
hasMatchingNewInCtor(const CXXConstructorDecl * CD)3337 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
3338     const CXXConstructorDecl *CD) {
3339   if (CD->isImplicit())
3340     return false;
3341   const FunctionDecl *Definition = CD;
3342   if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
3343     HasUndefinedConstructors = true;
3344     return EndOfTU;
3345   }
3346   for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
3347     if (hasMatchingNewInCtorInit(CI))
3348       return true;
3349   }
3350   return false;
3351 }
3352 
3353 MismatchingNewDeleteDetector::MismatchResult
analyzeInClassInitializer()3354 MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3355   assert(Field != nullptr && "This should be called only for members");
3356   const Expr *InitExpr = Field->getInClassInitializer();
3357   if (!InitExpr)
3358     return EndOfTU ? NoMismatch : AnalyzeLater;
3359   if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
3360     if (NE->isArray() != IsArrayForm) {
3361       NewExprs.push_back(NE);
3362       return MemberInitMismatches;
3363     }
3364   }
3365   return NoMismatch;
3366 }
3367 
3368 MismatchingNewDeleteDetector::MismatchResult
analyzeField(FieldDecl * Field,bool DeleteWasArrayForm)3369 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
3370                                            bool DeleteWasArrayForm) {
3371   assert(Field != nullptr && "Analysis requires a valid class member.");
3372   this->Field = Field;
3373   IsArrayForm = DeleteWasArrayForm;
3374   const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
3375   for (const auto *CD : RD->ctors()) {
3376     if (hasMatchingNewInCtor(CD))
3377       return NoMismatch;
3378   }
3379   if (HasUndefinedConstructors)
3380     return EndOfTU ? NoMismatch : AnalyzeLater;
3381   if (!NewExprs.empty())
3382     return MemberInitMismatches;
3383   return Field->hasInClassInitializer() ? analyzeInClassInitializer()
3384                                         : NoMismatch;
3385 }
3386 
3387 MismatchingNewDeleteDetector::MismatchResult
analyzeMemberExpr(const MemberExpr * ME)3388 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
3389   assert(ME != nullptr && "Expected a member expression");
3390   if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3391     return analyzeField(F, IsArrayForm);
3392   return NoMismatch;
3393 }
3394 
hasMatchingVarInit(const DeclRefExpr * D)3395 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
3396   const CXXNewExpr *NE = nullptr;
3397   if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
3398     if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
3399         NE->isArray() != IsArrayForm) {
3400       NewExprs.push_back(NE);
3401     }
3402   }
3403   return NewExprs.empty();
3404 }
3405 
3406 static void
DiagnoseMismatchedNewDelete(Sema & SemaRef,SourceLocation DeleteLoc,const MismatchingNewDeleteDetector & Detector)3407 DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
3408                             const MismatchingNewDeleteDetector &Detector) {
3409   SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
3410   FixItHint H;
3411   if (!Detector.IsArrayForm)
3412     H = FixItHint::CreateInsertion(EndOfDelete, "[]");
3413   else {
3414     SourceLocation RSquare = Lexer::findLocationAfterToken(
3415         DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
3416         SemaRef.getLangOpts(), true);
3417     if (RSquare.isValid())
3418       H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
3419   }
3420   SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3421       << Detector.IsArrayForm << H;
3422 
3423   for (const auto *NE : Detector.NewExprs)
3424     SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3425         << Detector.IsArrayForm;
3426 }
3427 
AnalyzeDeleteExprMismatch(const CXXDeleteExpr * DE)3428 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3429   if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3430     return;
3431   MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3432   switch (Detector.analyzeDeleteExpr(DE)) {
3433   case MismatchingNewDeleteDetector::VarInitMismatches:
3434   case MismatchingNewDeleteDetector::MemberInitMismatches: {
3435     DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector);
3436     break;
3437   }
3438   case MismatchingNewDeleteDetector::AnalyzeLater: {
3439     DeleteExprs[Detector.Field].push_back(
3440         std::make_pair(DE->getBeginLoc(), DE->isArrayForm()));
3441     break;
3442   }
3443   case MismatchingNewDeleteDetector::NoMismatch:
3444     break;
3445   }
3446 }
3447 
AnalyzeDeleteExprMismatch(FieldDecl * Field,SourceLocation DeleteLoc,bool DeleteWasArrayForm)3448 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3449                                      bool DeleteWasArrayForm) {
3450   MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3451   switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3452   case MismatchingNewDeleteDetector::VarInitMismatches:
3453     llvm_unreachable("This analysis should have been done for class members.");
3454   case MismatchingNewDeleteDetector::AnalyzeLater:
3455     llvm_unreachable("Analysis cannot be postponed any point beyond end of "
3456                      "translation unit.");
3457   case MismatchingNewDeleteDetector::MemberInitMismatches:
3458     DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
3459     break;
3460   case MismatchingNewDeleteDetector::NoMismatch:
3461     break;
3462   }
3463 }
3464 
3465 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
3466 /// @code ::delete ptr; @endcode
3467 /// or
3468 /// @code delete [] ptr; @endcode
3469 ExprResult
ActOnCXXDelete(SourceLocation StartLoc,bool UseGlobal,bool ArrayForm,Expr * ExE)3470 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3471                      bool ArrayForm, Expr *ExE) {
3472   // C++ [expr.delete]p1:
3473   //   The operand shall have a pointer type, or a class type having a single
3474   //   non-explicit conversion function to a pointer type. The result has type
3475   //   void.
3476   //
3477   // DR599 amends "pointer type" to "pointer to object type" in both cases.
3478 
3479   ExprResult Ex = ExE;
3480   FunctionDecl *OperatorDelete = nullptr;
3481   bool ArrayFormAsWritten = ArrayForm;
3482   bool UsualArrayDeleteWantsSize = false;
3483 
3484   if (!Ex.get()->isTypeDependent()) {
3485     // Perform lvalue-to-rvalue cast, if needed.
3486     Ex = DefaultLvalueConversion(Ex.get());
3487     if (Ex.isInvalid())
3488       return ExprError();
3489 
3490     QualType Type = Ex.get()->getType();
3491 
3492     class DeleteConverter : public ContextualImplicitConverter {
3493     public:
3494       DeleteConverter() : ContextualImplicitConverter(false, true) {}
3495 
3496       bool match(QualType ConvType) override {
3497         // FIXME: If we have an operator T* and an operator void*, we must pick
3498         // the operator T*.
3499         if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
3500           if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
3501             return true;
3502         return false;
3503       }
3504 
3505       SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3506                                             QualType T) override {
3507         return S.Diag(Loc, diag::err_delete_operand) << T;
3508       }
3509 
3510       SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3511                                                QualType T) override {
3512         return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3513       }
3514 
3515       SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3516                                                  QualType T,
3517                                                  QualType ConvTy) override {
3518         return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3519       }
3520 
3521       SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3522                                              QualType ConvTy) override {
3523         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3524           << ConvTy;
3525       }
3526 
3527       SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3528                                               QualType T) override {
3529         return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3530       }
3531 
3532       SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3533                                           QualType ConvTy) override {
3534         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3535           << ConvTy;
3536       }
3537 
3538       SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3539                                                QualType T,
3540                                                QualType ConvTy) override {
3541         llvm_unreachable("conversion functions are permitted");
3542       }
3543     } Converter;
3544 
3545     Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
3546     if (Ex.isInvalid())
3547       return ExprError();
3548     Type = Ex.get()->getType();
3549     if (!Converter.match(Type))
3550       // FIXME: PerformContextualImplicitConversion should return ExprError
3551       //        itself in this case.
3552       return ExprError();
3553 
3554     QualType Pointee = Type->castAs<PointerType>()->getPointeeType();
3555     QualType PointeeElem = Context.getBaseElementType(Pointee);
3556 
3557     if (Pointee.getAddressSpace() != LangAS::Default &&
3558         !getLangOpts().OpenCLCPlusPlus)
3559       return Diag(Ex.get()->getBeginLoc(),
3560                   diag::err_address_space_qualified_delete)
3561              << Pointee.getUnqualifiedType()
3562              << Pointee.getQualifiers().getAddressSpaceAttributePrintValue();
3563 
3564     CXXRecordDecl *PointeeRD = nullptr;
3565     if (Pointee->isVoidType() && !isSFINAEContext()) {
3566       // The C++ standard bans deleting a pointer to a non-object type, which
3567       // effectively bans deletion of "void*". However, most compilers support
3568       // this, so we treat it as a warning unless we're in a SFINAE context.
3569       Diag(StartLoc, diag::ext_delete_void_ptr_operand)
3570         << Type << Ex.get()->getSourceRange();
3571     } else if (Pointee->isFunctionType() || Pointee->isVoidType() ||
3572                Pointee->isSizelessType()) {
3573       return ExprError(Diag(StartLoc, diag::err_delete_operand)
3574         << Type << Ex.get()->getSourceRange());
3575     } else if (!Pointee->isDependentType()) {
3576       // FIXME: This can result in errors if the definition was imported from a
3577       // module but is hidden.
3578       if (!RequireCompleteType(StartLoc, Pointee,
3579                                diag::warn_delete_incomplete, Ex.get())) {
3580         if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3581           PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
3582       }
3583     }
3584 
3585     if (Pointee->isArrayType() && !ArrayForm) {
3586       Diag(StartLoc, diag::warn_delete_array_type)
3587           << Type << Ex.get()->getSourceRange()
3588           << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3589       ArrayForm = true;
3590     }
3591 
3592     DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
3593                                       ArrayForm ? OO_Array_Delete : OO_Delete);
3594 
3595     if (PointeeRD) {
3596       if (!UseGlobal &&
3597           FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
3598                                    OperatorDelete))
3599         return ExprError();
3600 
3601       // If we're allocating an array of records, check whether the
3602       // usual operator delete[] has a size_t parameter.
3603       if (ArrayForm) {
3604         // If the user specifically asked to use the global allocator,
3605         // we'll need to do the lookup into the class.
3606         if (UseGlobal)
3607           UsualArrayDeleteWantsSize =
3608             doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
3609 
3610         // Otherwise, the usual operator delete[] should be the
3611         // function we just found.
3612         else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
3613           UsualArrayDeleteWantsSize =
3614             UsualDeallocFnInfo(*this,
3615                                DeclAccessPair::make(OperatorDelete, AS_public))
3616               .HasSizeT;
3617       }
3618 
3619       if (!PointeeRD->hasIrrelevantDestructor())
3620         if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3621           MarkFunctionReferenced(StartLoc,
3622                                     const_cast<CXXDestructorDecl*>(Dtor));
3623           if (DiagnoseUseOfDecl(Dtor, StartLoc))
3624             return ExprError();
3625         }
3626 
3627       CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
3628                            /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3629                            /*WarnOnNonAbstractTypes=*/!ArrayForm,
3630                            SourceLocation());
3631     }
3632 
3633     if (!OperatorDelete) {
3634       if (getLangOpts().OpenCLCPlusPlus) {
3635         Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete";
3636         return ExprError();
3637       }
3638 
3639       bool IsComplete = isCompleteType(StartLoc, Pointee);
3640       bool CanProvideSize =
3641           IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3642                          Pointee.isDestructedType());
3643       bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
3644 
3645       // Look for a global declaration.
3646       OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3647                                                      Overaligned, DeleteName);
3648     }
3649 
3650     MarkFunctionReferenced(StartLoc, OperatorDelete);
3651 
3652     // Check access and ambiguity of destructor if we're going to call it.
3653     // Note that this is required even for a virtual delete.
3654     bool IsVirtualDelete = false;
3655     if (PointeeRD) {
3656       if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3657         CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3658                               PDiag(diag::err_access_dtor) << PointeeElem);
3659         IsVirtualDelete = Dtor->isVirtual();
3660       }
3661     }
3662 
3663     DiagnoseUseOfDecl(OperatorDelete, StartLoc);
3664 
3665     // Convert the operand to the type of the first parameter of operator
3666     // delete. This is only necessary if we selected a destroying operator
3667     // delete that we are going to call (non-virtually); converting to void*
3668     // is trivial and left to AST consumers to handle.
3669     QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
3670     if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
3671       Qualifiers Qs = Pointee.getQualifiers();
3672       if (Qs.hasCVRQualifiers()) {
3673         // Qualifiers are irrelevant to this conversion; we're only looking
3674         // for access and ambiguity.
3675         Qs.removeCVRQualifiers();
3676         QualType Unqual = Context.getPointerType(
3677             Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs));
3678         Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
3679       }
3680       Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing);
3681       if (Ex.isInvalid())
3682         return ExprError();
3683     }
3684   }
3685 
3686   CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
3687       Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3688       UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3689   AnalyzeDeleteExprMismatch(Result);
3690   return Result;
3691 }
3692 
resolveBuiltinNewDeleteOverload(Sema & S,CallExpr * TheCall,bool IsDelete,FunctionDecl * & Operator)3693 static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall,
3694                                             bool IsDelete,
3695                                             FunctionDecl *&Operator) {
3696 
3697   DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName(
3698       IsDelete ? OO_Delete : OO_New);
3699 
3700   LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName);
3701   S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
3702   assert(!R.empty() && "implicitly declared allocation functions not found");
3703   assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
3704 
3705   // We do our own custom access checks below.
3706   R.suppressDiagnostics();
3707 
3708   SmallVector<Expr *, 8> Args(TheCall->arg_begin(), TheCall->arg_end());
3709   OverloadCandidateSet Candidates(R.getNameLoc(),
3710                                   OverloadCandidateSet::CSK_Normal);
3711   for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
3712        FnOvl != FnOvlEnd; ++FnOvl) {
3713     // Even member operator new/delete are implicitly treated as
3714     // static, so don't use AddMemberCandidate.
3715     NamedDecl *D = (*FnOvl)->getUnderlyingDecl();
3716 
3717     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
3718       S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(),
3719                                      /*ExplicitTemplateArgs=*/nullptr, Args,
3720                                      Candidates,
3721                                      /*SuppressUserConversions=*/false);
3722       continue;
3723     }
3724 
3725     FunctionDecl *Fn = cast<FunctionDecl>(D);
3726     S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates,
3727                            /*SuppressUserConversions=*/false);
3728   }
3729 
3730   SourceRange Range = TheCall->getSourceRange();
3731 
3732   // Do the resolution.
3733   OverloadCandidateSet::iterator Best;
3734   switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
3735   case OR_Success: {
3736     // Got one!
3737     FunctionDecl *FnDecl = Best->Function;
3738     assert(R.getNamingClass() == nullptr &&
3739            "class members should not be considered");
3740 
3741     if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
3742       S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
3743           << (IsDelete ? 1 : 0) << Range;
3744       S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
3745           << R.getLookupName() << FnDecl->getSourceRange();
3746       return true;
3747     }
3748 
3749     Operator = FnDecl;
3750     return false;
3751   }
3752 
3753   case OR_No_Viable_Function:
3754     Candidates.NoteCandidates(
3755         PartialDiagnosticAt(R.getNameLoc(),
3756                             S.PDiag(diag::err_ovl_no_viable_function_in_call)
3757                                 << R.getLookupName() << Range),
3758         S, OCD_AllCandidates, Args);
3759     return true;
3760 
3761   case OR_Ambiguous:
3762     Candidates.NoteCandidates(
3763         PartialDiagnosticAt(R.getNameLoc(),
3764                             S.PDiag(diag::err_ovl_ambiguous_call)
3765                                 << R.getLookupName() << Range),
3766         S, OCD_AmbiguousCandidates, Args);
3767     return true;
3768 
3769   case OR_Deleted: {
3770     Candidates.NoteCandidates(
3771         PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call)
3772                                                 << R.getLookupName() << Range),
3773         S, OCD_AllCandidates, Args);
3774     return true;
3775   }
3776   }
3777   llvm_unreachable("Unreachable, bad result from BestViableFunction");
3778 }
3779 
3780 ExprResult
SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,bool IsDelete)3781 Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
3782                                              bool IsDelete) {
3783   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
3784   if (!getLangOpts().CPlusPlus) {
3785     Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
3786         << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
3787         << "C++";
3788     return ExprError();
3789   }
3790   // CodeGen assumes it can find the global new and delete to call,
3791   // so ensure that they are declared.
3792   DeclareGlobalNewDelete();
3793 
3794   FunctionDecl *OperatorNewOrDelete = nullptr;
3795   if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete,
3796                                       OperatorNewOrDelete))
3797     return ExprError();
3798   assert(OperatorNewOrDelete && "should be found");
3799 
3800   DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc());
3801   MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete);
3802 
3803   TheCall->setType(OperatorNewOrDelete->getReturnType());
3804   for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
3805     QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
3806     InitializedEntity Entity =
3807         InitializedEntity::InitializeParameter(Context, ParamTy, false);
3808     ExprResult Arg = PerformCopyInitialization(
3809         Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i));
3810     if (Arg.isInvalid())
3811       return ExprError();
3812     TheCall->setArg(i, Arg.get());
3813   }
3814   auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee());
3815   assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&
3816          "Callee expected to be implicit cast to a builtin function pointer");
3817   Callee->setType(OperatorNewOrDelete->getType());
3818 
3819   return TheCallResult;
3820 }
3821 
CheckVirtualDtorCall(CXXDestructorDecl * dtor,SourceLocation Loc,bool IsDelete,bool CallCanBeVirtual,bool WarnOnNonAbstractTypes,SourceLocation DtorLoc)3822 void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
3823                                 bool IsDelete, bool CallCanBeVirtual,
3824                                 bool WarnOnNonAbstractTypes,
3825                                 SourceLocation DtorLoc) {
3826   if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
3827     return;
3828 
3829   // C++ [expr.delete]p3:
3830   //   In the first alternative (delete object), if the static type of the
3831   //   object to be deleted is different from its dynamic type, the static
3832   //   type shall be a base class of the dynamic type of the object to be
3833   //   deleted and the static type shall have a virtual destructor or the
3834   //   behavior is undefined.
3835   //
3836   const CXXRecordDecl *PointeeRD = dtor->getParent();
3837   // Note: a final class cannot be derived from, no issue there
3838   if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
3839     return;
3840 
3841   // If the superclass is in a system header, there's nothing that can be done.
3842   // The `delete` (where we emit the warning) can be in a system header,
3843   // what matters for this warning is where the deleted type is defined.
3844   if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
3845     return;
3846 
3847   QualType ClassType = dtor->getThisType()->getPointeeType();
3848   if (PointeeRD->isAbstract()) {
3849     // If the class is abstract, we warn by default, because we're
3850     // sure the code has undefined behavior.
3851     Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
3852                                                            << ClassType;
3853   } else if (WarnOnNonAbstractTypes) {
3854     // Otherwise, if this is not an array delete, it's a bit suspect,
3855     // but not necessarily wrong.
3856     Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
3857                                                   << ClassType;
3858   }
3859   if (!IsDelete) {
3860     std::string TypeStr;
3861     ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
3862     Diag(DtorLoc, diag::note_delete_non_virtual)
3863         << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
3864   }
3865 }
3866 
ActOnConditionVariable(Decl * ConditionVar,SourceLocation StmtLoc,ConditionKind CK)3867 Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
3868                                                    SourceLocation StmtLoc,
3869                                                    ConditionKind CK) {
3870   ExprResult E =
3871       CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
3872   if (E.isInvalid())
3873     return ConditionError();
3874   return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
3875                          CK == ConditionKind::ConstexprIf);
3876 }
3877 
3878 /// Check the use of the given variable as a C++ condition in an if,
3879 /// while, do-while, or switch statement.
CheckConditionVariable(VarDecl * ConditionVar,SourceLocation StmtLoc,ConditionKind CK)3880 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
3881                                         SourceLocation StmtLoc,
3882                                         ConditionKind CK) {
3883   if (ConditionVar->isInvalidDecl())
3884     return ExprError();
3885 
3886   QualType T = ConditionVar->getType();
3887 
3888   // C++ [stmt.select]p2:
3889   //   The declarator shall not specify a function or an array.
3890   if (T->isFunctionType())
3891     return ExprError(Diag(ConditionVar->getLocation(),
3892                           diag::err_invalid_use_of_function_type)
3893                        << ConditionVar->getSourceRange());
3894   else if (T->isArrayType())
3895     return ExprError(Diag(ConditionVar->getLocation(),
3896                           diag::err_invalid_use_of_array_type)
3897                      << ConditionVar->getSourceRange());
3898 
3899   ExprResult Condition = BuildDeclRefExpr(
3900       ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue,
3901       ConditionVar->getLocation());
3902 
3903   switch (CK) {
3904   case ConditionKind::Boolean:
3905     return CheckBooleanCondition(StmtLoc, Condition.get());
3906 
3907   case ConditionKind::ConstexprIf:
3908     return CheckBooleanCondition(StmtLoc, Condition.get(), true);
3909 
3910   case ConditionKind::Switch:
3911     return CheckSwitchCondition(StmtLoc, Condition.get());
3912   }
3913 
3914   llvm_unreachable("unexpected condition kind");
3915 }
3916 
3917 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
CheckCXXBooleanCondition(Expr * CondExpr,bool IsConstexpr)3918 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
3919   // C++11 6.4p4:
3920   // The value of a condition that is an initialized declaration in a statement
3921   // other than a switch statement is the value of the declared variable
3922   // implicitly converted to type bool. If that conversion is ill-formed, the
3923   // program is ill-formed.
3924   // The value of a condition that is an expression is the value of the
3925   // expression, implicitly converted to bool.
3926   //
3927   // C++2b 8.5.2p2
3928   // If the if statement is of the form if constexpr, the value of the condition
3929   // is contextually converted to bool and the converted expression shall be
3930   // a constant expression.
3931   //
3932 
3933   ExprResult E = PerformContextuallyConvertToBool(CondExpr);
3934   if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent())
3935     return E;
3936 
3937   // FIXME: Return this value to the caller so they don't need to recompute it.
3938   llvm::APSInt Cond;
3939   E = VerifyIntegerConstantExpression(
3940       E.get(), &Cond,
3941       diag::err_constexpr_if_condition_expression_is_not_constant);
3942   return E;
3943 }
3944 
3945 /// Helper function to determine whether this is the (deprecated) C++
3946 /// conversion from a string literal to a pointer to non-const char or
3947 /// non-const wchar_t (for narrow and wide string literals,
3948 /// respectively).
3949 bool
IsStringLiteralToNonConstPointerConversion(Expr * From,QualType ToType)3950 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
3951   // Look inside the implicit cast, if it exists.
3952   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
3953     From = Cast->getSubExpr();
3954 
3955   // A string literal (2.13.4) that is not a wide string literal can
3956   // be converted to an rvalue of type "pointer to char"; a wide
3957   // string literal can be converted to an rvalue of type "pointer
3958   // to wchar_t" (C++ 4.2p2).
3959   if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
3960     if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
3961       if (const BuiltinType *ToPointeeType
3962           = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
3963         // This conversion is considered only when there is an
3964         // explicit appropriate pointer target type (C++ 4.2p2).
3965         if (!ToPtrType->getPointeeType().hasQualifiers()) {
3966           switch (StrLit->getKind()) {
3967             case StringLiteral::UTF8:
3968             case StringLiteral::UTF16:
3969             case StringLiteral::UTF32:
3970               // We don't allow UTF literals to be implicitly converted
3971               break;
3972             case StringLiteral::Ascii:
3973               return (ToPointeeType->getKind() == BuiltinType::Char_U ||
3974                       ToPointeeType->getKind() == BuiltinType::Char_S);
3975             case StringLiteral::Wide:
3976               return Context.typesAreCompatible(Context.getWideCharType(),
3977                                                 QualType(ToPointeeType, 0));
3978           }
3979         }
3980       }
3981 
3982   return false;
3983 }
3984 
BuildCXXCastArgument(Sema & S,SourceLocation CastLoc,QualType Ty,CastKind Kind,CXXMethodDecl * Method,DeclAccessPair FoundDecl,bool HadMultipleCandidates,Expr * From)3985 static ExprResult BuildCXXCastArgument(Sema &S,
3986                                        SourceLocation CastLoc,
3987                                        QualType Ty,
3988                                        CastKind Kind,
3989                                        CXXMethodDecl *Method,
3990                                        DeclAccessPair FoundDecl,
3991                                        bool HadMultipleCandidates,
3992                                        Expr *From) {
3993   switch (Kind) {
3994   default: llvm_unreachable("Unhandled cast kind!");
3995   case CK_ConstructorConversion: {
3996     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
3997     SmallVector<Expr*, 8> ConstructorArgs;
3998 
3999     if (S.RequireNonAbstractType(CastLoc, Ty,
4000                                  diag::err_allocation_of_abstract_type))
4001       return ExprError();
4002 
4003     if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc,
4004                                   ConstructorArgs))
4005       return ExprError();
4006 
4007     S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
4008                              InitializedEntity::InitializeTemporary(Ty));
4009     if (S.DiagnoseUseOfDecl(Method, CastLoc))
4010       return ExprError();
4011 
4012     ExprResult Result = S.BuildCXXConstructExpr(
4013         CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
4014         ConstructorArgs, HadMultipleCandidates,
4015         /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4016         CXXConstructExpr::CK_Complete, SourceRange());
4017     if (Result.isInvalid())
4018       return ExprError();
4019 
4020     return S.MaybeBindToTemporary(Result.getAs<Expr>());
4021   }
4022 
4023   case CK_UserDefinedConversion: {
4024     assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
4025 
4026     S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
4027     if (S.DiagnoseUseOfDecl(Method, CastLoc))
4028       return ExprError();
4029 
4030     // Create an implicit call expr that calls it.
4031     CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
4032     ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
4033                                                  HadMultipleCandidates);
4034     if (Result.isInvalid())
4035       return ExprError();
4036     // Record usage of conversion in an implicit cast.
4037     Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
4038                                       CK_UserDefinedConversion, Result.get(),
4039                                       nullptr, Result.get()->getValueKind(),
4040                                       S.CurFPFeatureOverrides());
4041 
4042     return S.MaybeBindToTemporary(Result.get());
4043   }
4044   }
4045 }
4046 
4047 /// PerformImplicitConversion - Perform an implicit conversion of the
4048 /// expression From to the type ToType using the pre-computed implicit
4049 /// conversion sequence ICS. Returns the converted
4050 /// expression. Action is the kind of conversion we're performing,
4051 /// used in the error message.
4052 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,const ImplicitConversionSequence & ICS,AssignmentAction Action,CheckedConversionKind CCK)4053 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4054                                 const ImplicitConversionSequence &ICS,
4055                                 AssignmentAction Action,
4056                                 CheckedConversionKind CCK) {
4057   // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
4058   if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType())
4059     return From;
4060 
4061   switch (ICS.getKind()) {
4062   case ImplicitConversionSequence::StandardConversion: {
4063     ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
4064                                                Action, CCK);
4065     if (Res.isInvalid())
4066       return ExprError();
4067     From = Res.get();
4068     break;
4069   }
4070 
4071   case ImplicitConversionSequence::UserDefinedConversion: {
4072 
4073       FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
4074       CastKind CastKind;
4075       QualType BeforeToType;
4076       assert(FD && "no conversion function for user-defined conversion seq");
4077       if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
4078         CastKind = CK_UserDefinedConversion;
4079 
4080         // If the user-defined conversion is specified by a conversion function,
4081         // the initial standard conversion sequence converts the source type to
4082         // the implicit object parameter of the conversion function.
