1 // RUN: %clang_cc1 -std=c++1z -verify %s -DERRORS -Wundefined-func-template
2 // RUN: %clang_cc1 -std=c++1z -verify %s -UERRORS -Wundefined-func-template
3 
4 // This test is split into two because we only produce "undefined internal"
5 // warnings if we didn't produce any errors.
6 #if ERRORS
7 
8 namespace std {
9   using size_t = decltype(sizeof(0));
10   template<typename T> struct initializer_list {
11     const T *p;
12     size_t n;
13     initializer_list();
14   };
15   // FIXME: This should probably not be necessary.
16   template<typename T> initializer_list(initializer_list<T>) -> initializer_list<T>;
17 }
18 
has_type(...)19 template<typename T> constexpr bool has_type(...) { return false; }
has_type(T &)20 template<typename T> constexpr bool has_type(T&) { return true; }
21 
22 std::initializer_list il = {1, 2, 3, 4, 5};
23 
24 template<typename T> struct vector {
25   template<typename Iter> vector(Iter, Iter);
26   vector(std::initializer_list<T>);
27 };
28 
29 template<typename T> vector(std::initializer_list<T>) -> vector<T>;
30 template<typename Iter> explicit vector(Iter, Iter) -> vector<typename Iter::value_type>;
31 template<typename T> explicit vector(std::size_t, T) -> vector<T>;
32 
33 vector v1 = {1, 2, 3, 4};
34 static_assert(has_type<vector<int>>(v1));
35 
36 struct iter { typedef char value_type; } it, end;
37 vector v2(it, end);
38 static_assert(has_type<vector<char>>(v2));
39 
40 vector v3(5, 5);
41 static_assert(has_type<vector<int>>(v3));
42 
43 vector v4 = {it, end};
44 static_assert(has_type<vector<iter>>(v4));
45 
46 vector v5{it, end};
47 static_assert(has_type<vector<iter>>(v5));
48 
49 template<typename ...T> struct tuple { tuple(T...); };
50 template<typename ...T> explicit tuple(T ...t) -> tuple<T...>; // expected-note {{declared}}
51 // FIXME: Remove
52 template<typename ...T> tuple(tuple<T...>) -> tuple<T...>;
53 
54 const int n = 4;
55 tuple ta = tuple{1, 'a', "foo", n};
56 static_assert(has_type<tuple<int, char, const char*, int>>(ta));
57 
58 tuple tb{ta};
59 static_assert(has_type<tuple<int, char, const char*, int>>(tb));
60 
61 // FIXME: This should be tuple<tuple<...>>; when the above guide is removed.
62 tuple tc = {ta};
63 static_assert(has_type<tuple<int, char, const char*, int>>(tc));
64 
65 tuple td = {1, 2, 3}; // expected-error {{selected an explicit deduction guide}}
66 static_assert(has_type<tuple<int, char, const char*, int>>(td));
67 
68 // FIXME: This is a GCC extension for now; if CWG don't allow this, at least
69 // add a warning for it.
70 namespace new_expr {
71   tuple<int> *p = new tuple{0};
72   tuple<float, float> *q = new tuple(1.0f, 2.0f);
73 }
74 
75 namespace ambiguity {
76   template<typename T> struct A {};
77   A(unsigned short) -> A<int>; // expected-note {{candidate}}
78   A(short) -> A<int>; // expected-note {{candidate}}
79   A a = 0; // expected-error {{ambiguous deduction for template arguments of 'A'}}
80 
81   template<typename T> struct B {};
82   template<typename T> B(T(&)(int)) -> B<int>; // expected-note {{candidate function [with T = int]}}
83   template<typename T> B(int(&)(T)) -> B<int>; // expected-note {{candidate function [with T = int]}}
84   int f(int);
85   B b = f; // expected-error {{ambiguous deduction for template arguments of 'B'}}
86 }
87 
88 // FIXME: Revisit this once CWG decides if attributes, and [[deprecated]] in
89 // particular, should be permitted here.
