1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/CGSCCPassManager.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/Optional.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/Analysis/LazyCallGraph.h"
18 #include "llvm/IR/Constant.h"
19 #include "llvm/IR/InstIterator.h"
20 #include "llvm/IR/Instruction.h"
21 #include "llvm/IR/PassManager.h"
22 #include "llvm/IR/PassManagerImpl.h"
23 #include "llvm/IR/ValueHandle.h"
24 #include "llvm/Support/Casting.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/TimeProfiler.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <iterator>
33 
34 #define DEBUG_TYPE "cgscc"
35 
36 using namespace llvm;
37 
38 // Explicit template instantiations and specialization definitions for core
39 // template typedefs.
40 namespace llvm {
41 
42 static cl::opt<bool> AbortOnMaxDevirtIterationsReached(
43     "abort-on-max-devirt-iterations-reached",
44     cl::desc("Abort when the max iterations for devirtualization CGSCC repeat "
45              "pass is reached"));
46 
47 // Explicit instantiations for the core proxy templates.
48 template class AllAnalysesOn<LazyCallGraph::SCC>;
49 template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
50 template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager,
51                            LazyCallGraph &, CGSCCUpdateResult &>;
52 template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
53 template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
54                                          LazyCallGraph::SCC, LazyCallGraph &>;
55 template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
56 
57 /// Explicitly specialize the pass manager run method to handle call graph
58 /// updates.
59 template <>
60 PreservedAnalyses
61 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
run(LazyCallGraph::SCC & InitialC,CGSCCAnalysisManager & AM,LazyCallGraph & G,CGSCCUpdateResult & UR)62             CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC,
63                                       CGSCCAnalysisManager &AM,
64                                       LazyCallGraph &G, CGSCCUpdateResult &UR) {
65   // Request PassInstrumentation from analysis manager, will use it to run
66   // instrumenting callbacks for the passes later.
67   PassInstrumentation PI =
68       AM.getResult<PassInstrumentationAnalysis>(InitialC, G);
69 
70   PreservedAnalyses PA = PreservedAnalyses::all();
71 
72   // The SCC may be refined while we are running passes over it, so set up
73   // a pointer that we can update.
74   LazyCallGraph::SCC *C = &InitialC;
75 
76   // Get Function analysis manager from its proxy.
77   FunctionAnalysisManager &FAM =
78       AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*C)->getManager();
79 
80   for (auto &Pass : Passes) {
81     // Check the PassInstrumentation's BeforePass callbacks before running the
82     // pass, skip its execution completely if asked to (callback returns false).
83     if (!PI.runBeforePass(*Pass, *C))
84       continue;
85 
86     PreservedAnalyses PassPA;
87     {
88       TimeTraceScope TimeScope(Pass->name());
89       PassPA = Pass->run(*C, AM, G, UR);
90     }
91 
92     if (UR.InvalidatedSCCs.count(C))
93       PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA);
94     else
95       PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA);
96 
97     // Update the SCC if necessary.
98     C = UR.UpdatedC ? UR.UpdatedC : C;
99     if (UR.UpdatedC) {
100       // If C is updated, also create a proxy and update FAM inside the result.
101       auto *ResultFAMCP =
102           &AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G);
103       ResultFAMCP->updateFAM(FAM);
104     }
105 
106     // If the CGSCC pass wasn't able to provide a valid updated SCC, the
107     // current SCC may simply need to be skipped if invalid.
108     if (UR.InvalidatedSCCs.count(C)) {
109       LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
110       break;
111     }
112     // Check that we didn't miss any update scenario.
113     assert(C->begin() != C->end() && "Cannot have an empty SCC!");
114 
115     // Update the analysis manager as each pass runs and potentially
116     // invalidates analyses.
117     AM.invalidate(*C, PassPA);
118 
119     // Finally, we intersect the final preserved analyses to compute the
120     // aggregate preserved set for this pass manager.
121     PA.intersect(std::move(PassPA));
122   }
123 
124   // Before we mark all of *this* SCC's analyses as preserved below, intersect
125   // this with the cross-SCC preserved analysis set. This is used to allow
126   // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation
127   // for them.
128   UR.CrossSCCPA.intersect(PA);
129 
130   // Invalidation was handled after each pass in the above loop for the current
131   // SCC. Therefore, the remaining analysis results in the AnalysisManager are
132   // preserved. We mark this with a set so that we don't need to inspect each
133   // one individually.
134   PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
135 
136   return PA;
137 }
138 
139 PreservedAnalyses
run(Module & M,ModuleAnalysisManager & AM)140 ModuleToPostOrderCGSCCPassAdaptor::run(Module &M, ModuleAnalysisManager &AM) {
141   // Setup the CGSCC analysis manager from its proxy.
142   CGSCCAnalysisManager &CGAM =
143       AM.getResult<CGSCCAnalysisManagerModuleProxy>(M).getManager();
144 
145   // Get the call graph for this module.
146   LazyCallGraph &CG = AM.getResult<LazyCallGraphAnalysis>(M);
147 
148   // Get Function analysis manager from its proxy.
149   FunctionAnalysisManager &FAM =
150       AM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M)->getManager();
151 
152   // We keep worklists to allow us to push more work onto the pass manager as
153   // the passes are run.
154   SmallPriorityWorklist<LazyCallGraph::RefSCC *, 1> RCWorklist;
155   SmallPriorityWorklist<LazyCallGraph::SCC *, 1> CWorklist;
156 
157   // Keep sets for invalidated SCCs and RefSCCs that should be skipped when
158   // iterating off the worklists.
159   SmallPtrSet<LazyCallGraph::RefSCC *, 4> InvalidRefSCCSet;
160   SmallPtrSet<LazyCallGraph::SCC *, 4> InvalidSCCSet;
161 
162   SmallDenseSet<std::pair<LazyCallGraph::Node *, LazyCallGraph::SCC *>, 4>
163       InlinedInternalEdges;
164 
165   CGSCCUpdateResult UR = {
166       RCWorklist, CWorklist, InvalidRefSCCSet,         InvalidSCCSet,
167       nullptr,    nullptr,   PreservedAnalyses::all(), InlinedInternalEdges,
168       {}};
169 
170   // Request PassInstrumentation from analysis manager, will use it to run
171   // instrumenting callbacks for the passes later.
