1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the primary stateless implementation of the
10 // Alias Analysis interface that implements identities (two different
11 // globals cannot alias, etc), but does no stateful analysis.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/BasicAliasAnalysis.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/PhiValues.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/ConstantRange.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GetElementPtrTypeIterator.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/Metadata.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/User.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/KnownBits.h"
59 #include <cassert>
60 #include <cstdint>
61 #include <cstdlib>
62 #include <utility>
63 
64 #define DEBUG_TYPE "basicaa"
65 
66 using namespace llvm;
67 
68 /// Enable analysis of recursive PHI nodes.
69 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden,
70                                           cl::init(true));
71 
72 /// SearchLimitReached / SearchTimes shows how often the limit of
73 /// to decompose GEPs is reached. It will affect the precision
74 /// of basic alias analysis.
75 STATISTIC(SearchLimitReached, "Number of times the limit to "
76                               "decompose GEPs is reached");
77 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
78 
79 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
80 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
81 /// careful with value equivalence. We use reachability to make sure a value
82 /// cannot be involved in a cycle.
83 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
84 
85 // The max limit of the search depth in DecomposeGEPExpression() and
86 // getUnderlyingObject(), both functions need to use the same search
87 // depth otherwise the algorithm in aliasGEP will assert.
88 static const unsigned MaxLookupSearchDepth = 6;
89 
invalidate(Function & Fn,const PreservedAnalyses & PA,FunctionAnalysisManager::Invalidator & Inv)90 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
91                                FunctionAnalysisManager::Invalidator &Inv) {
92   // We don't care if this analysis itself is preserved, it has no state. But
93   // we need to check that the analyses it depends on have been. Note that we
94   // may be created without handles to some analyses and in that case don't
95   // depend on them.
96   if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
97       (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) ||
98       (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA)))
99     return true;
100 
101   // Otherwise this analysis result remains valid.
102   return false;
103 }
104 
105 //===----------------------------------------------------------------------===//
106 // Useful predicates
107 //===----------------------------------------------------------------------===//
108 
109 /// Returns true if the pointer is one which would have been considered an
110 /// escape by isNonEscapingLocalObject.
isEscapeSource(const Value * V)111 static bool isEscapeSource(const Value *V) {
112   if (isa<CallBase>(V))
113     return true;
114 
115   // The load case works because isNonEscapingLocalObject considers all
116   // stores to be escapes (it passes true for the StoreCaptures argument
117   // to PointerMayBeCaptured).
118   if (isa<LoadInst>(V))
119     return true;
120 
121   // The inttoptr case works because isNonEscapingLocalObject considers all
122   // means of converting or equating a pointer to an int (ptrtoint, ptr store
123   // which could be followed by an integer load, ptr<->int compare) as
124   // escaping, and objects located at well-known addresses via platform-specific
125   // means cannot be considered non-escaping local objects.
126   if (isa<IntToPtrInst>(V))
127     return true;
128 
129   return false;
130 }
131 
132 /// Returns the size of the object specified by V or UnknownSize if unknown.
getObjectSize(const Value * V,const DataLayout & DL,const TargetLibraryInfo & TLI,bool NullIsValidLoc,bool RoundToAlign=false)133 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
134                               const TargetLibraryInfo &TLI,
135                               bool NullIsValidLoc,
136                               bool RoundToAlign = false) {
137   uint64_t Size;
138   ObjectSizeOpts Opts;
139   Opts.RoundToAlign = RoundToAlign;
140   Opts.NullIsUnknownSize = NullIsValidLoc;
141   if (getObjectSize(V, Size, DL, &TLI, Opts))
142     return Size;
143   return MemoryLocation::UnknownSize;
144 }
145 
146 /// Returns true if we can prove that the object specified by V is smaller than
147 /// Size.
isObjectSmallerThan(const Value * V,uint64_t Size,const DataLayout & DL,const TargetLibraryInfo & TLI,bool NullIsValidLoc)148 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
149                                 const DataLayout &DL,
150                                 const TargetLibraryInfo &TLI,
151                                 bool NullIsValidLoc) {
152   // Note that the meanings of the "object" are slightly different in the
153   // following contexts:
154   //    c1: llvm::getObjectSize()
155   //    c2: llvm.objectsize() intrinsic
156   //    c3: isObjectSmallerThan()
157   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
158   // refers to the "entire object".
159   //
160   //  Consider this example:
161   //     char *p = (char*)malloc(100)
162   //     char *q = p+80;
163   //
164   //  In the context of c1 and c2, the "object" pointed by q refers to the
165   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
166   //
167   //  However, in the context of c3, the "object" refers to the chunk of memory
168   // being allocated. So, the "object" has 100 bytes, and q points to the middle
169   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
170   // parameter, before the llvm::getObjectSize() is called to get the size of
171   // entire object, we should:
172   //    - either rewind the pointer q to the base-address of the object in
173   //      question (in this case rewind to p), or
174   //    - just give up. It is up to caller to make sure the pointer is pointing
175   //      to the base address the object.
176   //
177   // We go for 2nd option for simplicity.
178   if (!isIdentifiedObject(V))
179     return false;
180 
181   // This function needs to use the aligned object size because we allow
182   // reads a bit past the end given sufficient alignment.
183   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
184                                       /*RoundToAlign*/ true);
185 
186   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
187 }
188 
189 /// Return the minimal extent from \p V to the end of the underlying object,
190 /// assuming the result is used in an aliasing query. E.g., we do use the query
191 /// location size and the fact that null pointers cannot alias here.
getMinimalExtentFrom(const Value & V,const LocationSize & LocSize,const DataLayout & DL,bool NullIsValidLoc)192 static uint64_t getMinimalExtentFrom(const Value &V,
193                                      const LocationSize &LocSize,
194                                      const DataLayout &DL,
195                                      bool NullIsValidLoc) {
196   // If we have dereferenceability information we know a lower bound for the
197   // extent as accesses for a lower offset would be valid. We need to exclude
198   // the "or null" part if null is a valid pointer. We can ignore frees, as an
199   // access after free would be undefined behavior.
200   bool CanBeNull, CanBeFreed;
201   uint64_t DerefBytes =
202     V.getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
203   DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
204   // If queried with a precise location size, we assume that location size to be
205   // accessed, thus valid.
206   if (LocSize.isPrecise())
207     DerefBytes = std::max(DerefBytes, LocSize.getValue());
208   return DerefBytes;
209 }
210 
211 /// Returns true if we can prove that the object specified by V has size Size.
isObjectSize(const Value * V,uint64_t Size,const DataLayout & DL,const TargetLibraryInfo & TLI,bool NullIsValidLoc)212 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
213                          const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
214   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc);
215   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
216 }
217 
218 //===----------------------------------------------------------------------===//
219 // CaptureInfo implementations
220 //===----------------------------------------------------------------------===//
221 
222 CaptureInfo::~CaptureInfo() = default;
223 
isNotCapturedBeforeOrAt(const Value * Object,const Instruction * I)224 bool SimpleCaptureInfo::isNotCapturedBeforeOrAt(const Value *Object,
225                                                 const Instruction *I) {
226   return isNonEscapingLocalObject(Object, &IsCapturedCache);
227 }
228 
isNotCapturedBeforeOrAt(const Value * Object,const Instruction * I)229 bool EarliestEscapeInfo::isNotCapturedBeforeOrAt(const Value *Object,
230                                                  const Instruction *I) {
231   if (!isIdentifiedFunctionLocal(Object))
232     return false;
233 
234   auto Iter = EarliestEscapes.insert({Object, nullptr});
235   if (Iter.second) {
236     Instruction *EarliestCapture = FindEarliestCapture(
237         Object, *const_cast<Function *>(I->getFunction()),
238         /*ReturnCaptures=*/false, /*StoreCaptures=*/true, DT);
239     if (EarliestCapture) {
240       auto Ins = Inst2Obj.insert({EarliestCapture, {}});
241       Ins.first->second.push_back(Object);
242     }
243     Iter.first->second = EarliestCapture;
244   }
245 
246   // No capturing instruction.
247   if (!Iter.first->second)
248     return true;
249 
250   return I != Iter.first->second &&
251          !isPotentiallyReachable(Iter.first->second, I, nullptr, &DT, &LI);
252 }
253 
removeInstruction(Instruction * I)254 void EarliestEscapeInfo::removeInstruction(Instruction *I) {
255   auto Iter = Inst2Obj.find(I);
256   if (Iter != Inst2Obj.end()) {
257     for (const Value *Obj : Iter->second)
258       EarliestEscapes.erase(Obj);
259     Inst2Obj.erase(I);
260   }
261 }
262 
263 //===----------------------------------------------------------------------===//
264 // GetElementPtr Instruction Decomposition and Analysis
265 //===----------------------------------------------------------------------===//
266 
267 namespace {
268 /// Represents zext(sext(V)).