4083         BeforeToType = Context.getTagDeclType(Conv->getParent());
4084       } else {
4085         const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
4086         CastKind = CK_ConstructorConversion;
4087         // Do no conversion if dealing with ... for the first conversion.
4088         if (!ICS.UserDefined.EllipsisConversion) {
4089           // If the user-defined conversion is specified by a constructor, the
4090           // initial standard conversion sequence converts the source type to
4091           // the type required by the argument of the constructor
4092           BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
4093         }
4094       }
4095       // Watch out for ellipsis conversion.
4096       if (!ICS.UserDefined.EllipsisConversion) {
4097         ExprResult Res =
4098           PerformImplicitConversion(From, BeforeToType,
4099                                     ICS.UserDefined.Before, AA_Converting,
4100                                     CCK);
4101         if (Res.isInvalid())
4102           return ExprError();
4103         From = Res.get();
4104       }
4105 
4106       ExprResult CastArg = BuildCXXCastArgument(
4107           *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind,
4108           cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction,
4109           ICS.UserDefined.HadMultipleCandidates, From);
4110 
4111       if (CastArg.isInvalid())
4112         return ExprError();
4113 
4114       From = CastArg.get();
4115 
4116       // C++ [over.match.oper]p7:
4117       //   [...] the second standard conversion sequence of a user-defined
4118       //   conversion sequence is not applied.
4119       if (CCK == CCK_ForBuiltinOverloadedOp)
4120         return From;
4121 
4122       return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
4123                                        AA_Converting, CCK);
4124   }
4125 
4126   case ImplicitConversionSequence::AmbiguousConversion:
4127     ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
4128                           PDiag(diag::err_typecheck_ambiguous_condition)
4129                             << From->getSourceRange());
4130     return ExprError();
4131 
4132   case ImplicitConversionSequence::EllipsisConversion:
4133     llvm_unreachable("Cannot perform an ellipsis conversion");
4134 
4135   case ImplicitConversionSequence::BadConversion:
4136     Sema::AssignConvertType ConvTy =
4137         CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType());
4138     bool Diagnosed = DiagnoseAssignmentResult(
4139         ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(),
4140         ToType, From->getType(), From, Action);
4141     assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed;
4142     return ExprError();
4143   }
4144 
4145   // Everything went well.
4146   return From;
4147 }
4148 
4149 /// PerformImplicitConversion - Perform an implicit conversion of the
4150 /// expression From to the type ToType by following the standard
4151 /// conversion sequence SCS. Returns the converted
4152 /// expression. Flavor is the context in which we're performing this
4153 /// conversion, for use in error messages.
4154 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,const StandardConversionSequence & SCS,AssignmentAction Action,CheckedConversionKind CCK)4155 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4156                                 const StandardConversionSequence& SCS,
4157                                 AssignmentAction Action,
4158                                 CheckedConversionKind CCK) {
4159   bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
4160 
4161   // Overall FIXME: we are recomputing too many types here and doing far too
4162   // much extra work. What this means is that we need to keep track of more
4163   // information that is computed when we try the implicit conversion initially,
4164   // so that we don't need to recompute anything here.
4165   QualType FromType = From->getType();
4166 
4167   if (SCS.CopyConstructor) {
4168     // FIXME: When can ToType be a reference type?
4169     assert(!ToType->isReferenceType());
4170     if (SCS.Second == ICK_Derived_To_Base) {
4171       SmallVector<Expr*, 8> ConstructorArgs;
4172       if (CompleteConstructorCall(
4173               cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From,
4174               /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs))
4175         return ExprError();
4176       return BuildCXXConstructExpr(
4177           /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4178           SCS.FoundCopyConstructor, SCS.CopyConstructor,
4179           ConstructorArgs, /*HadMultipleCandidates*/ false,
4180           /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4181           CXXConstructExpr::CK_Complete, SourceRange());
4182     }
4183     return BuildCXXConstructExpr(
4184         /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4185         SCS.FoundCopyConstructor, SCS.CopyConstructor,
4186         From, /*HadMultipleCandidates*/ false,
4187         /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4188         CXXConstructExpr::CK_Complete, SourceRange());
4189   }
4190 
4191   // Resolve overloaded function references.
4192   if (Context.hasSameType(FromType, Context.OverloadTy)) {
4193     DeclAccessPair Found;
4194     FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
4195                                                           true, Found);
4196     if (!Fn)
4197       return ExprError();
4198 
4199     if (DiagnoseUseOfDecl(Fn, From->getBeginLoc()))
4200       return ExprError();
4201 
4202     From = FixOverloadedFunctionReference(From, Found, Fn);
4203     FromType = From->getType();
4204   }
4205 
4206   // If we're converting to an atomic type, first convert to the corresponding
4207   // non-atomic type.
4208   QualType ToAtomicType;
4209   if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
4210     ToAtomicType = ToType;
4211     ToType = ToAtomic->getValueType();
4212   }
4213 
4214   QualType InitialFromType = FromType;
4215   // Perform the first implicit conversion.
4216   switch (SCS.First) {
4217   case ICK_Identity:
4218     if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
4219       FromType = FromAtomic->getValueType().getUnqualifiedType();
4220       From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
4221                                       From, /*BasePath=*/nullptr, VK_PRValue,
4222                                       FPOptionsOverride());
4223     }
4224     break;
4225 
4226   case ICK_Lvalue_To_Rvalue: {
4227     assert(From->getObjectKind() != OK_ObjCProperty);
4228     ExprResult FromRes = DefaultLvalueConversion(From);
4229     if (FromRes.isInvalid())
4230       return ExprError();
4231 
4232     From = FromRes.get();
4233     FromType = From->getType();
4234     break;
4235   }
4236 
4237   case ICK_Array_To_Pointer:
4238     FromType = Context.getArrayDecayedType(FromType);
4239     From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue,
4240                              /*BasePath=*/nullptr, CCK)
4241                .get();
4242     break;
4243 
4244   case ICK_Function_To_Pointer:
4245     FromType = Context.getPointerType(FromType);
4246     From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
4247                              VK_PRValue, /*BasePath=*/nullptr, CCK)
4248                .get();
4249     break;
4250 
4251   default:
4252     llvm_unreachable("Improper first standard conversion");
4253   }
4254 
4255   // Perform the second implicit conversion
4256   switch (SCS.Second) {
4257   case ICK_Identity:
4258     // C++ [except.spec]p5:
4259     //   [For] assignment to and initialization of pointers to functions,
4260     //   pointers to member functions, and references to functions: the
4261     //   target entity shall allow at least the exceptions allowed by the
4262     //   source value in the assignment or initialization.
4263     switch (Action) {
4264     case AA_Assigning:
4265     case AA_Initializing:
4266       // Note, function argument passing and returning are initialization.
4267     case AA_Passing:
4268     case AA_Returning:
4269     case AA_Sending:
4270     case AA_Passing_CFAudited:
4271       if (CheckExceptionSpecCompatibility(From, ToType))
4272         return ExprError();
4273       break;
4274 
4275     case AA_Casting:
4276     case AA_Converting:
4277       // Casts and implicit conversions are not initialization, so are not
4278       // checked for exception specification mismatches.
4279       break;
4280     }
4281     // Nothing else to do.
4282     break;
4283 
4284   case ICK_Integral_Promotion:
4285   case ICK_Integral_Conversion:
4286     if (ToType->isBooleanType()) {
4287       assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
4288              SCS.Second == ICK_Integral_Promotion &&
4289              "only enums with fixed underlying type can promote to bool");
4290       From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, VK_PRValue,
4291                                /*BasePath=*/nullptr, CCK)
4292                  .get();
4293     } else {
4294       From = ImpCastExprToType(From, ToType, CK_IntegralCast, VK_PRValue,
4295                                /*BasePath=*/nullptr, CCK)
4296                  .get();
4297     }
4298     break;
4299 
4300   case ICK_Floating_Promotion:
4301   case ICK_Floating_Conversion:
4302     From = ImpCastExprToType(From, ToType, CK_FloatingCast, VK_PRValue,
4303                              /*BasePath=*/nullptr, CCK)
4304                .get();
4305     break;
4306 
4307   case ICK_Complex_Promotion:
4308   case ICK_Complex_Conversion: {
4309     QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType();
4310     QualType ToEl = ToType->castAs<ComplexType>()->getElementType();
4311     CastKind CK;
4312     if (FromEl->isRealFloatingType()) {
4313       if (ToEl->isRealFloatingType())
4314         CK = CK_FloatingComplexCast;
4315       else
4316         CK = CK_FloatingComplexToIntegralComplex;
4317     } else if (ToEl->isRealFloatingType()) {
4318       CK = CK_IntegralComplexToFloatingComplex;
4319     } else {
4320       CK = CK_IntegralComplexCast;
4321     }
4322     From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr,
4323                              CCK)
4324                .get();
4325     break;
4326   }
4327 
4328   case ICK_Floating_Integral:
4329     if (ToType->isRealFloatingType())
4330       From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, VK_PRValue,
4331                                /*BasePath=*/nullptr, CCK)
4332                  .get();
4333     else
4334       From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, VK_PRValue,
4335                                /*BasePath=*/nullptr, CCK)
4336                  .get();
4337     break;
4338 
4339   case ICK_Compatible_Conversion:
4340     From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(),
4341                              /*BasePath=*/nullptr, CCK).get();
4342     break;
4343 
4344   case ICK_Writeback_Conversion:
4345   case ICK_Pointer_Conversion: {
4346     if (SCS.IncompatibleObjC && Action != AA_Casting) {
4347       // Diagnose incompatible Objective-C conversions
4348       if (Action == AA_Initializing || Action == AA_Assigning)
4349         Diag(From->getBeginLoc(),
4350              diag::ext_typecheck_convert_incompatible_pointer)
4351             << ToType << From->getType() << Action << From->getSourceRange()
4352             << 0;
4353       else
4354         Diag(From->getBeginLoc(),
4355              diag::ext_typecheck_convert_incompatible_pointer)
4356             << From->getType() << ToType << Action << From->getSourceRange()
4357             << 0;
4358 
4359       if (From->getType()->isObjCObjectPointerType() &&
4360           ToType->isObjCObjectPointerType())
4361         EmitRelatedResultTypeNote(From);
4362     } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
4363                !CheckObjCARCUnavailableWeakConversion(ToType,
4364                                                       From->getType())) {
4365       if (Action == AA_Initializing)
4366         Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign);
4367       else
4368         Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable)
4369             << (Action == AA_Casting) << From->getType() << ToType
4370             << From->getSourceRange();
4371     }
4372 
4373     // Defer address space conversion to the third conversion.
4374     QualType FromPteeType = From->getType()->getPointeeType();
4375     QualType ToPteeType = ToType->getPointeeType();
4376     QualType NewToType = ToType;
4377     if (!FromPteeType.isNull() && !ToPteeType.isNull() &&
4378         FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) {
4379       NewToType = Context.removeAddrSpaceQualType(ToPteeType);
4380       NewToType = Context.getAddrSpaceQualType(NewToType,
4381                                                FromPteeType.getAddressSpace());
4382       if (ToType->isObjCObjectPointerType())
4383         NewToType = Context.getObjCObjectPointerType(NewToType);
4384       else if (ToType->isBlockPointerType())
4385         NewToType = Context.getBlockPointerType(NewToType);
4386       else
4387         NewToType = Context.getPointerType(NewToType);
4388     }
4389 
4390     CastKind Kind;
4391     CXXCastPath BasePath;
4392     if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle))
4393       return ExprError();
4394 
4395     // Make sure we extend blocks if necessary.
4396     // FIXME: doing this here is really ugly.
4397     if (Kind == CK_BlockPointerToObjCPointerCast) {
4398       ExprResult E = From;
4399       (void) PrepareCastToObjCObjectPointer(E);
4400       From = E.get();
4401     }
4402     if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
4403       CheckObjCConversion(SourceRange(), NewToType, From, CCK);
4404     From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK)
4405                .get();
4406     break;
4407   }
4408 
4409   case ICK_Pointer_Member: {
4410     CastKind Kind;
4411     CXXCastPath BasePath;
4412     if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
4413       return ExprError();
4414     if (CheckExceptionSpecCompatibility(From, ToType))
4415       return ExprError();
4416 
4417     // We may not have been able to figure out what this member pointer resolved
4418     // to up until this exact point.  Attempt to lock-in it's inheritance model.
4419     if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4420       (void)isCompleteType(From->getExprLoc(), From->getType());
4421       (void)isCompleteType(From->getExprLoc(), ToType);
4422     }
4423 
4424     From =
4425         ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get();
4426     break;
4427   }
4428 
4429   case ICK_Boolean_Conversion:
4430     // Perform half-to-boolean conversion via float.
4431     if (From->getType()->isHalfType()) {
4432       From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
4433       FromType = Context.FloatTy;
4434     }
4435 
4436     From = ImpCastExprToType(From, Context.BoolTy,
4437                              ScalarTypeToBooleanCastKind(FromType), VK_PRValue,
4438                              /*BasePath=*/nullptr, CCK)
4439                .get();
4440     break;
4441 
4442   case ICK_Derived_To_Base: {
4443     CXXCastPath BasePath;
4444     if (CheckDerivedToBaseConversion(
4445             From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(),
4446             From->getSourceRange(), &BasePath, CStyle))
4447       return ExprError();
4448 
4449     From = ImpCastExprToType(From, ToType.getNonReferenceType(),
4450                       CK_DerivedToBase, From->getValueKind(),
4451                       &BasePath, CCK).get();
4452     break;
4453   }
4454 
4455   case ICK_Vector_Conversion:
4456     From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4457                              /*BasePath=*/nullptr, CCK)
4458                .get();
4459     break;
4460 
4461   case ICK_SVE_Vector_Conversion:
4462     From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4463                              /*BasePath=*/nullptr, CCK)
4464                .get();
4465     break;
4466 
4467   case ICK_Vector_Splat: {
4468     // Vector splat from any arithmetic type to a vector.
4469     Expr *Elem = prepareVectorSplat(ToType, From).get();
4470     From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue,
4471                              /*BasePath=*/nullptr, CCK)
4472                .get();
4473     break;
4474   }
4475 
4476   case ICK_Complex_Real:
4477     // Case 1.  x -> _Complex y
4478     if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
4479       QualType ElType = ToComplex->getElementType();
4480       bool isFloatingComplex = ElType->isRealFloatingType();
4481 
4482       // x -> y
4483       if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
4484         // do nothing
4485       } else if (From->getType()->isRealFloatingType()) {
4486         From = ImpCastExprToType(From, ElType,
4487                 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
4488       } else {
4489         assert(From->getType()->isIntegerType());
4490         From = ImpCastExprToType(From, ElType,
4491                 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
4492       }
4493       // y -> _Complex y
4494       From = ImpCastExprToType(From, ToType,
4495                    isFloatingComplex ? CK_FloatingRealToComplex
4496                                      : CK_IntegralRealToComplex).get();
4497 
4498     // Case 2.  _Complex x -> y
4499     } else {
4500       auto *FromComplex = From->getType()->castAs<ComplexType>();
4501       QualType ElType = FromComplex->getElementType();
4502       bool isFloatingComplex = ElType->isRealFloatingType();
4503 
4504       // _Complex x -> x
4505       From = ImpCastExprToType(From, ElType,
4506                                isFloatingComplex ? CK_FloatingComplexToReal
4507                                                  : CK_IntegralComplexToReal,
4508                                VK_PRValue, /*BasePath=*/nullptr, CCK)
4509                  .get();
4510 
4511       // x -> y
4512       if (Context.hasSameUnqualifiedType(ElType, ToType)) {
4513         // do nothing
4514       } else if (ToType->isRealFloatingType()) {
4515         From = ImpCastExprToType(From, ToType,
4516                                  isFloatingComplex ? CK_FloatingCast
4517                                                    : CK_IntegralToFloating,
4518                                  VK_PRValue, /*BasePath=*/nullptr, CCK)
4519                    .get();
4520       } else {
4521         assert(ToType->isIntegerType());
4522         From = ImpCastExprToType(From, ToType,
4523                                  isFloatingComplex ? CK_FloatingToIntegral
4524                                                    : CK_IntegralCast,
4525                                  VK_PRValue, /*BasePath=*/nullptr, CCK)
4526                    .get();
4527       }
4528     }
4529     break;
4530 
4531   case ICK_Block_Pointer_Conversion: {
4532     LangAS AddrSpaceL =
4533         ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4534     LangAS AddrSpaceR =
4535         FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4536     assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) &&
4537            "Invalid cast");
4538     CastKind Kind =
4539         AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
4540     From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind,
4541                              VK_PRValue, /*BasePath=*/nullptr, CCK)
4542                .get();
4543     break;
4544   }
4545 
4546   case ICK_TransparentUnionConversion: {
4547     ExprResult FromRes = From;
4548     Sema::AssignConvertType ConvTy =
4549       CheckTransparentUnionArgumentConstraints(ToType, FromRes);
4550     if (FromRes.isInvalid())
4551       return ExprError();
4552     From = FromRes.get();
4553     assert ((ConvTy == Sema::Compatible) &&
4554             "Improper transparent union conversion");
4555     (void)ConvTy;
4556     break;
4557   }
4558 
4559   case ICK_Zero_Event_Conversion:
4560   case ICK_Zero_Queue_Conversion:
4561     From = ImpCastExprToType(From, ToType,
4562                              CK_ZeroToOCLOpaqueType,
4563                              From->getValueKind()).get();
4564     break;
4565 
4566   case ICK_Lvalue_To_Rvalue:
4567   case ICK_Array_To_Pointer:
4568   case ICK_Function_To_Pointer:
4569   case ICK_Function_Conversion:
4570   case ICK_Qualification:
4571   case ICK_Num_Conversion_Kinds:
4572   case ICK_C_Only_Conversion:
4573   case ICK_Incompatible_Pointer_Conversion:
4574     llvm_unreachable("Improper second standard conversion");
4575   }
4576 
4577   switch (SCS.Third) {
4578   case ICK_Identity:
4579     // Nothing to do.
4580     break;
4581 
4582   case ICK_Function_Conversion:
4583     // If both sides are functions (or pointers/references to them), there could
4584     // be incompatible exception declarations.
4585     if (CheckExceptionSpecCompatibility(From, ToType))
4586       return ExprError();
4587 
4588     From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue,
4589                              /*BasePath=*/nullptr, CCK)
4590                .get();
4591     break;
4592 
4593   case ICK_Qualification: {
4594     ExprValueKind VK = From->getValueKind();
4595     CastKind CK = CK_NoOp;
4596 
4597     if (ToType->isReferenceType() &&
4598         ToType->getPointeeType().getAddressSpace() !=
4599             From->getType().getAddressSpace())
4600       CK = CK_AddressSpaceConversion;
4601 
4602     if (ToType->isPointerType() &&
4603         ToType->getPointeeType().getAddressSpace() !=
4604             From->getType()->getPointeeType().getAddressSpace())
4605       CK = CK_AddressSpaceConversion;
4606 
4607     From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK,
4608                              /*BasePath=*/nullptr, CCK)
4609                .get();
4610 
4611     if (SCS.DeprecatedStringLiteralToCharPtr &&
4612         !getLangOpts().WritableStrings) {
4613       Diag(From->getBeginLoc(),
4614            getLangOpts().CPlusPlus11
4615                ? diag::ext_deprecated_string_literal_conversion
4616                : diag::warn_deprecated_string_literal_conversion)
4617           << ToType.getNonReferenceType();
4618     }
4619 
4620     break;
4621   }
4622 
4623   default:
4624     llvm_unreachable("Improper third standard conversion");
4625   }
4626 
4627   // If this conversion sequence involved a scalar -> atomic conversion, perform
4628   // that conversion now.
4629   if (!ToAtomicType.isNull()) {
4630     assert(Context.hasSameType(
4631         ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
4632     From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
4633                              VK_PRValue, nullptr, CCK)
4634                .get();
4635   }
4636 
4637   // Materialize a temporary if we're implicitly converting to a reference
4638   // type. This is not required by the C++ rules but is necessary to maintain
4639   // AST invariants.
4640   if (ToType->isReferenceType() && From->isPRValue()) {
4641     ExprResult Res = TemporaryMaterializationConversion(From);
4642     if (Res.isInvalid())
4643       return ExprError();
4644     From = Res.get();
4645   }
4646 
4647   // If this conversion sequence succeeded and involved implicitly converting a
4648   // _Nullable type to a _Nonnull one, complain.
4649   if (!isCast(CCK))
4650     diagnoseNullableToNonnullConversion(ToType, InitialFromType,
4651                                         From->getBeginLoc());
4652 
4653   return From;
4654 }
4655 
4656 /// Check the completeness of a type in a unary type trait.
4657 ///
4658 /// If the particular type trait requires a complete type, tries to complete
4659 /// it. If completing the type fails, a diagnostic is emitted and false
4660 /// returned. If completing the type succeeds or no completion was required,
4661 /// returns true.
CheckUnaryTypeTraitTypeCompleteness(Sema & S,TypeTrait UTT,SourceLocation Loc,QualType ArgTy)4662 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
4663                                                 SourceLocation Loc,
4664                                                 QualType ArgTy) {
4665   // C++0x [meta.unary.prop]p3:
4666   //   For all of the class templates X declared in this Clause, instantiating
4667   //   that template with a template argument that is a class template
4668   //   specialization may result in the implicit instantiation of the template
4669   //   argument if and only if the semantics of X require that the argument
4670   //   must be a complete type.
4671   // We apply this rule to all the type trait expressions used to implement
4672   // these class templates. We also try to follow any GCC documented behavior
4673   // in these expressions to ensure portability of standard libraries.
4674   switch (UTT) {
4675   default: llvm_unreachable("not a UTT");
4676     // is_complete_type somewhat obviously cannot require a complete type.
4677   case UTT_IsCompleteType:
4678     // Fall-through
4679 
4680     // These traits are modeled on the type predicates in C++0x
4681     // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
4682     // requiring a complete type, as whether or not they return true cannot be
4683     // impacted by the completeness of the type.
4684   case UTT_IsVoid:
4685   case UTT_IsIntegral:
4686   case UTT_IsFloatingPoint:
4687   case UTT_IsArray:
4688   case UTT_IsPointer:
4689   case UTT_IsLvalueReference:
4690   case UTT_IsRvalueReference:
4691   case UTT_IsMemberFunctionPointer:
4692   case UTT_IsMemberObjectPointer:
4693   case UTT_IsEnum:
4694   case UTT_IsUnion:
4695   case UTT_IsClass:
4696   case UTT_IsFunction:
4697   case UTT_IsReference:
4698   case UTT_IsArithmetic:
4699   case UTT_IsFundamental:
4700   case UTT_IsObject:
4701   case UTT_IsScalar:
4702   case UTT_IsCompound:
4703   case UTT_IsMemberPointer:
4704     // Fall-through
4705 
4706     // These traits are modeled on type predicates in C++0x [meta.unary.prop]
4707     // which requires some of its traits to have the complete type. However,
4708     // the completeness of the type cannot impact these traits' semantics, and
4709     // so they don't require it. This matches the comments on these traits in
4710     // Table 49.
4711   case UTT_IsConst:
4712   case UTT_IsVolatile:
4713   case UTT_IsSigned:
4714   case UTT_IsUnsigned:
4715 
4716   // This type trait always returns false, checking the type is moot.
4717   case UTT_IsInterfaceClass:
4718     return true;
4719 
4720   // C++14 [meta.unary.prop]:
4721   //   If T is a non-union class type, T shall be a complete type.
4722   case UTT_IsEmpty:
4723   case UTT_IsPolymorphic:
4724   case UTT_IsAbstract:
4725     if (const auto *RD = ArgTy->getAsCXXRecordDecl())
4726       if (!RD->isUnion())
4727         return !S.RequireCompleteType(
4728             Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4729     return true;
4730 
4731   // C++14 [meta.unary.prop]:
4732   //   If T is a class type, T shall be a complete type.
4733   case UTT_IsFinal:
4734   case UTT_IsSealed:
4735     if (ArgTy->getAsCXXRecordDecl())
4736       return !S.RequireCompleteType(
4737           Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4738     return true;
4739 
4740   // C++1z [meta.unary.prop]:
4741   //   remove_all_extents_t<T> shall be a complete type or cv void.
4742   case UTT_IsAggregate:
4743   case UTT_IsTrivial:
4744   case UTT_IsTriviallyCopyable:
4745   case UTT_IsStandardLayout:
4746   case UTT_IsPOD:
4747   case UTT_IsLiteral:
4748   // Per the GCC type traits documentation, T shall be a complete type, cv void,
4749   // or an array of unknown bound. But GCC actually imposes the same constraints
4750   // as above.
4751   case UTT_HasNothrowAssign:
4752   case UTT_HasNothrowMoveAssign:
4753   case UTT_HasNothrowConstructor:
4754   case UTT_HasNothrowCopy:
4755   case UTT_HasTrivialAssign:
4756   case UTT_HasTrivialMoveAssign:
4757   case UTT_HasTrivialDefaultConstructor:
4758   case UTT_HasTrivialMoveConstructor:
4759   case UTT_HasTrivialCopy:
4760   case UTT_HasTrivialDestructor:
4761   case UTT_HasVirtualDestructor:
4762     ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
4763     LLVM_FALLTHROUGH;
4764 
4765   // C++1z [meta.unary.prop]:
4766   //   T shall be a complete type, cv void, or an array of unknown bound.
4767   case UTT_IsDestructible:
4768   case UTT_IsNothrowDestructible:
4769   case UTT_IsTriviallyDestructible:
4770   case UTT_HasUniqueObjectRepresentations:
4771     if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
4772       return true;
4773 
4774     return !S.RequireCompleteType(
4775         Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4776   }
4777 }
4778 
HasNoThrowOperator(const RecordType * RT,OverloadedOperatorKind Op,Sema & Self,SourceLocation KeyLoc,ASTContext & C,bool (CXXRecordDecl::* HasTrivial)()const,bool (CXXRecordDecl::* HasNonTrivial)()const,bool (CXXMethodDecl::* IsDesiredOp)()const)4779 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
4780                                Sema &Self, SourceLocation KeyLoc, ASTContext &C,
4781                                bool (CXXRecordDecl::*HasTrivial)() const,
4782                                bool (CXXRecordDecl::*HasNonTrivial)() const,
4783                                bool (CXXMethodDecl::*IsDesiredOp)() const)
4784 {
4785   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4786   if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
4787     return true;
4788 
4789   DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
4790   DeclarationNameInfo NameInfo(Name, KeyLoc);
4791   LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
4792   if (Self.LookupQualifiedName(Res, RD)) {
4793     bool FoundOperator = false;
4794     Res.suppressDiagnostics();
4795     for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
4796          Op != OpEnd; ++Op) {
4797       if (isa<FunctionTemplateDecl>(*Op))
4798         continue;
4799 
4800       CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
4801       if((Operator->*IsDesiredOp)()) {
4802         FoundOperator = true;
4803         auto *CPT = Operator->getType()->castAs<FunctionProtoType>();
4804         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4805         if (!CPT || !CPT->isNothrow())
4806           return false;
4807       }
4808     }
4809     return FoundOperator;
4810   }
4811   return false;
4812 }
4813 
EvaluateUnaryTypeTrait(Sema & Self,TypeTrait UTT,SourceLocation KeyLoc,QualType T)4814 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
4815                                    SourceLocation KeyLoc, QualType T) {
4816   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
4817 
4818   ASTContext &C = Self.Context;
4819   switch(UTT) {
4820   default: llvm_unreachable("not a UTT");
4821     // Type trait expressions corresponding to the primary type category
4822     // predicates in C++0x [meta.unary.cat].