172   PassInstrumentation PI = AM.getResult<PassInstrumentationAnalysis>(M);
173 
174   PreservedAnalyses PA = PreservedAnalyses::all();
175   CG.buildRefSCCs();
176   for (auto RCI = CG.postorder_ref_scc_begin(),
177             RCE = CG.postorder_ref_scc_end();
178        RCI != RCE;) {
179     assert(RCWorklist.empty() &&
180            "Should always start with an empty RefSCC worklist");
181     // The postorder_ref_sccs range we are walking is lazily constructed, so
182     // we only push the first one onto the worklist. The worklist allows us
183     // to capture *new* RefSCCs created during transformations.
184     //
185     // We really want to form RefSCCs lazily because that makes them cheaper
186     // to update as the program is simplified and allows us to have greater
187     // cache locality as forming a RefSCC touches all the parts of all the
188     // functions within that RefSCC.
189     //
190     // We also eagerly increment the iterator to the next position because
191     // the CGSCC passes below may delete the current RefSCC.
192     RCWorklist.insert(&*RCI++);
193 
194     do {
195       LazyCallGraph::RefSCC *RC = RCWorklist.pop_back_val();
196       if (InvalidRefSCCSet.count(RC)) {
197         LLVM_DEBUG(dbgs() << "Skipping an invalid RefSCC...\n");
198         continue;
199       }
200 
201       assert(CWorklist.empty() &&
202              "Should always start with an empty SCC worklist");
203 
204       LLVM_DEBUG(dbgs() << "Running an SCC pass across the RefSCC: " << *RC
205                         << "\n");
206 
207       // The top of the worklist may *also* be the same SCC we just ran over
208       // (and invalidated for). Keep track of that last SCC we processed due
209       // to SCC update to avoid redundant processing when an SCC is both just
210       // updated itself and at the top of the worklist.
211       LazyCallGraph::SCC *LastUpdatedC = nullptr;
212 
213       // Push the initial SCCs in reverse post-order as we'll pop off the
214       // back and so see this in post-order.
215       for (LazyCallGraph::SCC &C : llvm::reverse(*RC))
216         CWorklist.insert(&C);
217 
218       do {
219         LazyCallGraph::SCC *C = CWorklist.pop_back_val();
220         // Due to call graph mutations, we may have invalid SCCs or SCCs from
221         // other RefSCCs in the worklist. The invalid ones are dead and the
222         // other RefSCCs should be queued above, so we just need to skip both
223         // scenarios here.
224         if (InvalidSCCSet.count(C)) {
225           LLVM_DEBUG(dbgs() << "Skipping an invalid SCC...\n");
226           continue;
227         }
228         if (LastUpdatedC == C) {
229           LLVM_DEBUG(dbgs() << "Skipping redundant run on SCC: " << *C << "\n");
230           continue;
231         }
232         if (&C->getOuterRefSCC() != RC) {
233           LLVM_DEBUG(dbgs() << "Skipping an SCC that is now part of some other "
234                                "RefSCC...\n");
235           continue;
236         }
237 
238         // Ensure we can proxy analysis updates from the CGSCC analysis manager
239         // into the the Function analysis manager by getting a proxy here.
240         // This also needs to update the FunctionAnalysisManager, as this may be
241         // the first time we see this SCC.
242         CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM(
243             FAM);
244 
245         // Each time we visit a new SCC pulled off the worklist,
246         // a transformation of a child SCC may have also modified this parent
247         // and invalidated analyses. So we invalidate using the update record's
248         // cross-SCC preserved set. This preserved set is intersected by any
249         // CGSCC pass that handles invalidation (primarily pass managers) prior
250         // to marking its SCC as preserved. That lets us track everything that
251         // might need invalidation across SCCs without excessive invalidations
252         // on a single SCC.
253         //
254         // This essentially allows SCC passes to freely invalidate analyses
255         // of any ancestor SCC. If this becomes detrimental to successfully
256         // caching analyses, we could force each SCC pass to manually
257         // invalidate the analyses for any SCCs other than themselves which
258         // are mutated. However, that seems to lose the robustness of the
259         // pass-manager driven invalidation scheme.
260         CGAM.invalidate(*C, UR.CrossSCCPA);
261 
262         do {
263           // Check that we didn't miss any update scenario.
264           assert(!InvalidSCCSet.count(C) && "Processing an invalid SCC!");
265           assert(C->begin() != C->end() && "Cannot have an empty SCC!");
266           assert(&C->getOuterRefSCC() == RC &&
267                  "Processing an SCC in a different RefSCC!");
268 
269           LastUpdatedC = UR.UpdatedC;
270           UR.UpdatedRC = nullptr;
271           UR.UpdatedC = nullptr;
272 
273           // Check the PassInstrumentation's BeforePass callbacks before
274           // running the pass, skip its execution completely if asked to
275           // (callback returns false).
276           if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C))
277             continue;
278 
279           PreservedAnalyses PassPA;
280           {
281             TimeTraceScope TimeScope(Pass->name());
282             PassPA = Pass->run(*C, CGAM, CG, UR);
283           }
284 
285           if (UR.InvalidatedSCCs.count(C))
286             PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA);
287           else
288             PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA);
289 
290           // Update the SCC and RefSCC if necessary.
291           C = UR.UpdatedC ? UR.UpdatedC : C;
292           RC = UR.UpdatedRC ? UR.UpdatedRC : RC;
293 
294           if (UR.UpdatedC) {
295             // If we're updating the SCC, also update the FAM inside the proxy's
296             // result.
297             CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM(
298                 FAM);
299           }
300 
301           // If the CGSCC pass wasn't able to provide a valid updated SCC,
302           // the current SCC may simply need to be skipped if invalid.
303           if (UR.InvalidatedSCCs.count(C)) {
304             LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
305             break;
306           }
307           // Check that we didn't miss any update scenario.
308           assert(C->begin() != C->end() && "Cannot have an empty SCC!");
309 
310           // We handle invalidating the CGSCC analysis manager's information
311           // for the (potentially updated) SCC here. Note that any other SCCs
312           // whose structure has changed should have been invalidated by
313           // whatever was updating the call graph. This SCC gets invalidated
314           // late as it contains the nodes that were actively being
315           // processed.
316           CGAM.invalidate(*C, PassPA);
317 
318           // Then intersect the preserved set so that invalidation of module
319           // analyses will eventually occur when the module pass completes.
320           // Also intersect with the cross-SCC preserved set to capture any
321           // cross-SCC invalidation.