269 struct ExtendedValue {
270   const Value *V;
271   unsigned ZExtBits;
272   unsigned SExtBits;
273 
ExtendedValue__anond93f8c0c0111::ExtendedValue274   explicit ExtendedValue(const Value *V, unsigned ZExtBits = 0,
275                          unsigned SExtBits = 0)
276       : V(V), ZExtBits(ZExtBits), SExtBits(SExtBits) {}
277 
getBitWidth__anond93f8c0c0111::ExtendedValue278   unsigned getBitWidth() const {
279     return V->getType()->getPrimitiveSizeInBits() + ZExtBits + SExtBits;
280   }
281 
withValue__anond93f8c0c0111::ExtendedValue282   ExtendedValue withValue(const Value *NewV) const {
283     return ExtendedValue(NewV, ZExtBits, SExtBits);
284   }
285 
withZExtOfValue__anond93f8c0c0111::ExtendedValue286   ExtendedValue withZExtOfValue(const Value *NewV) const {
287     unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() -
288                         NewV->getType()->getPrimitiveSizeInBits();
289     // zext(sext(zext(NewV))) == zext(zext(zext(NewV)))
290     return ExtendedValue(NewV, ZExtBits + SExtBits + ExtendBy, 0);
291   }
292 
withSExtOfValue__anond93f8c0c0111::ExtendedValue293   ExtendedValue withSExtOfValue(const Value *NewV) const {
294     unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() -
295                         NewV->getType()->getPrimitiveSizeInBits();
296     // zext(sext(sext(NewV)))
297     return ExtendedValue(NewV, ZExtBits, SExtBits + ExtendBy);
298   }
299 
evaluateWith__anond93f8c0c0111::ExtendedValue300   APInt evaluateWith(APInt N) const {
301     assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() &&
302            "Incompatible bit width");
303     if (SExtBits) N = N.sext(N.getBitWidth() + SExtBits);
304     if (ZExtBits) N = N.zext(N.getBitWidth() + ZExtBits);
305     return N;
306   }
307 
evaluateWith__anond93f8c0c0111::ExtendedValue308   KnownBits evaluateWith(KnownBits N) const {
309     assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() &&
310            "Incompatible bit width");
311     if (SExtBits) N = N.sext(N.getBitWidth() + SExtBits);
312     if (ZExtBits) N = N.zext(N.getBitWidth() + ZExtBits);
313     return N;
314   }
315 
evaluateWith__anond93f8c0c0111::ExtendedValue316   ConstantRange evaluateWith(ConstantRange N) const {
317     assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() &&
318            "Incompatible bit width");
319     if (SExtBits) N = N.signExtend(N.getBitWidth() + SExtBits);
320     if (ZExtBits) N = N.zeroExtend(N.getBitWidth() + ZExtBits);
321     return N;
322   }
323 
canDistributeOver__anond93f8c0c0111::ExtendedValue324   bool canDistributeOver(bool NUW, bool NSW) const {
325     // zext(x op<nuw> y) == zext(x) op<nuw> zext(y)
326     // sext(x op<nsw> y) == sext(x) op<nsw> sext(y)
327     return (!ZExtBits || NUW) && (!SExtBits || NSW);
328   }
329 
hasSameExtensionsAs__anond93f8c0c0111::ExtendedValue330   bool hasSameExtensionsAs(const ExtendedValue &Other) const {
331     return ZExtBits == Other.ZExtBits && SExtBits == Other.SExtBits;
332   }
333 };
334 
335 /// Represents zext(sext(V)) * Scale + Offset.
336 struct LinearExpression {
337   ExtendedValue Val;
338   APInt Scale;
339   APInt Offset;
340 
341   /// True if all operations in this expression are NSW.
342   bool IsNSW;
343 
LinearExpression__anond93f8c0c0111::LinearExpression344   LinearExpression(const ExtendedValue &Val, const APInt &Scale,
345                    const APInt &Offset, bool IsNSW)
346       : Val(Val), Scale(Scale), Offset(Offset), IsNSW(IsNSW) {}
347 
LinearExpression__anond93f8c0c0111::LinearExpression348   LinearExpression(const ExtendedValue &Val) : Val(Val), IsNSW(true) {
349     unsigned BitWidth = Val.getBitWidth();
350     Scale = APInt(BitWidth, 1);
351     Offset = APInt(BitWidth, 0);
352   }
353 };
354 }
355 
356 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
357 /// B are constant integers.
GetLinearExpression(const ExtendedValue & Val,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,DominatorTree * DT)358 static LinearExpression GetLinearExpression(
359     const ExtendedValue &Val,  const DataLayout &DL, unsigned Depth,
360     AssumptionCache *AC, DominatorTree *DT) {
361   // Limit our recursion depth.
362   if (Depth == 6)
363     return Val;
364 
365   if (const ConstantInt *Const = dyn_cast<ConstantInt>(Val.V))
366     return LinearExpression(Val, APInt(Val.getBitWidth(), 0),
367                             Val.evaluateWith(Const->getValue()), true);
368 
369   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val.V)) {
370     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
371       APInt RHS = Val.evaluateWith(RHSC->getValue());
372       // The only non-OBO case we deal with is or, and only limited to the
373       // case where it is both nuw and nsw.
374       bool NUW = true, NSW = true;
375       if (isa<OverflowingBinaryOperator>(BOp)) {
376         NUW &= BOp->hasNoUnsignedWrap();
377         NSW &= BOp->hasNoSignedWrap();
378       }
379       if (!Val.canDistributeOver(NUW, NSW))
380         return Val;
381 
382       LinearExpression E(Val);
383       switch (BOp->getOpcode()) {
384       default:
385         // We don't understand this instruction, so we can't decompose it any
386         // further.
387         return Val;
388       case Instruction::Or:
389         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
390         // analyze it.
391         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
392                                BOp, DT))
393           return Val;
394 
395         LLVM_FALLTHROUGH;
396       case Instruction::Add: {
397         E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
398                                 Depth + 1, AC, DT);
399         E.Offset += RHS;
400         E.IsNSW &= NSW;
401         break;
402       }
403       case Instruction::Sub: {
404         E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
405                                 Depth + 1, AC, DT);
406         E.Offset -= RHS;
407         E.IsNSW &= NSW;
408         break;
409       }
410       case Instruction::Mul: {
411         E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
412                                 Depth + 1, AC, DT);
413         E.Offset *= RHS;
414         E.Scale *= RHS;
415         E.IsNSW &= NSW;
416         break;
417       }
418       case Instruction::Shl:
419         // We're trying to linearize an expression of the kind:
420         //   shl i8 -128, 36
421         // where the shift count exceeds the bitwidth of the type.
422         // We can't decompose this further (the expression would return
423         // a poison value).
424         if (RHS.getLimitedValue() > Val.getBitWidth())
425           return Val;
426 
427         E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
428                                 Depth + 1, AC, DT);
429         E.Offset <<= RHS.getLimitedValue();
430         E.Scale <<= RHS.getLimitedValue();
431         E.IsNSW &= NSW;
432         break;
433       }
434       return E;
435     }
436   }
437 
438   if (isa<ZExtInst>(Val.V))
439     return GetLinearExpression(
440         Val.withZExtOfValue(cast<CastInst>(Val.V)->getOperand(0)),
441         DL, Depth + 1, AC, DT);
442 
443   if (isa<SExtInst>(Val.V))
444     return GetLinearExpression(
445         Val.withSExtOfValue(cast<CastInst>(Val.V)->getOperand(0)),
446         DL, Depth + 1, AC, DT);
447 
448   return Val;
449 }
450 
451 /// To ensure a pointer offset fits in an integer of size PointerSize
452 /// (in bits) when that size is smaller than the maximum pointer size. This is
453 /// an issue, for example, in particular for 32b pointers with negative indices
454 /// that rely on two's complement wrap-arounds for precise alias information
455 /// where the maximum pointer size is 64b.
adjustToPointerSize(const APInt & Offset,unsigned PointerSize)456 static APInt adjustToPointerSize(const APInt &Offset, unsigned PointerSize) {
457   assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!");
458   unsigned ShiftBits = Offset.getBitWidth() - PointerSize;
459   return (Offset << ShiftBits).ashr(ShiftBits);
460 }
461 
462 namespace {
463 // A linear transformation of a Value; this class represents
464 // ZExt(SExt(V, SExtBits), ZExtBits) * Scale.
465 struct VariableGEPIndex {
466   ExtendedValue Val;
467   APInt Scale;
468 
469   // Context instruction to use when querying information about this index.
470   const Instruction *CxtI;
471 
472   /// True if all operations in this expression are NSW.
473   bool IsNSW;
474 
dump__anond93f8c0c0211::VariableGEPIndex475   void dump() const {
476     print(dbgs());
477     dbgs() << "\n";
478   }
print__anond93f8c0c0211::VariableGEPIndex479   void print(raw_ostream &OS) const {
480     OS << "(V=" << Val.V->getName()
481        << ", zextbits=" << Val.ZExtBits
482        << ", sextbits=" << Val.SExtBits
483        << ", scale=" << Scale << ")";
484   }
485 };
486 }
487 
488 // Represents the internal structure of a GEP, decomposed into a base pointer,
489 // constant offsets, and variable scaled indices.
490 struct BasicAAResult::DecomposedGEP {
491   // Base pointer of the GEP
492   const Value *Base;
493   // Total constant offset from base.
494   APInt Offset;
495   // Scaled variable (non-constant) indices.
496   SmallVector<VariableGEPIndex, 4> VarIndices;
497   // Is GEP index scale compile-time constant.
498   bool HasCompileTimeConstantScale;
499   // Are all operations inbounds GEPs or non-indexing operations?
500   // (None iff expression doesn't involve any geps)
501   Optional<bool> InBounds;
502 
dumpBasicAAResult::DecomposedGEP503   void dump() const {
504     print(dbgs());
505     dbgs() << "\n";
506   }
printBasicAAResult::DecomposedGEP507   void print(raw_ostream &OS) const {
508     OS << "(DecomposedGEP Base=" << Base->getName()
509        << ", Offset=" << Offset
510        << ", VarIndices=[";
511     for (size_t i = 0; i < VarIndices.size(); i++) {
512       if (i != 0)
513         OS << ", ";
514       VarIndices[i].print(OS);
515     }
516     OS << "], HasCompileTimeConstantScale=" << HasCompileTimeConstantScale
517        << ")";
518   }
519 };
520 
521 
522 /// If V is a symbolic pointer expression, decompose it into a base pointer
523 /// with a constant offset and a number of scaled symbolic offsets.
524 ///
525 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
526 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
527 /// specified amount, but which may have other unrepresented high bits. As
528 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
529 ///
530 /// This function is capable of analyzing everything that getUnderlyingObject
531 /// can look through. To be able to do that getUnderlyingObject and
532 /// DecomposeGEPExpression must use the same search depth
533 /// (MaxLookupSearchDepth).
534 BasicAAResult::DecomposedGEP
DecomposeGEPExpression(const Value * V,const DataLayout & DL,AssumptionCache * AC,DominatorTree * DT)535 BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL,
536                                       AssumptionCache *AC, DominatorTree *DT) {
537   // Limit recursion depth to limit compile time in crazy cases.