4823   case UTT_IsVoid:
4824     return T->isVoidType();
4825   case UTT_IsIntegral:
4826     return T->isIntegralType(C);
4827   case UTT_IsFloatingPoint:
4828     return T->isFloatingType();
4829   case UTT_IsArray:
4830     return T->isArrayType();
4831   case UTT_IsPointer:
4832     return T->isAnyPointerType();
4833   case UTT_IsLvalueReference:
4834     return T->isLValueReferenceType();
4835   case UTT_IsRvalueReference:
4836     return T->isRValueReferenceType();
4837   case UTT_IsMemberFunctionPointer:
4838     return T->isMemberFunctionPointerType();
4839   case UTT_IsMemberObjectPointer:
4840     return T->isMemberDataPointerType();
4841   case UTT_IsEnum:
4842     return T->isEnumeralType();
4843   case UTT_IsUnion:
4844     return T->isUnionType();
4845   case UTT_IsClass:
4846     return T->isClassType() || T->isStructureType() || T->isInterfaceType();
4847   case UTT_IsFunction:
4848     return T->isFunctionType();
4849 
4850     // Type trait expressions which correspond to the convenient composition
4851     // predicates in C++0x [meta.unary.comp].
4852   case UTT_IsReference:
4853     return T->isReferenceType();
4854   case UTT_IsArithmetic:
4855     return T->isArithmeticType() && !T->isEnumeralType();
4856   case UTT_IsFundamental:
4857     return T->isFundamentalType();
4858   case UTT_IsObject:
4859     return T->isObjectType();
4860   case UTT_IsScalar:
4861     // Note: semantic analysis depends on Objective-C lifetime types to be
4862     // considered scalar types. However, such types do not actually behave
4863     // like scalar types at run time (since they may require retain/release
4864     // operations), so we report them as non-scalar.
4865     if (T->isObjCLifetimeType()) {
4866       switch (T.getObjCLifetime()) {
4867       case Qualifiers::OCL_None:
4868       case Qualifiers::OCL_ExplicitNone:
4869         return true;
4870 
4871       case Qualifiers::OCL_Strong:
4872       case Qualifiers::OCL_Weak:
4873       case Qualifiers::OCL_Autoreleasing:
4874         return false;
4875       }
4876     }
4877 
4878     return T->isScalarType();
4879   case UTT_IsCompound:
4880     return T->isCompoundType();
4881   case UTT_IsMemberPointer:
4882     return T->isMemberPointerType();
4883 
4884     // Type trait expressions which correspond to the type property predicates
4885     // in C++0x [meta.unary.prop].
4886   case UTT_IsConst:
4887     return T.isConstQualified();
4888   case UTT_IsVolatile:
4889     return T.isVolatileQualified();
4890   case UTT_IsTrivial:
4891     return T.isTrivialType(C);
4892   case UTT_IsTriviallyCopyable:
4893     return T.isTriviallyCopyableType(C);
4894   case UTT_IsStandardLayout:
4895     return T->isStandardLayoutType();
4896   case UTT_IsPOD:
4897     return T.isPODType(C);
4898   case UTT_IsLiteral:
4899     return T->isLiteralType(C);
4900   case UTT_IsEmpty:
4901     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4902       return !RD->isUnion() && RD->isEmpty();
4903     return false;
4904   case UTT_IsPolymorphic:
4905     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4906       return !RD->isUnion() && RD->isPolymorphic();
4907     return false;
4908   case UTT_IsAbstract:
4909     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4910       return !RD->isUnion() && RD->isAbstract();
4911     return false;
4912   case UTT_IsAggregate:
4913     // Report vector extensions and complex types as aggregates because they
4914     // support aggregate initialization. GCC mirrors this behavior for vectors
4915     // but not _Complex.
4916     return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
4917            T->isAnyComplexType();
4918   // __is_interface_class only returns true when CL is invoked in /CLR mode and
4919   // even then only when it is used with the 'interface struct ...' syntax
4920   // Clang doesn't support /CLR which makes this type trait moot.
4921   case UTT_IsInterfaceClass:
4922     return false;
4923   case UTT_IsFinal:
4924   case UTT_IsSealed:
4925     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4926       return RD->hasAttr<FinalAttr>();
4927     return false;
4928   case UTT_IsSigned:
4929     // Enum types should always return false.
4930     // Floating points should always return true.
4931     return T->isFloatingType() ||
4932            (T->isSignedIntegerType() && !T->isEnumeralType());
4933   case UTT_IsUnsigned:
4934     // Enum types should always return false.
4935     return T->isUnsignedIntegerType() && !T->isEnumeralType();
4936 
4937     // Type trait expressions which query classes regarding their construction,
4938     // destruction, and copying. Rather than being based directly on the
4939     // related type predicates in the standard, they are specified by both
4940     // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
4941     // specifications.
4942     //
4943     //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
4944     //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4945     //
4946     // Note that these builtins do not behave as documented in g++: if a class
4947     // has both a trivial and a non-trivial special member of a particular kind,
4948     // they return false! For now, we emulate this behavior.
4949     // FIXME: This appears to be a g++ bug: more complex cases reveal that it
4950     // does not correctly compute triviality in the presence of multiple special
4951     // members of the same kind. Revisit this once the g++ bug is fixed.
4952   case UTT_HasTrivialDefaultConstructor:
4953     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4954     //   If __is_pod (type) is true then the trait is true, else if type is
4955     //   a cv class or union type (or array thereof) with a trivial default
4956     //   constructor ([class.ctor]) then the trait is true, else it is false.
4957     if (T.isPODType(C))
4958       return true;
4959     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4960       return RD->hasTrivialDefaultConstructor() &&
4961              !RD->hasNonTrivialDefaultConstructor();
4962     return false;
4963   case UTT_HasTrivialMoveConstructor:
4964     //  This trait is implemented by MSVC 2012 and needed to parse the
4965     //  standard library headers. Specifically this is used as the logic
4966     //  behind std::is_trivially_move_constructible (20.9.4.3).
4967     if (T.isPODType(C))
4968       return true;
4969     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4970       return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
4971     return false;
4972   case UTT_HasTrivialCopy:
4973     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4974     //   If __is_pod (type) is true or type is a reference type then
4975     //   the trait is true, else if type is a cv class or union type
4976     //   with a trivial copy constructor ([class.copy]) then the trait
4977     //   is true, else it is false.
4978     if (T.isPODType(C) || T->isReferenceType())
4979       return true;
4980     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4981       return RD->hasTrivialCopyConstructor() &&
4982              !RD->hasNonTrivialCopyConstructor();
4983     return false;
4984   case UTT_HasTrivialMoveAssign:
4985     //  This trait is implemented by MSVC 2012 and needed to parse the
4986     //  standard library headers. Specifically it is used as the logic
4987     //  behind std::is_trivially_move_assignable (20.9.4.3)
4988     if (T.isPODType(C))
4989       return true;
4990     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4991       return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
4992     return false;
4993   case UTT_HasTrivialAssign:
4994     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4995     //   If type is const qualified or is a reference type then the
4996     //   trait is false. Otherwise if __is_pod (type) is true then the
4997     //   trait is true, else if type is a cv class or union type with
4998     //   a trivial copy assignment ([class.copy]) then the trait is
4999     //   true, else it is false.
5000     // Note: the const and reference restrictions are interesting,
5001     // given that const and reference members don't prevent a class
5002     // from having a trivial copy assignment operator (but do cause
5003     // errors if the copy assignment operator is actually used, q.v.
5004     // [class.copy]p12).
5005 
5006     if (T.isConstQualified())
5007       return false;
5008     if (T.isPODType(C))
5009       return true;
5010     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5011       return RD->hasTrivialCopyAssignment() &&
5012              !RD->hasNonTrivialCopyAssignment();
5013     return false;
5014   case UTT_IsDestructible:
5015   case UTT_IsTriviallyDestructible:
5016   case UTT_IsNothrowDestructible:
5017     // C++14 [meta.unary.prop]:
5018     //   For reference types, is_destructible<T>::value is true.
5019     if (T->isReferenceType())
5020       return true;
5021 
5022     // Objective-C++ ARC: autorelease types don't require destruction.
5023     if (T->isObjCLifetimeType() &&
5024         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5025       return true;
5026 
5027     // C++14 [meta.unary.prop]:
5028     //   For incomplete types and function types, is_destructible<T>::value is
5029     //   false.
5030     if (T->isIncompleteType() || T->isFunctionType())
5031       return false;
5032 
5033     // A type that requires destruction (via a non-trivial destructor or ARC
5034     // lifetime semantics) is not trivially-destructible.
5035     if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType())
5036       return false;
5037 
5038     // C++14 [meta.unary.prop]:
5039     //   For object types and given U equal to remove_all_extents_t<T>, if the
5040     //   expression std::declval<U&>().~U() is well-formed when treated as an
5041     //   unevaluated operand (Clause 5), then is_destructible<T>::value is true
5042     if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5043       CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
5044       if (!Destructor)
5045         return false;
5046       //  C++14 [dcl.fct.def.delete]p2:
5047       //    A program that refers to a deleted function implicitly or
5048       //    explicitly, other than to declare it, is ill-formed.
5049       if (Destructor->isDeleted())
5050         return false;
5051       if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
5052         return false;
5053       if (UTT == UTT_IsNothrowDestructible) {
5054         auto *CPT = Destructor->getType()->castAs<FunctionProtoType>();
5055         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5056         if (!CPT || !CPT->isNothrow())
5057           return false;
5058       }
5059     }
5060     return true;
5061 
5062   case UTT_HasTrivialDestructor:
5063     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5064     //   If __is_pod (type) is true or type is a reference type
5065     //   then the trait is true, else if type is a cv class or union
5066     //   type (or array thereof) with a trivial destructor
5067     //   ([class.dtor]) then the trait is true, else it is
5068     //   false.
5069     if (T.isPODType(C) || T->isReferenceType())
5070       return true;
5071 
5072     // Objective-C++ ARC: autorelease types don't require destruction.
5073     if (T->isObjCLifetimeType() &&
5074         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5075       return true;
5076 
5077     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5078       return RD->hasTrivialDestructor();
5079     return false;
5080   // TODO: Propagate nothrowness for implicitly declared special members.
5081   case UTT_HasNothrowAssign:
5082     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5083     //   If type is const qualified or is a reference type then the
5084     //   trait is false. Otherwise if __has_trivial_assign (type)
5085     //   is true then the trait is true, else if type is a cv class
5086     //   or union type with copy assignment operators that are known
5087     //   not to throw an exception then the trait is true, else it is
5088     //   false.
5089     if (C.getBaseElementType(T).isConstQualified())
5090       return false;
5091     if (T->isReferenceType())
5092       return false;
5093     if (T.isPODType(C) || T->isObjCLifetimeType())
5094       return true;
5095 
5096     if (const RecordType *RT = T->getAs<RecordType>())
5097       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5098                                 &CXXRecordDecl::hasTrivialCopyAssignment,
5099                                 &CXXRecordDecl::hasNonTrivialCopyAssignment,
5100                                 &CXXMethodDecl::isCopyAssignmentOperator);
5101     return false;
5102   case UTT_HasNothrowMoveAssign:
5103     //  This trait is implemented by MSVC 2012 and needed to parse the
5104     //  standard library headers. Specifically this is used as the logic
5105     //  behind std::is_nothrow_move_assignable (20.9.4.3).
5106     if (T.isPODType(C))
5107       return true;
5108 
5109     if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
5110       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5111                                 &CXXRecordDecl::hasTrivialMoveAssignment,
5112                                 &CXXRecordDecl::hasNonTrivialMoveAssignment,
5113                                 &CXXMethodDecl::isMoveAssignmentOperator);
5114     return false;
5115   case UTT_HasNothrowCopy:
5116     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5117     //   If __has_trivial_copy (type) is true then the trait is true, else
5118     //   if type is a cv class or union type with copy constructors that are
5119     //   known not to throw an exception then the trait is true, else it is
5120     //   false.
5121     if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
5122       return true;
5123     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
5124       if (RD->hasTrivialCopyConstructor() &&
5125           !RD->hasNonTrivialCopyConstructor())
5126         return true;
5127 
5128       bool FoundConstructor = false;
5129       unsigned FoundTQs;
5130       for (const auto *ND : Self.LookupConstructors(RD)) {
5131         // A template constructor is never a copy constructor.
5132         // FIXME: However, it may actually be selected at the actual overload
5133         // resolution point.
5134         if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5135           continue;
5136         // UsingDecl itself is not a constructor
5137         if (isa<UsingDecl>(ND))
5138           continue;
5139         auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5140         if (Constructor->isCopyConstructor(FoundTQs)) {
5141           FoundConstructor = true;
5142           auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5143           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5144           if (!CPT)
5145             return false;
5146           // TODO: check whether evaluating default arguments can throw.
5147           // For now, we'll be conservative and assume that they can throw.
5148           if (!CPT->isNothrow() || CPT->getNumParams() > 1)
5149             return false;
5150         }
5151       }
5152 
5153       return FoundConstructor;
5154     }
5155     return false;
5156   case UTT_HasNothrowConstructor:
5157     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5158     //   If __has_trivial_constructor (type) is true then the trait is
5159     //   true, else if type is a cv class or union type (or array
5160     //   thereof) with a default constructor that is known not to
5161     //   throw an exception then the trait is true, else it is false.
5162     if (T.isPODType(C) || T->isObjCLifetimeType())
5163       return true;
5164     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5165       if (RD->hasTrivialDefaultConstructor() &&
5166           !RD->hasNonTrivialDefaultConstructor())
5167         return true;
5168 
5169       bool FoundConstructor = false;
5170       for (const auto *ND : Self.LookupConstructors(RD)) {
5171         // FIXME: In C++0x, a constructor template can be a default constructor.
5172         if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5173           continue;
5174         // UsingDecl itself is not a constructor
5175         if (isa<UsingDecl>(ND))
5176           continue;
5177         auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5178         if (Constructor->isDefaultConstructor()) {
5179           FoundConstructor = true;
5180           auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5181           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5182           if (!CPT)
5183             return false;
5184           // FIXME: check whether evaluating default arguments can throw.
5185           // For now, we'll be conservative and assume that they can throw.
5186           if (!CPT->isNothrow() || CPT->getNumParams() > 0)
5187             return false;
5188         }
5189       }
5190       return FoundConstructor;
5191     }
5192     return false;
5193   case UTT_HasVirtualDestructor:
5194     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5195     //   If type is a class type with a virtual destructor ([class.dtor])
5196     //   then the trait is true, else it is false.
5197     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5198       if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
5199         return Destructor->isVirtual();
5200     return false;
5201 
5202     // These type trait expressions are modeled on the specifications for the
5203     // Embarcadero C++0x type trait functions:
5204     //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5205   case UTT_IsCompleteType:
5206     // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
5207     //   Returns True if and only if T is a complete type at the point of the
5208     //   function call.
5209     return !T->isIncompleteType();
5210   case UTT_HasUniqueObjectRepresentations:
5211     return C.hasUniqueObjectRepresentations(T);
5212   }
5213 }
5214 
5215 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5216                                     QualType RhsT, SourceLocation KeyLoc);
5217 
evaluateTypeTrait(Sema & S,TypeTrait Kind,SourceLocation KWLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)5218 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
5219                               ArrayRef<TypeSourceInfo *> Args,
5220                               SourceLocation RParenLoc) {
5221   if (Kind <= UTT_Last)
5222     return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
5223 
5224   // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible
5225   // traits to avoid duplication.
5226   if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary)
5227     return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
5228                                    Args[1]->getType(), RParenLoc);
5229 
5230   switch (Kind) {
5231   case clang::BTT_ReferenceBindsToTemporary:
5232   case clang::TT_IsConstructible:
5233   case clang::TT_IsNothrowConstructible:
5234   case clang::TT_IsTriviallyConstructible: {
5235     // C++11 [meta.unary.prop]:
5236     //   is_trivially_constructible is defined as:
5237     //
5238     //     is_constructible<T, Args...>::value is true and the variable
5239     //     definition for is_constructible, as defined below, is known to call
5240     //     no operation that is not trivial.
5241     //
5242     //   The predicate condition for a template specialization
5243     //   is_constructible<T, Args...> shall be satisfied if and only if the
5244     //   following variable definition would be well-formed for some invented
5245     //   variable t:
5246     //
5247     //     T t(create<Args>()...);
5248     assert(!Args.empty());
5249 
5250     // Precondition: T and all types in the parameter pack Args shall be
5251     // complete types, (possibly cv-qualified) void, or arrays of
5252     // unknown bound.
5253     for (const auto *TSI : Args) {
5254       QualType ArgTy = TSI->getType();
5255       if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
5256         continue;
5257 
5258       if (S.RequireCompleteType(KWLoc, ArgTy,
5259           diag::err_incomplete_type_used_in_type_trait_expr))
5260         return false;
5261     }
5262 
5263     // Make sure the first argument is not incomplete nor a function type.
5264     QualType T = Args[0]->getType();
5265     if (T->isIncompleteType() || T->isFunctionType())
5266       return false;
5267 
5268     // Make sure the first argument is not an abstract type.
5269     CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5270     if (RD && RD->isAbstract())
5271       return false;
5272 
5273     llvm::BumpPtrAllocator OpaqueExprAllocator;
5274     SmallVector<Expr *, 2> ArgExprs;
5275     ArgExprs.reserve(Args.size() - 1);
5276     for (unsigned I = 1, N = Args.size(); I != N; ++I) {
5277       QualType ArgTy = Args[I]->getType();
5278       if (ArgTy->isObjectType() || ArgTy->isFunctionType())
5279         ArgTy = S.Context.getRValueReferenceType(ArgTy);
5280       ArgExprs.push_back(
5281           new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>())
5282               OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(),
5283                               ArgTy.getNonLValueExprType(S.Context),
5284                               Expr::getValueKindForType(ArgTy)));
5285     }
5286 
5287     // Perform the initialization in an unevaluated context within a SFINAE
5288     // trap at translation unit scope.
5289     EnterExpressionEvaluationContext Unevaluated(
5290         S, Sema::ExpressionEvaluationContext::Unevaluated);
5291     Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
5292     Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
5293     InitializedEntity To(
5294         InitializedEntity::InitializeTemporary(S.Context, Args[0]));
5295     InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
5296                                                                  RParenLoc));
5297     InitializationSequence Init(S, To, InitKind, ArgExprs);
5298     if (Init.Failed())
5299       return false;
5300 
5301     ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
5302     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5303       return false;
5304 
5305     if (Kind == clang::TT_IsConstructible)
5306       return true;
5307 
5308     if (Kind == clang::BTT_ReferenceBindsToTemporary) {
5309       if (!T->isReferenceType())
5310         return false;
5311 
5312       return !Init.isDirectReferenceBinding();
5313     }
5314 
5315     if (Kind == clang::TT_IsNothrowConstructible)
5316       return S.canThrow(Result.get()) == CT_Cannot;
5317 
5318     if (Kind == clang::TT_IsTriviallyConstructible) {
5319       // Under Objective-C ARC and Weak, if the destination has non-trivial
5320       // Objective-C lifetime, this is a non-trivial construction.
5321       if (T.getNonReferenceType().hasNonTrivialObjCLifetime())
5322         return false;
5323 
5324       // The initialization succeeded; now make sure there are no non-trivial
5325       // calls.
5326       return !Result.get()->hasNonTrivialCall(S.Context);
5327     }
5328 
5329     llvm_unreachable("unhandled type trait");
5330     return false;
5331   }
5332     default: llvm_unreachable("not a TT");
5333   }
5334 
5335   return false;
5336 }
5337 
BuildTypeTrait(TypeTrait Kind,SourceLocation KWLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)5338 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5339                                 ArrayRef<TypeSourceInfo *> Args,
5340                                 SourceLocation RParenLoc) {
5341   QualType ResultType = Context.getLogicalOperationType();
5342 
5343   if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
5344                                *this, Kind, KWLoc, Args[0]->getType()))
5345     return ExprError();
5346 
5347   bool Dependent = false;
5348   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5349     if (Args[I]->getType()->isDependentType()) {
5350       Dependent = true;
5351       break;
5352     }
5353   }
5354 
5355   bool Result = false;
5356   if (!Dependent)
5357     Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
5358 
5359   return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
5360                                RParenLoc, Result);
5361 }
5362 
ActOnTypeTrait(TypeTrait Kind,SourceLocation KWLoc,ArrayRef<ParsedType> Args,SourceLocation RParenLoc)5363 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5364                                 ArrayRef<ParsedType> Args,
5365                                 SourceLocation RParenLoc) {
5366   SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
5367   ConvertedArgs.reserve(Args.size());
5368 
5369   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5370     TypeSourceInfo *TInfo;
5371     QualType T = GetTypeFromParser(Args[I], &TInfo);
5372     if (!TInfo)
5373       TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
5374 
5375     ConvertedArgs.push_back(TInfo);
5376   }
5377 
5378   return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
5379 }
5380 
EvaluateBinaryTypeTrait(Sema & Self,TypeTrait BTT,QualType LhsT,QualType RhsT,SourceLocation KeyLoc)5381 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5382                                     QualType RhsT, SourceLocation KeyLoc) {
5383   assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
5384          "Cannot evaluate traits of dependent types");
5385 
5386   switch(BTT) {
5387   case BTT_IsBaseOf: {
5388     // C++0x [meta.rel]p2
5389     // Base is a base class of Derived without regard to cv-qualifiers or
5390     // Base and Derived are not unions and name the same class type without
5391     // regard to cv-qualifiers.
5392 
5393     const RecordType *lhsRecord = LhsT->getAs<RecordType>();
5394     const RecordType *rhsRecord = RhsT->getAs<RecordType>();
5395     if (!rhsRecord || !lhsRecord) {
5396       const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
5397       const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
5398       if (!LHSObjTy || !RHSObjTy)
5399         return false;
5400 
5401       ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
5402       ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
5403       if (!BaseInterface || !DerivedInterface)
5404         return false;
5405 
5406       if (Self.RequireCompleteType(
5407               KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr))
5408         return false;
5409 
5410       return BaseInterface->isSuperClassOf(DerivedInterface);
5411     }
5412 
5413     assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
5414              == (lhsRecord == rhsRecord));
5415 
5416     // Unions are never base classes, and never have base classes.
5417     // It doesn't matter if they are complete or not. See PR#41843
5418     if (lhsRecord && lhsRecord->getDecl()->isUnion())
5419       return false;
5420     if (rhsRecord && rhsRecord->getDecl()->isUnion())
5421       return false;
5422 
5423     if (lhsRecord == rhsRecord)
5424       return true;
5425 
5426     // C++0x [meta.rel]p2:
5427     //   If Base and Derived are class types and are different types
5428     //   (ignoring possible cv-qualifiers) then Derived shall be a
5429     //   complete type.
5430     if (Self.RequireCompleteType(KeyLoc, RhsT,
5431                           diag::err_incomplete_type_used_in_type_trait_expr))
5432       return false;
5433 
5434     return cast<CXXRecordDecl>(rhsRecord->getDecl())
5435       ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
5436   }
5437   case BTT_IsSame:
5438     return Self.Context.hasSameType(LhsT, RhsT);
5439   case BTT_TypeCompatible: {
5440     // GCC ignores cv-qualifiers on arrays for this builtin.
5441     Qualifiers LhsQuals, RhsQuals;
5442     QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
5443     QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
5444     return Self.Context.typesAreCompatible(Lhs, Rhs);
5445   }
5446   case BTT_IsConvertible:
5447   case BTT_IsConvertibleTo: {
5448     // C++0x [meta.rel]p4:
5449     //   Given the following function prototype:
5450     //
5451     //     template <class T>
5452     //       typename add_rvalue_reference<T>::type create();
5453     //
5454     //   the predicate condition for a template specialization
5455     //   is_convertible<From, To> shall be satisfied if and only if
5456     //   the return expression in the following code would be
5457     //   well-formed, including any implicit conversions to the return
5458     //   type of the function:
5459     //
5460     //     To test() {
5461     //       return create<From>();
5462     //     }
5463     //
5464     //   Access checking is performed as if in a context unrelated to To and
5465     //   From. Only the validity of the immediate context of the expression
5466     //   of the return-statement (including conversions to the return type)
5467     //   is considered.
5468     //
5469     // We model the initialization as a copy-initialization of a temporary
5470     // of the appropriate type, which for this expression is identical to the
5471     // return statement (since NRVO doesn't apply).
5472 
5473     // Functions aren't allowed to return function or array types.
5474     if (RhsT->isFunctionType() || RhsT->isArrayType())
5475       return false;
5476 
5477     // A return statement in a void function must have void type.
5478     if (RhsT->isVoidType())
5479       return LhsT->isVoidType();
5480 
5481     // A function definition requires a complete, non-abstract return type.
5482     if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
5483       return false;
5484 
5485     // Compute the result of add_rvalue_reference.
5486     if (LhsT->isObjectType() || LhsT->isFunctionType())
5487       LhsT = Self.Context.getRValueReferenceType(LhsT);
5488 
5489     // Build a fake source and destination for initialization.
5490     InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
5491     OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5492                          Expr::getValueKindForType(LhsT));
5493     Expr *FromPtr = &From;
5494     InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
5495                                                            SourceLocation()));
5496 
5497     // Perform the initialization in an unevaluated context within a SFINAE
5498     // trap at translation unit scope.
5499     EnterExpressionEvaluationContext Unevaluated(
5500         Self, Sema::ExpressionEvaluationContext::Unevaluated);
5501     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5502     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5503     InitializationSequence Init(Self, To, Kind, FromPtr);
5504     if (Init.Failed())
5505       return false;
5506 
5507     ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
5508     return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
5509   }
5510 
5511   case BTT_IsAssignable:
5512   case BTT_IsNothrowAssignable:
5513   case BTT_IsTriviallyAssignable: {
5514     // C++11 [meta.unary.prop]p3:
5515     //   is_trivially_assignable is defined as:
5516     //     is_assignable<T, U>::value is true and the assignment, as defined by
5517     //     is_assignable, is known to call no operation that is not trivial
5518     //
5519     //   is_assignable is defined as:
5520     //     The expression declval<T>() = declval<U>() is well-formed when
5521     //     treated as an unevaluated operand (Clause 5).
5522     //
5523     //   For both, T and U shall be complete types, (possibly cv-qualified)
5524     //   void, or arrays of unknown bound.