322           UR.CrossSCCPA.intersect(PassPA);
323           PA.intersect(std::move(PassPA));
324 
325           // The pass may have restructured the call graph and refined the
326           // current SCC and/or RefSCC. We need to update our current SCC and
327           // RefSCC pointers to follow these. Also, when the current SCC is
328           // refined, re-run the SCC pass over the newly refined SCC in order
329           // to observe the most precise SCC model available. This inherently
330           // cannot cycle excessively as it only happens when we split SCCs
331           // apart, at most converging on a DAG of single nodes.
332           // FIXME: If we ever start having RefSCC passes, we'll want to
333           // iterate there too.
334           if (UR.UpdatedC)
335             LLVM_DEBUG(dbgs()
336                        << "Re-running SCC passes after a refinement of the "
337                           "current SCC: "
338                        << *UR.UpdatedC << "\n");
339 
340           // Note that both `C` and `RC` may at this point refer to deleted,
341           // invalid SCC and RefSCCs respectively. But we will short circuit
342           // the processing when we check them in the loop above.
343         } while (UR.UpdatedC);
344       } while (!CWorklist.empty());
345 
346       // We only need to keep internal inlined edge information within
347       // a RefSCC, clear it to save on space and let the next time we visit
348       // any of these functions have a fresh start.
349       InlinedInternalEdges.clear();
350     } while (!RCWorklist.empty());
351   }
352 
353   // By definition we preserve the call garph, all SCC analyses, and the
354   // analysis proxies by handling them above and in any nested pass managers.
355   PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
356   PA.preserve<LazyCallGraphAnalysis>();
357   PA.preserve<CGSCCAnalysisManagerModuleProxy>();
358   PA.preserve<FunctionAnalysisManagerModuleProxy>();
359   return PA;
360 }
361 
run(LazyCallGraph::SCC & InitialC,CGSCCAnalysisManager & AM,LazyCallGraph & CG,CGSCCUpdateResult & UR)362 PreservedAnalyses DevirtSCCRepeatedPass::run(LazyCallGraph::SCC &InitialC,
363                                              CGSCCAnalysisManager &AM,
364                                              LazyCallGraph &CG,
365                                              CGSCCUpdateResult &UR) {
366   PreservedAnalyses PA = PreservedAnalyses::all();
367   PassInstrumentation PI =
368       AM.getResult<PassInstrumentationAnalysis>(InitialC, CG);
369 
370   // The SCC may be refined while we are running passes over it, so set up
371   // a pointer that we can update.
372   LazyCallGraph::SCC *C = &InitialC;
373 
374   // Struct to track the counts of direct and indirect calls in each function
375   // of the SCC.
376   struct CallCount {
377     int Direct;
378     int Indirect;
379   };
380 
381   // Put value handles on all of the indirect calls and return the number of
382   // direct calls for each function in the SCC.
383   auto ScanSCC = [](LazyCallGraph::SCC &C,
384                     SmallMapVector<Value *, WeakTrackingVH, 16> &CallHandles) {
385     assert(CallHandles.empty() && "Must start with a clear set of handles.");
386 
387     SmallDenseMap<Function *, CallCount> CallCounts;
388     CallCount CountLocal = {0, 0};
389     for (LazyCallGraph::Node &N : C) {
390       CallCount &Count =
391           CallCounts.insert(std::make_pair(&N.getFunction(), CountLocal))
392               .first->second;
393       for (Instruction &I : instructions(N.getFunction()))
394         if (auto *CB = dyn_cast<CallBase>(&I)) {
395           if (CB->getCalledFunction()) {
396             ++Count.Direct;
397           } else {
398             ++Count.Indirect;
399             CallHandles.insert({CB, WeakTrackingVH(CB)});
400           }
401         }
402     }
403 
404     return CallCounts;
405   };
406 
407   UR.IndirectVHs.clear();
408   // Populate the initial call handles and get the initial call counts.
409   auto CallCounts = ScanSCC(*C, UR.IndirectVHs);
410 
411   for (int Iteration = 0;; ++Iteration) {
412     if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C))
413       continue;
414 
415     PreservedAnalyses PassPA = Pass->run(*C, AM, CG, UR);
416 
417     if (UR.InvalidatedSCCs.count(C))
418       PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA);
419     else
420       PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA);
421 
422     // If the SCC structure has changed, bail immediately and let the outer
423     // CGSCC layer handle any iteration to reflect the refined structure.
424     if (UR.UpdatedC && UR.UpdatedC != C) {
425       PA.intersect(std::move(PassPA));
426       break;
427     }
428 
429     // If the CGSCC pass wasn't able to provide a valid updated SCC, the
430     // current SCC may simply need to be skipped if invalid.
431     if (UR.InvalidatedSCCs.count(C)) {
432       LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
433       break;
434     }
435 
436     assert(C->begin() != C->end() && "Cannot have an empty SCC!");
437 
438     // Check whether any of the handles were devirtualized.
439     bool Devirt = llvm::any_of(UR.IndirectVHs, [](auto &P) -> bool {
440       if (P.second) {
441         if (CallBase *CB = dyn_cast<CallBase>(P.second)) {
442           if (CB->getCalledFunction()) {
443             LLVM_DEBUG(dbgs() << "Found devirtualized call: " << *CB << "\n");
444             return true;
445           }
446         }
447       }
448       return false;
449     });
450 
451     // Rescan to build up a new set of handles and count how many direct
452     // calls remain. If we decide to iterate, this also sets up the input to
453     // the next iteration.
454     UR.IndirectVHs.clear();
455     auto NewCallCounts = ScanSCC(*C, UR.IndirectVHs);
456 
457     // If we haven't found an explicit devirtualization already see if we
458     // have decreased the number of indirect calls and increased the number
459     // of direct calls for any function in the SCC. This can be fooled by all
460     // manner of transformations such as DCE and other things, but seems to
461     // work well in practice.
462     if (!Devirt)
463       // Iterate over the keys in NewCallCounts, if Function also exists in
464       // CallCounts, make the check below.
465       for (auto &Pair : NewCallCounts) {
466         auto &CallCountNew = Pair.second;
467         auto CountIt = CallCounts.find(Pair.first);
468         if (CountIt != CallCounts.end()) {
469           const auto &CallCountOld = CountIt->second;
470           if (CallCountOld.Indirect > CallCountNew.Indirect &&
471               CallCountOld.Direct < CallCountNew.Direct) {
472             Devirt = true;
473             break;
474           }
475         }
476       }
477 
478     if (!Devirt) {
479       PA.intersect(std::move(PassPA));
480       break;
481     }
482 
483     // Otherwise, if we've already hit our max, we're done.