538   unsigned MaxLookup = MaxLookupSearchDepth;
539   SearchTimes++;
540   const Instruction *CxtI = dyn_cast<Instruction>(V);
541 
542   unsigned MaxPointerSize = DL.getMaxPointerSizeInBits();
543   DecomposedGEP Decomposed;
544   Decomposed.Offset = APInt(MaxPointerSize, 0);
545   Decomposed.HasCompileTimeConstantScale = true;
546   do {
547     // See if this is a bitcast or GEP.
548     const Operator *Op = dyn_cast<Operator>(V);
549     if (!Op) {
550       // The only non-operator case we can handle are GlobalAliases.
551       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
552         if (!GA->isInterposable()) {
553           V = GA->getAliasee();
554           continue;
555         }
556       }
557       Decomposed.Base = V;
558       return Decomposed;
559     }
560 
561     if (Op->getOpcode() == Instruction::BitCast ||
562         Op->getOpcode() == Instruction::AddrSpaceCast) {
563       V = Op->getOperand(0);
564       continue;
565     }
566 
567     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
568     if (!GEPOp) {
569       if (const auto *PHI = dyn_cast<PHINode>(V)) {
570         // Look through single-arg phi nodes created by LCSSA.
571         if (PHI->getNumIncomingValues() == 1) {
572           V = PHI->getIncomingValue(0);
573           continue;
574         }
575       } else if (const auto *Call = dyn_cast<CallBase>(V)) {
576         // CaptureTracking can know about special capturing properties of some
577         // intrinsics like launder.invariant.group, that can't be expressed with
578         // the attributes, but have properties like returning aliasing pointer.
579         // Because some analysis may assume that nocaptured pointer is not
580         // returned from some special intrinsic (because function would have to
581         // be marked with returns attribute), it is crucial to use this function
582         // because it should be in sync with CaptureTracking. Not using it may
583         // cause weird miscompilations where 2 aliasing pointers are assumed to
584         // noalias.
585         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
586           V = RP;
587           continue;
588         }
589       }
590 
591       Decomposed.Base = V;
592       return Decomposed;
593     }
594 
595     // Track whether we've seen at least one in bounds gep, and if so, whether
596     // all geps parsed were in bounds.
597     if (Decomposed.InBounds == None)
598       Decomposed.InBounds = GEPOp->isInBounds();
599     else if (!GEPOp->isInBounds())
600       Decomposed.InBounds = false;
601 
602     assert(GEPOp->getSourceElementType()->isSized() && "GEP must be sized");
603 
604     // Don't attempt to analyze GEPs if index scale is not a compile-time
605     // constant.
606     if (isa<ScalableVectorType>(GEPOp->getSourceElementType())) {
607       Decomposed.Base = V;
608       Decomposed.HasCompileTimeConstantScale = false;
609       return Decomposed;
610     }
611 
612     unsigned AS = GEPOp->getPointerAddressSpace();
613     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
614     gep_type_iterator GTI = gep_type_begin(GEPOp);
615     unsigned PointerSize = DL.getPointerSizeInBits(AS);
616     // Assume all GEP operands are constants until proven otherwise.
617     bool GepHasConstantOffset = true;
618     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
619          I != E; ++I, ++GTI) {
620       const Value *Index = *I;
621       // Compute the (potentially symbolic) offset in bytes for this index.
622       if (StructType *STy = GTI.getStructTypeOrNull()) {
623         // For a struct, add the member offset.
624         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
625         if (FieldNo == 0)
626           continue;
627 
628         Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo);
629         continue;
630       }
631 
632       // For an array/pointer, add the element offset, explicitly scaled.
633       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
634         if (CIdx->isZero())
635           continue;
636         Decomposed.Offset +=
637             DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() *
638             CIdx->getValue().sextOrTrunc(MaxPointerSize);
639         continue;
640       }
641 
642       GepHasConstantOffset = false;
643 
644       APInt Scale(MaxPointerSize,
645                   DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize());
646       // If the integer type is smaller than the pointer size, it is implicitly
647       // sign extended to pointer size.
648       unsigned Width = Index->getType()->getIntegerBitWidth();
649       unsigned SExtBits = PointerSize > Width ? PointerSize - Width : 0;
650       LinearExpression LE = GetLinearExpression(
651           ExtendedValue(Index, 0, SExtBits), DL, 0, AC, DT);
652 
653       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
654       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
655 
656       // It can be the case that, even through C1*V+C2 does not overflow for
657       // relevant values of V, (C2*Scale) can overflow. In that case, we cannot
658       // decompose the expression in this way.
659       //
660       // FIXME: C1*Scale and the other operations in the decomposed
661       // (C1*Scale)*V+C2*Scale can also overflow. We should check for this
662       // possibility.
663       bool Overflow;
664       APInt ScaledOffset = LE.Offset.sextOrTrunc(MaxPointerSize)
665                            .smul_ov(Scale, Overflow);
666       if (Overflow) {
667         LE = LinearExpression(ExtendedValue(Index, 0, SExtBits));
668       } else {
669         Decomposed.Offset += ScaledOffset;
670         Scale *= LE.Scale.sextOrTrunc(MaxPointerSize);
671       }
672 
673       // If we already had an occurrence of this index variable, merge this
674       // scale into it.  For example, we want to handle:
675       //   A[x][x] -> x*16 + x*4 -> x*20
676       // This also ensures that 'x' only appears in the index list once.
677       for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
678         if (Decomposed.VarIndices[i].Val.V == LE.Val.V &&
679             Decomposed.VarIndices[i].Val.hasSameExtensionsAs(LE.Val)) {
680           Scale += Decomposed.VarIndices[i].Scale;
681           Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
682           break;
683         }
684       }
685 
686       // Make sure that we have a scale that makes sense for this target's
687       // pointer size.
688       Scale = adjustToPointerSize(Scale, PointerSize);
689 
690       if (!!Scale) {
691         VariableGEPIndex Entry = {LE.Val, Scale, CxtI, LE.IsNSW};
692         Decomposed.VarIndices.push_back(Entry);
693       }
694     }
695 
696     // Take care of wrap-arounds
697     if (GepHasConstantOffset)
698       Decomposed.Offset = adjustToPointerSize(Decomposed.Offset, PointerSize);
699 
700     // Analyze the base pointer next.
701     V = GEPOp->getOperand(0);
702   } while (--MaxLookup);
703 
704   // If the chain of expressions is too deep, just return early.
705   Decomposed.Base = V;
706   SearchLimitReached++;
707   return Decomposed;
708 }
709 
710 /// Returns whether the given pointer value points to memory that is local to
711 /// the function, with global constants being considered local to all
712 /// functions.
pointsToConstantMemory(const MemoryLocation & Loc,AAQueryInfo & AAQI,bool OrLocal)713 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
714                                            AAQueryInfo &AAQI, bool OrLocal) {
715   assert(Visited.empty() && "Visited must be cleared after use!");
716 
717   unsigned MaxLookup = 8;
718   SmallVector<const Value *, 16> Worklist;
719   Worklist.push_back(Loc.Ptr);
720   do {
721     const Value *V = getUnderlyingObject(Worklist.pop_back_val());
722     if (!Visited.insert(V).second) {
723       Visited.clear();
724       return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
725     }
726 
727     // An alloca instruction defines local memory.
728     if (OrLocal && isa<AllocaInst>(V))
729       continue;
730 
731     // A global constant counts as local memory for our purposes.
732     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
733       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
734       // global to be marked constant in some modules and non-constant in
735       // others.  GV may even be a declaration, not a definition.
736       if (!GV->isConstant()) {
737         Visited.clear();
738         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
739       }
740       continue;
741     }
742 
743     // If both select values point to local memory, then so does the select.
744     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
745       Worklist.push_back(SI->getTrueValue());
746       Worklist.push_back(SI->getFalseValue());
747       continue;
748     }
749 
750     // If all values incoming to a phi node point to local memory, then so does
751     // the phi.
752     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
753       // Don't bother inspecting phi nodes with many operands.
754       if (PN->getNumIncomingValues() > MaxLookup) {
755         Visited.clear();
756         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
757       }
758       append_range(Worklist, PN->incoming_values());
759       continue;
760     }
761 
762     // Otherwise be conservative.
763     Visited.clear();
764     return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
765   } while (!Worklist.empty() && --MaxLookup);
766 
767   Visited.clear();
768   return Worklist.empty();
769 }
770 
isIntrinsicCall(const CallBase * Call,Intrinsic::ID IID)771 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
772   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
773   return II && II->getIntrinsicID() == IID;
774 }
775 
776 /// Returns the behavior when calling the given call site.
getModRefBehavior(const CallBase * Call)777 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) {
778   if (Call->doesNotAccessMemory())
779     // Can't do better than this.
780     return FMRB_DoesNotAccessMemory;
781 
782   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
783 
784   // If the callsite knows it only reads memory, don't return worse
785   // than that.
786   if (Call->onlyReadsMemory())
787     Min = FMRB_OnlyReadsMemory;
788   else if (Call->doesNotReadMemory())
789     Min = FMRB_OnlyWritesMemory;
790 
791   if (Call->onlyAccessesArgMemory())
792     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
793   else if (Call->onlyAccessesInaccessibleMemory())
794     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
795   else if (Call->onlyAccessesInaccessibleMemOrArgMem())
796     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
797 
798   // If the call has operand bundles then aliasing attributes from the function
799   // it calls do not directly apply to the call.  This can be made more precise
800   // in the future.
801   if (!Call->hasOperandBundles())
802     if (const Function *F = Call->getCalledFunction())
803       Min =
804           FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
805 
806   return Min;
807 }
808 
809 /// Returns the behavior when calling the given function. For use when the call
810 /// site is not known.
getModRefBehavior(const Function * F)811 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
812   // If the function declares it doesn't access memory, we can't do better.
813   if (F->doesNotAccessMemory())
814     return FMRB_DoesNotAccessMemory;
815 
816   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
817 
818   // If the function declares it only reads memory, go with that.