90 namespace deprecated {
91   template<typename T> struct A { A(int); };
92   [[deprecated]] A(int) -> A<void>; // expected-note {{marked deprecated here}}
93   A a = 0; // expected-warning {{'<deduction guide for A>' is deprecated}}
94 }
95 
96 namespace dependent {
97   template<template<typename...> typename A> decltype(auto) a = A{1, 2, 3};
98   static_assert(has_type<vector<int>>(a<vector>));
99   static_assert(has_type<tuple<int, int, int>>(a<tuple>));
100 
101   struct B {
102     template<typename T> struct X { X(T); };
103     X(int) -> X<int>;
104     template<typename T> using Y = X<T>; // expected-note {{template}}
105   };
f()106   template<typename T> void f() {
107     typename T::X tx = 0;
108     typename T::Y ty = 0; // expected-error {{alias template 'Y' requires template arguments; argument deduction only allowed for class templates}}
109   }
110   template void f<B>(); // expected-note {{in instantiation of}}
111 
112   template<typename T> struct C { C(T); };
113   template<typename T> C(T) -> C<T>;
g(T a)114   template<typename T> void g(T a) {
115     C b = 0;
116     C c = a;
117     using U = decltype(b); // expected-note {{previous}}
118     using U = decltype(c); // expected-error {{different types ('C<const char *>' vs 'C<int>')}}
119   }
h()120   void h() {
121     g(0);
122     g("foo"); // expected-note {{instantiation of}}
123   }
124 }
125 
126 namespace look_into_current_instantiation {
127   template<typename U> struct Q {};
128   template<typename T> struct A {
129     using U = T;
130     template<typename> using V = Q<A<T>::U>;
131     template<typename W = int> A(V<W>);
132   };
133   A a = Q<float>(); // ok, can look through class-scope typedefs and alias
134                     // templates, and members of the current instantiation
135   A<float> &r = a;
136 
137   template<typename T> struct B { // expected-note {{could not match 'B<T>' against 'int'}}
138     struct X {
139       typedef T type;
140     };
141     B(typename X::type); // expected-note {{couldn't infer template argument 'T'}}
142   };
143   B b = 0; // expected-error {{no viable}}
144 
145   // We should have a substitution failure in the immediate context of
146   // deduction when using the C(T, U) constructor (probably; core wording
147   // unclear).
148   template<typename T> struct C {
149     using U = typename T::type;
150     C(T, U);
151   };
152 
153   struct R { R(int); typedef R type; };
154   C(...) -> C<R>;
155 
156   C c = {1, 2};
157 }
158 
159 namespace nondeducible {
160   template<typename A, typename B> struct X {};
161 
162   template<typename A> // expected-note {{non-deducible template parameter 'A'}}
163   X() -> X<A, int>; // expected-error {{deduction guide template contains a template parameter that cannot be deduced}}
164 
165   template<typename A> // expected-note {{non-deducible template parameter 'A'}}
166   X(typename X<A, int>::type) -> X<A, int>; // expected-error {{deduction guide template contains a template parameter that cannot be deduced}}
167 
168   template<typename A = int,
169            typename B> // expected-note {{non-deducible template parameter 'B'}}
170   X(int) -> X<A, B>; // expected-error {{deduction guide template contains a template parameter that cannot be deduced}}
171 
172   template<typename A = int,
173            typename ...B>
174   X(float) -> X<A, B...>; // ok
175 
176   template <typename> struct UnnamedTemplateParam {};
177   template <typename>                                  // expected-note {{non-deducible template parameter (anonymous)}}
178   UnnamedTemplateParam() -> UnnamedTemplateParam<int>; // expected-error {{deduction guide template contains a template parameter that cannot be deduced}}
179 }
180 
181 namespace default_args_from_ctor {
Sdefault_args_from_ctor::S182   template <class A> struct S { S(A = 0) {} };
183   S s(0);
184 
Tdefault_args_from_ctor::T185   template <class A> struct T { template<typename B> T(A = 0, B = 0) {} };
186   T t(0, 0);
187 }
188 
189 namespace transform_params {
190   template<typename T, T N, template<T (*v)[N]> typename U, T (*X)[N]>
191   struct A {
192     template<typename V, V M, V (*Y)[M], template<V (*v)[M]> typename W>
193     A(U<X>, W<Y>);
194 
195     static constexpr T v = N;
196   };
197 
198   int n[12];
199   template<int (*)[12]> struct Q {};
200   Q<&n> qn;
201   A a(qn, qn);
202   static_assert(a.v == 12);
203 
204   template<typename ...T> struct B {
Btransform_params::B205     template<T ...V> B(const T (&...p)[V]) {
206       constexpr int Vs[] = {V...};