484     if (Iteration >= MaxIterations) {
485       if (AbortOnMaxDevirtIterationsReached)
486         report_fatal_error("Max devirtualization iterations reached");
487       LLVM_DEBUG(
488           dbgs() << "Found another devirtualization after hitting the max "
489                     "number of repetitions ("
490                  << MaxIterations << ") on SCC: " << *C << "\n");
491       PA.intersect(std::move(PassPA));
492       break;
493     }
494 
495     LLVM_DEBUG(
496         dbgs() << "Repeating an SCC pass after finding a devirtualization in: "
497                << *C << "\n");
498 
499     // Move over the new call counts in preparation for iterating.
500     CallCounts = std::move(NewCallCounts);
501 
502     // Update the analysis manager with each run and intersect the total set
503     // of preserved analyses so we're ready to iterate.
504     AM.invalidate(*C, PassPA);
505 
506     PA.intersect(std::move(PassPA));
507   }
508 
509   // Note that we don't add any preserved entries here unlike a more normal
510   // "pass manager" because we only handle invalidation *between* iterations,
511   // not after the last iteration.
512   return PA;
513 }
514 
run(LazyCallGraph::SCC & C,CGSCCAnalysisManager & AM,LazyCallGraph & CG,CGSCCUpdateResult & UR)515 PreservedAnalyses CGSCCToFunctionPassAdaptor::run(LazyCallGraph::SCC &C,
516                                                   CGSCCAnalysisManager &AM,
517                                                   LazyCallGraph &CG,
518                                                   CGSCCUpdateResult &UR) {
519   // Setup the function analysis manager from its proxy.
520   FunctionAnalysisManager &FAM =
521       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
522 
523   SmallVector<LazyCallGraph::Node *, 4> Nodes;
524   for (LazyCallGraph::Node &N : C)
525     Nodes.push_back(&N);
526 
527   // The SCC may get split while we are optimizing functions due to deleting
528   // edges. If this happens, the current SCC can shift, so keep track of
529   // a pointer we can overwrite.
530   LazyCallGraph::SCC *CurrentC = &C;
531 
532   LLVM_DEBUG(dbgs() << "Running function passes across an SCC: " << C << "\n");
533 
534   PreservedAnalyses PA = PreservedAnalyses::all();
535   for (LazyCallGraph::Node *N : Nodes) {
536     // Skip nodes from other SCCs. These may have been split out during
537     // processing. We'll eventually visit those SCCs and pick up the nodes
538     // there.
539     if (CG.lookupSCC(*N) != CurrentC)
540       continue;
541 
542     Function &F = N->getFunction();
543 
544     PassInstrumentation PI = FAM.getResult<PassInstrumentationAnalysis>(F);
545     if (!PI.runBeforePass<Function>(*Pass, F))
546       continue;
547 
548     PreservedAnalyses PassPA;
549     {
550       TimeTraceScope TimeScope(Pass->name());
551       PassPA = Pass->run(F, FAM);
552     }
553 
554     PI.runAfterPass<Function>(*Pass, F, PassPA);
555 
556     // We know that the function pass couldn't have invalidated any other
557     // function's analyses (that's the contract of a function pass), so
558     // directly handle the function analysis manager's invalidation here.
559     FAM.invalidate(F, PassPA);
560 
561     // Then intersect the preserved set so that invalidation of module
562     // analyses will eventually occur when the module pass completes.
563     PA.intersect(std::move(PassPA));
564 
565     // If the call graph hasn't been preserved, update it based on this
566     // function pass. This may also update the current SCC to point to
567     // a smaller, more refined SCC.
568     auto PAC = PA.getChecker<LazyCallGraphAnalysis>();
569     if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Module>>()) {
570       CurrentC = &updateCGAndAnalysisManagerForFunctionPass(CG, *CurrentC, *N,
571                                                             AM, UR, FAM);
572       assert(CG.lookupSCC(*N) == CurrentC &&
573              "Current SCC not updated to the SCC containing the current node!");
574     }
575   }
576 
577   // By definition we preserve the proxy. And we preserve all analyses on
578   // Functions. This precludes *any* invalidation of function analyses by the
579   // proxy, but that's OK because we've taken care to invalidate analyses in
580   // the function analysis manager incrementally above.
581   PA.preserveSet<AllAnalysesOn<Function>>();
582   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
583 
584   // We've also ensured that we updated the call graph along the way.
585   PA.preserve<LazyCallGraphAnalysis>();
586 
587   return PA;
588 }
589 
invalidate(Module & M,const PreservedAnalyses & PA,ModuleAnalysisManager::Invalidator & Inv)590 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
591     Module &M, const PreservedAnalyses &PA,
592     ModuleAnalysisManager::Invalidator &Inv) {
593   // If literally everything is preserved, we're done.
594   if (PA.areAllPreserved())
595     return false; // This is still a valid proxy.
596 
597   // If this proxy or the call graph is going to be invalidated, we also need
598   // to clear all the keys coming from that analysis.
599   //
600   // We also directly invalidate the FAM's module proxy if necessary, and if
601   // that proxy isn't preserved we can't preserve this proxy either. We rely on
602   // it to handle module -> function analysis invalidation in the face of
603   // structural changes and so if it's unavailable we conservatively clear the
604   // entire SCC layer as well rather than trying to do invalidation ourselves.
605   auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>();
606   if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) ||
607       Inv.invalidate<LazyCallGraphAnalysis>(M, PA) ||
608       Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) {
609     InnerAM->clear();
610 
611     // And the proxy itself should be marked as invalid so that we can observe
612     // the new call graph. This isn't strictly necessary because we cheat
613     // above, but is still useful.
614     return true;
615   }
616 
617   // Directly check if the relevant set is preserved so we can short circuit
618   // invalidating SCCs below.
619   bool AreSCCAnalysesPreserved =
620       PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>();
621 
622   // Ok, we have a graph, so we can propagate the invalidation down into it.
623   G->buildRefSCCs();
624   for (auto &RC : G->postorder_ref_sccs())
625     for (auto &C : RC) {
626       Optional<PreservedAnalyses> InnerPA;
627 
628       // Check to see whether the preserved set needs to be adjusted based on
629       // module-level analysis invalidation triggering deferred invalidation
630       // for this SCC.
