1 //===-- guarded_pool_allocator.cpp ------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "gwp_asan/guarded_pool_allocator.h"
10 
11 #include "gwp_asan/options.h"
12 #include "gwp_asan/utilities.h"
13 
14 #include <assert.h>
15 #include <stddef.h>
16 
17 using AllocationMetadata = gwp_asan::AllocationMetadata;
18 using Error = gwp_asan::Error;
19 
20 namespace gwp_asan {
21 namespace {
22 // Forward declare the pointer to the singleton version of this class.
23 // Instantiated during initialisation, this allows the signal handler
24 // to find this class in order to deduce the root cause of failures. Must not be
25 // referenced by users outside this translation unit, in order to avoid
26 // init-order-fiasco.
27 GuardedPoolAllocator *SingletonPtr = nullptr;
28 
roundUpTo(size_t Size,size_t Boundary)29 size_t roundUpTo(size_t Size, size_t Boundary) {
30   return (Size + Boundary - 1) & ~(Boundary - 1);
31 }
32 
getPageAddr(uintptr_t Ptr,uintptr_t PageSize)33 uintptr_t getPageAddr(uintptr_t Ptr, uintptr_t PageSize) {
34   return Ptr & ~(PageSize - 1);
35 }
36 
isPowerOfTwo(uintptr_t X)37 bool isPowerOfTwo(uintptr_t X) { return (X & (X - 1)) == 0; }
38 } // anonymous namespace
39 
40 // Gets the singleton implementation of this class. Thread-compatible until
41 // init() is called, thread-safe afterwards.
getSingleton()42 GuardedPoolAllocator *GuardedPoolAllocator::getSingleton() {
43   return SingletonPtr;
44 }
45 
init(const options::Options & Opts)46 void GuardedPoolAllocator::init(const options::Options &Opts) {
47   // Note: We return from the constructor here if GWP-ASan is not available.
48   // This will stop heap-allocation of class members, as well as mmap() of the
49   // guarded slots.
50   if (!Opts.Enabled || Opts.SampleRate == 0 ||
51       Opts.MaxSimultaneousAllocations == 0)
52     return;
53 
54   Check(Opts.SampleRate >= 0, "GWP-ASan Error: SampleRate is < 0.");
55   Check(Opts.SampleRate < (1 << 30), "GWP-ASan Error: SampleRate is >= 2^30.");
56   Check(Opts.MaxSimultaneousAllocations >= 0,
57         "GWP-ASan Error: MaxSimultaneousAllocations is < 0.");
58 
59   SingletonPtr = this;
60   Backtrace = Opts.Backtrace;
61 
62   State.VersionMagic = {{AllocatorVersionMagic::kAllocatorVersionMagic[0],
63                          AllocatorVersionMagic::kAllocatorVersionMagic[1],
64                          AllocatorVersionMagic::kAllocatorVersionMagic[2],
65                          AllocatorVersionMagic::kAllocatorVersionMagic[3]},
66                         AllocatorVersionMagic::kAllocatorVersion,
67                         0};
68 
69   State.MaxSimultaneousAllocations = Opts.MaxSimultaneousAllocations;
70 
71   const size_t PageSize = getPlatformPageSize();
72   // getPageAddr() and roundUpTo() assume the page size to be a power of 2.
73   assert((PageSize & (PageSize - 1)) == 0);
74   State.PageSize = PageSize;
75 
76   size_t PoolBytesRequired =
77       PageSize * (1 + State.MaxSimultaneousAllocations) +
78       State.MaxSimultaneousAllocations * State.maximumAllocationSize();
79   assert(PoolBytesRequired % PageSize == 0);
80   void *GuardedPoolMemory = reserveGuardedPool(PoolBytesRequired);
81 
82   size_t BytesRequired =
83       roundUpTo(State.MaxSimultaneousAllocations * sizeof(*Metadata), PageSize);
84   Metadata = reinterpret_cast<AllocationMetadata *>(
85       map(BytesRequired, kGwpAsanMetadataName));
86 
87   // Allocate memory and set up the free pages queue.