207       static_assert(Vs[0] == 3 && Vs[1] == 4 && Vs[2] == 4);
208     }
209     static constexpr int (*p)(T...) = (int(*)(int, char, char))nullptr;
210   };
211   B b({1, 2, 3}, "foo", {'x', 'y', 'z', 'w'}); // ok
212 
213   template<typename ...T> struct C {
214     template<T ...V, template<T...> typename X>
215       C(X<V...>);
216   };
217   template<int...> struct Y {};
218   C c(Y<0, 1, 2>{});
219 
220   template<typename ...T> struct D {
221     template<T ...V> D(Y<V...>);
222   };
223   D d(Y<0, 1, 2>{});
224 }
225 
226 namespace variadic {
227   int arr3[3], arr4[4];
228 
229   // PR32673
230   template<typename T> struct A {
231     template<typename ...U> A(T, U...);
232   };
233   A a(1, 2, 3);
234 
235   template<typename T> struct B {
236     template<int ...N> B(T, int (&...r)[N]);
237   };
238   B b(1, arr3, arr4);
239 
240   template<typename T> struct C {
241     template<template<typename> typename ...U> C(T, U<int>...);
242   };
243   C c(1, a, b);
244 
245   template<typename ...U> struct X {
246     template<typename T> X(T, U...);
247   };
248   X x(1, 2, 3);
249 
250   template<int ...N> struct Y {
251     template<typename T> Y(T, int (&...r)[N]);
252   };
253   Y y(1, arr3, arr4);
254 
255   template<template<typename> typename ...U> struct Z {
256     template<typename T> Z(T, U<int>...);
257   };
258   Z z(1, a, b);
259 }
260 
261 namespace tuple_tests {
262   // The converting n-ary constructor appears viable, deducing T as an empty
263   // pack (until we check its SFINAE constraints).
264   namespace libcxx_1 {
265     template<class ...T> struct tuple {
266       template<class ...Args> struct X { static const bool value = false; };
267       template<class ...U, bool Y = X<U...>::value> tuple(U &&...u);
268     };
269     tuple a = {1, 2, 3};
270   }
271 
272   // Don't get caught by surprise when X<...> doesn't even exist in the
273   // selected specialization!
274   namespace libcxx_2 {
275     template<class ...T> struct tuple {
276       template<class ...Args> struct X { static const bool value = false; };
277       // Substitution into X<U...>::value succeeds but produces the
278       // value-dependent expression
279       //   tuple<T...>::X<>::value
280       // FIXME: Is that the right behavior?
281       template<class ...U, bool Y = X<U...>::value> tuple(U &&...u);
282     };
283     template <> class tuple<> {};
284     tuple a = {1, 2, 3}; // expected-error {{excess elements in struct initializer}}
285   }
286 
287   namespace libcxx_3 {
288     template<typename ...T> struct scoped_lock {
289       scoped_lock(T...);
290     };
291     template<> struct scoped_lock<> {};
292     scoped_lock l = {};
293   }
294 }
295 
296 namespace dependent {
297   template<typename T> struct X {
298     X(T);
299   };
Var(T t)300   template<typename T> int Var(T t) {
301     X x(t);
302     return X(x) + 1; // expected-error {{invalid operands}}
303   }
Cast(T t)304   template<typename T> int Cast(T t) {
305     return X(X(t)) + 1; // expected-error {{invalid operands}}
306   }
New(T t)307   template<typename T> int New(T t) {
308     return X(new X(t)) + 1; // expected-error {{invalid operands}}
309   };
310   template int Var(float); // expected-note {{instantiation of}}
311   template int Cast(float); // expected-note {{instantiation of}}
312   template int New(float); // expected-note {{instantiation of}}
313   template<typename T> int operator+(X<T>, int);
314   template int Var(int);
315   template int Cast(int);
316   template int New(int);
317 
test()318   template<template<typename> typename Y> void test() {
319     Y(0);
320     new Y(0);
321     Y y(0);
322   }
323   template void test<X>();
324 }
325 
326 namespace injected_class_name {
327   template<typename T = void> struct A {
328     A();
329     template<typename U> A(A<U>);
330   };
331   A<int> a;
332   A b = a;
333   using T = decltype(a);
334   using T = decltype(b);
335 }
336 
337 namespace member_guides {
338   // PR34520
339   template<class>
340   struct Foo {
341     template <class T> struct Bar {
Barmember_guides::Foo::Bar342       Bar(...) {}
343     };
344     Bar(int) -> Bar<int>;
345   };
346   Foo<int>::Bar b = 0;
347 
348   struct A {
349     template<typename T> struct Public; // expected-note {{declared public}}
350     Public(float) -> Public<float>;
351   protected: // expected-note {{declared protected by intervening access specifier}}
352     template<typename T> struct Protected; // expected-note 2{{declared protected}}
353     Protected(float) -> Protected<float>;