5525     if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
5526         Self.RequireCompleteType(KeyLoc, LhsT,
5527           diag::err_incomplete_type_used_in_type_trait_expr))
5528       return false;
5529     if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
5530         Self.RequireCompleteType(KeyLoc, RhsT,
5531           diag::err_incomplete_type_used_in_type_trait_expr))
5532       return false;
5533 
5534     // cv void is never assignable.
5535     if (LhsT->isVoidType() || RhsT->isVoidType())
5536       return false;
5537 
5538     // Build expressions that emulate the effect of declval<T>() and
5539     // declval<U>().
5540     if (LhsT->isObjectType() || LhsT->isFunctionType())
5541       LhsT = Self.Context.getRValueReferenceType(LhsT);
5542     if (RhsT->isObjectType() || RhsT->isFunctionType())
5543       RhsT = Self.Context.getRValueReferenceType(RhsT);
5544     OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5545                         Expr::getValueKindForType(LhsT));
5546     OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
5547                         Expr::getValueKindForType(RhsT));
5548 
5549     // Attempt the assignment in an unevaluated context within a SFINAE
5550     // trap at translation unit scope.
5551     EnterExpressionEvaluationContext Unevaluated(
5552         Self, Sema::ExpressionEvaluationContext::Unevaluated);
5553     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5554     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5555     ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
5556                                         &Rhs);
5557     if (Result.isInvalid())
5558       return false;
5559 
5560     // Treat the assignment as unused for the purpose of -Wdeprecated-volatile.
5561     Self.CheckUnusedVolatileAssignment(Result.get());
5562 
5563     if (SFINAE.hasErrorOccurred())
5564       return false;
5565 
5566     if (BTT == BTT_IsAssignable)
5567       return true;
5568 
5569     if (BTT == BTT_IsNothrowAssignable)
5570       return Self.canThrow(Result.get()) == CT_Cannot;
5571 
5572     if (BTT == BTT_IsTriviallyAssignable) {
5573       // Under Objective-C ARC and Weak, if the destination has non-trivial
5574       // Objective-C lifetime, this is a non-trivial assignment.
5575       if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime())
5576         return false;
5577 
5578       return !Result.get()->hasNonTrivialCall(Self.Context);
5579     }
5580 
5581     llvm_unreachable("unhandled type trait");
5582     return false;
5583   }
5584     default: llvm_unreachable("not a BTT");
5585   }
5586   llvm_unreachable("Unknown type trait or not implemented");
5587 }
5588 
ActOnArrayTypeTrait(ArrayTypeTrait ATT,SourceLocation KWLoc,ParsedType Ty,Expr * DimExpr,SourceLocation RParen)5589 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
5590                                      SourceLocation KWLoc,
5591                                      ParsedType Ty,
5592                                      Expr* DimExpr,
5593                                      SourceLocation RParen) {
5594   TypeSourceInfo *TSInfo;
5595   QualType T = GetTypeFromParser(Ty, &TSInfo);
5596   if (!TSInfo)
5597     TSInfo = Context.getTrivialTypeSourceInfo(T);
5598 
5599   return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
5600 }
5601 
EvaluateArrayTypeTrait(Sema & Self,ArrayTypeTrait ATT,QualType T,Expr * DimExpr,SourceLocation KeyLoc)5602 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
5603                                            QualType T, Expr *DimExpr,
5604                                            SourceLocation KeyLoc) {
5605   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
5606 
5607   switch(ATT) {
5608   case ATT_ArrayRank:
5609     if (T->isArrayType()) {
5610       unsigned Dim = 0;
5611       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5612         ++Dim;
5613         T = AT->getElementType();
5614       }
5615       return Dim;
5616     }
5617     return 0;
5618 
5619   case ATT_ArrayExtent: {
5620     llvm::APSInt Value;
5621     uint64_t Dim;
5622     if (Self.VerifyIntegerConstantExpression(
5623                 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer)
5624             .isInvalid())
5625       return 0;
5626     if (Value.isSigned() && Value.isNegative()) {
5627       Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
5628         << DimExpr->getSourceRange();
5629       return 0;
5630     }
5631     Dim = Value.getLimitedValue();
5632 
5633     if (T->isArrayType()) {
5634       unsigned D = 0;
5635       bool Matched = false;
5636       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5637         if (Dim == D) {
5638           Matched = true;
5639           break;
5640         }
5641         ++D;
5642         T = AT->getElementType();
5643       }
5644 
5645       if (Matched && T->isArrayType()) {
5646         if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
5647           return CAT->getSize().getLimitedValue();
5648       }
5649     }
5650     return 0;
5651   }
5652   }
5653   llvm_unreachable("Unknown type trait or not implemented");
5654 }
5655 
BuildArrayTypeTrait(ArrayTypeTrait ATT,SourceLocation KWLoc,TypeSourceInfo * TSInfo,Expr * DimExpr,SourceLocation RParen)5656 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
5657                                      SourceLocation KWLoc,
5658                                      TypeSourceInfo *TSInfo,
5659                                      Expr* DimExpr,
5660                                      SourceLocation RParen) {
5661   QualType T = TSInfo->getType();
5662 
5663   // FIXME: This should likely be tracked as an APInt to remove any host
5664   // assumptions about the width of size_t on the target.
5665   uint64_t Value = 0;
5666   if (!T->isDependentType())
5667     Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
5668 
5669   // While the specification for these traits from the Embarcadero C++
5670   // compiler's documentation says the return type is 'unsigned int', Clang
5671   // returns 'size_t'. On Windows, the primary platform for the Embarcadero
5672   // compiler, there is no difference. On several other platforms this is an
5673   // important distinction.
5674   return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
5675                                           RParen, Context.getSizeType());
5676 }
5677 
ActOnExpressionTrait(ExpressionTrait ET,SourceLocation KWLoc,Expr * Queried,SourceLocation RParen)5678 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
5679                                       SourceLocation KWLoc,
5680                                       Expr *Queried,
5681                                       SourceLocation RParen) {
5682   // If error parsing the expression, ignore.
5683   if (!Queried)
5684     return ExprError();
5685 
5686   ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
5687 
5688   return Result;
5689 }
5690 
EvaluateExpressionTrait(ExpressionTrait ET,Expr * E)5691 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
5692   switch (ET) {
5693   case ET_IsLValueExpr: return E->isLValue();
5694   case ET_IsRValueExpr:
5695     return E->isPRValue();
5696   }
5697   llvm_unreachable("Expression trait not covered by switch");
5698 }
5699 
BuildExpressionTrait(ExpressionTrait ET,SourceLocation KWLoc,Expr * Queried,SourceLocation RParen)5700 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
5701                                       SourceLocation KWLoc,
5702                                       Expr *Queried,
5703                                       SourceLocation RParen) {
5704   if (Queried->isTypeDependent()) {
5705     // Delay type-checking for type-dependent expressions.
5706   } else if (Queried->getType()->isPlaceholderType()) {
5707     ExprResult PE = CheckPlaceholderExpr(Queried);
5708     if (PE.isInvalid()) return ExprError();
5709     return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
5710   }
5711 
5712   bool Value = EvaluateExpressionTrait(ET, Queried);
5713 
5714   return new (Context)
5715       ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
5716 }
5717 
CheckPointerToMemberOperands(ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,SourceLocation Loc,bool isIndirect)5718 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
5719                                             ExprValueKind &VK,
5720                                             SourceLocation Loc,
5721                                             bool isIndirect) {
5722   assert(!LHS.get()->getType()->isPlaceholderType() &&
5723          !RHS.get()->getType()->isPlaceholderType() &&
5724          "placeholders should have been weeded out by now");
5725 
5726   // The LHS undergoes lvalue conversions if this is ->*, and undergoes the
5727   // temporary materialization conversion otherwise.
5728   if (isIndirect)
5729     LHS = DefaultLvalueConversion(LHS.get());
5730   else if (LHS.get()->isPRValue())
5731     LHS = TemporaryMaterializationConversion(LHS.get());
5732   if (LHS.isInvalid())
5733     return QualType();
5734 
5735   // The RHS always undergoes lvalue conversions.
5736   RHS = DefaultLvalueConversion(RHS.get());
5737   if (RHS.isInvalid()) return QualType();
5738 
5739   const char *OpSpelling = isIndirect ? "->*" : ".*";
5740   // C++ 5.5p2
5741   //   The binary operator .* [p3: ->*] binds its second operand, which shall
5742   //   be of type "pointer to member of T" (where T is a completely-defined
5743   //   class type) [...]
5744   QualType RHSType = RHS.get()->getType();
5745   const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
5746   if (!MemPtr) {
5747     Diag(Loc, diag::err_bad_memptr_rhs)
5748       << OpSpelling << RHSType << RHS.get()->getSourceRange();
5749     return QualType();
5750   }
5751 
5752   QualType Class(MemPtr->getClass(), 0);
5753 
5754   // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
5755   // member pointer points must be completely-defined. However, there is no
5756   // reason for this semantic distinction, and the rule is not enforced by
5757   // other compilers. Therefore, we do not check this property, as it is
5758   // likely to be considered a defect.
5759 
5760   // C++ 5.5p2
5761   //   [...] to its first operand, which shall be of class T or of a class of
5762   //   which T is an unambiguous and accessible base class. [p3: a pointer to
5763   //   such a class]
5764   QualType LHSType = LHS.get()->getType();
5765   if (isIndirect) {
5766     if (const PointerType *Ptr = LHSType->getAs<PointerType>())
5767       LHSType = Ptr->getPointeeType();
5768     else {
5769       Diag(Loc, diag::err_bad_memptr_lhs)
5770         << OpSpelling << 1 << LHSType
5771         << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
5772       return QualType();
5773     }
5774   }
5775 
5776   if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
5777     // If we want to check the hierarchy, we need a complete type.
5778     if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
5779                             OpSpelling, (int)isIndirect)) {
5780       return QualType();
5781     }
5782 
5783     if (!IsDerivedFrom(Loc, LHSType, Class)) {
5784       Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
5785         << (int)isIndirect << LHS.get()->getType();
5786       return QualType();
5787     }
5788 
5789     CXXCastPath BasePath;
5790     if (CheckDerivedToBaseConversion(
5791             LHSType, Class, Loc,
5792             SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()),
5793             &BasePath))
5794       return QualType();
5795 
5796     // Cast LHS to type of use.
5797     QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers());
5798     if (isIndirect)
5799       UseType = Context.getPointerType(UseType);
5800     ExprValueKind VK = isIndirect ? VK_PRValue : LHS.get()->getValueKind();
5801     LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
5802                             &BasePath);
5803   }
5804 
5805   if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
5806     // Diagnose use of pointer-to-member type which when used as
5807     // the functional cast in a pointer-to-member expression.
5808     Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
5809      return QualType();
5810   }
5811 
5812   // C++ 5.5p2
5813   //   The result is an object or a function of the type specified by the
5814   //   second operand.
5815   // The cv qualifiers are the union of those in the pointer and the left side,
5816   // in accordance with 5.5p5 and 5.2.5.
5817   QualType Result = MemPtr->getPointeeType();
5818   Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
5819 
5820   // C++0x [expr.mptr.oper]p6:
5821   //   In a .* expression whose object expression is an rvalue, the program is
5822   //   ill-formed if the second operand is a pointer to member function with
5823   //   ref-qualifier &. In a ->* expression or in a .* expression whose object
5824   //   expression is an lvalue, the program is ill-formed if the second operand
5825   //   is a pointer to member function with ref-qualifier &&.
5826   if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
5827     switch (Proto->getRefQualifier()) {
5828     case RQ_None:
5829       // Do nothing
5830       break;
5831 
5832     case RQ_LValue:
5833       if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) {
5834         // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq
5835         // is (exactly) 'const'.
5836         if (Proto->isConst() && !Proto->isVolatile())
5837           Diag(Loc, getLangOpts().CPlusPlus20
5838                         ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue
5839                         : diag::ext_pointer_to_const_ref_member_on_rvalue);
5840         else
5841           Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5842               << RHSType << 1 << LHS.get()->getSourceRange();
5843       }
5844       break;
5845 
5846     case RQ_RValue:
5847       if (isIndirect || !LHS.get()->Classify(Context).isRValue())
5848         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5849           << RHSType << 0 << LHS.get()->getSourceRange();
5850       break;
5851     }
5852   }
5853 
5854   // C++ [expr.mptr.oper]p6:
5855   //   The result of a .* expression whose second operand is a pointer
5856   //   to a data member is of the same value category as its
5857   //   first operand. The result of a .* expression whose second
5858   //   operand is a pointer to a member function is a prvalue. The
5859   //   result of an ->* expression is an lvalue if its second operand
5860   //   is a pointer to data member and a prvalue otherwise.
5861   if (Result->isFunctionType()) {
5862     VK = VK_PRValue;
5863     return Context.BoundMemberTy;
5864   } else if (isIndirect) {
5865     VK = VK_LValue;
5866   } else {
5867     VK = LHS.get()->getValueKind();
5868   }
5869 
5870   return Result;
5871 }
5872 
5873 /// Try to convert a type to another according to C++11 5.16p3.
5874 ///
5875 /// This is part of the parameter validation for the ? operator. If either
5876 /// value operand is a class type, the two operands are attempted to be
5877 /// converted to each other. This function does the conversion in one direction.
5878 /// It returns true if the program is ill-formed and has already been diagnosed
5879 /// as such.
TryClassUnification(Sema & Self,Expr * From,Expr * To,SourceLocation QuestionLoc,bool & HaveConversion,QualType & ToType)5880 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
5881                                 SourceLocation QuestionLoc,
5882                                 bool &HaveConversion,
5883                                 QualType &ToType) {
5884   HaveConversion = false;
5885   ToType = To->getType();
5886 
5887   InitializationKind Kind =
5888       InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation());
5889   // C++11 5.16p3
5890   //   The process for determining whether an operand expression E1 of type T1
5891   //   can be converted to match an operand expression E2 of type T2 is defined
5892   //   as follows:
5893   //   -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
5894   //      implicitly converted to type "lvalue reference to T2", subject to the
5895   //      constraint that in the conversion the reference must bind directly to
5896   //      an lvalue.
5897   //   -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be
5898   //      implicitly converted to the type "rvalue reference to R2", subject to
5899   //      the constraint that the reference must bind directly.
5900   if (To->isGLValue()) {
5901     QualType T = Self.Context.getReferenceQualifiedType(To);
5902     InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
5903 
5904     InitializationSequence InitSeq(Self, Entity, Kind, From);
5905     if (InitSeq.isDirectReferenceBinding()) {
5906       ToType = T;
5907       HaveConversion = true;
5908       return false;
5909     }
5910 
5911     if (InitSeq.isAmbiguous())
5912       return InitSeq.Diagnose(Self, Entity, Kind, From);
5913   }
5914 
5915   //   -- If E2 is an rvalue, or if the conversion above cannot be done:
5916   //      -- if E1 and E2 have class type, and the underlying class types are
5917   //         the same or one is a base class of the other:
5918   QualType FTy = From->getType();
5919   QualType TTy = To->getType();
5920   const RecordType *FRec = FTy->getAs<RecordType>();
5921   const RecordType *TRec = TTy->getAs<RecordType>();
5922   bool FDerivedFromT = FRec && TRec && FRec != TRec &&
5923                        Self.IsDerivedFrom(QuestionLoc, FTy, TTy);
5924   if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
5925                        Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) {
5926     //         E1 can be converted to match E2 if the class of T2 is the
5927     //         same type as, or a base class of, the class of T1, and
5928     //         [cv2 > cv1].
5929     if (FRec == TRec || FDerivedFromT) {
5930       if (TTy.isAtLeastAsQualifiedAs(FTy)) {
5931         InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
5932         InitializationSequence InitSeq(Self, Entity, Kind, From);
5933         if (InitSeq) {
5934           HaveConversion = true;
5935           return false;
5936         }
5937 
5938         if (InitSeq.isAmbiguous())
5939           return InitSeq.Diagnose(Self, Entity, Kind, From);
5940       }
5941     }
5942 
5943     return false;
5944   }
5945 
5946   //     -- Otherwise: E1 can be converted to match E2 if E1 can be
5947   //        implicitly converted to the type that expression E2 would have
5948   //        if E2 were converted to an rvalue (or the type it has, if E2 is
5949   //        an rvalue).
5950   //
5951   // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
5952   // to the array-to-pointer or function-to-pointer conversions.
5953   TTy = TTy.getNonLValueExprType(Self.Context);
5954 
5955   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
5956   InitializationSequence InitSeq(Self, Entity, Kind, From);
5957   HaveConversion = !InitSeq.Failed();
5958   ToType = TTy;
5959   if (InitSeq.isAmbiguous())
5960     return InitSeq.Diagnose(Self, Entity, Kind, From);
5961 
5962   return false;
5963 }
5964 
5965 /// Try to find a common type for two according to C++0x 5.16p5.
5966 ///
5967 /// This is part of the parameter validation for the ? operator. If either
5968 /// value operand is a class type, overload resolution is used to find a
5969 /// conversion to a common type.
FindConditionalOverload(Sema & Self,ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)5970 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
5971                                     SourceLocation QuestionLoc) {
5972   Expr *Args[2] = { LHS.get(), RHS.get() };
5973   OverloadCandidateSet CandidateSet(QuestionLoc,
5974                                     OverloadCandidateSet::CSK_Operator);
5975   Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
5976                                     CandidateSet);
5977 
5978   OverloadCandidateSet::iterator Best;
5979   switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
5980     case OR_Success: {
5981       // We found a match. Perform the conversions on the arguments and move on.
5982       ExprResult LHSRes = Self.PerformImplicitConversion(
5983           LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0],
5984           Sema::AA_Converting);
5985       if (LHSRes.isInvalid())
5986         break;
5987       LHS = LHSRes;
5988 
5989       ExprResult RHSRes = Self.PerformImplicitConversion(
5990           RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1],
5991           Sema::AA_Converting);
5992       if (RHSRes.isInvalid())
5993         break;
5994       RHS = RHSRes;
5995       if (Best->Function)
5996         Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
5997       return false;
5998     }
5999 
6000     case OR_No_Viable_Function:
6001 
6002       // Emit a better diagnostic if one of the expressions is a null pointer
6003       // constant and the other is a pointer type. In this case, the user most
6004       // likely forgot to take the address of the other expression.
6005       if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6006         return true;
6007 
6008       Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6009         << LHS.get()->getType() << RHS.get()->getType()
6010         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6011       return true;
6012 
6013     case OR_Ambiguous:
6014       Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
6015         << LHS.get()->getType() << RHS.get()->getType()
6016         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6017       // FIXME: Print the possible common types by printing the return types of
6018       // the viable candidates.
6019       break;
6020 
6021     case OR_Deleted:
6022       llvm_unreachable("Conditional operator has only built-in overloads");
6023   }
6024   return true;
6025 }
6026 
6027 /// Perform an "extended" implicit conversion as returned by
6028 /// TryClassUnification.
ConvertForConditional(Sema & Self,ExprResult & E,QualType T)6029 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
6030   InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
6031   InitializationKind Kind =
6032       InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation());
6033   Expr *Arg = E.get();
6034   InitializationSequence InitSeq(Self, Entity, Kind, Arg);
6035   ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
6036   if (Result.isInvalid())
6037     return true;
6038 
6039   E = Result;
6040   return false;
6041 }
6042 
6043 // Check the condition operand of ?: to see if it is valid for the GCC
6044 // extension.
isValidVectorForConditionalCondition(ASTContext & Ctx,QualType CondTy)6045 static bool isValidVectorForConditionalCondition(ASTContext &Ctx,
6046                                                  QualType CondTy) {
6047   if (!CondTy->isVectorType() && !CondTy->isExtVectorType())
6048     return false;
6049   const QualType EltTy =
6050       cast<VectorType>(CondTy.getCanonicalType())->getElementType();
6051   assert(!EltTy->isBooleanType() && !EltTy->isEnumeralType() &&
6052          "Vectors cant be boolean or enum types");
6053   return EltTy->isIntegralType(Ctx);
6054 }
6055 
CheckVectorConditionalTypes(ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)6056 QualType Sema::CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS,
6057                                            ExprResult &RHS,
6058                                            SourceLocation QuestionLoc) {
6059   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6060   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6061 
6062   QualType CondType = Cond.get()->getType();
6063   const auto *CondVT = CondType->castAs<VectorType>();
6064   QualType CondElementTy = CondVT->getElementType();
6065   unsigned CondElementCount = CondVT->getNumElements();
6066   QualType LHSType = LHS.get()->getType();
6067   const auto *LHSVT = LHSType->getAs<VectorType>();
6068   QualType RHSType = RHS.get()->getType();
6069   const auto *RHSVT = RHSType->getAs<VectorType>();
6070 
6071   QualType ResultType;
6072 
6073 
6074   if (LHSVT && RHSVT) {
6075     if (isa<ExtVectorType>(CondVT) != isa<ExtVectorType>(LHSVT)) {
6076       Diag(QuestionLoc, diag::err_conditional_vector_cond_result_mismatch)
6077           << /*isExtVector*/ isa<ExtVectorType>(CondVT);
6078       return {};
6079     }
6080 
6081     // If both are vector types, they must be the same type.
6082     if (!Context.hasSameType(LHSType, RHSType)) {
6083       Diag(QuestionLoc, diag::err_conditional_vector_mismatched)
6084           << LHSType << RHSType;
6085       return {};
6086     }
6087     ResultType = LHSType;
6088   } else if (LHSVT || RHSVT) {
6089     ResultType = CheckVectorOperands(
6090         LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true,
6091         /*AllowBoolConversions*/ false);
6092     if (ResultType.isNull())
6093       return {};
6094   } else {
6095     // Both are scalar.
6096     QualType ResultElementTy;
6097     LHSType = LHSType.getCanonicalType().getUnqualifiedType();
6098     RHSType = RHSType.getCanonicalType().getUnqualifiedType();
6099 
6100     if (Context.hasSameType(LHSType, RHSType))
6101       ResultElementTy = LHSType;
6102     else
6103       ResultElementTy =
6104           UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
6105 
6106     if (ResultElementTy->isEnumeralType()) {
6107       Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
6108           << ResultElementTy;
6109       return {};
6110     }
6111     if (CondType->isExtVectorType())
6112       ResultType =
6113           Context.getExtVectorType(ResultElementTy, CondVT->getNumElements());
6114     else
6115       ResultType = Context.getVectorType(
6116           ResultElementTy, CondVT->getNumElements(), VectorType::GenericVector);
6117 
6118     LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat);
6119     RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat);
6120   }
6121 
6122   assert(!ResultType.isNull() && ResultType->isVectorType() &&
6123          (!CondType->isExtVectorType() || ResultType->isExtVectorType()) &&
6124          "Result should have been a vector type");
6125   auto *ResultVectorTy = ResultType->castAs<VectorType>();
6126   QualType ResultElementTy = ResultVectorTy->getElementType();
6127   unsigned ResultElementCount = ResultVectorTy->getNumElements();
6128 
6129   if (ResultElementCount != CondElementCount) {
6130     Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType
6131                                                          << ResultType;
6132     return {};
6133   }
6134 
6135   if (Context.getTypeSize(ResultElementTy) !=
6136       Context.getTypeSize(CondElementTy)) {
6137     Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType
6138                                                                  << ResultType;
6139     return {};
6140   }
6141 
6142   return ResultType;
6143 }
6144 
6145 /// Check the operands of ?: under C++ semantics.
6146 ///
6147 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
6148 /// extension. In this case, LHS == Cond. (But they're not aliases.)
6149 ///
6150 /// This function also implements GCC's vector extension and the
6151 /// OpenCL/ext_vector_type extension for conditionals. The vector extensions
6152 /// permit the use of a?b:c where the type of a is that of a integer vector with
6153 /// the same number of elements and size as the vectors of b and c. If one of
6154 /// either b or c is a scalar it is implicitly converted to match the type of
6155 /// the vector. Otherwise the expression is ill-formed. If both b and c are
6156 /// scalars, then b and c are checked and converted to the type of a if
6157 /// possible.
6158 ///
6159 /// The expressions are evaluated differently for GCC's and OpenCL's extensions.
6160 /// For the GCC extension, the ?: operator is evaluated as
6161 ///   (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]).
6162 /// For the OpenCL extensions, the ?: operator is evaluated as
6163 ///   (most-significant-bit-set(a[0])  ? b[0] : c[0], .. ,
6164 ///    most-significant-bit-set(a[n]) ? b[n] : c[n]).
CXXCheckConditionalOperands(ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation QuestionLoc)6165 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
6166                                            ExprResult &RHS, ExprValueKind &VK,
6167                                            ExprObjectKind &OK,
6168                                            SourceLocation QuestionLoc) {
6169   // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface
6170   // pointers.
6171 
6172   // Assume r-value.
6173   VK = VK_PRValue;
6174   OK = OK_Ordinary;
6175   bool IsVectorConditional =
6176       isValidVectorForConditionalCondition(Context, Cond.get()->getType());
6177 
6178   // C++11 [expr.cond]p1
6179   //   The first expression is contextually converted to bool.
6180   if (!Cond.get()->isTypeDependent()) {
6181     ExprResult CondRes = IsVectorConditional
6182                              ? DefaultFunctionArrayLvalueConversion(Cond.get())
6183                              : CheckCXXBooleanCondition(Cond.get());
6184     if (CondRes.isInvalid())
6185       return QualType();
6186     Cond = CondRes;
6187   } else {
6188     // To implement C++, the first expression typically doesn't alter the result
6189     // type of the conditional, however the GCC compatible vector extension
6190     // changes the result type to be that of the conditional. Since we cannot
6191     // know if this is a vector extension here, delay the conversion of the
6192     // LHS/RHS below until later.
6193     return Context.DependentTy;
6194   }
6195 
6196 
6197   // Either of the arguments dependent?
6198   if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
6199     return Context.DependentTy;
6200 
6201   // C++11 [expr.cond]p2
6202   //   If either the second or the third operand has type (cv) void, ...
6203   QualType LTy = LHS.get()->getType();
6204   QualType RTy = RHS.get()->getType();
6205   bool LVoid = LTy->isVoidType();
6206   bool RVoid = RTy->isVoidType();
6207   if (LVoid || RVoid) {
6208     //   ... one of the following shall hold:
6209     //   -- The second or the third operand (but not both) is a (possibly
6210     //      parenthesized) throw-expression; the result is of the type
6211     //      and value category of the other.
6212     bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
6213     bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
6214 
6215     // Void expressions aren't legal in the vector-conditional expressions.
6216     if (IsVectorConditional) {
6217       SourceRange DiagLoc =
6218           LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange();
6219       bool IsThrow = LVoid ? LThrow : RThrow;
6220       Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void)
6221           << DiagLoc << IsThrow;
6222       return QualType();
6223     }
6224 
6225     if (LThrow != RThrow) {
6226       Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
6227       VK = NonThrow->getValueKind();
6228       // DR (no number yet): the result is a bit-field if the
6229       // non-throw-expression operand is a bit-field.
6230       OK = NonThrow->getObjectKind();
6231       return NonThrow->getType();
6232     }
6233 
6234     //   -- Both the second and third operands have type void; the result is of
6235     //      type void and is a prvalue.
6236     if (LVoid && RVoid)
6237       return Context.VoidTy;
6238 
6239     // Neither holds, error.