88   BytesRequired = roundUpTo(
89       State.MaxSimultaneousAllocations * sizeof(*FreeSlots), PageSize);
90   FreeSlots =
91       reinterpret_cast<size_t *>(map(BytesRequired, kGwpAsanFreeSlotsName));
92 
93   // Multiply the sample rate by 2 to give a good, fast approximation for (1 /
94   // SampleRate) chance of sampling.
95   if (Opts.SampleRate != 1)
96     AdjustedSampleRatePlusOne = static_cast<uint32_t>(Opts.SampleRate) * 2 + 1;
97   else
98     AdjustedSampleRatePlusOne = 2;
99 
100   initPRNG();
101   getThreadLocals()->NextSampleCounter =
102       ((getRandomUnsigned32() % (AdjustedSampleRatePlusOne - 1)) + 1) &
103       ThreadLocalPackedVariables::NextSampleCounterMask;
104 
105   State.GuardedPagePool = reinterpret_cast<uintptr_t>(GuardedPoolMemory);
106   State.GuardedPagePoolEnd =
107       reinterpret_cast<uintptr_t>(GuardedPoolMemory) + PoolBytesRequired;
108 
109   if (Opts.InstallForkHandlers)
110     installAtFork();
111 }
112 
disable()113 void GuardedPoolAllocator::disable() {
114   PoolMutex.lock();
115   BacktraceMutex.lock();
116 }
117 
enable()118 void GuardedPoolAllocator::enable() {
119   PoolMutex.unlock();
120   BacktraceMutex.unlock();
121 }
122 
iterate(void * Base,size_t Size,iterate_callback Cb,void * Arg)123 void GuardedPoolAllocator::iterate(void *Base, size_t Size, iterate_callback Cb,
124                                    void *Arg) {
125   uintptr_t Start = reinterpret_cast<uintptr_t>(Base);
126   for (size_t i = 0; i < State.MaxSimultaneousAllocations; ++i) {
127     const AllocationMetadata &Meta = Metadata[i];
128     if (Meta.Addr && !Meta.IsDeallocated && Meta.Addr >= Start &&
129         Meta.Addr < Start + Size)
130       Cb(Meta.Addr, Meta.RequestedSize, Arg);
131   }
132 }
133 
uninitTestOnly()134 void GuardedPoolAllocator::uninitTestOnly() {
135   if (State.GuardedPagePool) {
136     unreserveGuardedPool();
137     State.GuardedPagePool = 0;
138     State.GuardedPagePoolEnd = 0;
139   }
140   if (Metadata) {
141     unmap(Metadata,
142           roundUpTo(State.MaxSimultaneousAllocations * sizeof(*Metadata),
143                     State.PageSize));
144     Metadata = nullptr;
145   }
146   if (FreeSlots) {
147     unmap(FreeSlots,
148           roundUpTo(State.MaxSimultaneousAllocations * sizeof(*FreeSlots),
149                     State.PageSize));
150     FreeSlots = nullptr;
151   }
152   *getThreadLocals() = ThreadLocalPackedVariables();
153 }
154 
155 // Note, minimum backing allocation size in GWP-ASan is always one page, and
156 // each slot could potentially be multiple pages (but always in
157 // page-increments). Thus, for anything that requires less than page size
158 // alignment, we don't need to allocate extra padding to ensure the alignment
159 // can be met.
getRequiredBackingSize(size_t Size,size_t Alignment,size_t PageSize)160 size_t GuardedPoolAllocator::getRequiredBackingSize(size_t Size,
161                                                     size_t Alignment,
162                                                     size_t PageSize) {
163   assert(isPowerOfTwo(Alignment) && "Alignment must be a power of two!");
164   assert(Alignment != 0 && "Alignment should be non-zero");
165   assert(Size != 0 && "Size should be non-zero");
166 
167   if (Alignment <= PageSize)
168     return Size;
169 
170   return Size + Alignment - PageSize;
171 }
172 
alignUp(uintptr_t Ptr,size_t Alignment)173 uintptr_t GuardedPoolAllocator::alignUp(uintptr_t Ptr, size_t Alignment) {
174   assert(isPowerOfTwo(Alignment) && "Alignment must be a power of two!");
175   assert(Alignment != 0 && "Alignment should be non-zero");
176   if ((Ptr & (Alignment - 1)) == 0)
177     return Ptr;
178 
179   Ptr += Alignment - (Ptr & (Alignment - 1));
180   return Ptr;
181 }
182 
alignDown(uintptr_t Ptr,size_t Alignment)183 uintptr_t GuardedPoolAllocator::alignDown(uintptr_t Ptr, size_t Alignment) {
184   assert(isPowerOfTwo(Alignment) && "Alignment must be a power of two!");
185   assert(Alignment != 0 && "Alignment should be non-zero");
186   if ((Ptr & (Alignment - 1)) == 0)
187     return Ptr;
188 
189   Ptr -= Ptr & (Alignment - 1);
190   return Ptr;
191 }
192 
allocate(size_t Size,size_t Alignment)193 void *GuardedPoolAllocator::allocate(size_t Size, size_t Alignment) {
194   // GuardedPagePoolEnd == 0 when GWP-ASan is disabled. If we are disabled, fall
195   // back to the supporting allocator.