354     Public(int) -> Public<int>; // expected-error {{different access}}
355   private: // expected-note {{declared private by intervening access specifier}}
356     template<typename T> struct Private; // expected-note {{declared private}}
357     Protected(int) -> Protected<int>; // expected-error {{different access}}
358   public: // expected-note 2{{declared public by intervening access specifier}}
359     template<typename T> Public(T) -> Public<T>;
360     template<typename T> Protected(T) -> Protected<T>; // expected-error {{different access}}
361     template<typename T> Private(T) -> Private<T>; // expected-error {{different access}}
362   };
363 }
364 
365 namespace rdar41903969 {
366 template <class T> struct A {};
367 template <class T> struct B;
368 template <class T> struct C {
369   C(A<T>&);
370   C(B<T>&);
371 };
372 
foo(A<int> & a,B<int> & b)373 void foo(A<int> &a, B<int> &b) {
374   (void)C{b};
375   (void)C{a};
376 }
377 
378 template<typename T> struct X {
379   X(std::initializer_list<T>) = delete;
380   X(const X&);
381 };
382 
383 template <class T> struct D : X<T> {};
384 
bar(D<int> & d)385 void bar(D<int>& d) {
386   (void)X{d};
387 }
388 }
389 
390 namespace rdar41330135 {
391 template <int> struct A {};
392 template <class T>
393 struct S {
394   template <class U>
395   S(T a, U t, A<sizeof(t)>);
396 };
397 template <class T> struct D {
398   D(T t, A<sizeof(t)>);
399 };
f()400 int f() {
401   S s(0, 0, A<sizeof(int)>());
402   D d(0, A<sizeof(int)>());
403 }
404 
405 namespace test_dupls {
406 template<unsigned long> struct X {};
407 template<typename T> struct A {
408   A(T t, X<sizeof(t)>);
409 };
410 A a(0, {});
411 template<typename U> struct B {
412   B(U u, X<sizeof(u)>);
413 };
414 B b(0, {});
415 }
416 
417 }
418 
419 namespace no_crash_on_default_arg {
420 class A {
421   template <typename T> class B {
422     B(int c = 1);
423   };
424   // This used to crash due to unparsed default arg above. The diagnostic could
425   // be improved, but the point of this test is to simply check we do not crash.
426   B(); // expected-error {{deduction guide declaration without trailing return type}}
427 };
428 } // namespace no_crash_on_default_arg
429 
430 #pragma clang diagnostic push
431 #pragma clang diagnostic warning "-Wctad-maybe-unsupported"
432 namespace test_implicit_ctad_warning {
433 
434 template <class T>
435 struct Tag {};
436 
437 template <class T>
438 struct NoExplicit { // expected-note {{add a deduction guide to suppress this warning}}
NoExplicittest_implicit_ctad_warning::NoExplicit439   NoExplicit(T) {}
NoExplicittest_implicit_ctad_warning::NoExplicit440   NoExplicit(T, int) {}
441 };
442 
443 // expected-warning@+1 {{'NoExplicit' may not intend to support class template argument deduction}}
444 NoExplicit ne(42);
445 
446 template <class U>
447 struct HasExplicit {
HasExplicittest_implicit_ctad_warning::HasExplicit448   HasExplicit(U) {}
HasExplicittest_implicit_ctad_warning::HasExplicit449   HasExplicit(U, int) {}
450 };
451 template <class U> HasExplicit(U, int) -> HasExplicit<Tag<U>>;
452 
453 HasExplicit he(42);
454 
455 // Motivating examples from (taken from Stephan Lavavej's 2018 Cppcon talk)
456 template <class T, class U>
457 struct AmateurPair { // expected-note {{add a deduction guide to suppress this warning}}
458   T first;
459   U second;
AmateurPairtest_implicit_ctad_warning::AmateurPair460   explicit AmateurPair(const T &t, const U &u) {}
461 };
462 // expected-warning@+1 {{'AmateurPair' may not intend to support class template argument deduction}}
463 AmateurPair p1(42, "hello world"); // deduces to Pair<int, char[12]>
464 
465 template <class T, class U>
466 struct AmateurPair2 { // expected-note {{add a deduction guide to suppress this warning}}
467   T first;
468   U second;
AmateurPair2test_implicit_ctad_warning::AmateurPair2469   explicit AmateurPair2(T t, U u) {}
470 };
471 // expected-warning@+1 {{'AmateurPair2' may not intend to support class template argument deduction}}
472 AmateurPair2 p2(42, "hello world"); // deduces to Pair2<int, const char*>
473 
474 template <class T, class U>
475 struct ProPair {
476   T first; U second;
ProPairtest_implicit_ctad_warning::ProPair477     explicit ProPair(T const& t, U  const& u)  {}
478 };
479 template<class T1, class T2>
480 ProPair(T1, T2) -> ProPair<T1, T2>;
481 ProPair p3(42, "hello world"); // deduces to ProPair<int, const char*>
482 static_assert(__is_same(decltype(p3), ProPair<int, const char*>));
483 
484 // Test that user-defined explicit guides suppress the warning even if they
485 // aren't used as candidates.
