1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines routines for folding instructions into constants.
10 //
11 // Also, to supplement the basic IR ConstantExpr simplifications,
12 // this file defines some additional folding routines that can make use of
13 // DataLayout information. These functions cannot go in IR due to library
14 // dependency issues.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/ADT/APFloat.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/APSInt.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/TargetFolder.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/Config/config.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalValue.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/InstrTypes.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/IntrinsicsAArch64.h"
45 #include "llvm/IR/IntrinsicsAMDGPU.h"
46 #include "llvm/IR/IntrinsicsARM.h"
47 #include "llvm/IR/IntrinsicsWebAssembly.h"
48 #include "llvm/IR/IntrinsicsX86.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/KnownBits.h"
55 #include "llvm/Support/MathExtras.h"
56 #include <cassert>
57 #include <cerrno>
58 #include <cfenv>
59 #include <cmath>
60 #include <cstddef>
61 #include <cstdint>
62 
63 using namespace llvm;
64 
65 namespace {
66 
67 //===----------------------------------------------------------------------===//
68 // Constant Folding internal helper functions
69 //===----------------------------------------------------------------------===//
70 
foldConstVectorToAPInt(APInt & Result,Type * DestTy,Constant * C,Type * SrcEltTy,unsigned NumSrcElts,const DataLayout & DL)71 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
72                                         Constant *C, Type *SrcEltTy,
73                                         unsigned NumSrcElts,
74                                         const DataLayout &DL) {
75   // Now that we know that the input value is a vector of integers, just shift
76   // and insert them into our result.
77   unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
78   for (unsigned i = 0; i != NumSrcElts; ++i) {
79     Constant *Element;
80     if (DL.isLittleEndian())
81       Element = C->getAggregateElement(NumSrcElts - i - 1);
82     else
83       Element = C->getAggregateElement(i);
84 
85     if (Element && isa<UndefValue>(Element)) {
86       Result <<= BitShift;
87       continue;
88     }
89 
90     auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
91     if (!ElementCI)
92       return ConstantExpr::getBitCast(C, DestTy);
93 
94     Result <<= BitShift;
95     Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth());
96   }
97 
98   return nullptr;
99 }
100 
101 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
102 /// This always returns a non-null constant, but it may be a
103 /// ConstantExpr if unfoldable.
FoldBitCast(Constant * C,Type * DestTy,const DataLayout & DL)104 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
105   assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
106          "Invalid constantexpr bitcast!");
107 
108   // Catch the obvious splat cases.
109   if (C->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy())
110     return Constant::getNullValue(DestTy);
111   if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy() &&
112       !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
113     return Constant::getAllOnesValue(DestTy);
114 
115   if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
116     // Handle a vector->scalar integer/fp cast.
117     if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
118       unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements();
119       Type *SrcEltTy = VTy->getElementType();
120 
121       // If the vector is a vector of floating point, convert it to vector of int
122       // to simplify things.
123       if (SrcEltTy->isFloatingPointTy()) {
124         unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
125         auto *SrcIVTy = FixedVectorType::get(
126             IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
127         // Ask IR to do the conversion now that #elts line up.
128         C = ConstantExpr::getBitCast(C, SrcIVTy);
129       }
130 
131       APInt Result(DL.getTypeSizeInBits(DestTy), 0);
132       if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
133                                                 SrcEltTy, NumSrcElts, DL))
134         return CE;
135 
136       if (isa<IntegerType>(DestTy))
137         return ConstantInt::get(DestTy, Result);
138 
139       APFloat FP(DestTy->getFltSemantics(), Result);
140       return ConstantFP::get(DestTy->getContext(), FP);
141     }
142   }
143 
144   // The code below only handles casts to vectors currently.
145   auto *DestVTy = dyn_cast<VectorType>(DestTy);
146   if (!DestVTy)
147     return ConstantExpr::getBitCast(C, DestTy);
148 
149   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
150   // vector so the code below can handle it uniformly.
151   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
152     Constant *Ops = C; // don't take the address of C!
153     return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
154   }
155 
156   // If this is a bitcast from constant vector -> vector, fold it.
157   if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
158     return ConstantExpr::getBitCast(C, DestTy);
159 
160   // If the element types match, IR can fold it.