631       if (auto *OuterProxy =
632               InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C))
633         for (const auto &OuterInvalidationPair :
634              OuterProxy->getOuterInvalidations()) {
635           AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
636           const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
637           if (Inv.invalidate(OuterAnalysisID, M, PA)) {
638             if (!InnerPA)
639               InnerPA = PA;
640             for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
641               InnerPA->abandon(InnerAnalysisID);
642           }
643         }
644 
645       // Check if we needed a custom PA set. If so we'll need to run the inner
646       // invalidation.
647       if (InnerPA) {
648         InnerAM->invalidate(C, *InnerPA);
649         continue;
650       }
651 
652       // Otherwise we only need to do invalidation if the original PA set didn't
653       // preserve all SCC analyses.
654       if (!AreSCCAnalysesPreserved)
655         InnerAM->invalidate(C, PA);
656     }
657 
658   // Return false to indicate that this result is still a valid proxy.
659   return false;
660 }
661 
662 template <>
663 CGSCCAnalysisManagerModuleProxy::Result
run(Module & M,ModuleAnalysisManager & AM)664 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) {
665   // Force the Function analysis manager to also be available so that it can
666   // be accessed in an SCC analysis and proxied onward to function passes.
667   // FIXME: It is pretty awkward to just drop the result here and assert that
668   // we can find it again later.
669   (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M);
670 
671   return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M));
672 }
673 
674 AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key;
675 
676 FunctionAnalysisManagerCGSCCProxy::Result
run(LazyCallGraph::SCC & C,CGSCCAnalysisManager & AM,LazyCallGraph & CG)677 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C,
678                                        CGSCCAnalysisManager &AM,
679                                        LazyCallGraph &CG) {
680   // Note: unconditionally getting checking that the proxy exists may get it at
681   // this point. There are cases when this is being run unnecessarily, but
682   // it is cheap and having the assertion in place is more valuable.
683   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG);
684   Module &M = *C.begin()->getFunction().getParent();
685   bool ProxyExists =
686       MAMProxy.cachedResultExists<FunctionAnalysisManagerModuleProxy>(M);
687   assert(ProxyExists &&
688          "The CGSCC pass manager requires that the FAM module proxy is run "
689          "on the module prior to entering the CGSCC walk");
690   (void)ProxyExists;
691 
692   // We just return an empty result. The caller will use the updateFAM interface
693   // to correctly register the relevant FunctionAnalysisManager based on the
694   // context in which this proxy is run.
695   return Result();
696 }
697 
invalidate(LazyCallGraph::SCC & C,const PreservedAnalyses & PA,CGSCCAnalysisManager::Invalidator & Inv)698 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate(
699     LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
700     CGSCCAnalysisManager::Invalidator &Inv) {
701   // If literally everything is preserved, we're done.
702   if (PA.areAllPreserved())
703     return false; // This is still a valid proxy.
704 
705   // All updates to preserve valid results are done below, so we don't need to
706   // invalidate this proxy.
707   //
708   // Note that in order to preserve this proxy, a module pass must ensure that
709   // the FAM has been completely updated to handle the deletion of functions.
710   // Specifically, any FAM-cached results for those functions need to have been
711   // forcibly cleared. When preserved, this proxy will only invalidate results
712   // cached on functions *still in the module* at the end of the module pass.
713   auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>();
714   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) {
715     for (LazyCallGraph::Node &N : C)
716       FAM->invalidate(N.getFunction(), PA);
717 
718     return false;
719   }
720 
721   // Directly check if the relevant set is preserved.
722   bool AreFunctionAnalysesPreserved =
723       PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>();
724 
725   // Now walk all the functions to see if any inner analysis invalidation is
726   // necessary.
727   for (LazyCallGraph::Node &N : C) {
728     Function &F = N.getFunction();
729     Optional<PreservedAnalyses> FunctionPA;
730 
731     // Check to see whether the preserved set needs to be pruned based on
732     // SCC-level analysis invalidation that triggers deferred invalidation
733     // registered with the outer analysis manager proxy for this function.
734     if (auto *OuterProxy =
735             FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F))
736       for (const auto &OuterInvalidationPair :
737            OuterProxy->getOuterInvalidations()) {
738         AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
739         const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
740         if (Inv.invalidate(OuterAnalysisID, C, PA)) {
741           if (!FunctionPA)
742             FunctionPA = PA;
743           for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
744             FunctionPA->abandon(InnerAnalysisID);
745         }
746       }
747 
748     // Check if we needed a custom PA set, and if so we'll need to run the
749     // inner invalidation.
750     if (FunctionPA) {
751       FAM->invalidate(F, *FunctionPA);
752       continue;
753     }
754 
755     // Otherwise we only need to do invalidation if the original PA set didn't
756     // preserve all function analyses.
757     if (!AreFunctionAnalysesPreserved)
758       FAM->invalidate(F, PA);
759   }
760 
761   // Return false to indicate that this result is still a valid proxy.
762   return false;
763 }
764 
765 } // end namespace llvm
766 
767 /// When a new SCC is created for the graph we first update the
768 /// FunctionAnalysisManager in the Proxy's result.
769 /// As there might be function analysis results cached for the functions now in
770 /// that SCC, two forms of  updates are required.
771 ///
772 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be
773 /// created so that any subsequent invalidation events to the SCC are
774 /// propagated to the function analysis results cached for functions within it.
775 ///
776 /// Second, if any of the functions within the SCC have analysis results with
777 /// outer analysis dependencies, then those dependencies would point to the
778 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary
779 /// function analyses so that they don't retain stale handles.
updateNewSCCFunctionAnalyses(LazyCallGraph::SCC & C,LazyCallGraph & G,CGSCCAnalysisManager & AM,FunctionAnalysisManager & FAM)780 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C,
781                                          LazyCallGraph &G,
782                                          CGSCCAnalysisManager &AM,
783                                          FunctionAnalysisManager &FAM) {
784   AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).updateFAM(FAM);
785 
786   // Now walk the functions in this SCC and invalidate any function analysis
787   // results that might have outer dependencies on an SCC analysis.
788   for (LazyCallGraph::Node &N : C) {
789     Function &F = N.getFunction();
790 
791     auto *OuterProxy =
792         FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F);
793     if (!OuterProxy)
794       // No outer analyses were queried, nothing to do.