486 template <class T>
487 struct TestExplicitCtor {
TestExplicitCtortest_implicit_ctad_warning::TestExplicitCtor488   TestExplicitCtor(T) {}
489 };
490 template <class T>
491 explicit TestExplicitCtor(TestExplicitCtor<T> const&) -> TestExplicitCtor<void>;
492 TestExplicitCtor<int> ce1{42};
493 TestExplicitCtor ce2 = ce1;
494 static_assert(__is_same(decltype(ce2), TestExplicitCtor<int>), "");
495 
496 struct allow_ctad_t {
497   allow_ctad_t() = delete;
498 };
499 
500 template <class T>
501 struct TestSuppression {
TestSuppressiontest_implicit_ctad_warning::TestSuppression502   TestSuppression(T) {}
503 };
504 TestSuppression(allow_ctad_t)->TestSuppression<void>;
505 TestSuppression ta("abc");
506 static_assert(__is_same(decltype(ta), TestSuppression<const char *>), "");
507 }
508 #pragma clang diagnostic pop
509 
510 namespace PR41549 {
511 
512 template <class H, class P> struct umm;
513 
514 template <class H = int, class P = int>
515 struct umm {
516   umm(H h = 0, P p = 0);
517 };
518 
519 template <class H, class P> struct umm;
520 
521 umm m(1);
522 
523 }
524 
525 namespace PR45124 {
526   class a { int d; };
527   class b : a {};
528 
529   struct x { ~x(); };
530   template<typename> class y { y(x = x()); };
531   template<typename z> y(z)->y<z>;
532 
533   // Not a constant initializer, but trivial default initialization. We won't
534   // detect this as trivial default initialization if synthesizing the implicit
535   // deduction guide 'template<typename T> y(x = x()) -> Y<T>;' leaves behind a
536   // pending cleanup.
537   __thread b g;
538 }
539 
540 namespace PR47175 {
541   template<typename T> struct A { A(T); T x; };
542   template<typename T> int &&n = A(T()).x;
543   int m = n<int>;
544 }
545 
546 // Ensure we don't crash when CTAD fails.
547 template <typename T1, typename T2>
548 struct Foo {   // expected-note{{candidate function template not viable}}
549   Foo(T1, T2); // expected-note{{candidate function template not viable}}
550 };
551 
552 template <typename... Args>
553 void insert(Args &&...args);
554 
foo()555 void foo() {
556   insert(Foo(2, 2, 2)); // expected-error{{no viable constructor or deduction guide}}
557 }
558 
559 namespace PR52139 {
560   struct Abstract {
561     template <class... Ts>
562     struct overloaded : Ts... {
563       using Ts::operator()...;
564     };
565     template <class... Ts>
566     overloaded(Ts...) -> overloaded<Ts...>;
567 
568   private:
569     virtual void f() = 0;
570   };
571 }
572 #else
573 
574 // expected-no-diagnostics
575 namespace undefined_warnings {
576   // Make sure we don't get an "undefined but used internal symbol" warning for the deduction guide here.
577   namespace {
578     template <typename T>
579     struct TemplDObj {
TemplDObjundefined_warnings::__anon2fc4c2ca0111::TemplDObj580       explicit TemplDObj(T func) noexcept {}
581     };
582     auto test1 = TemplDObj(0);
583 
584     TemplDObj(float) -> TemplDObj<double>;
585     auto test2 = TemplDObj(.0f);
586   }
587 }
588 #endif
589