161   unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements();
162   unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements();
163   if (NumDstElt == NumSrcElt)
164     return ConstantExpr::getBitCast(C, DestTy);
165 
166   Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
167   Type *DstEltTy = DestVTy->getElementType();
168 
169   // Otherwise, we're changing the number of elements in a vector, which
170   // requires endianness information to do the right thing.  For example,
171   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
172   // folds to (little endian):
173   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
174   // and to (big endian):
175   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
176 
177   // First thing is first.  We only want to think about integer here, so if
178   // we have something in FP form, recast it as integer.
179   if (DstEltTy->isFloatingPointTy()) {
180     // Fold to an vector of integers with same size as our FP type.
181     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
182     auto *DestIVTy = FixedVectorType::get(
183         IntegerType::get(C->getContext(), FPWidth), NumDstElt);
184     // Recursively handle this integer conversion, if possible.
185     C = FoldBitCast(C, DestIVTy, DL);
186 
187     // Finally, IR can handle this now that #elts line up.
188     return ConstantExpr::getBitCast(C, DestTy);
189   }
190 
191   // Okay, we know the destination is integer, if the input is FP, convert
192   // it to integer first.
193   if (SrcEltTy->isFloatingPointTy()) {
194     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
195     auto *SrcIVTy = FixedVectorType::get(
196         IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
197     // Ask IR to do the conversion now that #elts line up.
198     C = ConstantExpr::getBitCast(C, SrcIVTy);
199     // If IR wasn't able to fold it, bail out.
200     if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
201         !isa<ConstantDataVector>(C))
202       return C;
203   }
204 
205   // Now we know that the input and output vectors are both integer vectors
206   // of the same size, and that their #elements is not the same.  Do the
207   // conversion here, which depends on whether the input or output has
208   // more elements.
209   bool isLittleEndian = DL.isLittleEndian();
210 
211   SmallVector<Constant*, 32> Result;
212   if (NumDstElt < NumSrcElt) {
213     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
214     Constant *Zero = Constant::getNullValue(DstEltTy);
215     unsigned Ratio = NumSrcElt/NumDstElt;
216     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
217     unsigned SrcElt = 0;
218     for (unsigned i = 0; i != NumDstElt; ++i) {
219       // Build each element of the result.
220       Constant *Elt = Zero;
221       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
222       for (unsigned j = 0; j != Ratio; ++j) {
223         Constant *Src = C->getAggregateElement(SrcElt++);
224         if (Src && isa<UndefValue>(Src))
225           Src = Constant::getNullValue(
226               cast<VectorType>(C->getType())->getElementType());
227         else
228           Src = dyn_cast_or_null<ConstantInt>(Src);
229         if (!Src)  // Reject constantexpr elements.
230           return ConstantExpr::getBitCast(C, DestTy);
231 
232         // Zero extend the element to the right size.
233         Src = ConstantExpr::getZExt(Src, Elt->getType());
234 
235         // Shift it to the right place, depending on endianness.
236         Src = ConstantExpr::getShl(Src,
237                                    ConstantInt::get(Src->getType(), ShiftAmt));
238         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
239 
240         // Mix it in.
241         Elt = ConstantExpr::getOr(Elt, Src);
242       }
243       Result.push_back(Elt);
244     }
245     return ConstantVector::get(Result);
246   }
247 
248   // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
249   unsigned Ratio = NumDstElt/NumSrcElt;
250   unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
251 
252   // Loop over each source value, expanding into multiple results.
253   for (unsigned i = 0; i != NumSrcElt; ++i) {
254     auto *Element = C->getAggregateElement(i);
255 
256     if (!Element) // Reject constantexpr elements.
257       return ConstantExpr::getBitCast(C, DestTy);
258 
259     if (isa<UndefValue>(Element)) {
260       // Correctly Propagate undef values.
261       Result.append(Ratio, UndefValue::get(DstEltTy));
262       continue;
263     }
264 
265     auto *Src = dyn_cast<ConstantInt>(Element);
266     if (!Src)
267       return ConstantExpr::getBitCast(C, DestTy);
268 
269     unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
270     for (unsigned j = 0; j != Ratio; ++j) {
271       // Shift the piece of the value into the right place, depending on
272       // endianness.