6240     Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
6241       << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
6242       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6243     return QualType();
6244   }
6245 
6246   // Neither is void.
6247   if (IsVectorConditional)
6248     return CheckVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc);
6249 
6250   // C++11 [expr.cond]p3
6251   //   Otherwise, if the second and third operand have different types, and
6252   //   either has (cv) class type [...] an attempt is made to convert each of
6253   //   those operands to the type of the other.
6254   if (!Context.hasSameType(LTy, RTy) &&
6255       (LTy->isRecordType() || RTy->isRecordType())) {
6256     // These return true if a single direction is already ambiguous.
6257     QualType L2RType, R2LType;
6258     bool HaveL2R, HaveR2L;
6259     if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
6260       return QualType();
6261     if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
6262       return QualType();
6263 
6264     //   If both can be converted, [...] the program is ill-formed.
6265     if (HaveL2R && HaveR2L) {
6266       Diag(QuestionLoc, diag::err_conditional_ambiguous)
6267         << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6268       return QualType();
6269     }
6270 
6271     //   If exactly one conversion is possible, that conversion is applied to
6272     //   the chosen operand and the converted operands are used in place of the
6273     //   original operands for the remainder of this section.
6274     if (HaveL2R) {
6275       if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
6276         return QualType();
6277       LTy = LHS.get()->getType();
6278     } else if (HaveR2L) {
6279       if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
6280         return QualType();
6281       RTy = RHS.get()->getType();
6282     }
6283   }
6284 
6285   // C++11 [expr.cond]p3
6286   //   if both are glvalues of the same value category and the same type except
6287   //   for cv-qualification, an attempt is made to convert each of those
6288   //   operands to the type of the other.
6289   // FIXME:
6290   //   Resolving a defect in P0012R1: we extend this to cover all cases where
6291   //   one of the operands is reference-compatible with the other, in order
6292   //   to support conditionals between functions differing in noexcept. This
6293   //   will similarly cover difference in array bounds after P0388R4.
6294   // FIXME: If LTy and RTy have a composite pointer type, should we convert to
6295   //   that instead?
6296   ExprValueKind LVK = LHS.get()->getValueKind();
6297   ExprValueKind RVK = RHS.get()->getValueKind();
6298   if (!Context.hasSameType(LTy, RTy) && LVK == RVK && LVK != VK_PRValue) {
6299     // DerivedToBase was already handled by the class-specific case above.
6300     // FIXME: Should we allow ObjC conversions here?
6301     const ReferenceConversions AllowedConversions =
6302         ReferenceConversions::Qualification |
6303         ReferenceConversions::NestedQualification |
6304         ReferenceConversions::Function;
6305 
6306     ReferenceConversions RefConv;
6307     if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, &RefConv) ==
6308             Ref_Compatible &&
6309         !(RefConv & ~AllowedConversions) &&
6310         // [...] subject to the constraint that the reference must bind
6311         // directly [...]
6312         !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) {
6313       RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
6314       RTy = RHS.get()->getType();
6315     } else if (CompareReferenceRelationship(QuestionLoc, RTy, LTy, &RefConv) ==
6316                    Ref_Compatible &&
6317                !(RefConv & ~AllowedConversions) &&
6318                !LHS.get()->refersToBitField() &&
6319                !LHS.get()->refersToVectorElement()) {
6320       LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
6321       LTy = LHS.get()->getType();
6322     }
6323   }
6324 
6325   // C++11 [expr.cond]p4
6326   //   If the second and third operands are glvalues of the same value
6327   //   category and have the same type, the result is of that type and
6328   //   value category and it is a bit-field if the second or the third
6329   //   operand is a bit-field, or if both are bit-fields.
6330   // We only extend this to bitfields, not to the crazy other kinds of
6331   // l-values.
6332   bool Same = Context.hasSameType(LTy, RTy);
6333   if (Same && LVK == RVK && LVK != VK_PRValue &&
6334       LHS.get()->isOrdinaryOrBitFieldObject() &&
6335       RHS.get()->isOrdinaryOrBitFieldObject()) {
6336     VK = LHS.get()->getValueKind();
6337     if (LHS.get()->getObjectKind() == OK_BitField ||
6338         RHS.get()->getObjectKind() == OK_BitField)
6339       OK = OK_BitField;
6340 
6341     // If we have function pointer types, unify them anyway to unify their
6342     // exception specifications, if any.
6343     if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
6344       Qualifiers Qs = LTy.getQualifiers();
6345       LTy = FindCompositePointerType(QuestionLoc, LHS, RHS,
6346                                      /*ConvertArgs*/false);
6347       LTy = Context.getQualifiedType(LTy, Qs);
6348 
6349       assert(!LTy.isNull() && "failed to find composite pointer type for "
6350                               "canonically equivalent function ptr types");
6351       assert(Context.hasSameType(LTy, RTy) && "bad composite pointer type");
6352     }
6353 
6354     return LTy;
6355   }
6356 
6357   // C++11 [expr.cond]p5
6358   //   Otherwise, the result is a prvalue. If the second and third operands
6359   //   do not have the same type, and either has (cv) class type, ...
6360   if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
6361     //   ... overload resolution is used to determine the conversions (if any)
6362     //   to be applied to the operands. If the overload resolution fails, the
6363     //   program is ill-formed.
6364     if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
6365       return QualType();
6366   }
6367 
6368   // C++11 [expr.cond]p6
6369   //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
6370   //   conversions are performed on the second and third operands.
6371   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6372   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6373   if (LHS.isInvalid() || RHS.isInvalid())
6374     return QualType();
6375   LTy = LHS.get()->getType();
6376   RTy = RHS.get()->getType();
6377 
6378   //   After those conversions, one of the following shall hold:
6379   //   -- The second and third operands have the same type; the result
6380   //      is of that type. If the operands have class type, the result
6381   //      is a prvalue temporary of the result type, which is
6382   //      copy-initialized from either the second operand or the third
6383   //      operand depending on the value of the first operand.
6384   if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
6385     if (LTy->isRecordType()) {
6386       // The operands have class type. Make a temporary copy.
6387       InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
6388 
6389       ExprResult LHSCopy = PerformCopyInitialization(Entity,
6390                                                      SourceLocation(),
6391                                                      LHS);
6392       if (LHSCopy.isInvalid())
6393         return QualType();
6394 
6395       ExprResult RHSCopy = PerformCopyInitialization(Entity,
6396                                                      SourceLocation(),
6397                                                      RHS);
6398       if (RHSCopy.isInvalid())
6399         return QualType();
6400 
6401       LHS = LHSCopy;
6402       RHS = RHSCopy;
6403     }
6404 
6405     // If we have function pointer types, unify them anyway to unify their
6406     // exception specifications, if any.
6407     if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
6408       LTy = FindCompositePointerType(QuestionLoc, LHS, RHS);
6409       assert(!LTy.isNull() && "failed to find composite pointer type for "
6410                               "canonically equivalent function ptr types");
6411     }
6412 
6413     return LTy;
6414   }
6415 
6416   // Extension: conditional operator involving vector types.
6417   if (LTy->isVectorType() || RTy->isVectorType())
6418     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
6419                                /*AllowBothBool*/true,
6420                                /*AllowBoolConversions*/false);
6421 
6422   //   -- The second and third operands have arithmetic or enumeration type;
6423   //      the usual arithmetic conversions are performed to bring them to a
6424   //      common type, and the result is of that type.
6425   if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
6426     QualType ResTy =
6427         UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
6428     if (LHS.isInvalid() || RHS.isInvalid())
6429       return QualType();
6430     if (ResTy.isNull()) {
6431       Diag(QuestionLoc,
6432            diag::err_typecheck_cond_incompatible_operands) << LTy << RTy
6433         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6434       return QualType();
6435     }
6436 
6437     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
6438     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
6439 
6440     return ResTy;
6441   }
6442 
6443   //   -- The second and third operands have pointer type, or one has pointer
6444   //      type and the other is a null pointer constant, or both are null
6445   //      pointer constants, at least one of which is non-integral; pointer
6446   //      conversions and qualification conversions are performed to bring them
6447   //      to their composite pointer type. The result is of the composite
6448   //      pointer type.
6449   //   -- The second and third operands have pointer to member type, or one has
6450   //      pointer to member type and the other is a null pointer constant;
6451   //      pointer to member conversions and qualification conversions are
6452   //      performed to bring them to a common type, whose cv-qualification
6453   //      shall match the cv-qualification of either the second or the third
6454   //      operand. The result is of the common type.
6455   QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS);
6456   if (!Composite.isNull())
6457     return Composite;
6458 
6459   // Similarly, attempt to find composite type of two objective-c pointers.
6460   Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
6461   if (LHS.isInvalid() || RHS.isInvalid())
6462     return QualType();
6463   if (!Composite.isNull())
6464     return Composite;
6465 
6466   // Check if we are using a null with a non-pointer type.
6467   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6468     return QualType();
6469 
6470   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6471     << LHS.get()->getType() << RHS.get()->getType()
6472     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6473   return QualType();
6474 }
6475 
6476 static FunctionProtoType::ExceptionSpecInfo
mergeExceptionSpecs(Sema & S,FunctionProtoType::ExceptionSpecInfo ESI1,FunctionProtoType::ExceptionSpecInfo ESI2,SmallVectorImpl<QualType> & ExceptionTypeStorage)6477 mergeExceptionSpecs(Sema &S, FunctionProtoType::ExceptionSpecInfo ESI1,
6478                     FunctionProtoType::ExceptionSpecInfo ESI2,
6479                     SmallVectorImpl<QualType> &ExceptionTypeStorage) {
6480   ExceptionSpecificationType EST1 = ESI1.Type;
6481   ExceptionSpecificationType EST2 = ESI2.Type;
6482 
6483   // If either of them can throw anything, that is the result.
6484   if (EST1 == EST_None) return ESI1;
6485   if (EST2 == EST_None) return ESI2;
6486   if (EST1 == EST_MSAny) return ESI1;
6487   if (EST2 == EST_MSAny) return ESI2;
6488   if (EST1 == EST_NoexceptFalse) return ESI1;
6489   if (EST2 == EST_NoexceptFalse) return ESI2;
6490 
6491   // If either of them is non-throwing, the result is the other.
6492   if (EST1 == EST_NoThrow) return ESI2;
6493   if (EST2 == EST_NoThrow) return ESI1;
6494   if (EST1 == EST_DynamicNone) return ESI2;
6495   if (EST2 == EST_DynamicNone) return ESI1;
6496   if (EST1 == EST_BasicNoexcept) return ESI2;
6497   if (EST2 == EST_BasicNoexcept) return ESI1;
6498   if (EST1 == EST_NoexceptTrue) return ESI2;
6499   if (EST2 == EST_NoexceptTrue) return ESI1;
6500 
6501   // If we're left with value-dependent computed noexcept expressions, we're
6502   // stuck. Before C++17, we can just drop the exception specification entirely,
6503   // since it's not actually part of the canonical type. And this should never
6504   // happen in C++17, because it would mean we were computing the composite
6505   // pointer type of dependent types, which should never happen.
6506   if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) {
6507     assert(!S.getLangOpts().CPlusPlus17 &&
6508            "computing composite pointer type of dependent types");
6509     return FunctionProtoType::ExceptionSpecInfo();
6510   }
6511 
6512   // Switch over the possibilities so that people adding new values know to
6513   // update this function.
6514   switch (EST1) {
6515   case EST_None:
6516   case EST_DynamicNone:
6517   case EST_MSAny:
6518   case EST_BasicNoexcept:
6519   case EST_DependentNoexcept:
6520   case EST_NoexceptFalse:
6521   case EST_NoexceptTrue:
6522   case EST_NoThrow:
6523     llvm_unreachable("handled above");
6524 
6525   case EST_Dynamic: {
6526     // This is the fun case: both exception specifications are dynamic. Form
6527     // the union of the two lists.
6528     assert(EST2 == EST_Dynamic && "other cases should already be handled");
6529     llvm::SmallPtrSet<QualType, 8> Found;
6530     for (auto &Exceptions : {ESI1.Exceptions, ESI2.Exceptions})
6531       for (QualType E : Exceptions)
6532         if (Found.insert(S.Context.getCanonicalType(E)).second)
6533           ExceptionTypeStorage.push_back(E);
6534 
6535     FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic);
6536     Result.Exceptions = ExceptionTypeStorage;
6537     return Result;
6538   }
6539 
6540   case EST_Unevaluated:
6541   case EST_Uninstantiated:
6542   case EST_Unparsed:
6543     llvm_unreachable("shouldn't see unresolved exception specifications here");
6544   }
6545 
6546   llvm_unreachable("invalid ExceptionSpecificationType");
6547 }
6548 
6549 /// Find a merged pointer type and convert the two expressions to it.
6550 ///
6551 /// This finds the composite pointer type for \p E1 and \p E2 according to
6552 /// C++2a [expr.type]p3. It converts both expressions to this type and returns
6553 /// it.  It does not emit diagnostics (FIXME: that's not true if \p ConvertArgs
6554 /// is \c true).
6555 ///
6556 /// \param Loc The location of the operator requiring these two expressions to
6557 /// be converted to the composite pointer type.
6558 ///
6559 /// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type.
FindCompositePointerType(SourceLocation Loc,Expr * & E1,Expr * & E2,bool ConvertArgs)6560 QualType Sema::FindCompositePointerType(SourceLocation Loc,
6561                                         Expr *&E1, Expr *&E2,
6562                                         bool ConvertArgs) {
6563   assert(getLangOpts().CPlusPlus && "This function assumes C++");
6564 
6565   // C++1z [expr]p14:
6566   //   The composite pointer type of two operands p1 and p2 having types T1
6567   //   and T2
6568   QualType T1 = E1->getType(), T2 = E2->getType();
6569 
6570   //   where at least one is a pointer or pointer to member type or
6571   //   std::nullptr_t is:
6572   bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() ||
6573                          T1->isNullPtrType();
6574   bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() ||
6575                          T2->isNullPtrType();
6576   if (!T1IsPointerLike && !T2IsPointerLike)
6577     return QualType();
6578 
6579   //   - if both p1 and p2 are null pointer constants, std::nullptr_t;
6580   // This can't actually happen, following the standard, but we also use this
6581   // to implement the end of [expr.conv], which hits this case.
6582   //
6583   //   - if either p1 or p2 is a null pointer constant, T2 or T1, respectively;
6584   if (T1IsPointerLike &&
6585       E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6586     if (ConvertArgs)
6587       E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType()
6588                                          ? CK_NullToMemberPointer
6589                                          : CK_NullToPointer).get();
6590     return T1;
6591   }
6592   if (T2IsPointerLike &&
6593       E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6594     if (ConvertArgs)
6595       E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType()
6596                                          ? CK_NullToMemberPointer
6597                                          : CK_NullToPointer).get();
6598     return T2;
6599   }
6600 
6601   // Now both have to be pointers or member pointers.
6602   if (!T1IsPointerLike || !T2IsPointerLike)
6603     return QualType();
6604   assert(!T1->isNullPtrType() && !T2->isNullPtrType() &&
6605          "nullptr_t should be a null pointer constant");
6606 
6607   struct Step {
6608     enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K;
6609     // Qualifiers to apply under the step kind.
6610     Qualifiers Quals;
6611     /// The class for a pointer-to-member; a constant array type with a bound
6612     /// (if any) for an array.
6613     const Type *ClassOrBound;
6614 
6615     Step(Kind K, const Type *ClassOrBound = nullptr)
6616         : K(K), Quals(), ClassOrBound(ClassOrBound) {}
6617     QualType rebuild(ASTContext &Ctx, QualType T) const {
6618       T = Ctx.getQualifiedType(T, Quals);
6619       switch (K) {
6620       case Pointer:
6621         return Ctx.getPointerType(T);
6622       case MemberPointer:
6623         return Ctx.getMemberPointerType(T, ClassOrBound);
6624       case ObjCPointer:
6625         return Ctx.getObjCObjectPointerType(T);
6626       case Array:
6627         if (auto *CAT = cast_or_null<ConstantArrayType>(ClassOrBound))
6628           return Ctx.getConstantArrayType(T, CAT->getSize(), nullptr,
6629                                           ArrayType::Normal, 0);
6630         else
6631           return Ctx.getIncompleteArrayType(T, ArrayType::Normal, 0);
6632       }
6633       llvm_unreachable("unknown step kind");
6634     }
6635   };
6636 
6637   SmallVector<Step, 8> Steps;
6638 
6639   //  - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
6640   //    is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
6641   //    the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1,
6642   //    respectively;
6643   //  - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer
6644   //    to member of C2 of type cv2 U2" for some non-function type U, where
6645   //    C1 is reference-related to C2 or C2 is reference-related to C1, the
6646   //    cv-combined type of T2 and T1 or the cv-combined type of T1 and T2,
6647   //    respectively;
6648   //  - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and
6649   //    T2;
6650   //
6651   // Dismantle T1 and T2 to simultaneously determine whether they are similar
6652   // and to prepare to form the cv-combined type if so.
6653   QualType Composite1 = T1;
6654   QualType Composite2 = T2;
6655   unsigned NeedConstBefore = 0;
6656   while (true) {
6657     assert(!Composite1.isNull() && !Composite2.isNull());
6658 
6659     Qualifiers Q1, Q2;
6660     Composite1 = Context.getUnqualifiedArrayType(Composite1, Q1);
6661     Composite2 = Context.getUnqualifiedArrayType(Composite2, Q2);
6662 
6663     // Top-level qualifiers are ignored. Merge at all lower levels.
6664     if (!Steps.empty()) {
6665       // Find the qualifier union: (approximately) the unique minimal set of
6666       // qualifiers that is compatible with both types.
6667       Qualifiers Quals = Qualifiers::fromCVRUMask(Q1.getCVRUQualifiers() |
6668                                                   Q2.getCVRUQualifiers());
6669 
6670       // Under one level of pointer or pointer-to-member, we can change to an
6671       // unambiguous compatible address space.
6672       if (Q1.getAddressSpace() == Q2.getAddressSpace()) {
6673         Quals.setAddressSpace(Q1.getAddressSpace());
6674       } else if (Steps.size() == 1) {
6675         bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(Q2);
6676         bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(Q1);
6677         if (MaybeQ1 == MaybeQ2) {
6678           // Exception for ptr size address spaces. Should be able to choose
6679           // either address space during comparison.
6680           if (isPtrSizeAddressSpace(Q1.getAddressSpace()) ||
6681               isPtrSizeAddressSpace(Q2.getAddressSpace()))
6682             MaybeQ1 = true;
6683           else
6684             return QualType(); // No unique best address space.
6685         }
6686         Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace()
6687                                       : Q2.getAddressSpace());
6688       } else {
6689         return QualType();
6690       }
6691 
6692       // FIXME: In C, we merge __strong and none to __strong at the top level.
6693       if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr())
6694         Quals.setObjCGCAttr(Q1.getObjCGCAttr());
6695       else if (T1->isVoidPointerType() || T2->isVoidPointerType())
6696         assert(Steps.size() == 1);
6697       else
6698         return QualType();
6699 
6700       // Mismatched lifetime qualifiers never compatibly include each other.
6701       if (Q1.getObjCLifetime() == Q2.getObjCLifetime())
6702         Quals.setObjCLifetime(Q1.getObjCLifetime());
6703       else if (T1->isVoidPointerType() || T2->isVoidPointerType())
6704         assert(Steps.size() == 1);
6705       else
6706         return QualType();
6707 
6708       Steps.back().Quals = Quals;
6709       if (Q1 != Quals || Q2 != Quals)
6710         NeedConstBefore = Steps.size() - 1;
6711     }
6712 
6713     // FIXME: Can we unify the following with UnwrapSimilarTypes?
6714 
6715     const ArrayType *Arr1, *Arr2;
6716     if ((Arr1 = Context.getAsArrayType(Composite1)) &&
6717         (Arr2 = Context.getAsArrayType(Composite2))) {
6718       auto *CAT1 = dyn_cast<ConstantArrayType>(Arr1);
6719       auto *CAT2 = dyn_cast<ConstantArrayType>(Arr2);
6720       if (CAT1 && CAT2 && CAT1->getSize() == CAT2->getSize()) {
6721         Composite1 = Arr1->getElementType();
6722         Composite2 = Arr2->getElementType();
6723         Steps.emplace_back(Step::Array, CAT1);
6724         continue;
6725       }
6726       bool IAT1 = isa<IncompleteArrayType>(Arr1);
6727       bool IAT2 = isa<IncompleteArrayType>(Arr2);
6728       if ((IAT1 && IAT2) ||
6729           (getLangOpts().CPlusPlus20 && (IAT1 != IAT2) &&
6730            ((bool)CAT1 != (bool)CAT2) &&
6731            (Steps.empty() || Steps.back().K != Step::Array))) {
6732         // In C++20 onwards, we can unify an array of N T with an array of
6733         // a different or unknown bound. But we can't form an array whose
6734         // element type is an array of unknown bound by doing so.
6735         Composite1 = Arr1->getElementType();
6736         Composite2 = Arr2->getElementType();
6737         Steps.emplace_back(Step::Array);
6738         if (CAT1 || CAT2)
6739           NeedConstBefore = Steps.size();
6740         continue;
6741       }
6742     }
6743 
6744     const PointerType *Ptr1, *Ptr2;
6745     if ((Ptr1 = Composite1->getAs<PointerType>()) &&
6746         (Ptr2 = Composite2->getAs<PointerType>())) {
6747       Composite1 = Ptr1->getPointeeType();
6748       Composite2 = Ptr2->getPointeeType();
6749       Steps.emplace_back(Step::Pointer);
6750       continue;
6751     }
6752 
6753     const ObjCObjectPointerType *ObjPtr1, *ObjPtr2;
6754     if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) &&
6755         (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) {
6756       Composite1 = ObjPtr1->getPointeeType();
6757       Composite2 = ObjPtr2->getPointeeType();
6758       Steps.emplace_back(Step::ObjCPointer);
6759       continue;
6760     }
6761 
6762     const MemberPointerType *MemPtr1, *MemPtr2;
6763     if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
6764         (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
6765       Composite1 = MemPtr1->getPointeeType();
6766       Composite2 = MemPtr2->getPointeeType();
6767 
6768       // At the top level, we can perform a base-to-derived pointer-to-member
6769       // conversion:
6770       //
6771       //  - [...] where C1 is reference-related to C2 or C2 is
6772       //    reference-related to C1
6773       //
6774       // (Note that the only kinds of reference-relatedness in scope here are
6775       // "same type or derived from".) At any other level, the class must
6776       // exactly match.
6777       const Type *Class = nullptr;
6778       QualType Cls1(MemPtr1->getClass(), 0);
6779       QualType Cls2(MemPtr2->getClass(), 0);
6780       if (Context.hasSameType(Cls1, Cls2))
6781         Class = MemPtr1->getClass();
6782       else if (Steps.empty())
6783         Class = IsDerivedFrom(Loc, Cls1, Cls2) ? MemPtr1->getClass() :
6784                 IsDerivedFrom(Loc, Cls2, Cls1) ? MemPtr2->getClass() : nullptr;
6785       if (!Class)
6786         return QualType();
6787 
6788       Steps.emplace_back(Step::MemberPointer, Class);
6789       continue;
6790     }
6791 
6792     // Special case: at the top level, we can decompose an Objective-C pointer
6793     // and a 'cv void *'. Unify the qualifiers.
6794     if (Steps.empty() && ((Composite1->isVoidPointerType() &&
6795                            Composite2->isObjCObjectPointerType()) ||
6796                           (Composite1->isObjCObjectPointerType() &&
6797                            Composite2->isVoidPointerType()))) {
6798       Composite1 = Composite1->getPointeeType();
6799       Composite2 = Composite2->getPointeeType();
6800       Steps.emplace_back(Step::Pointer);
6801       continue;
6802     }
6803 
6804     // FIXME: block pointer types?
6805 
6806     // Cannot unwrap any more types.
6807     break;
6808   }
6809 
6810   //  - if T1 or T2 is "pointer to noexcept function" and the other type is
6811   //    "pointer to function", where the function types are otherwise the same,
6812   //    "pointer to function";
6813   //  - if T1 or T2 is "pointer to member of C1 of type function", the other
6814   //    type is "pointer to member of C2 of type noexcept function", and C1
6815   //    is reference-related to C2 or C2 is reference-related to C1, where
6816   //    the function types are otherwise the same, "pointer to member of C2 of
6817   //    type function" or "pointer to member of C1 of type function",
6818   //    respectively;
6819   //
6820   // We also support 'noreturn' here, so as a Clang extension we generalize the
6821   // above to:
6822   //
6823   //  - [Clang] If T1 and T2 are both of type "pointer to function" or
6824   //    "pointer to member function" and the pointee types can be unified
6825   //    by a function pointer conversion, that conversion is applied
6826   //    before checking the following rules.
6827   //
6828   // We've already unwrapped down to the function types, and we want to merge
6829   // rather than just convert, so do this ourselves rather than calling
6830   // IsFunctionConversion.
6831   //
6832   // FIXME: In order to match the standard wording as closely as possible, we
6833   // currently only do this under a single level of pointers. Ideally, we would
6834   // allow this in general, and set NeedConstBefore to the relevant depth on
6835   // the side(s) where we changed anything. If we permit that, we should also
6836   // consider this conversion when determining type similarity and model it as
6837   // a qualification conversion.
6838   if (Steps.size() == 1) {
6839     if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) {
6840       if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) {
6841         FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo();
6842         FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo();
6843 
6844         // The result is noreturn if both operands are.
6845         bool Noreturn =
6846             EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn();
6847         EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn);
6848         EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn);
6849 
6850         // The result is nothrow if both operands are.
6851         SmallVector<QualType, 8> ExceptionTypeStorage;
6852         EPI1.ExceptionSpec = EPI2.ExceptionSpec =
6853             mergeExceptionSpecs(*this, EPI1.ExceptionSpec, EPI2.ExceptionSpec,
6854                                 ExceptionTypeStorage);
6855 
6856         Composite1 = Context.getFunctionType(FPT1->getReturnType(),
6857                                              FPT1->getParamTypes(), EPI1);
6858         Composite2 = Context.getFunctionType(FPT2->getReturnType(),
6859                                              FPT2->getParamTypes(), EPI2);
6860       }
6861     }
6862   }
6863 
6864   // There are some more conversions we can perform under exactly one pointer.
6865   if (Steps.size() == 1 && Steps.front().K == Step::Pointer &&
6866       !Context.hasSameType(Composite1, Composite2)) {
6867     //  - if T1 or T2 is "pointer to cv1 void" and the other type is
6868     //    "pointer to cv2 T", where T is an object type or void,
6869     //    "pointer to cv12 void", where cv12 is the union of cv1 and cv2;
6870     if (Composite1->isVoidType() && Composite2->isObjectType())
6871       Composite2 = Composite1;
6872     else if (Composite2->isVoidType() && Composite1->isObjectType())
6873       Composite1 = Composite2;
6874     //  - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
6875     //    is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
6876     //    the cv-combined type of T1 and T2 or the cv-combined type of T2 and
6877     //    T1, respectively;
6878     //
6879     // The "similar type" handling covers all of this except for the "T1 is a
6880     // base class of T2" case in the definition of reference-related.