795       continue;
796 
797     // Forcibly abandon all the inner analyses with dependencies, but
798     // invalidate nothing else.
799     auto PA = PreservedAnalyses::all();
800     for (const auto &OuterInvalidationPair :
801          OuterProxy->getOuterInvalidations()) {
802       const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
803       for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
804         PA.abandon(InnerAnalysisID);
805     }
806 
807     // Now invalidate anything we found.
808     FAM.invalidate(F, PA);
809   }
810 }
811 
812 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c
813 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly
814 /// added SCCs.
815 ///
816 /// The range of new SCCs must be in postorder already. The SCC they were split
817 /// out of must be provided as \p C. The current node being mutated and
818 /// triggering updates must be passed as \p N.
819 ///
820 /// This function returns the SCC containing \p N. This will be either \p C if
821 /// no new SCCs have been split out, or it will be the new SCC containing \p N.
822 template <typename SCCRangeT>
823 static LazyCallGraph::SCC *
incorporateNewSCCRange(const SCCRangeT & NewSCCRange,LazyCallGraph & G,LazyCallGraph::Node & N,LazyCallGraph::SCC * C,CGSCCAnalysisManager & AM,CGSCCUpdateResult & UR)824 incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G,
825                        LazyCallGraph::Node &N, LazyCallGraph::SCC *C,
826                        CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) {
827   using SCC = LazyCallGraph::SCC;
828 
829   if (NewSCCRange.empty())
830     return C;
831 
832   // Add the current SCC to the worklist as its shape has changed.
833   UR.CWorklist.insert(C);
834   LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C
835                     << "\n");
836 
837   SCC *OldC = C;
838 
839   // Update the current SCC. Note that if we have new SCCs, this must actually
840   // change the SCC.
841   assert(C != &*NewSCCRange.begin() &&
842          "Cannot insert new SCCs without changing current SCC!");
843   C = &*NewSCCRange.begin();
844   assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
845 
846   // If we had a cached FAM proxy originally, we will want to create more of
847   // them for each SCC that was split off.
848   FunctionAnalysisManager *FAM = nullptr;
849   if (auto *FAMProxy =
850           AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC))
851     FAM = &FAMProxy->getManager();
852 
853   // We need to propagate an invalidation call to all but the newly current SCC
854   // because the outer pass manager won't do that for us after splitting them.
855   // FIXME: We should accept a PreservedAnalysis from the CG updater so that if
856   // there are preserved analysis we can avoid invalidating them here for
857   // split-off SCCs.
858   // We know however that this will preserve any FAM proxy so go ahead and mark
859   // that.
860   PreservedAnalyses PA;
861   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
862   AM.invalidate(*OldC, PA);
863 
864   // Ensure the now-current SCC's function analyses are updated.
865   if (FAM)
866     updateNewSCCFunctionAnalyses(*C, G, AM, *FAM);
867 
868   for (SCC &NewC : llvm::reverse(llvm::drop_begin(NewSCCRange))) {
869     assert(C != &NewC && "No need to re-visit the current SCC!");
870     assert(OldC != &NewC && "Already handled the original SCC!");
871     UR.CWorklist.insert(&NewC);
872     LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n");
873 
874     // Ensure new SCCs' function analyses are updated.
875     if (FAM)
876       updateNewSCCFunctionAnalyses(NewC, G, AM, *FAM);
877 
878     // Also propagate a normal invalidation to the new SCC as only the current
879     // will get one from the pass manager infrastructure.
880     AM.invalidate(NewC, PA);
881   }
882   return C;
883 }
884 
updateCGAndAnalysisManagerForPass(LazyCallGraph & G,LazyCallGraph::SCC & InitialC,LazyCallGraph::Node & N,CGSCCAnalysisManager & AM,CGSCCUpdateResult & UR,FunctionAnalysisManager & FAM,bool FunctionPass)885 static LazyCallGraph::SCC &updateCGAndAnalysisManagerForPass(
886     LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
887     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
888     FunctionAnalysisManager &FAM, bool FunctionPass) {
889   using Node = LazyCallGraph::Node;
890   using Edge = LazyCallGraph::Edge;
891   using SCC = LazyCallGraph::SCC;
892   using RefSCC = LazyCallGraph::RefSCC;
893 
894   RefSCC &InitialRC = InitialC.getOuterRefSCC();
895   SCC *C = &InitialC;
896   RefSCC *RC = &InitialRC;
897   Function &F = N.getFunction();
898 
899   // Walk the function body and build up the set of retained, promoted, and
900   // demoted edges.
901   SmallVector<Constant *, 16> Worklist;
902   SmallPtrSet<Constant *, 16> Visited;
903   SmallPtrSet<Node *, 16> RetainedEdges;
904   SmallSetVector<Node *, 4> PromotedRefTargets;
905   SmallSetVector<Node *, 4> DemotedCallTargets;
906   SmallSetVector<Node *, 4> NewCallEdges;
907   SmallSetVector<Node *, 4> NewRefEdges;
908 
909   // First walk the function and handle all called functions. We do this first
910   // because if there is a single call edge, whether there are ref edges is
911   // irrelevant.
912   for (Instruction &I : instructions(F)) {
913     if (auto *CB = dyn_cast<CallBase>(&I)) {
914       if (Function *Callee = CB->getCalledFunction()) {
915         if (Visited.insert(Callee).second && !Callee->isDeclaration()) {
916           Node *CalleeN = G.lookup(*Callee);
917           assert(CalleeN &&
918                  "Visited function should already have an associated node");
919           Edge *E = N->lookup(*CalleeN);
920           assert((E || !FunctionPass) &&
921                  "No function transformations should introduce *new* "
922                  "call edges! Any new calls should be modeled as "
923                  "promoted existing ref edges!");
924           bool Inserted = RetainedEdges.insert(CalleeN).second;
925           (void)Inserted;
926           assert(Inserted && "We should never visit a function twice.");
927           if (!E)
928             NewCallEdges.insert(CalleeN);
929           else if (!E->isCall())
930             PromotedRefTargets.insert(CalleeN);
931         }
932       } else {
933         // We can miss devirtualization if an indirect call is created then
934         // promoted before updateCGAndAnalysisManagerForPass runs.
935         auto *Entry = UR.IndirectVHs.find(CB);
936         if (Entry == UR.IndirectVHs.end())
937           UR.IndirectVHs.insert({CB, WeakTrackingVH(CB)});
938         else if (!Entry->second)
939           Entry->second = WeakTrackingVH(CB);
940       }
941     }
942   }
943 
944   // Now walk all references.