273       Constant *Elt = ConstantExpr::getLShr(Src,
274                                   ConstantInt::get(Src->getType(), ShiftAmt));
275       ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
276 
277       // Truncate the element to an integer with the same pointer size and
278       // convert the element back to a pointer using a inttoptr.
279       if (DstEltTy->isPointerTy()) {
280         IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
281         Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
282         Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
283         continue;
284       }
285 
286       // Truncate and remember this piece.
287       Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
288     }
289   }
290 
291   return ConstantVector::get(Result);
292 }
293 
294 } // end anonymous namespace
295 
296 /// If this constant is a constant offset from a global, return the global and
297 /// the constant. Because of constantexprs, this function is recursive.
IsConstantOffsetFromGlobal(Constant * C,GlobalValue * & GV,APInt & Offset,const DataLayout & DL,DSOLocalEquivalent ** DSOEquiv)298 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
299                                       APInt &Offset, const DataLayout &DL,
300                                       DSOLocalEquivalent **DSOEquiv) {
301   if (DSOEquiv)
302     *DSOEquiv = nullptr;
303 
304   // Trivial case, constant is the global.
305   if ((GV = dyn_cast<GlobalValue>(C))) {
306     unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
307     Offset = APInt(BitWidth, 0);
308     return true;
309   }
310 
311   if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) {
312     if (DSOEquiv)
313       *DSOEquiv = FoundDSOEquiv;
314     GV = FoundDSOEquiv->getGlobalValue();
315     unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
316     Offset = APInt(BitWidth, 0);
317     return true;
318   }
319 
320   // Otherwise, if this isn't a constant expr, bail out.
321   auto *CE = dyn_cast<ConstantExpr>(C);
322   if (!CE) return false;
323 
324   // Look through ptr->int and ptr->ptr casts.
325   if (CE->getOpcode() == Instruction::PtrToInt ||
326       CE->getOpcode() == Instruction::BitCast)
327     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL,
328                                       DSOEquiv);
329 
330   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
331   auto *GEP = dyn_cast<GEPOperator>(CE);
332   if (!GEP)
333     return false;
334 
335   unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
336   APInt TmpOffset(BitWidth, 0);
337 
338   // If the base isn't a global+constant, we aren't either.
339   if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL,
340                                   DSOEquiv))
341     return false;
342 
343   // Otherwise, add any offset that our operands provide.
344   if (!GEP->accumulateConstantOffset(DL, TmpOffset))
345     return false;
346 
347   Offset = TmpOffset;
348   return true;
349 }
350 
ConstantFoldLoadThroughBitcast(Constant * C,Type * DestTy,const DataLayout & DL)351 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
352                                          const DataLayout &DL) {
353   do {
354     Type *SrcTy = C->getType();
355     uint64_t DestSize = DL.getTypeSizeInBits(DestTy);
356     uint64_t SrcSize = DL.getTypeSizeInBits(SrcTy);
357     if (SrcSize < DestSize)
358       return nullptr;
359 
360     // Catch the obvious splat cases (since all-zeros can coerce non-integral
361     // pointers legally).
362     if (C->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy())
363       return Constant::getNullValue(DestTy);
364     if (C->isAllOnesValue() &&
365         (DestTy->isIntegerTy() || DestTy->isFloatingPointTy() ||
366          DestTy->isVectorTy()) &&
367         !DestTy->isX86_AMXTy() && !DestTy->isX86_MMXTy() &&
368         !DestTy->isPtrOrPtrVectorTy())
369       // Get ones when the input is trivial, but
370       // only for supported types inside getAllOnesValue.
371       return Constant::getAllOnesValue(DestTy);
372 
373     // If the type sizes are the same and a cast is legal, just directly
374     // cast the constant.
375     // But be careful not to coerce non-integral pointers illegally.
376     if (SrcSize == DestSize &&
377         DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
378             DL.isNonIntegralPointerType(DestTy->getScalarType())) {
379       Instruction::CastOps Cast = Instruction::BitCast;
380       // If we are going from a pointer to int or vice versa, we spell the cast
381       // differently.