6881     else if (IsDerivedFrom(Loc, Composite1, Composite2))
6882       Composite1 = Composite2;
6883     else if (IsDerivedFrom(Loc, Composite2, Composite1))
6884       Composite2 = Composite1;
6885   }
6886 
6887   // At this point, either the inner types are the same or we have failed to
6888   // find a composite pointer type.
6889   if (!Context.hasSameType(Composite1, Composite2))
6890     return QualType();
6891 
6892   // Per C++ [conv.qual]p3, add 'const' to every level before the last
6893   // differing qualifier.
6894   for (unsigned I = 0; I != NeedConstBefore; ++I)
6895     Steps[I].Quals.addConst();
6896 
6897   // Rebuild the composite type.
6898   QualType Composite = Composite1;
6899   for (auto &S : llvm::reverse(Steps))
6900     Composite = S.rebuild(Context, Composite);
6901 
6902   if (ConvertArgs) {
6903     // Convert the expressions to the composite pointer type.
6904     InitializedEntity Entity =
6905         InitializedEntity::InitializeTemporary(Composite);
6906     InitializationKind Kind =
6907         InitializationKind::CreateCopy(Loc, SourceLocation());
6908 
6909     InitializationSequence E1ToC(*this, Entity, Kind, E1);
6910     if (!E1ToC)
6911       return QualType();
6912 
6913     InitializationSequence E2ToC(*this, Entity, Kind, E2);
6914     if (!E2ToC)
6915       return QualType();
6916 
6917     // FIXME: Let the caller know if these fail to avoid duplicate diagnostics.
6918     ExprResult E1Result = E1ToC.Perform(*this, Entity, Kind, E1);
6919     if (E1Result.isInvalid())
6920       return QualType();
6921     E1 = E1Result.get();
6922 
6923     ExprResult E2Result = E2ToC.Perform(*this, Entity, Kind, E2);
6924     if (E2Result.isInvalid())
6925       return QualType();
6926     E2 = E2Result.get();
6927   }
6928 
6929   return Composite;
6930 }
6931 
MaybeBindToTemporary(Expr * E)6932 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
6933   if (!E)
6934     return ExprError();
6935 
6936   assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
6937 
6938   // If the result is a glvalue, we shouldn't bind it.
6939   if (E->isGLValue())
6940     return E;
6941 
6942   // In ARC, calls that return a retainable type can return retained,
6943   // in which case we have to insert a consuming cast.
6944   if (getLangOpts().ObjCAutoRefCount &&
6945       E->getType()->isObjCRetainableType()) {
6946 
6947     bool ReturnsRetained;
6948 
6949     // For actual calls, we compute this by examining the type of the
6950     // called value.
6951     if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
6952       Expr *Callee = Call->getCallee()->IgnoreParens();
6953       QualType T = Callee->getType();
6954 
6955       if (T == Context.BoundMemberTy) {
6956         // Handle pointer-to-members.
6957         if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
6958           T = BinOp->getRHS()->getType();
6959         else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
6960           T = Mem->getMemberDecl()->getType();
6961       }
6962 
6963       if (const PointerType *Ptr = T->getAs<PointerType>())
6964         T = Ptr->getPointeeType();
6965       else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
6966         T = Ptr->getPointeeType();
6967       else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
6968         T = MemPtr->getPointeeType();
6969 
6970       auto *FTy = T->castAs<FunctionType>();
6971       ReturnsRetained = FTy->getExtInfo().getProducesResult();
6972 
6973     // ActOnStmtExpr arranges things so that StmtExprs of retainable
6974     // type always produce a +1 object.
6975     } else if (isa<StmtExpr>(E)) {
6976       ReturnsRetained = true;
6977 
6978     // We hit this case with the lambda conversion-to-block optimization;
6979     // we don't want any extra casts here.
6980     } else if (isa<CastExpr>(E) &&
6981                isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
6982       return E;
6983 
6984     // For message sends and property references, we try to find an
6985     // actual method.  FIXME: we should infer retention by selector in
6986     // cases where we don't have an actual method.
6987     } else {
6988       ObjCMethodDecl *D = nullptr;
6989       if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
6990         D = Send->getMethodDecl();
6991       } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
6992         D = BoxedExpr->getBoxingMethod();
6993       } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
6994         // Don't do reclaims if we're using the zero-element array
6995         // constant.
6996         if (ArrayLit->getNumElements() == 0 &&
6997             Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
6998           return E;
6999 
7000         D = ArrayLit->getArrayWithObjectsMethod();
7001       } else if (ObjCDictionaryLiteral *DictLit
7002                                         = dyn_cast<ObjCDictionaryLiteral>(E)) {
7003         // Don't do reclaims if we're using the zero-element dictionary
7004         // constant.
7005         if (DictLit->getNumElements() == 0 &&
7006             Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
7007           return E;
7008 
7009         D = DictLit->getDictWithObjectsMethod();
7010       }
7011 
7012       ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
7013 
7014       // Don't do reclaims on performSelector calls; despite their
7015       // return type, the invoked method doesn't necessarily actually
7016       // return an object.
7017       if (!ReturnsRetained &&
7018           D && D->getMethodFamily() == OMF_performSelector)
7019         return E;
7020     }
7021 
7022     // Don't reclaim an object of Class type.
7023     if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
7024       return E;
7025 
7026     Cleanup.setExprNeedsCleanups(true);
7027 
7028     CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
7029                                    : CK_ARCReclaimReturnedObject);
7030     return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
7031                                     VK_PRValue, FPOptionsOverride());
7032   }
7033 
7034   if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
7035     Cleanup.setExprNeedsCleanups(true);
7036 
7037   if (!getLangOpts().CPlusPlus)
7038     return E;
7039 
7040   // Search for the base element type (cf. ASTContext::getBaseElementType) with
7041   // a fast path for the common case that the type is directly a RecordType.
7042   const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
7043   const RecordType *RT = nullptr;
7044   while (!RT) {
7045     switch (T->getTypeClass()) {
7046     case Type::Record:
7047       RT = cast<RecordType>(T);
7048       break;
7049     case Type::ConstantArray:
7050     case Type::IncompleteArray:
7051     case Type::VariableArray:
7052     case Type::DependentSizedArray:
7053       T = cast<ArrayType>(T)->getElementType().getTypePtr();
7054       break;
7055     default:
7056       return E;
7057     }
7058   }
7059 
7060   // That should be enough to guarantee that this type is complete, if we're
7061   // not processing a decltype expression.
7062   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
7063   if (RD->isInvalidDecl() || RD->isDependentContext())
7064     return E;
7065 
7066   bool IsDecltype = ExprEvalContexts.back().ExprContext ==
7067                     ExpressionEvaluationContextRecord::EK_Decltype;
7068   CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
7069 
7070   if (Destructor) {
7071     MarkFunctionReferenced(E->getExprLoc(), Destructor);
7072     CheckDestructorAccess(E->getExprLoc(), Destructor,
7073                           PDiag(diag::err_access_dtor_temp)
7074                             << E->getType());
7075     if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
7076       return ExprError();
7077 
7078     // If destructor is trivial, we can avoid the extra copy.
7079     if (Destructor->isTrivial())
7080       return E;
7081 
7082     // We need a cleanup, but we don't need to remember the temporary.
7083     Cleanup.setExprNeedsCleanups(true);
7084   }
7085 
7086   CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
7087   CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
7088 
7089   if (IsDecltype)
7090     ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
7091 
7092   return Bind;
7093 }
7094 
7095 ExprResult
MaybeCreateExprWithCleanups(ExprResult SubExpr)7096 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
7097   if (SubExpr.isInvalid())
7098     return ExprError();
7099 
7100   return MaybeCreateExprWithCleanups(SubExpr.get());
7101 }
7102 
MaybeCreateExprWithCleanups(Expr * SubExpr)7103 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
7104   assert(SubExpr && "subexpression can't be null!");
7105 
7106   CleanupVarDeclMarking();
7107 
7108   unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
7109   assert(ExprCleanupObjects.size() >= FirstCleanup);
7110   assert(Cleanup.exprNeedsCleanups() ||
7111          ExprCleanupObjects.size() == FirstCleanup);
7112   if (!Cleanup.exprNeedsCleanups())
7113     return SubExpr;
7114 
7115   auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
7116                                      ExprCleanupObjects.size() - FirstCleanup);
7117 
7118   auto *E = ExprWithCleanups::Create(
7119       Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups);
7120   DiscardCleanupsInEvaluationContext();
7121 
7122   return E;
7123 }
7124 
MaybeCreateStmtWithCleanups(Stmt * SubStmt)7125 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
7126   assert(SubStmt && "sub-statement can't be null!");
7127 
7128   CleanupVarDeclMarking();
7129 
7130   if (!Cleanup.exprNeedsCleanups())
7131     return SubStmt;
7132 
7133   // FIXME: In order to attach the temporaries, wrap the statement into
7134   // a StmtExpr; currently this is only used for asm statements.
7135   // This is hacky, either create a new CXXStmtWithTemporaries statement or
7136   // a new AsmStmtWithTemporaries.
7137   CompoundStmt *CompStmt = CompoundStmt::Create(
7138       Context, SubStmt, SourceLocation(), SourceLocation());
7139   Expr *E = new (Context)
7140       StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(),
7141                /*FIXME TemplateDepth=*/0);
7142   return MaybeCreateExprWithCleanups(E);
7143 }
7144 
7145 /// Process the expression contained within a decltype. For such expressions,
7146 /// certain semantic checks on temporaries are delayed until this point, and
7147 /// are omitted for the 'topmost' call in the decltype expression. If the
7148 /// topmost call bound a temporary, strip that temporary off the expression.
ActOnDecltypeExpression(Expr * E)7149 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
7150   assert(ExprEvalContexts.back().ExprContext ==
7151              ExpressionEvaluationContextRecord::EK_Decltype &&
7152          "not in a decltype expression");
7153 
7154   ExprResult Result = CheckPlaceholderExpr(E);
7155   if (Result.isInvalid())
7156     return ExprError();
7157   E = Result.get();
7158 
7159   // C++11 [expr.call]p11:
7160   //   If a function call is a prvalue of object type,
7161   // -- if the function call is either
7162   //   -- the operand of a decltype-specifier, or
7163   //   -- the right operand of a comma operator that is the operand of a
7164   //      decltype-specifier,
7165   //   a temporary object is not introduced for the prvalue.
7166 
7167   // Recursively rebuild ParenExprs and comma expressions to strip out the
7168   // outermost CXXBindTemporaryExpr, if any.
7169   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
7170     ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
7171     if (SubExpr.isInvalid())
7172       return ExprError();
7173     if (SubExpr.get() == PE->getSubExpr())
7174       return E;
7175     return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
7176   }
7177   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7178     if (BO->getOpcode() == BO_Comma) {
7179       ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
7180       if (RHS.isInvalid())
7181         return ExprError();
7182       if (RHS.get() == BO->getRHS())
7183         return E;
7184       return BinaryOperator::Create(Context, BO->getLHS(), RHS.get(), BO_Comma,
7185                                     BO->getType(), BO->getValueKind(),
7186                                     BO->getObjectKind(), BO->getOperatorLoc(),
7187                                     BO->getFPFeatures(getLangOpts()));
7188     }
7189   }
7190 
7191   CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
7192   CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
7193                               : nullptr;
7194   if (TopCall)
7195     E = TopCall;
7196   else
7197     TopBind = nullptr;
7198 
7199   // Disable the special decltype handling now.
7200   ExprEvalContexts.back().ExprContext =
7201       ExpressionEvaluationContextRecord::EK_Other;
7202 
7203   Result = CheckUnevaluatedOperand(E);
7204   if (Result.isInvalid())
7205     return ExprError();
7206   E = Result.get();
7207 
7208   // In MS mode, don't perform any extra checking of call return types within a
7209   // decltype expression.
7210   if (getLangOpts().MSVCCompat)
7211     return E;
7212 
7213   // Perform the semantic checks we delayed until this point.
7214   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
7215        I != N; ++I) {
7216     CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
7217     if (Call == TopCall)
7218       continue;
7219 
7220     if (CheckCallReturnType(Call->getCallReturnType(Context),
7221                             Call->getBeginLoc(), Call, Call->getDirectCallee()))
7222       return ExprError();
7223   }
7224 
7225   // Now all relevant types are complete, check the destructors are accessible
7226   // and non-deleted, and annotate them on the temporaries.
7227   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
7228        I != N; ++I) {
7229     CXXBindTemporaryExpr *Bind =
7230       ExprEvalContexts.back().DelayedDecltypeBinds[I];
7231     if (Bind == TopBind)
7232       continue;
7233 
7234     CXXTemporary *Temp = Bind->getTemporary();
7235 
7236     CXXRecordDecl *RD =
7237       Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
7238     CXXDestructorDecl *Destructor = LookupDestructor(RD);
7239     Temp->setDestructor(Destructor);
7240 
7241     MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
7242     CheckDestructorAccess(Bind->getExprLoc(), Destructor,
7243                           PDiag(diag::err_access_dtor_temp)
7244                             << Bind->getType());
7245     if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
7246       return ExprError();
7247 
7248     // We need a cleanup, but we don't need to remember the temporary.
7249     Cleanup.setExprNeedsCleanups(true);
7250   }
7251 
7252   // Possibly strip off the top CXXBindTemporaryExpr.
7253   return E;
7254 }
7255 
7256 /// Note a set of 'operator->' functions that were used for a member access.
noteOperatorArrows(Sema & S,ArrayRef<FunctionDecl * > OperatorArrows)7257 static void noteOperatorArrows(Sema &S,
7258                                ArrayRef<FunctionDecl *> OperatorArrows) {
7259   unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
7260   // FIXME: Make this configurable?
7261   unsigned Limit = 9;
7262   if (OperatorArrows.size() > Limit) {
7263     // Produce Limit-1 normal notes and one 'skipping' note.
7264     SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
7265     SkipCount = OperatorArrows.size() - (Limit - 1);
7266   }
7267 
7268   for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
7269     if (I == SkipStart) {
7270       S.Diag(OperatorArrows[I]->getLocation(),
7271              diag::note_operator_arrows_suppressed)
7272           << SkipCount;
7273       I += SkipCount;
7274     } else {
7275       S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
7276           << OperatorArrows[I]->getCallResultType();
7277       ++I;
7278     }
7279   }
7280 }
7281 
ActOnStartCXXMemberReference(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,ParsedType & ObjectType,bool & MayBePseudoDestructor)7282 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
7283                                               SourceLocation OpLoc,
7284                                               tok::TokenKind OpKind,
7285                                               ParsedType &ObjectType,
7286                                               bool &MayBePseudoDestructor) {
7287   // Since this might be a postfix expression, get rid of ParenListExprs.
7288   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
7289   if (Result.isInvalid()) return ExprError();
7290   Base = Result.get();
7291 
7292   Result = CheckPlaceholderExpr(Base);
7293   if (Result.isInvalid()) return ExprError();
7294   Base = Result.get();
7295 
7296   QualType BaseType = Base->getType();
7297   MayBePseudoDestructor = false;
7298   if (BaseType->isDependentType()) {
7299     // If we have a pointer to a dependent type and are using the -> operator,
7300     // the object type is the type that the pointer points to. We might still
7301     // have enough information about that type to do something useful.
7302     if (OpKind == tok::arrow)
7303       if (const PointerType *Ptr = BaseType->getAs<PointerType>())
7304         BaseType = Ptr->getPointeeType();
7305 
7306     ObjectType = ParsedType::make(BaseType);
7307     MayBePseudoDestructor = true;
7308     return Base;
7309   }
7310 
7311   // C++ [over.match.oper]p8:
7312   //   [...] When operator->returns, the operator-> is applied  to the value
7313   //   returned, with the original second operand.
7314   if (OpKind == tok::arrow) {
7315     QualType StartingType = BaseType;
7316     bool NoArrowOperatorFound = false;
7317     bool FirstIteration = true;
7318     FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
7319     // The set of types we've considered so far.
7320     llvm::SmallPtrSet<CanQualType,8> CTypes;
7321     SmallVector<FunctionDecl*, 8> OperatorArrows;
7322     CTypes.insert(Context.getCanonicalType(BaseType));
7323 
7324     while (BaseType->isRecordType()) {
7325       if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
7326         Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
7327           << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
7328         noteOperatorArrows(*this, OperatorArrows);
7329         Diag(OpLoc, diag::note_operator_arrow_depth)
7330           << getLangOpts().ArrowDepth;
7331         return ExprError();
7332       }
7333 
7334       Result = BuildOverloadedArrowExpr(
7335           S, Base, OpLoc,
7336           // When in a template specialization and on the first loop iteration,
7337           // potentially give the default diagnostic (with the fixit in a
7338           // separate note) instead of having the error reported back to here
7339           // and giving a diagnostic with a fixit attached to the error itself.
7340           (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
7341               ? nullptr
7342               : &NoArrowOperatorFound);
7343       if (Result.isInvalid()) {
7344         if (NoArrowOperatorFound) {
7345           if (FirstIteration) {
7346             Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7347               << BaseType << 1 << Base->getSourceRange()
7348               << FixItHint::CreateReplacement(OpLoc, ".");
7349             OpKind = tok::period;
7350             break;
7351           }
7352           Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
7353             << BaseType << Base->getSourceRange();
7354           CallExpr *CE = dyn_cast<CallExpr>(Base);
7355           if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
7356             Diag(CD->getBeginLoc(),
7357                  diag::note_member_reference_arrow_from_operator_arrow);
7358           }
7359         }
7360         return ExprError();
7361       }
7362       Base = Result.get();
7363       if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
7364         OperatorArrows.push_back(OpCall->getDirectCallee());
7365       BaseType = Base->getType();
7366       CanQualType CBaseType = Context.getCanonicalType(BaseType);
7367       if (!CTypes.insert(CBaseType).second) {
7368         Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
7369         noteOperatorArrows(*this, OperatorArrows);
7370         return ExprError();
7371       }
7372       FirstIteration = false;
7373     }
7374 
7375     if (OpKind == tok::arrow) {
7376       if (BaseType->isPointerType())
7377         BaseType = BaseType->getPointeeType();
7378       else if (auto *AT = Context.getAsArrayType(BaseType))
7379         BaseType = AT->getElementType();
7380     }
7381   }
7382 
7383   // Objective-C properties allow "." access on Objective-C pointer types,
7384   // so adjust the base type to the object type itself.
7385   if (BaseType->isObjCObjectPointerType())
7386     BaseType = BaseType->getPointeeType();
7387 
7388   // C++ [basic.lookup.classref]p2:
7389   //   [...] If the type of the object expression is of pointer to scalar
7390   //   type, the unqualified-id is looked up in the context of the complete
7391   //   postfix-expression.
7392   //
7393   // This also indicates that we could be parsing a pseudo-destructor-name.
7394   // Note that Objective-C class and object types can be pseudo-destructor
7395   // expressions or normal member (ivar or property) access expressions, and
7396   // it's legal for the type to be incomplete if this is a pseudo-destructor
7397   // call.  We'll do more incomplete-type checks later in the lookup process,
7398   // so just skip this check for ObjC types.
7399   if (!BaseType->isRecordType()) {
7400     ObjectType = ParsedType::make(BaseType);
7401     MayBePseudoDestructor = true;
7402     return Base;
7403   }
7404 
7405   // The object type must be complete (or dependent), or
7406   // C++11 [expr.prim.general]p3:
7407   //   Unlike the object expression in other contexts, *this is not required to
7408   //   be of complete type for purposes of class member access (5.2.5) outside
7409   //   the member function body.
7410   if (!BaseType->isDependentType() &&
7411       !isThisOutsideMemberFunctionBody(BaseType) &&
7412       RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
7413     return ExprError();
7414 
7415   // C++ [basic.lookup.classref]p2:
7416   //   If the id-expression in a class member access (5.2.5) is an
7417   //   unqualified-id, and the type of the object expression is of a class
7418   //   type C (or of pointer to a class type C), the unqualified-id is looked
7419   //   up in the scope of class C. [...]
7420   ObjectType = ParsedType::make(BaseType);
7421   return Base;
7422 }
7423 
CheckArrow(Sema & S,QualType & ObjectType,Expr * & Base,tok::TokenKind & OpKind,SourceLocation OpLoc)7424 static bool CheckArrow(Sema &S, QualType &ObjectType, Expr *&Base,
7425                        tok::TokenKind &OpKind, SourceLocation OpLoc) {
7426   if (Base->hasPlaceholderType()) {
7427     ExprResult result = S.CheckPlaceholderExpr(Base);
7428     if (result.isInvalid()) return true;
7429     Base = result.get();
7430   }
7431   ObjectType = Base->getType();
7432 
7433   // C++ [expr.pseudo]p2:
7434   //   The left-hand side of the dot operator shall be of scalar type. The
7435   //   left-hand side of the arrow operator shall be of pointer to scalar type.
7436   //   This scalar type is the object type.
7437   // Note that this is rather different from the normal handling for the
7438   // arrow operator.
7439   if (OpKind == tok::arrow) {
7440     // The operator requires a prvalue, so perform lvalue conversions.
7441     // Only do this if we might plausibly end with a pointer, as otherwise
7442     // this was likely to be intended to be a '.'.
7443     if (ObjectType->isPointerType() || ObjectType->isArrayType() ||
7444         ObjectType->isFunctionType()) {
7445       ExprResult BaseResult = S.DefaultFunctionArrayLvalueConversion(Base);
7446       if (BaseResult.isInvalid())
7447         return true;
7448       Base = BaseResult.get();
7449       ObjectType = Base->getType();
7450     }
7451 
7452     if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
7453       ObjectType = Ptr->getPointeeType();
7454     } else if (!Base->isTypeDependent()) {
7455       // The user wrote "p->" when they probably meant "p."; fix it.
7456       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7457         << ObjectType << true
7458         << FixItHint::CreateReplacement(OpLoc, ".");
7459       if (S.isSFINAEContext())
7460         return true;
7461 
7462       OpKind = tok::period;
7463     }
7464   }
7465 
7466   return false;
7467 }
7468 
7469 /// Check if it's ok to try and recover dot pseudo destructor calls on
7470 /// pointer objects.
7471 static bool
canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema & SemaRef,QualType DestructedType)7472 canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef,
7473                                                    QualType DestructedType) {
7474   // If this is a record type, check if its destructor is callable.
7475   if (auto *RD = DestructedType->getAsCXXRecordDecl()) {
7476     if (RD->hasDefinition())
7477       if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD))
7478         return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false);
7479     return false;
7480   }
7481 
7482   // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor.
7483   return DestructedType->isDependentType() || DestructedType->isScalarType() ||
7484          DestructedType->isVectorType();
7485 }
7486 
BuildPseudoDestructorExpr(Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,const CXXScopeSpec & SS,TypeSourceInfo * ScopeTypeInfo,SourceLocation CCLoc,SourceLocation TildeLoc,PseudoDestructorTypeStorage Destructed)7487 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
7488                                            SourceLocation OpLoc,
7489                                            tok::TokenKind OpKind,
7490                                            const CXXScopeSpec &SS,
7491                                            TypeSourceInfo *ScopeTypeInfo,
7492                                            SourceLocation CCLoc,
7493                                            SourceLocation TildeLoc,
7494                                          PseudoDestructorTypeStorage Destructed) {
7495   TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
7496 
7497   QualType ObjectType;
7498   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7499     return ExprError();
7500 
7501   if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
7502       !ObjectType->isVectorType()) {
7503     if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
7504       Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
7505     else {
7506       Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
7507         << ObjectType << Base->getSourceRange();
7508       return ExprError();
7509     }
7510   }
7511 
7512   // C++ [expr.pseudo]p2:
7513   //   [...] The cv-unqualified versions of the object type and of the type
7514   //   designated by the pseudo-destructor-name shall be the same type.
7515   if (DestructedTypeInfo) {
7516     QualType DestructedType = DestructedTypeInfo->getType();
7517     SourceLocation DestructedTypeStart
7518       = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
7519     if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
7520       if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
7521         // Detect dot pseudo destructor calls on pointer objects, e.g.:
7522         //   Foo *foo;
7523         //   foo.~Foo();
7524         if (OpKind == tok::period && ObjectType->isPointerType() &&
7525             Context.hasSameUnqualifiedType(DestructedType,
7526                                            ObjectType->getPointeeType())) {
7527           auto Diagnostic =
7528               Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7529               << ObjectType << /*IsArrow=*/0 << Base->getSourceRange();
7530 
7531           // Issue a fixit only when the destructor is valid.
7532           if (canRecoverDotPseudoDestructorCallsOnPointerObjects(
7533                   *this, DestructedType))
7534             Diagnostic << FixItHint::CreateReplacement(OpLoc, "->");
7535 
7536           // Recover by setting the object type to the destructed type and the
7537           // operator to '->'.
7538           ObjectType = DestructedType;
7539           OpKind = tok::arrow;
7540         } else {
7541           Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
7542               << ObjectType << DestructedType << Base->getSourceRange()
7543               << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
7544 
7545           // Recover by setting the destructed type to the object type.
7546           DestructedType = ObjectType;
7547           DestructedTypeInfo =
7548               Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart);
7549           Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7550         }
7551       } else if (DestructedType.getObjCLifetime() !=
7552                                                 ObjectType.getObjCLifetime()) {
7553 
7554         if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
7555           // Okay: just pretend that the user provided the correctly-qualified
7556           // type.
7557         } else {
7558           Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
7559             << ObjectType << DestructedType << Base->getSourceRange()
7560             << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
7561         }
7562 
7563         // Recover by setting the destructed type to the object type.
7564         DestructedType = ObjectType;
7565         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
7566                                                            DestructedTypeStart);
7567         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7568       }
7569     }
7570   }
7571 
7572   // C++ [expr.pseudo]p2:
7573   //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
7574   //   form
7575   //
7576   //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
7577   //
7578   //   shall designate the same scalar type.
7579   if (ScopeTypeInfo) {
7580     QualType ScopeType = ScopeTypeInfo->getType();
7581     if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
7582         !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
7583 
7584       Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
7585            diag::err_pseudo_dtor_type_mismatch)
7586         << ObjectType << ScopeType << Base->getSourceRange()
7587         << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
7588 
7589       ScopeType = QualType();
7590       ScopeTypeInfo = nullptr;
7591     }
7592   }
7593 
7594   Expr *Result
7595     = new (Context) CXXPseudoDestructorExpr(Context, Base,
7596                                             OpKind == tok::arrow, OpLoc,
7597                                             SS.getWithLocInContext(Context),
7598                                             ScopeTypeInfo,
7599                                             CCLoc,
7600                                             TildeLoc,
7601                                             Destructed);
7602 
7603   return Result;
7604 }
7605 
ActOnPseudoDestructorExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,CXXScopeSpec & SS,UnqualifiedId & FirstTypeName,SourceLocation CCLoc,SourceLocation TildeLoc,UnqualifiedId & SecondTypeName)7606 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
7607                                            SourceLocation OpLoc,
7608                                            tok::TokenKind OpKind,
7609                                            CXXScopeSpec &SS,
7610                                            UnqualifiedId &FirstTypeName,
7611                                            SourceLocation CCLoc,
7612                                            SourceLocation TildeLoc,
7613                                            UnqualifiedId &SecondTypeName) {
7614   assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7615           FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
7616          "Invalid first type name in pseudo-destructor");
7617   assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7618           SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
7619          "Invalid second type name in pseudo-destructor");
7620 
7621   QualType ObjectType;
7622   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7623     return ExprError();
7624 
7625   // Compute the object type that we should use for name lookup purposes. Only
7626   // record types and dependent types matter.