819   if (F->onlyReadsMemory())
820     Min = FMRB_OnlyReadsMemory;
821   else if (F->doesNotReadMemory())
822     Min = FMRB_OnlyWritesMemory;
823 
824   if (F->onlyAccessesArgMemory())
825     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
826   else if (F->onlyAccessesInaccessibleMemory())
827     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
828   else if (F->onlyAccessesInaccessibleMemOrArgMem())
829     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
830 
831   return Min;
832 }
833 
834 /// Returns true if this is a writeonly (i.e Mod only) parameter.
isWriteOnlyParam(const CallBase * Call,unsigned ArgIdx,const TargetLibraryInfo & TLI)835 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx,
836                              const TargetLibraryInfo &TLI) {
837   if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly))
838     return true;
839 
840   // We can bound the aliasing properties of memset_pattern16 just as we can
841   // for memcpy/memset.  This is particularly important because the
842   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
843   // whenever possible.
844   // FIXME Consider handling this in InferFunctionAttr.cpp together with other
845   // attributes.
846   LibFunc F;
847   if (Call->getCalledFunction() &&
848       TLI.getLibFunc(*Call->getCalledFunction(), F) &&
849       F == LibFunc_memset_pattern16 && TLI.has(F))
850     if (ArgIdx == 0)
851       return true;
852 
853   // TODO: memset_pattern4, memset_pattern8
854   // TODO: _chk variants
855   // TODO: strcmp, strcpy
856 
857   return false;
858 }
859 
getArgModRefInfo(const CallBase * Call,unsigned ArgIdx)860 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
861                                            unsigned ArgIdx) {
862   // Checking for known builtin intrinsics and target library functions.
863   if (isWriteOnlyParam(Call, ArgIdx, TLI))
864     return ModRefInfo::Mod;
865 
866   if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly))
867     return ModRefInfo::Ref;
868 
869   if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone))
870     return ModRefInfo::NoModRef;
871 
872   return AAResultBase::getArgModRefInfo(Call, ArgIdx);
873 }
874 
875 #ifndef NDEBUG
getParent(const Value * V)876 static const Function *getParent(const Value *V) {
877   if (const Instruction *inst = dyn_cast<Instruction>(V)) {
878     if (!inst->getParent())
879       return nullptr;
880     return inst->getParent()->getParent();
881   }
882 
883   if (const Argument *arg = dyn_cast<Argument>(V))
884     return arg->getParent();
885 
886   return nullptr;
887 }
888 
notDifferentParent(const Value * O1,const Value * O2)889 static bool notDifferentParent(const Value *O1, const Value *O2) {
890 
891   const Function *F1 = getParent(O1);
892   const Function *F2 = getParent(O2);
893 
894   return !F1 || !F2 || F1 == F2;
895 }
896 #endif
897 
alias(const MemoryLocation & LocA,const MemoryLocation & LocB,AAQueryInfo & AAQI)898 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
899                                  const MemoryLocation &LocB,
900                                  AAQueryInfo &AAQI) {
901   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
902          "BasicAliasAnalysis doesn't support interprocedural queries.");
903   return aliasCheck(LocA.Ptr, LocA.Size, LocB.Ptr, LocB.Size, AAQI);
904 }
905 
906 /// Checks to see if the specified callsite can clobber the specified memory
907 /// object.
908 ///
909 /// Since we only look at local properties of this function, we really can't
910 /// say much about this query.  We do, however, use simple "address taken"
911 /// analysis on local objects.
getModRefInfo(const CallBase * Call,const MemoryLocation & Loc,AAQueryInfo & AAQI)912 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
913                                         const MemoryLocation &Loc,
914                                         AAQueryInfo &AAQI) {
915   assert(notDifferentParent(Call, Loc.Ptr) &&
916          "AliasAnalysis query involving multiple functions!");
917 
918   const Value *Object = getUnderlyingObject(Loc.Ptr);
919 
920   // Calls marked 'tail' cannot read or write allocas from the current frame
921   // because the current frame might be destroyed by the time they run. However,
922   // a tail call may use an alloca with byval. Calling with byval copies the
923   // contents of the alloca into argument registers or stack slots, so there is
924   // no lifetime issue.
925   if (isa<AllocaInst>(Object))
926     if (const CallInst *CI = dyn_cast<CallInst>(Call))
927       if (CI->isTailCall() &&
928           !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
929         return ModRefInfo::NoModRef;
930 
931   // Stack restore is able to modify unescaped dynamic allocas. Assume it may
932   // modify them even though the alloca is not escaped.
933   if (auto *AI = dyn_cast<AllocaInst>(Object))
934     if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
935       return ModRefInfo::Mod;
936 
937   // If the pointer is to a locally allocated object that does not escape,
938   // then the call can not mod/ref the pointer unless the call takes the pointer
939   // as an argument, and itself doesn't capture it.
940   if (!isa<Constant>(Object) && Call != Object &&
941       AAQI.CI->isNotCapturedBeforeOrAt(Object, Call)) {
942 
943     // Optimistically assume that call doesn't touch Object and check this
944     // assumption in the following loop.
945     ModRefInfo Result = ModRefInfo::NoModRef;
946     bool IsMustAlias = true;
947 
948     unsigned OperandNo = 0;
949     for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
950          CI != CE; ++CI, ++OperandNo) {
951       // Only look at the no-capture or byval pointer arguments.  If this
952       // pointer were passed to arguments that were neither of these, then it
953       // couldn't be no-capture.
954       if (!(*CI)->getType()->isPointerTy() ||
955           (!Call->doesNotCapture(OperandNo) && OperandNo < Call->arg_size() &&
956            !Call->isByValArgument(OperandNo)))
957         continue;
958 
959       // Call doesn't access memory through this operand, so we don't care
960       // if it aliases with Object.
961       if (Call->doesNotAccessMemory(OperandNo))
962         continue;
963 
964       // If this is a no-capture pointer argument, see if we can tell that it
965       // is impossible to alias the pointer we're checking.
966       AliasResult AR = getBestAAResults().alias(
967           MemoryLocation::getBeforeOrAfter(*CI),
968           MemoryLocation::getBeforeOrAfter(Object), AAQI);
969       if (AR != AliasResult::MustAlias)
970         IsMustAlias = false;
971       // Operand doesn't alias 'Object', continue looking for other aliases
972       if (AR == AliasResult::NoAlias)
973         continue;
974       // Operand aliases 'Object', but call doesn't modify it. Strengthen
975       // initial assumption and keep looking in case if there are more aliases.
976       if (Call->onlyReadsMemory(OperandNo)) {
977         Result = setRef(Result);
978         continue;
979       }
980       // Operand aliases 'Object' but call only writes into it.
981       if (Call->doesNotReadMemory(OperandNo)) {
982         Result = setMod(Result);
983         continue;
984       }
985       // This operand aliases 'Object' and call reads and writes into it.
986       // Setting ModRef will not yield an early return below, MustAlias is not
987       // used further.
988       Result = ModRefInfo::ModRef;
989       break;
990     }
991 
992     // No operand aliases, reset Must bit. Add below if at least one aliases
993     // and all aliases found are MustAlias.
994     if (isNoModRef(Result))
995       IsMustAlias = false;
996 
997     // Early return if we improved mod ref information
998     if (!isModAndRefSet(Result)) {
999       if (isNoModRef(Result))
1000         return ModRefInfo::NoModRef;
1001       return IsMustAlias ? setMust(Result) : clearMust(Result);
1002     }
1003   }
1004 
1005   // If the call is malloc/calloc like, we can assume that it doesn't
1006   // modify any IR visible value.  This is only valid because we assume these
1007   // routines do not read values visible in the IR.  TODO: Consider special
1008   // casing realloc and strdup routines which access only their arguments as
1009   // well.  Or alternatively, replace all of this with inaccessiblememonly once
1010   // that's implemented fully.
1011   if (isMallocOrCallocLikeFn(Call, &TLI)) {
1012     // Be conservative if the accessed pointer may alias the allocation -
1013     // fallback to the generic handling below.
1014     if (getBestAAResults().alias(MemoryLocation::getBeforeOrAfter(Call), Loc,
1015                                  AAQI) == AliasResult::NoAlias)
1016       return ModRefInfo::NoModRef;
1017   }
1018 
1019   // The semantics of memcpy intrinsics either exactly overlap or do not
1020   // overlap, i.e., source and destination of any given memcpy are either
1021   // no-alias or must-alias.
1022   if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) {
1023     AliasResult SrcAA =
1024         getBestAAResults().alias(MemoryLocation::getForSource(Inst), Loc, AAQI);
1025     AliasResult DestAA =
1026         getBestAAResults().alias(MemoryLocation::getForDest(Inst), Loc, AAQI);
1027     // It's also possible for Loc to alias both src and dest, or neither.
1028     ModRefInfo rv = ModRefInfo::NoModRef;
1029     if (SrcAA != AliasResult::NoAlias)
1030       rv = setRef(rv);
1031     if (DestAA != AliasResult::NoAlias)
1032       rv = setMod(rv);
1033     return rv;
1034   }
1035 
1036   // Guard intrinsics are marked as arbitrarily writing so that proper control
1037   // dependencies are maintained but they never mods any particular memory
1038   // location.
1039   //
1040   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1041   // heap state at the point the guard is issued needs to be consistent in case
1042   // the guard invokes the "deopt" continuation.
1043   if (isIntrinsicCall(Call, Intrinsic::experimental_guard))
1044     return ModRefInfo::Ref;
1045   // The same applies to deoptimize which is essentially a guard(false).
1046   if (isIntrinsicCall(Call, Intrinsic::experimental_deoptimize))
1047     return ModRefInfo::Ref;
1048 
1049   // Like assumes, invariant.start intrinsics were also marked as arbitrarily
1050   // writing so that proper control dependencies are maintained but they never
1051   // mod any particular memory location visible to the IR.
1052   // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
1053   // intrinsic is now modeled as reading memory. This prevents hoisting the
1054   // invariant.start intrinsic over stores. Consider:
1055   // *ptr = 40;
1056   // *ptr = 50;
1057   // invariant_start(ptr)
1058   // int val = *ptr;
1059   // print(val);
1060   //
1061   // This cannot be transformed to:
1062   //
1063   // *ptr = 40;
1064   // invariant_start(ptr)
1065   // *ptr = 50;
1066   // int val = *ptr;
1067   // print(val);
1068   //
1069   // The transformation will cause the second store to be ignored (based on
1070   // rules of invariant.start)  and print 40, while the first program always
1071   // prints 50.