196   if (State.GuardedPagePoolEnd == 0) {
197     getThreadLocals()->NextSampleCounter =
198         (AdjustedSampleRatePlusOne - 1) &
199         ThreadLocalPackedVariables::NextSampleCounterMask;
200     return nullptr;
201   }
202 
203   if (Size == 0)
204     Size = 1;
205   if (Alignment == 0)
206     Alignment = alignof(max_align_t);
207 
208   if (!isPowerOfTwo(Alignment) || Alignment > State.maximumAllocationSize() ||
209       Size > State.maximumAllocationSize())
210     return nullptr;
211 
212   size_t BackingSize = getRequiredBackingSize(Size, Alignment, State.PageSize);
213   if (BackingSize > State.maximumAllocationSize())
214     return nullptr;
215 
216   // Protect against recursivity.
217   if (getThreadLocals()->RecursiveGuard)
218     return nullptr;
219   ScopedRecursiveGuard SRG;
220 
221   size_t Index;
222   {
223     ScopedLock L(PoolMutex);
224     Index = reserveSlot();
225   }
226 
227   if (Index == kInvalidSlotID)
228     return nullptr;
229 
230   uintptr_t SlotStart = State.slotToAddr(Index);
231   AllocationMetadata *Meta = addrToMetadata(SlotStart);
232   uintptr_t SlotEnd = State.slotToAddr(Index) + State.maximumAllocationSize();
233   uintptr_t UserPtr;
234   // Randomly choose whether to left-align or right-align the allocation, and
235   // then apply the necessary adjustments to get an aligned pointer.
236   if (getRandomUnsigned32() % 2 == 0)
237     UserPtr = alignUp(SlotStart, Alignment);
238   else
239     UserPtr = alignDown(SlotEnd - Size, Alignment);
240 
241   assert(UserPtr >= SlotStart);
242   assert(UserPtr + Size <= SlotEnd);
243 
244   // If a slot is multiple pages in size, and the allocation takes up a single
245   // page, we can improve overflow detection by leaving the unused pages as
246   // unmapped.
247   const size_t PageSize = State.PageSize;
248   allocateInGuardedPool(
249       reinterpret_cast<void *>(getPageAddr(UserPtr, PageSize)),
250       roundUpTo(Size, PageSize));
251 
252   Meta->RecordAllocation(UserPtr, Size);
253   {
254     ScopedLock UL(BacktraceMutex);
255     Meta->AllocationTrace.RecordBacktrace(Backtrace);
256   }
257 
258   return reinterpret_cast<void *>(UserPtr);
259 }
260 
trapOnAddress(uintptr_t Address,Error E)261 void GuardedPoolAllocator::trapOnAddress(uintptr_t Address, Error E) {
262   State.FailureType = E;
263   State.FailureAddress = Address;
264 
265   // Raise a SEGV by touching first guard page.
266   volatile char *p = reinterpret_cast<char *>(State.GuardedPagePool);
267   *p = 0;
268   // Normally, would be __builtin_unreachable(), but because of
269   // https://bugs.llvm.org/show_bug.cgi?id=47480, unreachable will DCE the
270   // volatile store above, even though it has side effects.