7627   ParsedType ObjectTypePtrForLookup;
7628   if (!SS.isSet()) {
7629     if (ObjectType->isRecordType())
7630       ObjectTypePtrForLookup = ParsedType::make(ObjectType);
7631     else if (ObjectType->isDependentType())
7632       ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
7633   }
7634 
7635   // Convert the name of the type being destructed (following the ~) into a
7636   // type (with source-location information).
7637   QualType DestructedType;
7638   TypeSourceInfo *DestructedTypeInfo = nullptr;
7639   PseudoDestructorTypeStorage Destructed;
7640   if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7641     ParsedType T = getTypeName(*SecondTypeName.Identifier,
7642                                SecondTypeName.StartLocation,
7643                                S, &SS, true, false, ObjectTypePtrForLookup,
7644                                /*IsCtorOrDtorName*/true);
7645     if (!T &&
7646         ((SS.isSet() && !computeDeclContext(SS, false)) ||
7647          (!SS.isSet() && ObjectType->isDependentType()))) {
7648       // The name of the type being destroyed is a dependent name, and we
7649       // couldn't find anything useful in scope. Just store the identifier and
7650       // it's location, and we'll perform (qualified) name lookup again at
7651       // template instantiation time.
7652       Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
7653                                                SecondTypeName.StartLocation);
7654     } else if (!T) {
7655       Diag(SecondTypeName.StartLocation,
7656            diag::err_pseudo_dtor_destructor_non_type)
7657         << SecondTypeName.Identifier << ObjectType;
7658       if (isSFINAEContext())
7659         return ExprError();
7660 
7661       // Recover by assuming we had the right type all along.
7662       DestructedType = ObjectType;
7663     } else
7664       DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
7665   } else {
7666     // Resolve the template-id to a type.
7667     TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
7668     ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7669                                        TemplateId->NumArgs);
7670     TypeResult T = ActOnTemplateIdType(S,
7671                                        SS,
7672                                        TemplateId->TemplateKWLoc,
7673                                        TemplateId->Template,
7674                                        TemplateId->Name,
7675                                        TemplateId->TemplateNameLoc,
7676                                        TemplateId->LAngleLoc,
7677                                        TemplateArgsPtr,
7678                                        TemplateId->RAngleLoc,
7679                                        /*IsCtorOrDtorName*/true);
7680     if (T.isInvalid() || !T.get()) {
7681       // Recover by assuming we had the right type all along.
7682       DestructedType = ObjectType;
7683     } else
7684       DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
7685   }
7686 
7687   // If we've performed some kind of recovery, (re-)build the type source
7688   // information.
7689   if (!DestructedType.isNull()) {
7690     if (!DestructedTypeInfo)
7691       DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
7692                                                   SecondTypeName.StartLocation);
7693     Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7694   }
7695 
7696   // Convert the name of the scope type (the type prior to '::') into a type.
7697   TypeSourceInfo *ScopeTypeInfo = nullptr;
7698   QualType ScopeType;
7699   if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7700       FirstTypeName.Identifier) {
7701     if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7702       ParsedType T = getTypeName(*FirstTypeName.Identifier,
7703                                  FirstTypeName.StartLocation,
7704                                  S, &SS, true, false, ObjectTypePtrForLookup,
7705                                  /*IsCtorOrDtorName*/true);
7706       if (!T) {
7707         Diag(FirstTypeName.StartLocation,
7708              diag::err_pseudo_dtor_destructor_non_type)
7709           << FirstTypeName.Identifier << ObjectType;
7710 
7711         if (isSFINAEContext())
7712           return ExprError();
7713 
7714         // Just drop this type. It's unnecessary anyway.
7715         ScopeType = QualType();
7716       } else
7717         ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
7718     } else {
7719       // Resolve the template-id to a type.
7720       TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
7721       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7722                                          TemplateId->NumArgs);
7723       TypeResult T = ActOnTemplateIdType(S,
7724                                          SS,
7725                                          TemplateId->TemplateKWLoc,
7726                                          TemplateId->Template,
7727                                          TemplateId->Name,
7728                                          TemplateId->TemplateNameLoc,
7729                                          TemplateId->LAngleLoc,
7730                                          TemplateArgsPtr,
7731                                          TemplateId->RAngleLoc,
7732                                          /*IsCtorOrDtorName*/true);
7733       if (T.isInvalid() || !T.get()) {
7734         // Recover by dropping this type.
7735         ScopeType = QualType();
7736       } else
7737         ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
7738     }
7739   }
7740 
7741   if (!ScopeType.isNull() && !ScopeTypeInfo)
7742     ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
7743                                                   FirstTypeName.StartLocation);
7744 
7745 
7746   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
7747                                    ScopeTypeInfo, CCLoc, TildeLoc,
7748                                    Destructed);
7749 }
7750 
ActOnPseudoDestructorExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,SourceLocation TildeLoc,const DeclSpec & DS)7751 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
7752                                            SourceLocation OpLoc,
7753                                            tok::TokenKind OpKind,
7754                                            SourceLocation TildeLoc,
7755                                            const DeclSpec& DS) {
7756   QualType ObjectType;
7757   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7758     return ExprError();
7759 
7760   if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
7761     Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
7762     return true;
7763   }
7764 
7765   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc(),
7766                                  false);
7767 
7768   TypeLocBuilder TLB;
7769   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
7770   DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
7771   TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
7772   PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
7773 
7774   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
7775                                    nullptr, SourceLocation(), TildeLoc,
7776                                    Destructed);
7777 }
7778 
BuildCXXMemberCallExpr(Expr * E,NamedDecl * FoundDecl,CXXConversionDecl * Method,bool HadMultipleCandidates)7779 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
7780                                         CXXConversionDecl *Method,
7781                                         bool HadMultipleCandidates) {
7782   // Convert the expression to match the conversion function's implicit object
7783   // parameter.
7784   ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr,
7785                                           FoundDecl, Method);
7786   if (Exp.isInvalid())
7787     return true;
7788 
7789   if (Method->getParent()->isLambda() &&
7790       Method->getConversionType()->isBlockPointerType()) {
7791     // This is a lambda conversion to block pointer; check if the argument
7792     // was a LambdaExpr.
7793     Expr *SubE = E;
7794     CastExpr *CE = dyn_cast<CastExpr>(SubE);
7795     if (CE && CE->getCastKind() == CK_NoOp)
7796       SubE = CE->getSubExpr();
7797     SubE = SubE->IgnoreParens();
7798     if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
7799       SubE = BE->getSubExpr();
7800     if (isa<LambdaExpr>(SubE)) {
7801       // For the conversion to block pointer on a lambda expression, we
7802       // construct a special BlockLiteral instead; this doesn't really make
7803       // a difference in ARC, but outside of ARC the resulting block literal
7804       // follows the normal lifetime rules for block literals instead of being
7805       // autoreleased.
7806       PushExpressionEvaluationContext(
7807           ExpressionEvaluationContext::PotentiallyEvaluated);
7808       ExprResult BlockExp = BuildBlockForLambdaConversion(
7809           Exp.get()->getExprLoc(), Exp.get()->getExprLoc(), Method, Exp.get());
7810       PopExpressionEvaluationContext();
7811 
7812       // FIXME: This note should be produced by a CodeSynthesisContext.
7813       if (BlockExp.isInvalid())
7814         Diag(Exp.get()->getExprLoc(), diag::note_lambda_to_block_conv);
7815       return BlockExp;
7816     }
7817   }
7818 
7819   MemberExpr *ME =
7820       BuildMemberExpr(Exp.get(), /*IsArrow=*/false, SourceLocation(),
7821                       NestedNameSpecifierLoc(), SourceLocation(), Method,
7822                       DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()),
7823                       HadMultipleCandidates, DeclarationNameInfo(),
7824                       Context.BoundMemberTy, VK_PRValue, OK_Ordinary);
7825 
7826   QualType ResultType = Method->getReturnType();
7827   ExprValueKind VK = Expr::getValueKindForType(ResultType);
7828   ResultType = ResultType.getNonLValueExprType(Context);
7829 
7830   CXXMemberCallExpr *CE = CXXMemberCallExpr::Create(
7831       Context, ME, /*Args=*/{}, ResultType, VK, Exp.get()->getEndLoc(),
7832       CurFPFeatureOverrides());
7833 
7834   if (CheckFunctionCall(Method, CE,
7835                         Method->getType()->castAs<FunctionProtoType>()))
7836     return ExprError();
7837 
7838   return CheckForImmediateInvocation(CE, CE->getMethodDecl());
7839 }
7840 
BuildCXXNoexceptExpr(SourceLocation KeyLoc,Expr * Operand,SourceLocation RParen)7841 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
7842                                       SourceLocation RParen) {
7843   // If the operand is an unresolved lookup expression, the expression is ill-
7844   // formed per [over.over]p1, because overloaded function names cannot be used
7845   // without arguments except in explicit contexts.
7846   ExprResult R = CheckPlaceholderExpr(Operand);
7847   if (R.isInvalid())
7848     return R;
7849 
7850   R = CheckUnevaluatedOperand(R.get());
7851   if (R.isInvalid())
7852     return ExprError();
7853 
7854   Operand = R.get();
7855 
7856   if (!inTemplateInstantiation() && !Operand->isInstantiationDependent() &&
7857       Operand->HasSideEffects(Context, false)) {
7858     // The expression operand for noexcept is in an unevaluated expression
7859     // context, so side effects could result in unintended consequences.
7860     Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
7861   }
7862 
7863   CanThrowResult CanThrow = canThrow(Operand);
7864   return new (Context)
7865       CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
7866 }
7867 
ActOnNoexceptExpr(SourceLocation KeyLoc,SourceLocation,Expr * Operand,SourceLocation RParen)7868 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
7869                                    Expr *Operand, SourceLocation RParen) {
7870   return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
7871 }
7872 
MaybeDecrementCount(Expr * E,llvm::DenseMap<const VarDecl *,int> & RefsMinusAssignments)7873 static void MaybeDecrementCount(
7874     Expr *E, llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
7875   DeclRefExpr *LHS = nullptr;
7876   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7877     if (BO->getLHS()->getType()->isDependentType() ||
7878         BO->getRHS()->getType()->isDependentType()) {
7879       if (BO->getOpcode() != BO_Assign)
7880         return;
7881     } else if (!BO->isAssignmentOp())
7882       return;
7883     LHS = dyn_cast<DeclRefExpr>(BO->getLHS());
7884   } else if (CXXOperatorCallExpr *COCE = dyn_cast<CXXOperatorCallExpr>(E)) {
7885     if (COCE->getOperator() != OO_Equal)
7886       return;
7887     LHS = dyn_cast<DeclRefExpr>(COCE->getArg(0));
7888   }
7889   if (!LHS)
7890     return;
7891   VarDecl *VD = dyn_cast<VarDecl>(LHS->getDecl());
7892   if (!VD)
7893     return;
7894   auto iter = RefsMinusAssignments.find(VD);
7895   if (iter == RefsMinusAssignments.end())
7896     return;
7897   iter->getSecond()--;
7898 }
7899 
7900 /// Perform the conversions required for an expression used in a
7901 /// context that ignores the result.
IgnoredValueConversions(Expr * E)7902 ExprResult Sema::IgnoredValueConversions(Expr *E) {
7903   MaybeDecrementCount(E, RefsMinusAssignments);
7904 
7905   if (E->hasPlaceholderType()) {
7906     ExprResult result = CheckPlaceholderExpr(E);
7907     if (result.isInvalid()) return E;
7908     E = result.get();
7909   }
7910 
7911   // C99 6.3.2.1:
7912   //   [Except in specific positions,] an lvalue that does not have
7913   //   array type is converted to the value stored in the
7914   //   designated object (and is no longer an lvalue).
7915   if (E->isPRValue()) {
7916     // In C, function designators (i.e. expressions of function type)
7917     // are r-values, but we still want to do function-to-pointer decay
7918     // on them.  This is both technically correct and convenient for
7919     // some clients.
7920     if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
7921       return DefaultFunctionArrayConversion(E);
7922 
7923     return E;
7924   }
7925 
7926   if (getLangOpts().CPlusPlus) {
7927     // The C++11 standard defines the notion of a discarded-value expression;
7928     // normally, we don't need to do anything to handle it, but if it is a
7929     // volatile lvalue with a special form, we perform an lvalue-to-rvalue
7930     // conversion.
7931     if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) {
7932       ExprResult Res = DefaultLvalueConversion(E);
7933       if (Res.isInvalid())
7934         return E;
7935       E = Res.get();
7936     } else {
7937       // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
7938       // it occurs as a discarded-value expression.
7939       CheckUnusedVolatileAssignment(E);
7940     }
7941 
7942     // C++1z:
7943     //   If the expression is a prvalue after this optional conversion, the
7944     //   temporary materialization conversion is applied.
7945     //
7946     // We skip this step: IR generation is able to synthesize the storage for
7947     // itself in the aggregate case, and adding the extra node to the AST is
7948     // just clutter.
7949     // FIXME: We don't emit lifetime markers for the temporaries due to this.
7950     // FIXME: Do any other AST consumers care about this?
7951     return E;
7952   }
7953 
7954   // GCC seems to also exclude expressions of incomplete enum type.
7955   if (const EnumType *T = E->getType()->getAs<EnumType>()) {
7956     if (!T->getDecl()->isComplete()) {
7957       // FIXME: stupid workaround for a codegen bug!
7958       E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
7959       return E;
7960     }
7961   }
7962 
7963   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
7964   if (Res.isInvalid())
7965     return E;
7966   E = Res.get();
7967 
7968   if (!E->getType()->isVoidType())
7969     RequireCompleteType(E->getExprLoc(), E->getType(),
7970                         diag::err_incomplete_type);
7971   return E;
7972 }
7973 
CheckUnevaluatedOperand(Expr * E)7974 ExprResult Sema::CheckUnevaluatedOperand(Expr *E) {
7975   // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
7976   // it occurs as an unevaluated operand.
7977   CheckUnusedVolatileAssignment(E);
7978 
7979   return E;
7980 }
7981 
7982 // If we can unambiguously determine whether Var can never be used
7983 // in a constant expression, return true.
7984 //  - if the variable and its initializer are non-dependent, then
7985 //    we can unambiguously check if the variable is a constant expression.
7986 //  - if the initializer is not value dependent - we can determine whether
7987 //    it can be used to initialize a constant expression.  If Init can not
7988 //    be used to initialize a constant expression we conclude that Var can
7989 //    never be a constant expression.
7990 //  - FXIME: if the initializer is dependent, we can still do some analysis and
7991 //    identify certain cases unambiguously as non-const by using a Visitor:
7992 //      - such as those that involve odr-use of a ParmVarDecl, involve a new
7993 //        delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
VariableCanNeverBeAConstantExpression(VarDecl * Var,ASTContext & Context)7994 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
7995     ASTContext &Context) {
7996   if (isa<ParmVarDecl>(Var)) return true;
7997   const VarDecl *DefVD = nullptr;
7998 
7999   // If there is no initializer - this can not be a constant expression.
8000   if (!Var->getAnyInitializer(DefVD)) return true;
8001   assert(DefVD);
8002   if (DefVD->isWeak()) return false;
8003   EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
8004 
8005   Expr *Init = cast<Expr>(Eval->Value);
8006 
8007   if (Var->getType()->isDependentType() || Init->isValueDependent()) {
8008     // FIXME: Teach the constant evaluator to deal with the non-dependent parts
8009     // of value-dependent expressions, and use it here to determine whether the
8010     // initializer is a potential constant expression.
8011     return false;
8012   }
8013 
8014   return !Var->isUsableInConstantExpressions(Context);
8015 }
8016 
8017 /// Check if the current lambda has any potential captures
8018 /// that must be captured by any of its enclosing lambdas that are ready to
8019 /// capture. If there is a lambda that can capture a nested
8020 /// potential-capture, go ahead and do so.  Also, check to see if any
8021 /// variables are uncaptureable or do not involve an odr-use so do not
8022 /// need to be captured.
8023 
CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(Expr * const FE,LambdaScopeInfo * const CurrentLSI,Sema & S)8024 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
8025     Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
8026 
8027   assert(!S.isUnevaluatedContext());
8028   assert(S.CurContext->isDependentContext());
8029 #ifndef NDEBUG
8030   DeclContext *DC = S.CurContext;
8031   while (DC && isa<CapturedDecl>(DC))
8032     DC = DC->getParent();
8033   assert(
8034       CurrentLSI->CallOperator == DC &&
8035       "The current call operator must be synchronized with Sema's CurContext");
8036 #endif // NDEBUG
8037 
8038   const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
8039 
8040   // All the potentially captureable variables in the current nested
8041   // lambda (within a generic outer lambda), must be captured by an
8042   // outer lambda that is enclosed within a non-dependent context.
8043   CurrentLSI->visitPotentialCaptures([&] (VarDecl *Var, Expr *VarExpr) {
8044     // If the variable is clearly identified as non-odr-used and the full
8045     // expression is not instantiation dependent, only then do we not
8046     // need to check enclosing lambda's for speculative captures.
8047     // For e.g.:
8048     // Even though 'x' is not odr-used, it should be captured.
8049     // int test() {
8050     //   const int x = 10;
8051     //   auto L = [=](auto a) {
8052     //     (void) +x + a;
8053     //   };
8054     // }
8055     if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
8056         !IsFullExprInstantiationDependent)
8057       return;
8058 
8059     // If we have a capture-capable lambda for the variable, go ahead and
8060     // capture the variable in that lambda (and all its enclosing lambdas).
8061     if (const Optional<unsigned> Index =
8062             getStackIndexOfNearestEnclosingCaptureCapableLambda(
8063                 S.FunctionScopes, Var, S))
8064       S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(),
8065                                           Index.getValue());
8066     const bool IsVarNeverAConstantExpression =
8067         VariableCanNeverBeAConstantExpression(Var, S.Context);
8068     if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
8069       // This full expression is not instantiation dependent or the variable
8070       // can not be used in a constant expression - which means
8071       // this variable must be odr-used here, so diagnose a
8072       // capture violation early, if the variable is un-captureable.
8073       // This is purely for diagnosing errors early.  Otherwise, this
8074       // error would get diagnosed when the lambda becomes capture ready.
8075       QualType CaptureType, DeclRefType;
8076       SourceLocation ExprLoc = VarExpr->getExprLoc();
8077       if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
8078                           /*EllipsisLoc*/ SourceLocation(),
8079                           /*BuildAndDiagnose*/false, CaptureType,
8080                           DeclRefType, nullptr)) {
8081         // We will never be able to capture this variable, and we need
8082         // to be able to in any and all instantiations, so diagnose it.
8083         S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
8084                           /*EllipsisLoc*/ SourceLocation(),
8085                           /*BuildAndDiagnose*/true, CaptureType,
8086                           DeclRefType, nullptr);
8087       }
8088     }
8089   });
8090 
8091   // Check if 'this' needs to be captured.
8092   if (CurrentLSI->hasPotentialThisCapture()) {
8093     // If we have a capture-capable lambda for 'this', go ahead and capture
8094     // 'this' in that lambda (and all its enclosing lambdas).
8095     if (const Optional<unsigned> Index =
8096             getStackIndexOfNearestEnclosingCaptureCapableLambda(
8097                 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) {
8098       const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
8099       S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
8100                             /*Explicit*/ false, /*BuildAndDiagnose*/ true,
8101                             &FunctionScopeIndexOfCapturableLambda);
8102     }
8103   }
8104 
8105   // Reset all the potential captures at the end of each full-expression.
8106   CurrentLSI->clearPotentialCaptures();
8107 }
8108 
attemptRecovery(Sema & SemaRef,const TypoCorrectionConsumer & Consumer,const TypoCorrection & TC)8109 static ExprResult attemptRecovery(Sema &SemaRef,
8110                                   const TypoCorrectionConsumer &Consumer,
8111                                   const TypoCorrection &TC) {
8112   LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
8113                  Consumer.getLookupResult().getLookupKind());
8114   const CXXScopeSpec *SS = Consumer.getSS();
8115   CXXScopeSpec NewSS;
8116 
8117   // Use an approprate CXXScopeSpec for building the expr.
8118   if (auto *NNS = TC.getCorrectionSpecifier())
8119     NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
8120   else if (SS && !TC.WillReplaceSpecifier())
8121     NewSS = *SS;
8122 
8123   if (auto *ND = TC.getFoundDecl()) {
8124     R.setLookupName(ND->getDeclName());
8125     R.addDecl(ND);
8126     if (ND->isCXXClassMember()) {
8127       // Figure out the correct naming class to add to the LookupResult.
8128       CXXRecordDecl *Record = nullptr;
8129       if (auto *NNS = TC.getCorrectionSpecifier())
8130         Record = NNS->getAsType()->getAsCXXRecordDecl();
8131       if (!Record)
8132         Record =
8133             dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
8134       if (Record)
8135         R.setNamingClass(Record);
8136 
8137       // Detect and handle the case where the decl might be an implicit
8138       // member.
8139       bool MightBeImplicitMember;
8140       if (!Consumer.isAddressOfOperand())
8141         MightBeImplicitMember = true;
8142       else if (!NewSS.isEmpty())
8143         MightBeImplicitMember = false;
8144       else if (R.isOverloadedResult())
8145         MightBeImplicitMember = false;
8146       else if (R.isUnresolvableResult())
8147         MightBeImplicitMember = true;
8148       else
8149         MightBeImplicitMember = isa<FieldDecl>(ND) ||
8150                                 isa<IndirectFieldDecl>(ND) ||
8151                                 isa<MSPropertyDecl>(ND);
8152 
8153       if (MightBeImplicitMember)
8154         return SemaRef.BuildPossibleImplicitMemberExpr(
8155             NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
8156             /*TemplateArgs*/ nullptr, /*S*/ nullptr);
8157     } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
8158       return SemaRef.LookupInObjCMethod(R, Consumer.getScope(),
8159                                         Ivar->getIdentifier());
8160     }
8161   }
8162 
8163   return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
8164                                           /*AcceptInvalidDecl*/ true);
8165 }
8166 
8167 namespace {
8168 class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> {
8169   llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
8170 
8171 public:
FindTypoExprs(llvm::SmallSetVector<TypoExpr *,2> & TypoExprs)8172   explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
8173       : TypoExprs(TypoExprs) {}
VisitTypoExpr(TypoExpr * TE)8174   bool VisitTypoExpr(TypoExpr *TE) {
8175     TypoExprs.insert(TE);
8176     return true;
8177   }
8178 };
8179 
8180 class TransformTypos : public TreeTransform<TransformTypos> {
8181   typedef TreeTransform<TransformTypos> BaseTransform;
8182 
8183   VarDecl *InitDecl; // A decl to avoid as a correction because it is in the
8184                      // process of being initialized.
8185   llvm::function_ref<ExprResult(Expr *)> ExprFilter;
8186   llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
8187   llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
8188   llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
8189 
8190   /// Emit diagnostics for all of the TypoExprs encountered.
8191   ///
8192   /// If the TypoExprs were successfully corrected, then the diagnostics should
8193   /// suggest the corrections. Otherwise the diagnostics will not suggest
8194   /// anything (having been passed an empty TypoCorrection).
8195   ///
8196   /// If we've failed to correct due to ambiguous corrections, we need to
8197   /// be sure to pass empty corrections and replacements. Otherwise it's
8198   /// possible that the Consumer has a TypoCorrection that failed to ambiguity
8199   /// and we don't want to report those diagnostics.
EmitAllDiagnostics(bool IsAmbiguous)8200   void EmitAllDiagnostics(bool IsAmbiguous) {
8201     for (TypoExpr *TE : TypoExprs) {
8202       auto &State = SemaRef.getTypoExprState(TE);
8203       if (State.DiagHandler) {
8204         TypoCorrection TC = IsAmbiguous
8205             ? TypoCorrection() : State.Consumer->getCurrentCorrection();
8206         ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE];
8207 
8208         // Extract the NamedDecl from the transformed TypoExpr and add it to the
8209         // TypoCorrection, replacing the existing decls. This ensures the right
8210         // NamedDecl is used in diagnostics e.g. in the case where overload
8211         // resolution was used to select one from several possible decls that
8212         // had been stored in the TypoCorrection.
8213         if (auto *ND = getDeclFromExpr(
8214                 Replacement.isInvalid() ? nullptr : Replacement.get()))
8215           TC.setCorrectionDecl(ND);
8216 
8217         State.DiagHandler(TC);
8218       }
8219       SemaRef.clearDelayedTypo(TE);
8220     }
8221   }
8222 
8223   /// Try to advance the typo correction state of the first unfinished TypoExpr.
8224   /// We allow advancement of the correction stream by removing it from the
8225   /// TransformCache which allows `TransformTypoExpr` to advance during the
8226   /// next transformation attempt.
8227   ///
8228   /// Any substitution attempts for the previous TypoExprs (which must have been
8229   /// finished) will need to be retried since it's possible that they will now
8230   /// be invalid given the latest advancement.
8231   ///
8232   /// We need to be sure that we're making progress - it's possible that the
8233   /// tree is so malformed that the transform never makes it to the
8234   /// `TransformTypoExpr`.
8235   ///
8236   /// Returns true if there are any untried correction combinations.
CheckAndAdvanceTypoExprCorrectionStreams()8237   bool CheckAndAdvanceTypoExprCorrectionStreams() {
8238     for (auto TE : TypoExprs) {
8239       auto &State = SemaRef.getTypoExprState(TE);
8240       TransformCache.erase(TE);
8241       if (!State.Consumer->hasMadeAnyCorrectionProgress())
8242         return false;
8243       if (!State.Consumer->finished())
8244         return true;
8245       State.Consumer->resetCorrectionStream();
8246     }
8247     return false;
8248   }
8249 
getDeclFromExpr(Expr * E)8250   NamedDecl *getDeclFromExpr(Expr *E) {
8251     if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
8252       E = OverloadResolution[OE];
8253 
8254     if (!E)
8255       return nullptr;
8256     if (auto *DRE = dyn_cast<DeclRefExpr>(E))
8257       return DRE->getFoundDecl();
8258     if (auto *ME = dyn_cast<MemberExpr>(E))
8259       return ME->getFoundDecl();
8260     // FIXME: Add any other expr types that could be be seen by the delayed typo
8261     // correction TreeTransform for which the corresponding TypoCorrection could
8262     // contain multiple decls.
8263     return nullptr;
8264   }
8265 
TryTransform(Expr * E)8266   ExprResult TryTransform(Expr *E) {
8267     Sema::SFINAETrap Trap(SemaRef);
8268     ExprResult Res = TransformExpr(E);
8269     if (Trap.hasErrorOccurred() || Res.isInvalid())
8270       return ExprError();
8271 
8272     return ExprFilter(Res.get());
8273   }
8274 
8275   // Since correcting typos may intoduce new TypoExprs, this function
8276   // checks for new TypoExprs and recurses if it finds any. Note that it will
8277   // only succeed if it is able to correct all typos in the given expression.