1072   if (isIntrinsicCall(Call, Intrinsic::invariant_start))
1073     return ModRefInfo::Ref;
1074 
1075   // The AAResultBase base class has some smarts, lets use them.
1076   return AAResultBase::getModRefInfo(Call, Loc, AAQI);
1077 }
1078 
getModRefInfo(const CallBase * Call1,const CallBase * Call2,AAQueryInfo & AAQI)1079 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
1080                                         const CallBase *Call2,
1081                                         AAQueryInfo &AAQI) {
1082   // Guard intrinsics are marked as arbitrarily writing so that proper control
1083   // dependencies are maintained but they never mods any particular memory
1084   // location.
1085   //
1086   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1087   // heap state at the point the guard is issued needs to be consistent in case
1088   // the guard invokes the "deopt" continuation.
1089 
1090   // NB! This function is *not* commutative, so we special case two
1091   // possibilities for guard intrinsics.
1092 
1093   if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
1094     return isModSet(createModRefInfo(getModRefBehavior(Call2)))
1095                ? ModRefInfo::Ref
1096                : ModRefInfo::NoModRef;
1097 
1098   if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
1099     return isModSet(createModRefInfo(getModRefBehavior(Call1)))
1100                ? ModRefInfo::Mod
1101                : ModRefInfo::NoModRef;
1102 
1103   // The AAResultBase base class has some smarts, lets use them.
1104   return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
1105 }
1106 
1107 /// Return true if we know V to the base address of the corresponding memory
1108 /// object.  This implies that any address less than V must be out of bounds
1109 /// for the underlying object.  Note that just being isIdentifiedObject() is
1110 /// not enough - For example, a negative offset from a noalias argument or call
1111 /// can be inbounds w.r.t the actual underlying object.
isBaseOfObject(const Value * V)1112 static bool isBaseOfObject(const Value *V) {
1113   // TODO: We can handle other cases here
1114   // 1) For GC languages, arguments to functions are often required to be
1115   //    base pointers.
1116   // 2) Result of allocation routines are often base pointers.  Leverage TLI.
1117   return (isa<AllocaInst>(V) || isa<GlobalVariable>(V));
1118 }
1119 
1120 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1121 /// another pointer.
1122 ///
1123 /// We know that V1 is a GEP, but we don't know anything about V2.
1124 /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for
1125 /// V2.
aliasGEP(const GEPOperator * GEP1,LocationSize V1Size,const Value * V2,LocationSize V2Size,const Value * UnderlyingV1,const Value * UnderlyingV2,AAQueryInfo & AAQI)1126 AliasResult BasicAAResult::aliasGEP(
1127     const GEPOperator *GEP1, LocationSize V1Size,
1128     const Value *V2, LocationSize V2Size,
1129     const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
1130   if (!V1Size.hasValue() && !V2Size.hasValue()) {
1131     // TODO: This limitation exists for compile-time reasons. Relax it if we
1132     // can avoid exponential pathological cases.
1133     if (!isa<GEPOperator>(V2))
1134       return AliasResult::MayAlias;
1135 
1136     // If both accesses have unknown size, we can only check whether the base
1137     // objects don't alias.
1138     AliasResult BaseAlias = getBestAAResults().alias(
1139         MemoryLocation::getBeforeOrAfter(UnderlyingV1),
1140         MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI);
1141     return BaseAlias == AliasResult::NoAlias ? AliasResult::NoAlias
1142                                              : AliasResult::MayAlias;
1143   }
1144 
1145   DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT);
1146   DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT);
1147 
1148   // Don't attempt to analyze the decomposed GEP if index scale is not a
1149   // compile-time constant.
1150   if (!DecompGEP1.HasCompileTimeConstantScale ||
1151       !DecompGEP2.HasCompileTimeConstantScale)
1152     return AliasResult::MayAlias;
1153 
1154   assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
1155          "DecomposeGEPExpression returned a result different from "
1156          "getUnderlyingObject");
1157 
1158   // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1159   // symbolic difference.
1160   subtractDecomposedGEPs(DecompGEP1, DecompGEP2);
1161 
1162   // If an inbounds GEP would have to start from an out of bounds address
1163   // for the two to alias, then we can assume noalias.
1164   if (*DecompGEP1.InBounds && DecompGEP1.VarIndices.empty() &&
1165       V2Size.hasValue() && DecompGEP1.Offset.sge(V2Size.getValue()) &&
1166       isBaseOfObject(DecompGEP2.Base))
1167     return AliasResult::NoAlias;
1168 
1169   if (isa<GEPOperator>(V2)) {
1170     // Symmetric case to above.
1171     if (*DecompGEP2.InBounds && DecompGEP1.VarIndices.empty() &&
1172         V1Size.hasValue() && DecompGEP1.Offset.sle(-V1Size.getValue()) &&
1173         isBaseOfObject(DecompGEP1.Base))
1174       return AliasResult::NoAlias;
1175   }
1176 
1177   // For GEPs with identical offsets, we can preserve the size and AAInfo
1178   // when performing the alias check on the underlying objects.
1179   if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty())
1180     return getBestAAResults().alias(MemoryLocation(DecompGEP1.Base, V1Size),
1181                                     MemoryLocation(DecompGEP2.Base, V2Size),
1182                                     AAQI);
1183 
1184   // Do the base pointers alias?
1185   AliasResult BaseAlias = getBestAAResults().alias(
1186       MemoryLocation::getBeforeOrAfter(DecompGEP1.Base),
1187       MemoryLocation::getBeforeOrAfter(DecompGEP2.Base), AAQI);
1188 
1189   // If we get a No or May, then return it immediately, no amount of analysis
1190   // will improve this situation.
1191   if (BaseAlias != AliasResult::MustAlias) {
1192     assert(BaseAlias == AliasResult::NoAlias ||
1193            BaseAlias == AliasResult::MayAlias);
1194     return BaseAlias;
1195   }
1196 
1197   // If there is a constant difference between the pointers, but the difference
1198   // is less than the size of the associated memory object, then we know
1199   // that the objects are partially overlapping.  If the difference is
1200   // greater, we know they do not overlap.
1201   if (DecompGEP1.Offset != 0 && DecompGEP1.VarIndices.empty()) {
1202     APInt &Off = DecompGEP1.Offset;
1203 
1204     // Initialize for Off >= 0 (V2 <= GEP1) case.
1205     const Value *LeftPtr = V2;
1206     const Value *RightPtr = GEP1;
1207     LocationSize VLeftSize = V2Size;
1208     LocationSize VRightSize = V1Size;
1209     const bool Swapped = Off.isNegative();
1210 
1211     if (Swapped) {
1212       // Swap if we have the situation where:
1213       // +                +
1214       // | BaseOffset     |
1215       // ---------------->|
1216       // |-->V1Size       |-------> V2Size
1217       // GEP1             V2
1218       std::swap(LeftPtr, RightPtr);
1219       std::swap(VLeftSize, VRightSize);
1220       Off = -Off;
1221     }
1222 
1223     if (VLeftSize.hasValue()) {
1224       const uint64_t LSize = VLeftSize.getValue();
1225       if (Off.ult(LSize)) {
1226         // Conservatively drop processing if a phi was visited and/or offset is
1227         // too big.
1228         AliasResult AR = AliasResult::PartialAlias;
1229         if (VRightSize.hasValue() && Off.ule(INT32_MAX) &&
1230             (Off + VRightSize.getValue()).ule(LSize)) {
1231           // Memory referenced by right pointer is nested. Save the offset in
1232           // cache. Note that originally offset estimated as GEP1-V2, but
1233           // AliasResult contains the shift that represents GEP1+Offset=V2.
1234           AR.setOffset(-Off.getSExtValue());
1235           AR.swap(Swapped);
1236         }
1237         return AR;
1238       }
1239       return AliasResult::NoAlias;
1240     }
1241   }
1242 
1243   if (!DecompGEP1.VarIndices.empty()) {
1244     APInt GCD;
1245     bool AllNonNegative = DecompGEP1.Offset.isNonNegative();
1246     bool AllNonPositive = DecompGEP1.Offset.isNonPositive();
1247     for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1248       const VariableGEPIndex &Index = DecompGEP1.VarIndices[i];
1249       const APInt &Scale = Index.Scale;
1250       APInt ScaleForGCD = Scale;
1251       if (!Index.IsNSW)
1252         ScaleForGCD = APInt::getOneBitSet(Scale.getBitWidth(),
1253                                           Scale.countTrailingZeros());
1254 
1255       if (i == 0)
1256         GCD = ScaleForGCD.abs();
1257       else
1258         GCD = APIntOps::GreatestCommonDivisor(GCD, ScaleForGCD.abs());
1259 
1260       if (AllNonNegative || AllNonPositive) {
1261         KnownBits Known = Index.Val.evaluateWith(
1262             computeKnownBits(Index.Val.V, DL, 0, &AC, Index.CxtI, DT));
1263         // TODO: Account for implicit trunc.
1264         bool SignKnownZero = Known.isNonNegative();
1265         bool SignKnownOne = Known.isNegative();
1266         AllNonNegative &= (SignKnownZero && Scale.isNonNegative()) ||
1267                           (SignKnownOne && Scale.isNonPositive());
1268         AllNonPositive &= (SignKnownZero && Scale.isNonPositive()) ||
1269                           (SignKnownOne && Scale.isNonNegative());
1270       }
1271     }
1272 
1273     // We now have accesses at two offsets from the same base:
1274     //  1. (...)*GCD + DecompGEP1.Offset with size V1Size
1275     //  2. 0 with size V2Size
1276     // Using arithmetic modulo GCD, the accesses are at
1277     // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits
1278     // into the range [V2Size..GCD), then we know they cannot overlap.