945   for (Instruction &I : instructions(F))
946     for (Value *Op : I.operand_values())
947       if (auto *OpC = dyn_cast<Constant>(Op))
948         if (Visited.insert(OpC).second)
949           Worklist.push_back(OpC);
950 
951   auto VisitRef = [&](Function &Referee) {
952     Node *RefereeN = G.lookup(Referee);
953     assert(RefereeN &&
954            "Visited function should already have an associated node");
955     Edge *E = N->lookup(*RefereeN);
956     assert((E || !FunctionPass) &&
957            "No function transformations should introduce *new* ref "
958            "edges! Any new ref edges would require IPO which "
959            "function passes aren't allowed to do!");
960     bool Inserted = RetainedEdges.insert(RefereeN).second;
961     (void)Inserted;
962     assert(Inserted && "We should never visit a function twice.");
963     if (!E)
964       NewRefEdges.insert(RefereeN);
965     else if (E->isCall())
966       DemotedCallTargets.insert(RefereeN);
967   };
968   LazyCallGraph::visitReferences(Worklist, Visited, VisitRef);
969 
970   // Handle new ref edges.
971   for (Node *RefTarget : NewRefEdges) {
972     SCC &TargetC = *G.lookupSCC(*RefTarget);
973     RefSCC &TargetRC = TargetC.getOuterRefSCC();
974     (void)TargetRC;
975     // TODO: This only allows trivial edges to be added for now.
976 #ifdef EXPENSIVE_CHECKS
977     assert((RC == &TargetRC ||
978            RC->isAncestorOf(TargetRC)) && "New ref edge is not trivial!");
979 #endif
980     RC->insertTrivialRefEdge(N, *RefTarget);
981   }
982 
983   // Handle new call edges.
984   for (Node *CallTarget : NewCallEdges) {
985     SCC &TargetC = *G.lookupSCC(*CallTarget);
986     RefSCC &TargetRC = TargetC.getOuterRefSCC();
987     (void)TargetRC;
988     // TODO: This only allows trivial edges to be added for now.
989 #ifdef EXPENSIVE_CHECKS
990     assert((RC == &TargetRC ||
991            RC->isAncestorOf(TargetRC)) && "New call edge is not trivial!");
992 #endif
993     // Add a trivial ref edge to be promoted later on alongside
994     // PromotedRefTargets.
995     RC->insertTrivialRefEdge(N, *CallTarget);
996   }
997 
998   // Include synthetic reference edges to known, defined lib functions.
999   for (auto *LibFn : G.getLibFunctions())
1000     // While the list of lib functions doesn't have repeats, don't re-visit
1001     // anything handled above.
1002     if (!Visited.count(LibFn))
1003       VisitRef(*LibFn);
1004 
1005   // First remove all of the edges that are no longer present in this function.
1006   // The first step makes these edges uniformly ref edges and accumulates them
1007   // into a separate data structure so removal doesn't invalidate anything.
1008   SmallVector<Node *, 4> DeadTargets;
1009   for (Edge &E : *N) {
1010     if (RetainedEdges.count(&E.getNode()))
1011       continue;
1012 
1013     SCC &TargetC = *G.lookupSCC(E.getNode());
1014     RefSCC &TargetRC = TargetC.getOuterRefSCC();
1015     if (&TargetRC == RC && E.isCall()) {
1016       if (C != &TargetC) {
1017         // For separate SCCs this is trivial.
1018         RC->switchTrivialInternalEdgeToRef(N, E.getNode());
1019       } else {
1020         // Now update the call graph.
1021         C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()),
1022                                    G, N, C, AM, UR);
1023       }
1024     }
1025 
1026     // Now that this is ready for actual removal, put it into our list.
1027     DeadTargets.push_back(&E.getNode());
1028   }
1029   // Remove the easy cases quickly and actually pull them out of our list.
1030   llvm::erase_if(DeadTargets, [&](Node *TargetN) {
1031     SCC &TargetC = *G.lookupSCC(*TargetN);
1032     RefSCC &TargetRC = TargetC.getOuterRefSCC();
1033 
1034     // We can't trivially remove internal targets, so skip
1035     // those.
1036     if (&TargetRC == RC)
1037       return false;
1038 
1039     LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '" << N << "' to '"
1040                       << *TargetN << "'\n");
1041     RC->removeOutgoingEdge(N, *TargetN);
1042     return true;
1043   });
1044 
1045   // Now do a batch removal of the internal ref edges left.
1046   auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets);
1047   if (!NewRefSCCs.empty()) {
1048     // The old RefSCC is dead, mark it as such.
1049     UR.InvalidatedRefSCCs.insert(RC);
1050 
1051     // Note that we don't bother to invalidate analyses as ref-edge
1052     // connectivity is not really observable in any way and is intended
1053     // exclusively to be used for ordering of transforms rather than for
1054     // analysis conclusions.
1055 
1056     // Update RC to the "bottom".
1057     assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!");
1058     RC = &C->getOuterRefSCC();
1059     assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!");
1060 
1061     // The RC worklist is in reverse postorder, so we enqueue the new ones in
1062     // RPO except for the one which contains the source node as that is the
1063     // "bottom" we will continue processing in the bottom-up walk.
1064     assert(NewRefSCCs.front() == RC &&
1065            "New current RefSCC not first in the returned list!");
1066     for (RefSCC *NewRC : llvm::reverse(llvm::drop_begin(NewRefSCCs))) {
1067       assert(NewRC != RC && "Should not encounter the current RefSCC further "
1068                             "in the postorder list of new RefSCCs.");
1069       UR.RCWorklist.insert(NewRC);
1070       LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: "
1071                         << *NewRC << "\n");
1072     }
1073   }
1074 
1075   // Next demote all the call edges that are now ref edges. This helps make
1076   // the SCCs small which should minimize the work below as we don't want to
1077   // form cycles that this would break.
1078   for (Node *RefTarget : DemotedCallTargets) {
1079     SCC &TargetC = *G.lookupSCC(*RefTarget);
1080     RefSCC &TargetRC = TargetC.getOuterRefSCC();
1081 
1082     // The easy case is when the target RefSCC is not this RefSCC. This is
1083     // only supported when the target RefSCC is a child of this RefSCC.