CheckForRecursiveTypos(ExprResult Res,bool & IsAmbiguous)8278   ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) {
8279     if (Res.isInvalid()) {
8280       return Res;
8281     }
8282     // Check to see if any new TypoExprs were created. If so, we need to recurse
8283     // to check their validity.
8284     Expr *FixedExpr = Res.get();
8285 
8286     auto SavedTypoExprs = std::move(TypoExprs);
8287     auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs);
8288     TypoExprs.clear();
8289     AmbiguousTypoExprs.clear();
8290 
8291     FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr);
8292     if (!TypoExprs.empty()) {
8293       // Recurse to handle newly created TypoExprs. If we're not able to
8294       // handle them, discard these TypoExprs.
8295       ExprResult RecurResult =
8296           RecursiveTransformLoop(FixedExpr, IsAmbiguous);
8297       if (RecurResult.isInvalid()) {
8298         Res = ExprError();
8299         // Recursive corrections didn't work, wipe them away and don't add
8300         // them to the TypoExprs set. Remove them from Sema's TypoExpr list
8301         // since we don't want to clear them twice. Note: it's possible the
8302         // TypoExprs were created recursively and thus won't be in our
8303         // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`.
8304         auto &SemaTypoExprs = SemaRef.TypoExprs;
8305         for (auto TE : TypoExprs) {
8306           TransformCache.erase(TE);
8307           SemaRef.clearDelayedTypo(TE);
8308 
8309           auto SI = find(SemaTypoExprs, TE);
8310           if (SI != SemaTypoExprs.end()) {
8311             SemaTypoExprs.erase(SI);
8312           }
8313         }
8314       } else {
8315         // TypoExpr is valid: add newly created TypoExprs since we were
8316         // able to correct them.
8317         Res = RecurResult;
8318         SavedTypoExprs.set_union(TypoExprs);
8319       }
8320     }
8321 
8322     TypoExprs = std::move(SavedTypoExprs);
8323     AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs);
8324 
8325     return Res;
8326   }
8327 
8328   // Try to transform the given expression, looping through the correction
8329   // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`.
8330   //
8331   // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to
8332   // true and this method immediately will return an `ExprError`.
RecursiveTransformLoop(Expr * E,bool & IsAmbiguous)8333   ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) {
8334     ExprResult Res;
8335     auto SavedTypoExprs = std::move(SemaRef.TypoExprs);
8336     SemaRef.TypoExprs.clear();
8337 
8338     while (true) {
8339       Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
8340 
8341       // Recursion encountered an ambiguous correction. This means that our
8342       // correction itself is ambiguous, so stop now.
8343       if (IsAmbiguous)
8344         break;
8345 
8346       // If the transform is still valid after checking for any new typos,
8347       // it's good to go.
8348       if (!Res.isInvalid())
8349         break;
8350 
8351       // The transform was invalid, see if we have any TypoExprs with untried
8352       // correction candidates.
8353       if (!CheckAndAdvanceTypoExprCorrectionStreams())
8354         break;
8355     }
8356 
8357     // If we found a valid result, double check to make sure it's not ambiguous.
8358     if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) {
8359       auto SavedTransformCache =
8360           llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache);
8361 
8362       // Ensure none of the TypoExprs have multiple typo correction candidates
8363       // with the same edit length that pass all the checks and filters.
8364       while (!AmbiguousTypoExprs.empty()) {
8365         auto TE  = AmbiguousTypoExprs.back();
8366 
8367         // TryTransform itself can create new Typos, adding them to the TypoExpr map
8368         // and invalidating our TypoExprState, so always fetch it instead of storing.
8369         SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition();
8370 
8371         TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection();
8372         TypoCorrection Next;
8373         do {
8374           // Fetch the next correction by erasing the typo from the cache and calling
8375           // `TryTransform` which will iterate through corrections in
8376           // `TransformTypoExpr`.
8377           TransformCache.erase(TE);
8378           ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
8379 
8380           if (!AmbigRes.isInvalid() || IsAmbiguous) {
8381             SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream();
8382             SavedTransformCache.erase(TE);
8383             Res = ExprError();
8384             IsAmbiguous = true;
8385             break;
8386           }
8387         } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) &&
8388                  Next.getEditDistance(false) == TC.getEditDistance(false));
8389 
8390         if (IsAmbiguous)
8391           break;
8392 
8393         AmbiguousTypoExprs.remove(TE);
8394         SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition();
8395         TransformCache[TE] = SavedTransformCache[TE];
8396       }
8397       TransformCache = std::move(SavedTransformCache);
8398     }
8399 
8400     // Wipe away any newly created TypoExprs that we don't know about. Since we
8401     // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only
8402     // possible if a `TypoExpr` is created during a transformation but then
8403     // fails before we can discover it.
8404     auto &SemaTypoExprs = SemaRef.TypoExprs;
8405     for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) {
8406       auto TE = *Iterator;
8407       auto FI = find(TypoExprs, TE);
8408       if (FI != TypoExprs.end()) {
8409         Iterator++;
8410         continue;
8411       }
8412       SemaRef.clearDelayedTypo(TE);
8413       Iterator = SemaTypoExprs.erase(Iterator);
8414     }
8415     SemaRef.TypoExprs = std::move(SavedTypoExprs);
8416 
8417     return Res;
8418   }
8419 
8420 public:
TransformTypos(Sema & SemaRef,VarDecl * InitDecl,llvm::function_ref<ExprResult (Expr *)> Filter)8421   TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter)
8422       : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {}
8423 
RebuildCallExpr(Expr * Callee,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc,Expr * ExecConfig=nullptr)8424   ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
8425                                    MultiExprArg Args,
8426                                    SourceLocation RParenLoc,
8427                                    Expr *ExecConfig = nullptr) {
8428     auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
8429                                                  RParenLoc, ExecConfig);
8430     if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
8431       if (Result.isUsable()) {
8432         Expr *ResultCall = Result.get();
8433         if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
8434           ResultCall = BE->getSubExpr();
8435         if (auto *CE = dyn_cast<CallExpr>(ResultCall))
8436           OverloadResolution[OE] = CE->getCallee();
8437       }
8438     }
8439     return Result;
8440   }
8441 
TransformLambdaExpr(LambdaExpr * E)8442   ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
8443 
TransformBlockExpr(BlockExpr * E)8444   ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); }
8445 
Transform(Expr * E)8446   ExprResult Transform(Expr *E) {
8447     bool IsAmbiguous = false;
8448     ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous);
8449 
8450     if (!Res.isUsable())
8451       FindTypoExprs(TypoExprs).TraverseStmt(E);
8452 
8453     EmitAllDiagnostics(IsAmbiguous);
8454 
8455     return Res;
8456   }
8457 
TransformTypoExpr(TypoExpr * E)8458   ExprResult TransformTypoExpr(TypoExpr *E) {
8459     // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
8460     // cached transformation result if there is one and the TypoExpr isn't the
8461     // first one that was encountered.
8462     auto &CacheEntry = TransformCache[E];
8463     if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
8464       return CacheEntry;
8465     }
8466 
8467     auto &State = SemaRef.getTypoExprState(E);
8468     assert(State.Consumer && "Cannot transform a cleared TypoExpr");
8469 
8470     // For the first TypoExpr and an uncached TypoExpr, find the next likely
8471     // typo correction and return it.
8472     while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
8473       if (InitDecl && TC.getFoundDecl() == InitDecl)
8474         continue;
8475       // FIXME: If we would typo-correct to an invalid declaration, it's
8476       // probably best to just suppress all errors from this typo correction.
8477       ExprResult NE = State.RecoveryHandler ?
8478           State.RecoveryHandler(SemaRef, E, TC) :
8479           attemptRecovery(SemaRef, *State.Consumer, TC);
8480       if (!NE.isInvalid()) {
8481         // Check whether there may be a second viable correction with the same
8482         // edit distance; if so, remember this TypoExpr may have an ambiguous
8483         // correction so it can be more thoroughly vetted later.
8484         TypoCorrection Next;
8485         if ((Next = State.Consumer->peekNextCorrection()) &&
8486             Next.getEditDistance(false) == TC.getEditDistance(false)) {
8487           AmbiguousTypoExprs.insert(E);
8488         } else {
8489           AmbiguousTypoExprs.remove(E);
8490         }
8491         assert(!NE.isUnset() &&
8492                "Typo was transformed into a valid-but-null ExprResult");
8493         return CacheEntry = NE;
8494       }
8495     }
8496     return CacheEntry = ExprError();
8497   }
8498 };
8499 }
8500 
8501 ExprResult
CorrectDelayedTyposInExpr(Expr * E,VarDecl * InitDecl,bool RecoverUncorrectedTypos,llvm::function_ref<ExprResult (Expr *)> Filter)8502 Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl,
8503                                 bool RecoverUncorrectedTypos,
8504                                 llvm::function_ref<ExprResult(Expr *)> Filter) {
8505   // If the current evaluation context indicates there are uncorrected typos
8506   // and the current expression isn't guaranteed to not have typos, try to
8507   // resolve any TypoExpr nodes that might be in the expression.
8508   if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
8509       (E->isTypeDependent() || E->isValueDependent() ||
8510        E->isInstantiationDependent())) {
8511     auto TyposResolved = DelayedTypos.size();
8512     auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E);
8513     TyposResolved -= DelayedTypos.size();
8514     if (Result.isInvalid() || Result.get() != E) {
8515       ExprEvalContexts.back().NumTypos -= TyposResolved;
8516       if (Result.isInvalid() && RecoverUncorrectedTypos) {
8517         struct TyposReplace : TreeTransform<TyposReplace> {
8518           TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {}
8519           ExprResult TransformTypoExpr(clang::TypoExpr *E) {
8520             return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(),
8521                                                     E->getEndLoc(), {});
8522           }
8523         } TT(*this);
8524         return TT.TransformExpr(E);
8525       }
8526       return Result;
8527     }
8528     assert(TyposResolved == 0 && "Corrected typo but got same Expr back?");
8529   }
8530   return E;
8531 }
8532 
ActOnFinishFullExpr(Expr * FE,SourceLocation CC,bool DiscardedValue,bool IsConstexpr)8533 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
8534                                      bool DiscardedValue,
8535                                      bool IsConstexpr) {
8536   ExprResult FullExpr = FE;
8537 
8538   if (!FullExpr.get())
8539     return ExprError();
8540 
8541   if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
8542     return ExprError();
8543 
8544   if (DiscardedValue) {
8545     // Top-level expressions default to 'id' when we're in a debugger.
8546     if (getLangOpts().DebuggerCastResultToId &&
8547         FullExpr.get()->getType() == Context.UnknownAnyTy) {
8548       FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
8549       if (FullExpr.isInvalid())
8550         return ExprError();
8551     }
8552 
8553     FullExpr = CheckPlaceholderExpr(FullExpr.get());
8554     if (FullExpr.isInvalid())
8555       return ExprError();
8556 
8557     FullExpr = IgnoredValueConversions(FullExpr.get());
8558     if (FullExpr.isInvalid())
8559       return ExprError();
8560 
8561     DiagnoseUnusedExprResult(FullExpr.get(), diag::warn_unused_expr);
8562   }
8563 
8564   FullExpr = CorrectDelayedTyposInExpr(FullExpr.get(), /*InitDecl=*/nullptr,
8565                                        /*RecoverUncorrectedTypos=*/true);
8566   if (FullExpr.isInvalid())
8567     return ExprError();
8568 
8569   CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
8570 
8571   // At the end of this full expression (which could be a deeply nested
8572   // lambda), if there is a potential capture within the nested lambda,
8573   // have the outer capture-able lambda try and capture it.
8574   // Consider the following code:
8575   // void f(int, int);
8576   // void f(const int&, double);
8577   // void foo() {
8578   //  const int x = 10, y = 20;
8579   //  auto L = [=](auto a) {
8580   //      auto M = [=](auto b) {
8581   //         f(x, b); <-- requires x to be captured by L and M
8582   //         f(y, a); <-- requires y to be captured by L, but not all Ms
8583   //      };
8584   //   };
8585   // }
8586 
8587   // FIXME: Also consider what happens for something like this that involves
8588   // the gnu-extension statement-expressions or even lambda-init-captures:
8589   //   void f() {
8590   //     const int n = 0;
8591   //     auto L =  [&](auto a) {
8592   //       +n + ({ 0; a; });
8593   //     };
8594   //   }
8595   //
8596   // Here, we see +n, and then the full-expression 0; ends, so we don't
8597   // capture n (and instead remove it from our list of potential captures),
8598   // and then the full-expression +n + ({ 0; }); ends, but it's too late
8599   // for us to see that we need to capture n after all.
8600 
8601   LambdaScopeInfo *const CurrentLSI =
8602       getCurLambda(/*IgnoreCapturedRegions=*/true);
8603   // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
8604   // even if CurContext is not a lambda call operator. Refer to that Bug Report
8605   // for an example of the code that might cause this asynchrony.
8606   // By ensuring we are in the context of a lambda's call operator
8607   // we can fix the bug (we only need to check whether we need to capture
8608   // if we are within a lambda's body); but per the comments in that
8609   // PR, a proper fix would entail :
8610   //   "Alternative suggestion:
8611   //   - Add to Sema an integer holding the smallest (outermost) scope
8612   //     index that we are *lexically* within, and save/restore/set to
8613   //     FunctionScopes.size() in InstantiatingTemplate's
8614   //     constructor/destructor.
8615   //  - Teach the handful of places that iterate over FunctionScopes to
8616   //    stop at the outermost enclosing lexical scope."
8617   DeclContext *DC = CurContext;
8618   while (DC && isa<CapturedDecl>(DC))
8619     DC = DC->getParent();
8620   const bool IsInLambdaDeclContext = isLambdaCallOperator(DC);
8621   if (IsInLambdaDeclContext && CurrentLSI &&
8622       CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
8623     CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
8624                                                               *this);
8625   return MaybeCreateExprWithCleanups(FullExpr);
8626 }
8627 
ActOnFinishFullStmt(Stmt * FullStmt)8628 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
8629   if (!FullStmt) return StmtError();
8630 
8631   return MaybeCreateStmtWithCleanups(FullStmt);
8632 }
8633 
8634 Sema::IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope * S,CXXScopeSpec & SS,const DeclarationNameInfo & TargetNameInfo)8635 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
8636                                    CXXScopeSpec &SS,
8637                                    const DeclarationNameInfo &TargetNameInfo) {
8638   DeclarationName TargetName = TargetNameInfo.getName();
8639   if (!TargetName)
8640     return IER_DoesNotExist;
8641 
8642   // If the name itself is dependent, then the result is dependent.
8643   if (TargetName.isDependentName())
8644     return IER_Dependent;
8645 
8646   // Do the redeclaration lookup in the current scope.
8647   LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
8648                  Sema::NotForRedeclaration);
8649   LookupParsedName(R, S, &SS);
8650   R.suppressDiagnostics();
8651 
8652   switch (R.getResultKind()) {
8653   case LookupResult::Found:
8654   case LookupResult::FoundOverloaded:
8655   case LookupResult::FoundUnresolvedValue:
8656   case LookupResult::Ambiguous:
8657     return IER_Exists;
8658 
8659   case LookupResult::NotFound:
8660     return IER_DoesNotExist;
8661 
8662   case LookupResult::NotFoundInCurrentInstantiation:
8663     return IER_Dependent;
8664   }
8665 
8666   llvm_unreachable("Invalid LookupResult Kind!");
8667 }
8668 
8669 Sema::IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope * S,SourceLocation KeywordLoc,bool IsIfExists,CXXScopeSpec & SS,UnqualifiedId & Name)8670 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
8671                                    bool IsIfExists, CXXScopeSpec &SS,
8672                                    UnqualifiedId &Name) {
8673   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
8674 
8675   // Check for an unexpanded parameter pack.
8676   auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists;
8677   if (DiagnoseUnexpandedParameterPack(SS, UPPC) ||
8678       DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC))
8679     return IER_Error;
8680 
8681   return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
8682 }
8683 
ActOnSimpleRequirement(Expr * E)8684 concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) {
8685   return BuildExprRequirement(E, /*IsSimple=*/true,
8686                               /*NoexceptLoc=*/SourceLocation(),
8687                               /*ReturnTypeRequirement=*/{});
8688 }
8689 
8690 concepts::Requirement *
ActOnTypeRequirement(SourceLocation TypenameKWLoc,CXXScopeSpec & SS,SourceLocation NameLoc,IdentifierInfo * TypeName,TemplateIdAnnotation * TemplateId)8691 Sema::ActOnTypeRequirement(SourceLocation TypenameKWLoc, CXXScopeSpec &SS,
8692                            SourceLocation NameLoc, IdentifierInfo *TypeName,
8693                            TemplateIdAnnotation *TemplateId) {
8694   assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) &&
8695          "Exactly one of TypeName and TemplateId must be specified.");
8696   TypeSourceInfo *TSI = nullptr;
8697   if (TypeName) {
8698     QualType T = CheckTypenameType(ETK_Typename, TypenameKWLoc,
8699                                    SS.getWithLocInContext(Context), *TypeName,
8700                                    NameLoc, &TSI, /*DeducedTypeContext=*/false);
8701     if (T.isNull())
8702       return nullptr;
8703   } else {
8704     ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(),
8705                                TemplateId->NumArgs);
8706     TypeResult T = ActOnTypenameType(CurScope, TypenameKWLoc, SS,
8707                                      TemplateId->TemplateKWLoc,
8708                                      TemplateId->Template, TemplateId->Name,
8709                                      TemplateId->TemplateNameLoc,
8710                                      TemplateId->LAngleLoc, ArgsPtr,
8711                                      TemplateId->RAngleLoc);
8712     if (T.isInvalid())
8713       return nullptr;
8714     if (GetTypeFromParser(T.get(), &TSI).isNull())
8715       return nullptr;
8716   }
8717   return BuildTypeRequirement(TSI);
8718 }
8719 
8720 concepts::Requirement *
ActOnCompoundRequirement(Expr * E,SourceLocation NoexceptLoc)8721 Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) {
8722   return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc,
8723                               /*ReturnTypeRequirement=*/{});
8724 }
8725 
8726 concepts::Requirement *
ActOnCompoundRequirement(Expr * E,SourceLocation NoexceptLoc,CXXScopeSpec & SS,TemplateIdAnnotation * TypeConstraint,unsigned Depth)8727 Sema::ActOnCompoundRequirement(
8728     Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS,
8729     TemplateIdAnnotation *TypeConstraint, unsigned Depth) {
8730   // C++2a [expr.prim.req.compound] p1.3.3
8731   //   [..] the expression is deduced against an invented function template
8732   //   F [...] F is a void function template with a single type template
8733   //   parameter T declared with the constrained-parameter. Form a new
8734   //   cv-qualifier-seq cv by taking the union of const and volatile specifiers
8735   //   around the constrained-parameter. F has a single parameter whose
8736   //   type-specifier is cv T followed by the abstract-declarator. [...]
8737   //
8738   // The cv part is done in the calling function - we get the concept with
8739   // arguments and the abstract declarator with the correct CV qualification and
8740   // have to synthesize T and the single parameter of F.
8741   auto &II = Context.Idents.get("expr-type");
8742   auto *TParam = TemplateTypeParmDecl::Create(Context, CurContext,
8743                                               SourceLocation(),
8744                                               SourceLocation(), Depth,
8745                                               /*Index=*/0, &II,
8746                                               /*Typename=*/true,
8747                                               /*ParameterPack=*/false,
8748                                               /*HasTypeConstraint=*/true);
8749 
8750   if (BuildTypeConstraint(SS, TypeConstraint, TParam,
8751                           /*EllpsisLoc=*/SourceLocation(),
8752                           /*AllowUnexpandedPack=*/true))
8753     // Just produce a requirement with no type requirements.
8754     return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, {});
8755 
8756   auto *TPL = TemplateParameterList::Create(Context, SourceLocation(),
8757                                             SourceLocation(),
8758                                             ArrayRef<NamedDecl *>(TParam),
8759                                             SourceLocation(),
8760                                             /*RequiresClause=*/nullptr);
8761   return BuildExprRequirement(
8762       E, /*IsSimple=*/false, NoexceptLoc,
8763       concepts::ExprRequirement::ReturnTypeRequirement(TPL));
8764 }
8765 
8766 concepts::ExprRequirement *
BuildExprRequirement(Expr * E,bool IsSimple,SourceLocation NoexceptLoc,concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement)8767 Sema::BuildExprRequirement(
8768     Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
8769     concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
8770   auto Status = concepts::ExprRequirement::SS_Satisfied;
8771   ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr;
8772   if (E->isInstantiationDependent() || ReturnTypeRequirement.isDependent())
8773     Status = concepts::ExprRequirement::SS_Dependent;
8774   else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can)
8775     Status = concepts::ExprRequirement::SS_NoexceptNotMet;
8776   else if (ReturnTypeRequirement.isSubstitutionFailure())
8777     Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure;
8778   else if (ReturnTypeRequirement.isTypeConstraint()) {
8779     // C++2a [expr.prim.req]p1.3.3
8780     //     The immediately-declared constraint ([temp]) of decltype((E)) shall
8781     //     be satisfied.
8782     TemplateParameterList *TPL =
8783         ReturnTypeRequirement.getTypeConstraintTemplateParameterList();
8784     QualType MatchedType =
8785         Context.getReferenceQualifiedType(E).getCanonicalType();
8786     llvm::SmallVector<TemplateArgument, 1> Args;
8787     Args.push_back(TemplateArgument(MatchedType));
8788     TemplateArgumentList TAL(TemplateArgumentList::OnStack, Args);
8789     MultiLevelTemplateArgumentList MLTAL(TAL);
8790     for (unsigned I = 0; I < TPL->getDepth(); ++I)
8791       MLTAL.addOuterRetainedLevel();
8792     Expr *IDC =
8793         cast<TemplateTypeParmDecl>(TPL->getParam(0))->getTypeConstraint()
8794             ->getImmediatelyDeclaredConstraint();
8795     ExprResult Constraint = SubstExpr(IDC, MLTAL);
8796     assert(!Constraint.isInvalid() &&
8797            "Substitution cannot fail as it is simply putting a type template "
8798            "argument into a concept specialization expression's parameter.");
8799 
8800     SubstitutedConstraintExpr =
8801         cast<ConceptSpecializationExpr>(Constraint.get());
8802     if (!SubstitutedConstraintExpr->isSatisfied())
8803       Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied;
8804   }
8805   return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc,
8806                                                  ReturnTypeRequirement, Status,
8807                                                  SubstitutedConstraintExpr);
8808 }
8809 
8810 concepts::ExprRequirement *
BuildExprRequirement(concepts::Requirement::SubstitutionDiagnostic * ExprSubstitutionDiagnostic,bool IsSimple,SourceLocation NoexceptLoc,concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement)8811 Sema::BuildExprRequirement(
8812     concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic,
8813     bool IsSimple, SourceLocation NoexceptLoc,
8814     concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
8815   return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic,
8816                                                  IsSimple, NoexceptLoc,
8817                                                  ReturnTypeRequirement);
8818 }
8819 
8820 concepts::TypeRequirement *
BuildTypeRequirement(TypeSourceInfo * Type)8821 Sema::BuildTypeRequirement(TypeSourceInfo *Type) {
8822   return new (Context) concepts::TypeRequirement(Type);
8823 }
8824 
8825 concepts::TypeRequirement *
BuildTypeRequirement(concepts::Requirement::SubstitutionDiagnostic * SubstDiag)8826 Sema::BuildTypeRequirement(
8827     concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
8828   return new (Context) concepts::TypeRequirement(SubstDiag);
8829 }
8830 
ActOnNestedRequirement(Expr * Constraint)8831 concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) {
8832   return BuildNestedRequirement(Constraint);
8833 }
8834 
8835 concepts::NestedRequirement *
BuildNestedRequirement(Expr * Constraint)8836 Sema::BuildNestedRequirement(Expr *Constraint) {
8837   ConstraintSatisfaction Satisfaction;
8838   if (!Constraint->isInstantiationDependent() &&
8839       CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{},
8840                                   Constraint->getSourceRange(), Satisfaction))
8841     return nullptr;
8842   return new (Context) concepts::NestedRequirement(Context, Constraint,
8843                                                    Satisfaction);
8844 }
8845 
8846 concepts::NestedRequirement *
BuildNestedRequirement(concepts::Requirement::SubstitutionDiagnostic * SubstDiag)8847 Sema::BuildNestedRequirement(
8848     concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
8849   return new (Context) concepts::NestedRequirement(SubstDiag);
8850 }
8851 
8852 RequiresExprBodyDecl *
ActOnStartRequiresExpr(SourceLocation RequiresKWLoc,ArrayRef<ParmVarDecl * > LocalParameters,Scope * BodyScope)8853 Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc,
8854                              ArrayRef<ParmVarDecl *> LocalParameters,
8855                              Scope *BodyScope) {
8856   assert(BodyScope);
8857 
8858   RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(Context, CurContext,
8859                                                             RequiresKWLoc);
8860 
8861   PushDeclContext(BodyScope, Body);
8862 
8863   for (ParmVarDecl *Param : LocalParameters) {
8864     if (Param->hasDefaultArg())
8865       // C++2a [expr.prim.req] p4
8866       //     [...] A local parameter of a requires-expression shall not have a
8867       //     default argument. [...]
8868       Diag(Param->getDefaultArgRange().getBegin(),
8869            diag::err_requires_expr_local_parameter_default_argument);
8870     // Ignore default argument and move on
8871 
8872     Param->setDeclContext(Body);
8873     // If this has an identifier, add it to the scope stack.
8874     if (Param->getIdentifier()) {
8875       CheckShadow(BodyScope, Param);
8876       PushOnScopeChains(Param, BodyScope);
8877     }
8878   }
8879   return Body;
8880 }
8881 
ActOnFinishRequiresExpr()8882 void Sema::ActOnFinishRequiresExpr() {
8883   assert(CurContext && "DeclContext imbalance!");
8884   CurContext = CurContext->getLexicalParent();
8885   assert(CurContext && "Popped translation unit!");
8886 }
8887 
8888 ExprResult
ActOnRequiresExpr(SourceLocation RequiresKWLoc,RequiresExprBodyDecl * Body,ArrayRef<ParmVarDecl * > LocalParameters,ArrayRef<concepts::Requirement * > Requirements,SourceLocation ClosingBraceLoc)8889 Sema::ActOnRequiresExpr(SourceLocation RequiresKWLoc,
8890                         RequiresExprBodyDecl *Body,
8891                         ArrayRef<ParmVarDecl *> LocalParameters,
8892                         ArrayRef<concepts::Requirement *> Requirements,
8893                         SourceLocation ClosingBraceLoc) {
8894   auto *RE = RequiresExpr::Create(Context, RequiresKWLoc, Body, LocalParameters,
8895                                   Requirements, ClosingBraceLoc);
8896   if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE))
8897     return ExprError();
8898   return RE;
8899 }
8900