1279     APInt ModOffset = DecompGEP1.Offset.srem(GCD);
1280     if (ModOffset.isNegative())
1281       ModOffset += GCD; // We want mod, not rem.
1282     if (V1Size.hasValue() && V2Size.hasValue() &&
1283         ModOffset.uge(V2Size.getValue()) &&
1284         (GCD - ModOffset).uge(V1Size.getValue()))
1285       return AliasResult::NoAlias;
1286 
1287     // If we know all the variables are non-negative, then the total offset is
1288     // also non-negative and >= DecompGEP1.Offset. We have the following layout:
1289     // [0, V2Size) ... [TotalOffset, TotalOffer+V1Size]
1290     // If DecompGEP1.Offset >= V2Size, the accesses don't alias.
1291     if (AllNonNegative && V2Size.hasValue() &&
1292         DecompGEP1.Offset.uge(V2Size.getValue()))
1293       return AliasResult::NoAlias;
1294     // Similarly, if the variables are non-positive, then the total offset is
1295     // also non-positive and <= DecompGEP1.Offset. We have the following layout:
1296     // [TotalOffset, TotalOffset+V1Size) ... [0, V2Size)
1297     // If -DecompGEP1.Offset >= V1Size, the accesses don't alias.
1298     if (AllNonPositive && V1Size.hasValue() &&
1299         (-DecompGEP1.Offset).uge(V1Size.getValue()))
1300       return AliasResult::NoAlias;
1301 
1302     if (V1Size.hasValue() && V2Size.hasValue()) {
1303       // Try to determine the range of values for VarIndex.
1304       // VarIndexRange is such that:
1305       //    (VarIndex <= -MinAbsVarIndex || MinAbsVarIndex <= VarIndex) &&
1306       //    VarIndexRange.contains(VarIndex)
1307       Optional<APInt> MinAbsVarIndex;
1308       Optional<ConstantRange> VarIndexRange;
1309       if (DecompGEP1.VarIndices.size() == 1) {
1310         // VarIndex = Scale*V.
1311         const VariableGEPIndex &Var = DecompGEP1.VarIndices[0];
1312         if (isKnownNonZero(Var.Val.V, DL, 0, &AC, Var.CxtI, DT)) {
1313           // If V != 0 then abs(VarIndex) >= abs(Scale).
1314           MinAbsVarIndex = Var.Scale.abs();
1315         }
1316         ConstantRange R = Var.Val.evaluateWith(
1317             computeConstantRange(Var.Val.V, true, &AC, Var.CxtI));
1318         if (!R.isFullSet() && !R.isEmptySet())
1319           VarIndexRange = R.sextOrTrunc(Var.Scale.getBitWidth())
1320                               .multiply(ConstantRange(Var.Scale));
1321       } else if (DecompGEP1.VarIndices.size() == 2) {
1322         // VarIndex = Scale*V0 + (-Scale)*V1.
1323         // If V0 != V1 then abs(VarIndex) >= abs(Scale).
1324         // Check that VisitedPhiBBs is empty, to avoid reasoning about
1325         // inequality of values across loop iterations.
1326         const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0];
1327         const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1];
1328         if (Var0.Scale == -Var1.Scale &&
1329             Var0.Val.hasSameExtensionsAs(Var1.Val) && VisitedPhiBBs.empty() &&
1330             isKnownNonEqual(Var0.Val.V, Var1.Val.V, DL, &AC, /* CxtI */ nullptr,
1331                             DT))
1332           MinAbsVarIndex = Var0.Scale.abs();
1333       }
1334 
1335       if (MinAbsVarIndex) {
1336         // The constant offset will have added at least +/-MinAbsVarIndex to it.
1337         APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex;
1338         APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex;
1339         // We know that Offset <= OffsetLo || Offset >= OffsetHi
1340         if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) &&
1341             OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue()))
1342           return AliasResult::NoAlias;
1343       }
1344 
1345       if (VarIndexRange) {
1346         ConstantRange OffsetRange =
1347             VarIndexRange->add(ConstantRange(DecompGEP1.Offset));
1348 
1349         // We know that Offset >= MinOffset.
1350         // (MinOffset >= V2Size) => (Offset >= V2Size) => NoAlias.
1351         if (OffsetRange.getSignedMin().sge(V2Size.getValue()))
1352           return AliasResult::NoAlias;
1353 
1354         // We know that Offset <= MaxOffset.
1355         // (MaxOffset <= -V1Size) => (Offset <= -V1Size) => NoAlias.
1356         if (OffsetRange.getSignedMax().sle(-V1Size.getValue()))
1357           return AliasResult::NoAlias;
1358       }
1359     }
1360 
1361     if (constantOffsetHeuristic(DecompGEP1, V1Size, V2Size, &AC, DT))
1362       return AliasResult::NoAlias;
1363   }
1364 
1365   // Statically, we can see that the base objects are the same, but the
1366   // pointers have dynamic offsets which we can't resolve. And none of our
1367   // little tricks above worked.
1368   return AliasResult::MayAlias;
1369 }
1370 
MergeAliasResults(AliasResult A,AliasResult B)1371 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1372   // If the results agree, take it.
1373   if (A == B)
1374     return A;
1375   // A mix of PartialAlias and MustAlias is PartialAlias.
1376   if ((A == AliasResult::PartialAlias && B == AliasResult::MustAlias) ||
1377       (B == AliasResult::PartialAlias && A == AliasResult::MustAlias))
1378     return AliasResult::PartialAlias;
1379   // Otherwise, we don't know anything.
1380   return AliasResult::MayAlias;
1381 }
1382 
1383 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1384 /// against another.
1385 AliasResult
aliasSelect(const SelectInst * SI,LocationSize SISize,const Value * V2,LocationSize V2Size,AAQueryInfo & AAQI)1386 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
1387                            const Value *V2, LocationSize V2Size,
1388                            AAQueryInfo &AAQI) {
1389   // If the values are Selects with the same condition, we can do a more precise
1390   // check: just check for aliases between the values on corresponding arms.
1391   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1392     if (SI->getCondition() == SI2->getCondition()) {
1393       AliasResult Alias = getBestAAResults().alias(
1394           MemoryLocation(SI->getTrueValue(), SISize),
1395           MemoryLocation(SI2->getTrueValue(), V2Size), AAQI);
1396       if (Alias == AliasResult::MayAlias)
1397         return AliasResult::MayAlias;
1398       AliasResult ThisAlias = getBestAAResults().alias(
1399           MemoryLocation(SI->getFalseValue(), SISize),
1400           MemoryLocation(SI2->getFalseValue(), V2Size), AAQI);
1401       return MergeAliasResults(ThisAlias, Alias);
1402     }
1403 
1404   // If both arms of the Select node NoAlias or MustAlias V2, then returns
1405   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1406   AliasResult Alias = getBestAAResults().alias(
1407       MemoryLocation(V2, V2Size),
1408       MemoryLocation(SI->getTrueValue(), SISize), AAQI);
1409   if (Alias == AliasResult::MayAlias)
1410     return AliasResult::MayAlias;
1411 
1412   AliasResult ThisAlias = getBestAAResults().alias(
1413       MemoryLocation(V2, V2Size),
1414       MemoryLocation(SI->getFalseValue(), SISize), AAQI);
1415   return MergeAliasResults(ThisAlias, Alias);
1416 }
1417 
1418 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1419 /// another.
aliasPHI(const PHINode * PN,LocationSize PNSize,const Value * V2,LocationSize V2Size,AAQueryInfo & AAQI)1420 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
1421                                     const Value *V2, LocationSize V2Size,
1422                                     AAQueryInfo &AAQI) {
1423   if (!PN->getNumIncomingValues())
1424     return AliasResult::NoAlias;
1425   // If the values are PHIs in the same block, we can do a more precise
1426   // as well as efficient check: just check for aliases between the values
1427   // on corresponding edges.
1428   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1429     if (PN2->getParent() == PN->getParent()) {
1430       Optional<AliasResult> Alias;
1431       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1432         AliasResult ThisAlias = getBestAAResults().alias(
1433             MemoryLocation(PN->getIncomingValue(i), PNSize),
1434             MemoryLocation(
1435                 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size),
1436             AAQI);
1437         if (Alias)
1438           *Alias = MergeAliasResults(*Alias, ThisAlias);
1439         else
1440           Alias = ThisAlias;
1441         if (*Alias == AliasResult::MayAlias)
1442           break;
1443       }
1444       return *Alias;
1445     }
1446 
1447   SmallVector<Value *, 4> V1Srcs;
1448   // If a phi operand recurses back to the phi, we can still determine NoAlias
1449   // if we don't alias the underlying objects of the other phi operands, as we
1450   // know that the recursive phi needs to be based on them in some way.
1451   bool isRecursive = false;
1452   auto CheckForRecPhi = [&](Value *PV) {
1453     if (!EnableRecPhiAnalysis)
1454       return false;
1455     if (getUnderlyingObject(PV) == PN) {
1456       isRecursive = true;
1457       return true;
1458     }
1459     return false;
1460   };
1461 
1462   if (PV) {
1463     // If we have PhiValues then use it to get the underlying phi values.
1464     const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN);
1465     // If we have more phi values than the search depth then return MayAlias
1466     // conservatively to avoid compile time explosion. The worst possible case
1467     // is if both sides are PHI nodes. In which case, this is O(m x n) time
1468     // where 'm' and 'n' are the number of PHI sources.
1469     if (PhiValueSet.size() > MaxLookupSearchDepth)
1470       return AliasResult::MayAlias;
1471     // Add the values to V1Srcs
1472     for (Value *PV1 : PhiValueSet) {
1473       if (CheckForRecPhi(PV1))
1474         continue;
1475       V1Srcs.push_back(PV1);
1476     }
1477   } else {
1478     // If we don't have PhiInfo then just look at the operands of the phi itself
1479     // FIXME: Remove this once we can guarantee that we have PhiInfo always
1480     SmallPtrSet<Value *, 4> UniqueSrc;
1481     Value *OnePhi = nullptr;
1482     for (Value *PV1 : PN->incoming_values()) {
1483       if (isa<PHINode>(PV1)) {
1484         if (OnePhi && OnePhi != PV1) {
1485           // To control potential compile time explosion, we choose to be
1486           // conserviate when we have more than one Phi input.  It is important
1487           // that we handle the single phi case as that lets us handle LCSSA
1488           // phi nodes and (combined with the recursive phi handling) simple
1489           // pointer induction variable patterns.