1084     if (&TargetRC != RC) {
1085 #ifdef EXPENSIVE_CHECKS
1086       assert(RC->isAncestorOf(TargetRC) &&
1087              "Cannot potentially form RefSCC cycles here!");
1088 #endif
1089       RC->switchOutgoingEdgeToRef(N, *RefTarget);
1090       LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N
1091                         << "' to '" << *RefTarget << "'\n");
1092       continue;
1093     }
1094 
1095     // We are switching an internal call edge to a ref edge. This may split up
1096     // some SCCs.
1097     if (C != &TargetC) {
1098       // For separate SCCs this is trivial.
1099       RC->switchTrivialInternalEdgeToRef(N, *RefTarget);
1100       continue;
1101     }
1102 
1103     // Now update the call graph.
1104     C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N,
1105                                C, AM, UR);
1106   }
1107 
1108   // We added a ref edge earlier for new call edges, promote those to call edges
1109   // alongside PromotedRefTargets.
1110   for (Node *E : NewCallEdges)
1111     PromotedRefTargets.insert(E);
1112 
1113   // Now promote ref edges into call edges.
1114   for (Node *CallTarget : PromotedRefTargets) {
1115     SCC &TargetC = *G.lookupSCC(*CallTarget);
1116     RefSCC &TargetRC = TargetC.getOuterRefSCC();
1117 
1118     // The easy case is when the target RefSCC is not this RefSCC. This is
1119     // only supported when the target RefSCC is a child of this RefSCC.
1120     if (&TargetRC != RC) {
1121 #ifdef EXPENSIVE_CHECKS
1122       assert(RC->isAncestorOf(TargetRC) &&
1123              "Cannot potentially form RefSCC cycles here!");
1124 #endif
1125       RC->switchOutgoingEdgeToCall(N, *CallTarget);
1126       LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N
1127                         << "' to '" << *CallTarget << "'\n");
1128       continue;
1129     }
1130     LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '"
1131                       << N << "' to '" << *CallTarget << "'\n");
1132 
1133     // Otherwise we are switching an internal ref edge to a call edge. This
1134     // may merge away some SCCs, and we add those to the UpdateResult. We also
1135     // need to make sure to update the worklist in the event SCCs have moved
1136     // before the current one in the post-order sequence
1137     bool HasFunctionAnalysisProxy = false;
1138     auto InitialSCCIndex = RC->find(*C) - RC->begin();
1139     bool FormedCycle = RC->switchInternalEdgeToCall(
1140         N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) {
1141           for (SCC *MergedC : MergedSCCs) {
1142             assert(MergedC != &TargetC && "Cannot merge away the target SCC!");
1143 
1144             HasFunctionAnalysisProxy |=
1145                 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(
1146                     *MergedC) != nullptr;
1147 
1148             // Mark that this SCC will no longer be valid.
1149             UR.InvalidatedSCCs.insert(MergedC);
1150 
1151             // FIXME: We should really do a 'clear' here to forcibly release
1152             // memory, but we don't have a good way of doing that and
1153             // preserving the function analyses.
1154             auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
1155             PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1156             AM.invalidate(*MergedC, PA);
1157           }
1158         });
1159 
1160     // If we formed a cycle by creating this call, we need to update more data
1161     // structures.
1162     if (FormedCycle) {
1163       C = &TargetC;
1164       assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
1165 
1166       // If one of the invalidated SCCs had a cached proxy to a function
1167       // analysis manager, we need to create a proxy in the new current SCC as
1168       // the invalidated SCCs had their functions moved.
1169       if (HasFunctionAnalysisProxy)
1170         AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G).updateFAM(FAM);
1171 
1172       // Any analyses cached for this SCC are no longer precise as the shape
1173       // has changed by introducing this cycle. However, we have taken care to
1174       // update the proxies so it remains valide.
1175       auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
1176       PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1177       AM.invalidate(*C, PA);
1178     }
1179     auto NewSCCIndex = RC->find(*C) - RC->begin();
1180     // If we have actually moved an SCC to be topologically "below" the current
1181     // one due to merging, we will need to revisit the current SCC after
1182     // visiting those moved SCCs.
1183     //
1184     // It is critical that we *do not* revisit the current SCC unless we
1185     // actually move SCCs in the process of merging because otherwise we may
1186     // form a cycle where an SCC is split apart, merged, split, merged and so
1187     // on infinitely.
1188     if (InitialSCCIndex < NewSCCIndex) {
1189       // Put our current SCC back onto the worklist as we'll visit other SCCs
1190       // that are now definitively ordered prior to the current one in the
1191       // post-order sequence, and may end up observing more precise context to
1192       // optimize the current SCC.
1193       UR.CWorklist.insert(C);
1194       LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C
1195                         << "\n");
1196       // Enqueue in reverse order as we pop off the back of the worklist.
1197       for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex,
1198                                                   RC->begin() + NewSCCIndex))) {
1199         UR.CWorklist.insert(&MovedC);
1200         LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: "
1201                           << MovedC << "\n");
1202       }
1203     }
1204   }
1205 
1206   assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!");
1207   assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!");
1208   assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!");
1209 
1210   // Record the current RefSCC and SCC for higher layers of the CGSCC pass
1211   // manager now that all the updates have been applied.
1212   if (RC != &InitialRC)
1213     UR.UpdatedRC = RC;
1214   if (C != &InitialC)
1215     UR.UpdatedC = C;
1216 
1217   return *C;
1218 }
1219 
updateCGAndAnalysisManagerForFunctionPass(LazyCallGraph & G,LazyCallGraph::SCC & InitialC,LazyCallGraph::Node & N,CGSCCAnalysisManager & AM,CGSCCUpdateResult & UR,FunctionAnalysisManager & FAM)1220 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass(
1221     LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
1222     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
1223     FunctionAnalysisManager &FAM) {
1224   return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM,
1225                                            /* FunctionPass */ true);
1226 }
updateCGAndAnalysisManagerForCGSCCPass(LazyCallGraph & G,LazyCallGraph::SCC & InitialC,LazyCallGraph::Node & N,CGSCCAnalysisManager & AM,CGSCCUpdateResult & UR,FunctionAnalysisManager & FAM)1227 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForCGSCCPass(
1228     LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
1229     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
1230     FunctionAnalysisManager &FAM) {
1231   return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM,
1232                                            /* FunctionPass */ false);
1233 }
1234