271   __builtin_trap();
272 }
273 
stop()274 void GuardedPoolAllocator::stop() {
275   getThreadLocals()->RecursiveGuard = true;
276   PoolMutex.tryLock();
277 }
278 
deallocate(void * Ptr)279 void GuardedPoolAllocator::deallocate(void *Ptr) {
280   assert(pointerIsMine(Ptr) && "Pointer is not mine!");
281   uintptr_t UPtr = reinterpret_cast<uintptr_t>(Ptr);
282   size_t Slot = State.getNearestSlot(UPtr);
283   uintptr_t SlotStart = State.slotToAddr(Slot);
284   AllocationMetadata *Meta = addrToMetadata(UPtr);
285   if (Meta->Addr != UPtr) {
286     // If multiple errors occur at the same time, use the first one.
287     ScopedLock L(PoolMutex);
288     trapOnAddress(UPtr, Error::INVALID_FREE);
289   }
290 
291   // Intentionally scope the mutex here, so that other threads can access the
292   // pool during the expensive markInaccessible() call.
293   {
294     ScopedLock L(PoolMutex);
295     if (Meta->IsDeallocated) {
296       trapOnAddress(UPtr, Error::DOUBLE_FREE);
297     }
298 
299     // Ensure that the deallocation is recorded before marking the page as
300     // inaccessible. Otherwise, a racy use-after-free will have inconsistent
301     // metadata.
302     Meta->RecordDeallocation();
303 
304     // Ensure that the unwinder is not called if the recursive flag is set,
305     // otherwise non-reentrant unwinders may deadlock.
306     if (!getThreadLocals()->RecursiveGuard) {
307       ScopedRecursiveGuard SRG;
308       ScopedLock UL(BacktraceMutex);
309       Meta->DeallocationTrace.RecordBacktrace(Backtrace);
310     }
311   }
312 
313   deallocateInGuardedPool(reinterpret_cast<void *>(SlotStart),
314                           State.maximumAllocationSize());
315 
316   // And finally, lock again to release the slot back into the pool.
317   ScopedLock L(PoolMutex);
318   freeSlot(Slot);
319 }
320 
getSize(const void * Ptr)321 size_t GuardedPoolAllocator::getSize(const void *Ptr) {
322   assert(pointerIsMine(Ptr));
323   ScopedLock L(PoolMutex);
324   AllocationMetadata *Meta = addrToMetadata(reinterpret_cast<uintptr_t>(Ptr));
325   assert(Meta->Addr == reinterpret_cast<uintptr_t>(Ptr));
326   return Meta->RequestedSize;
327 }
328 
addrToMetadata(uintptr_t Ptr) const329 AllocationMetadata *GuardedPoolAllocator::addrToMetadata(uintptr_t Ptr) const {
330   return &Metadata[State.getNearestSlot(Ptr)];
331 }
332 
reserveSlot()333 size_t GuardedPoolAllocator::reserveSlot() {
334   // Avoid potential reuse of a slot before we have made at least a single
335   // allocation in each slot. Helps with our use-after-free detection.
336   if (NumSampledAllocations < State.MaxSimultaneousAllocations)
337     return NumSampledAllocations++;
338 
339   if (FreeSlotsLength == 0)
340     return kInvalidSlotID;
341 
342   size_t ReservedIndex = getRandomUnsigned32() % FreeSlotsLength;
343   size_t SlotIndex = FreeSlots[ReservedIndex];
344   FreeSlots[ReservedIndex] = FreeSlots[--FreeSlotsLength];
345   return SlotIndex;
346 }
347 
freeSlot(size_t SlotIndex)348 void GuardedPoolAllocator::freeSlot(size_t SlotIndex) {
349   assert(FreeSlotsLength < State.MaxSimultaneousAllocations);
350   FreeSlots[FreeSlotsLength++] = SlotIndex;
351 }
352 
getRandomUnsigned32()353 uint32_t GuardedPoolAllocator::getRandomUnsigned32() {
354   uint32_t RandomState = getThreadLocals()->RandomState;
355   RandomState ^= RandomState << 13;
356   RandomState ^= RandomState >> 17;
357   RandomState ^= RandomState << 5;
358   getThreadLocals()->RandomState = RandomState;
359   return RandomState;
360 }
361 } // namespace gwp_asan
362