1490           return AliasResult::MayAlias;
1491         }
1492         OnePhi = PV1;
1493       }
1494 
1495       if (CheckForRecPhi(PV1))
1496         continue;
1497 
1498       if (UniqueSrc.insert(PV1).second)
1499         V1Srcs.push_back(PV1);
1500     }
1501 
1502     if (OnePhi && UniqueSrc.size() > 1)
1503       // Out of an abundance of caution, allow only the trivial lcssa and
1504       // recursive phi cases.
1505       return AliasResult::MayAlias;
1506   }
1507 
1508   // If V1Srcs is empty then that means that the phi has no underlying non-phi
1509   // value. This should only be possible in blocks unreachable from the entry
1510   // block, but return MayAlias just in case.
1511   if (V1Srcs.empty())
1512     return AliasResult::MayAlias;
1513 
1514   // If this PHI node is recursive, indicate that the pointer may be moved
1515   // across iterations. We can only prove NoAlias if different underlying
1516   // objects are involved.
1517   if (isRecursive)
1518     PNSize = LocationSize::beforeOrAfterPointer();
1519 
1520   // In the recursive alias queries below, we may compare values from two
1521   // different loop iterations. Keep track of visited phi blocks, which will
1522   // be used when determining value equivalence.
1523   bool BlockInserted = VisitedPhiBBs.insert(PN->getParent()).second;
1524   auto _ = make_scope_exit([&]() {
1525     if (BlockInserted)
1526       VisitedPhiBBs.erase(PN->getParent());
1527   });
1528 
1529   // If we inserted a block into VisitedPhiBBs, alias analysis results that
1530   // have been cached earlier may no longer be valid. Perform recursive queries
1531   // with a new AAQueryInfo.
1532   AAQueryInfo NewAAQI = AAQI.withEmptyCache();
1533   AAQueryInfo *UseAAQI = BlockInserted ? &NewAAQI : &AAQI;
1534 
1535   AliasResult Alias = getBestAAResults().alias(
1536       MemoryLocation(V2, V2Size),
1537       MemoryLocation(V1Srcs[0], PNSize), *UseAAQI);
1538 
1539   // Early exit if the check of the first PHI source against V2 is MayAlias.
1540   // Other results are not possible.
1541   if (Alias == AliasResult::MayAlias)
1542     return AliasResult::MayAlias;
1543   // With recursive phis we cannot guarantee that MustAlias/PartialAlias will
1544   // remain valid to all elements and needs to conservatively return MayAlias.
1545   if (isRecursive && Alias != AliasResult::NoAlias)
1546     return AliasResult::MayAlias;
1547 
1548   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1549   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1550   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1551     Value *V = V1Srcs[i];
1552 
1553     AliasResult ThisAlias = getBestAAResults().alias(
1554         MemoryLocation(V2, V2Size), MemoryLocation(V, PNSize), *UseAAQI);
1555     Alias = MergeAliasResults(ThisAlias, Alias);
1556     if (Alias == AliasResult::MayAlias)
1557       break;
1558   }
1559 
1560   return Alias;
1561 }
1562 
1563 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1564 /// array references.
aliasCheck(const Value * V1,LocationSize V1Size,const Value * V2,LocationSize V2Size,AAQueryInfo & AAQI)1565 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
1566                                       const Value *V2, LocationSize V2Size,
1567                                       AAQueryInfo &AAQI) {
1568   // If either of the memory references is empty, it doesn't matter what the
1569   // pointer values are.
1570   if (V1Size.isZero() || V2Size.isZero())
1571     return AliasResult::NoAlias;
1572 
1573   // Strip off any casts if they exist.
1574   V1 = V1->stripPointerCastsForAliasAnalysis();
1575   V2 = V2->stripPointerCastsForAliasAnalysis();
1576 
1577   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1578   // value for undef that aliases nothing in the program.
1579   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1580     return AliasResult::NoAlias;
1581 
1582   // Are we checking for alias of the same value?
1583   // Because we look 'through' phi nodes, we could look at "Value" pointers from
1584   // different iterations. We must therefore make sure that this is not the
1585   // case. The function isValueEqualInPotentialCycles ensures that this cannot
1586   // happen by looking at the visited phi nodes and making sure they cannot
1587   // reach the value.
1588   if (isValueEqualInPotentialCycles(V1, V2))
1589     return AliasResult::MustAlias;
1590 
1591   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1592     return AliasResult::NoAlias; // Scalars cannot alias each other
1593 
1594   // Figure out what objects these things are pointing to if we can.
1595   const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth);
1596   const Value *O2 = getUnderlyingObject(V2, MaxLookupSearchDepth);
1597 
1598   // Null values in the default address space don't point to any object, so they
1599   // don't alias any other pointer.
1600   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1601     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1602       return AliasResult::NoAlias;
1603   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1604     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1605       return AliasResult::NoAlias;
1606 
1607   if (O1 != O2) {
1608     // If V1/V2 point to two different objects, we know that we have no alias.
1609     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1610       return AliasResult::NoAlias;
1611 
1612     // Constant pointers can't alias with non-const isIdentifiedObject objects.
1613     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1614         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1615       return AliasResult::NoAlias;
1616 
1617     // Function arguments can't alias with things that are known to be
1618     // unambigously identified at the function level.
1619     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1620         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1621       return AliasResult::NoAlias;
1622 
1623     // If one pointer is the result of a call/invoke or load and the other is a
1624     // non-escaping local object within the same function, then we know the
1625     // object couldn't escape to a point where the call could return it.
1626     //
1627     // Note that if the pointers are in different functions, there are a
1628     // variety of complications. A call with a nocapture argument may still
1629     // temporary store the nocapture argument's value in a temporary memory
1630     // location if that memory location doesn't escape. Or it may pass a
1631     // nocapture value to other functions as long as they don't capture it.
1632     if (isEscapeSource(O1) &&
1633         AAQI.CI->isNotCapturedBeforeOrAt(O2, cast<Instruction>(O1)))
1634       return AliasResult::NoAlias;
1635     if (isEscapeSource(O2) &&
1636         AAQI.CI->isNotCapturedBeforeOrAt(O1, cast<Instruction>(O2)))
1637       return AliasResult::NoAlias;
1638   }
1639 
1640   // If the size of one access is larger than the entire object on the other
1641   // side, then we know such behavior is undefined and can assume no alias.
1642   bool NullIsValidLocation = NullPointerIsDefined(&F);
1643   if ((isObjectSmallerThan(
1644           O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL,
1645           TLI, NullIsValidLocation)) ||
1646       (isObjectSmallerThan(
1647           O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL,
1648           TLI, NullIsValidLocation)))
1649     return AliasResult::NoAlias;
1650 
1651   // If one the accesses may be before the accessed pointer, canonicalize this
1652   // by using unknown after-pointer sizes for both accesses. This is
1653   // equivalent, because regardless of which pointer is lower, one of them
1654   // will always came after the other, as long as the underlying objects aren't
1655   // disjoint. We do this so that the rest of BasicAA does not have to deal
1656   // with accesses before the base pointer, and to improve cache utilization by
1657   // merging equivalent states.
1658   if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) {
1659     V1Size = LocationSize::afterPointer();
1660     V2Size = LocationSize::afterPointer();
1661   }
1662 
1663   // FIXME: If this depth limit is hit, then we may cache sub-optimal results
1664   // for recursive queries. For this reason, this limit is chosen to be large
1665   // enough to be very rarely hit, while still being small enough to avoid
1666   // stack overflows.
1667   if (AAQI.Depth >= 512)
1668     return AliasResult::MayAlias;
1669 
1670   // Check the cache before climbing up use-def chains. This also terminates
1671   // otherwise infinitely recursive queries.
1672   AAQueryInfo::LocPair Locs({V1, V1Size}, {V2, V2Size});
1673   const bool Swapped = V1 > V2;
1674   if (Swapped)
1675     std::swap(Locs.first, Locs.second);
1676   const auto &Pair = AAQI.AliasCache.try_emplace(
1677       Locs, AAQueryInfo::CacheEntry{AliasResult::NoAlias, 0});
1678   if (!Pair.second) {
1679     auto &Entry = Pair.first->second;
1680     if (!Entry.isDefinitive()) {
1681       // Remember that we used an assumption.
1682       ++Entry.NumAssumptionUses;
1683       ++AAQI.NumAssumptionUses;
1684     }
1685     // Cache contains sorted {V1,V2} pairs but we should return original order.
1686     auto Result = Entry.Result;
1687     Result.swap(Swapped);
1688     return Result;
1689   }
1690 
1691   int OrigNumAssumptionUses = AAQI.NumAssumptionUses;
1692   unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size();
1693   AliasResult Result =
1694       aliasCheckRecursive(V1, V1Size, V2, V2Size, AAQI, O1, O2);
1695 
1696   auto It = AAQI.AliasCache.find(Locs);
1697   assert(It != AAQI.AliasCache.end() && "Must be in cache");
1698   auto &Entry = It->second;
1699 
1700   // Check whether a NoAlias assumption has been used, but disproven.
1701   bool AssumptionDisproven =
1702       Entry.NumAssumptionUses > 0 && Result != AliasResult::NoAlias;
1703   if (AssumptionDisproven)
1704     Result = AliasResult::MayAlias;
1705 
1706   // This is a definitive result now, when considered as a root query.
1707   AAQI.NumAssumptionUses -= Entry.NumAssumptionUses;
1708   Entry.Result = Result;
1709   // Cache contains sorted {V1,V2} pairs.
1710   Entry.Result.swap(Swapped);
1711   Entry.NumAssumptionUses = -1;
1712 
1713   // If the assumption has been disproven, remove any results that may have
1714   // been based on this assumption. Do this after the Entry updates above to
1715   // avoid iterator invalidation.
1716   if (AssumptionDisproven)
1717     while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults)
1718       AAQI.AliasCache.erase(AAQI.AssumptionBasedResults.pop_back_val());
1719 
1720   // The result may still be based on assumptions higher up in the chain.
1721   // Remember it, so it can be purged from the cache later.
1722   if (OrigNumAssumptionUses != AAQI.NumAssumptionUses &&
1723       Result != AliasResult::MayAlias)
1724     AAQI.AssumptionBasedResults.push_back(Locs);
1725   return Result;
1726 }
1727 
aliasCheckRecursive(const Value * V1,LocationSize V1Size,const Value * V2,LocationSize V2Size,AAQueryInfo & AAQI,const Value * O1,const Value * O2)1728 AliasResult BasicAAResult::aliasCheckRecursive(
1729     const Value *V1, LocationSize V1Size,
1730     const Value *V2, LocationSize V2Size,
1731     AAQueryInfo &AAQI, const Value *O1, const Value *O2) {
1732   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1733     AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, O1, O2, AAQI);
1734     if (Result != AliasResult::MayAlias)
1735       return Result;
1736   } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) {
1737     AliasResult Result = aliasGEP(GV2, V2Size, V1, V1Size, O2, O1, AAQI);
1738     if (Result != AliasResult::MayAlias)
1739       return Result;
1740   }
1741 
1742   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1743     AliasResult Result = aliasPHI(PN, V1Size, V2, V2Size, AAQI);
1744     if (Result != AliasResult::MayAlias)
1745       return Result;
1746   } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) {
1747     AliasResult Result = aliasPHI(PN, V2Size, V1, V1Size, AAQI);
1748     if (Result != AliasResult::MayAlias)
1749       return Result;
1750   }
1751 
1752   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1753     AliasResult Result = aliasSelect(S1, V1Size, V2, V2Size, AAQI);
1754     if (Result != AliasResult::MayAlias)
1755       return Result;
1756   } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) {
1757     AliasResult Result = aliasSelect(S2, V2Size, V1, V1Size, AAQI);
1758     if (Result != AliasResult::MayAlias)
1759       return Result;
1760   }
1761 
1762   // If both pointers are pointing into the same object and one of them
1763   // accesses the entire object, then the accesses must overlap in some way.
1764   if (O1 == O2) {
1765     bool NullIsValidLocation = NullPointerIsDefined(&F);
1766     if (V1Size.isPrecise() && V2Size.isPrecise() &&
1767         (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
1768          isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation)))
1769       return AliasResult::PartialAlias;
1770   }
1771 
1772   return AliasResult::MayAlias;
1773 }
1774 
1775 /// Check whether two Values can be considered equivalent.
1776 ///
1777 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1778 /// they can not be part of a cycle in the value graph by looking at all
1779 /// visited phi nodes an making sure that the phis cannot reach the value. We
1780 /// have to do this because we are looking through phi nodes (That is we say
1781 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
isValueEqualInPotentialCycles(const Value * V,const Value * V2)1782 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1783                                                   const Value *V2) {
1784   if (V != V2)
1785     return false;
1786 
1787   const Instruction *Inst = dyn_cast<Instruction>(V);
1788   if (!Inst)
1789     return true;
1790 
1791   if (VisitedPhiBBs.empty())
1792     return true;
1793 
1794   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1795     return false;
1796 
1797   // Make sure that the visited phis cannot reach the Value. This ensures that
1798   // the Values cannot come from different iterations of a potential cycle the
1799   // phi nodes could be involved in.
1800   for (auto *P : VisitedPhiBBs)
1801     if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT))
1802       return false;
1803 
1804   return true;
1805 }
1806 
1807 /// Computes the symbolic difference between two de-composed GEPs.
subtractDecomposedGEPs(DecomposedGEP & DestGEP,const DecomposedGEP & SrcGEP)1808 void BasicAAResult::subtractDecomposedGEPs(DecomposedGEP &DestGEP,
1809                                            const DecomposedGEP &SrcGEP) {
1810   DestGEP.Offset -= SrcGEP.Offset;
1811   for (const VariableGEPIndex &Src : SrcGEP.VarIndices) {
1812     // Find V in Dest.  This is N^2, but pointer indices almost never have more
1813     // than a few variable indexes.
1814     bool Found = false;
1815     for (auto I : enumerate(DestGEP.VarIndices)) {
1816       VariableGEPIndex &Dest = I.value();
1817       if (!isValueEqualInPotentialCycles(Dest.Val.V, Src.Val.V) ||
1818           !Dest.Val.hasSameExtensionsAs(Src.Val))
1819         continue;
1820 
1821       // If we found it, subtract off Scale V's from the entry in Dest.  If it
1822       // goes to zero, remove the entry.
1823       if (Dest.Scale != Src.Scale) {
1824         Dest.Scale -= Src.Scale;
1825         Dest.IsNSW = false;
1826       } else {
1827         DestGEP.VarIndices.erase(DestGEP.VarIndices.begin() + I.index());
1828       }
1829       Found = true;
1830       break;
1831     }
1832 
1833     // If we didn't consume this entry, add it to the end of the Dest list.
1834     if (!Found) {
1835       VariableGEPIndex Entry = {Src.Val, -Src.Scale, Src.CxtI, Src.IsNSW};
1836       DestGEP.VarIndices.push_back(Entry);
1837     }
1838   }
1839 }
1840 
constantOffsetHeuristic(const DecomposedGEP & GEP,LocationSize MaybeV1Size,LocationSize MaybeV2Size,AssumptionCache * AC,DominatorTree * DT)1841 bool BasicAAResult::constantOffsetHeuristic(
1842     const DecomposedGEP &GEP, LocationSize MaybeV1Size,
1843     LocationSize MaybeV2Size, AssumptionCache *AC, DominatorTree *DT) {
1844   if (GEP.VarIndices.size() != 2 || !MaybeV1Size.hasValue() ||
1845       !MaybeV2Size.hasValue())
1846     return false;
1847 
1848   const uint64_t V1Size = MaybeV1Size.getValue();
1849   const uint64_t V2Size = MaybeV2Size.getValue();
1850 
1851   const VariableGEPIndex &Var0 = GEP.VarIndices[0], &Var1 = GEP.VarIndices[1];
1852 
1853   if (!Var0.Val.hasSameExtensionsAs(Var1.Val) || Var0.Scale != -Var1.Scale ||
1854       Var0.Val.V->getType() != Var1.Val.V->getType())
1855     return false;
1856 
1857   // We'll strip off the Extensions of Var0 and Var1 and do another round
1858   // of GetLinearExpression decomposition. In the example above, if Var0
1859   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1860 
1861   LinearExpression E0 =
1862       GetLinearExpression(ExtendedValue(Var0.Val.V), DL, 0, AC, DT);
1863   LinearExpression E1 =
1864       GetLinearExpression(ExtendedValue(Var1.Val.V), DL, 0, AC, DT);
1865   if (E0.Scale != E1.Scale || !E0.Val.hasSameExtensionsAs(E1.Val) ||
1866       !isValueEqualInPotentialCycles(E0.Val.V, E1.Val.V))
1867     return false;
1868 
1869   // We have a hit - Var0 and Var1 only differ by a constant offset!
1870 
1871   // If we've been sext'ed then zext'd the maximum difference between Var0 and
1872   // Var1 is possible to calculate, but we're just interested in the absolute
1873   // minimum difference between the two. The minimum distance may occur due to
1874   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1875   // the minimum distance between %i and %i + 5 is 3.
1876   APInt MinDiff = E0.Offset - E1.Offset, Wrapped = -MinDiff;
1877   MinDiff = APIntOps::umin(MinDiff, Wrapped);
1878   APInt MinDiffBytes =
1879     MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();
1880 
1881   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
1882   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1883   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1884   // V2Size can fit in the MinDiffBytes gap.
1885   return MinDiffBytes.uge(V1Size + GEP.Offset.abs()) &&
1886          MinDiffBytes.uge(V2Size + GEP.Offset.abs());
1887 }
1888 
1889 //===----------------------------------------------------------------------===//
1890 // BasicAliasAnalysis Pass
1891 //===----------------------------------------------------------------------===//
1892 
1893 AnalysisKey BasicAA::Key;
1894 
run(Function & F,FunctionAnalysisManager & AM)1895 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
1896   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1897   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1898   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1899   auto *PV = AM.getCachedResult<PhiValuesAnalysis>(F);
1900   return BasicAAResult(F.getParent()->getDataLayout(), F, TLI, AC, DT, PV);
1901 }
1902 
BasicAAWrapperPass()1903 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
1904   initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
1905 }
1906 
1907 char BasicAAWrapperPass::ID = 0;
1908 
anchor()1909 void BasicAAWrapperPass::anchor() {}
1910 
1911 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa",
1912                       "Basic Alias Analysis (stateless AA impl)", true, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)1913 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1914 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1915 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1916 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
1917 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa",
1918                     "Basic Alias Analysis (stateless AA impl)", true, true)
1919 
1920 FunctionPass *llvm::createBasicAAWrapperPass() {
1921   return new BasicAAWrapperPass();
1922 }
1923 
runOnFunction(Function & F)1924 bool BasicAAWrapperPass::runOnFunction(Function &F) {
1925   auto &ACT = getAnalysis<AssumptionCacheTracker>();
1926   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
1927   auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
1928   auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>();
1929 
1930   Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F,
1931                                  TLIWP.getTLI(F), ACT.getAssumptionCache(F),
1932                                  &DTWP.getDomTree(),
1933                                  PVWP ? &PVWP->getResult() : nullptr));
1934 
1935   return false;
1936 }
1937 
getAnalysisUsage(AnalysisUsage & AU) const1938 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1939   AU.setPreservesAll();
1940   AU.addRequiredTransitive<AssumptionCacheTracker>();
1941   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
1942   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1943   AU.addUsedIfAvailable<PhiValuesWrapperPass>();
1944 }
1945 
createLegacyPMBasicAAResult(Pass & P,Function & F)1946 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
1947   return BasicAAResult(
1948       F.getParent()->getDataLayout(), F,
1949       P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
1950       P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
1951 }
1952