382       if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
383         Cast = Instruction::IntToPtr;
384       else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
385         Cast = Instruction::PtrToInt;
386 
387       if (CastInst::castIsValid(Cast, C, DestTy))
388         return ConstantExpr::getCast(Cast, C, DestTy);
389     }
390 
391     // If this isn't an aggregate type, there is nothing we can do to drill down
392     // and find a bitcastable constant.
393     if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
394       return nullptr;
395 
396     // We're simulating a load through a pointer that was bitcast to point to
397     // a different type, so we can try to walk down through the initial
398     // elements of an aggregate to see if some part of the aggregate is
399     // castable to implement the "load" semantic model.
400     if (SrcTy->isStructTy()) {
401       // Struct types might have leading zero-length elements like [0 x i32],
402       // which are certainly not what we are looking for, so skip them.
403       unsigned Elem = 0;
404       Constant *ElemC;
405       do {
406         ElemC = C->getAggregateElement(Elem++);
407       } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
408       C = ElemC;
409     } else {
410       C = C->getAggregateElement(0u);
411     }
412   } while (C);
413 
414   return nullptr;
415 }
416 
417 namespace {
418 
419 /// Recursive helper to read bits out of global. C is the constant being copied
420 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
421 /// results into and BytesLeft is the number of bytes left in
422 /// the CurPtr buffer. DL is the DataLayout.
ReadDataFromGlobal(Constant * C,uint64_t ByteOffset,unsigned char * CurPtr,unsigned BytesLeft,const DataLayout & DL)423 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
424                         unsigned BytesLeft, const DataLayout &DL) {
425   assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
426          "Out of range access");
427 
428   // If this element is zero or undefined, we can just return since *CurPtr is
429   // zero initialized.
430   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
431     return true;
432 
433   if (auto *CI = dyn_cast<ConstantInt>(C)) {
434     if (CI->getBitWidth() > 64 ||
435         (CI->getBitWidth() & 7) != 0)
436       return false;
437 
438     uint64_t Val = CI->getZExtValue();
439     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
440 
441     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
442       int n = ByteOffset;
443       if (!DL.isLittleEndian())
444         n = IntBytes - n - 1;
445       CurPtr[i] = (unsigned char)(Val >> (n * 8));
446       ++ByteOffset;
447     }
448     return true;
449   }
450 
451   if (auto *CFP = dyn_cast<ConstantFP>(C)) {
452     if (CFP->getType()->isDoubleTy()) {
453       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
454       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
455     }
456     if (CFP->getType()->isFloatTy()){
457       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
458       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
459     }
460     if (CFP->getType()->isHalfTy()){
461       C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
462       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
463     }
464     return false;
465   }
466 
467   if (auto *CS = dyn_cast<ConstantStruct>(C)) {
468     const StructLayout *SL = DL.getStructLayout(CS->getType());
469     unsigned Index = SL->getElementContainingOffset(ByteOffset);
470     uint64_t CurEltOffset = SL->getElementOffset(Index);
471     ByteOffset -= CurEltOffset;
472 
473     while (true) {
474       // If the element access is to the element itself and not to tail padding,
475       // read the bytes from the element.
476       uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
477 
478       if (ByteOffset < EltSize &&
479           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
480                               BytesLeft, DL))
481         return false;
482 
483       ++Index;
484 
485       // Check to see if we read from the last struct element, if so we're done.
486       if (Index == CS->getType()->getNumElements())
487         return true;
488 
489       // If we read all of the bytes we needed from this element we're done.
490       uint64_t NextEltOffset = SL->getElementOffset(Index);
491 
492       if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
493         return true;
494 
495       // Move to the next element of the struct.
496       CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
497       BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
498       ByteOffset = 0;
499       CurEltOffset = NextEltOffset;
500     }
501     // not reached.
502   }
503 
504   if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
505       isa<ConstantDataSequential>(C)) {
506     uint64_t NumElts;
507     Type *EltTy;
508     if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
509       NumElts = AT->getNumElements();
510       EltTy = AT->getElementType();
511     } else {
512       NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
513       EltTy = cast<FixedVectorType>(C->getType())->getElementType();
514     }
515     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
516     uint64_t Index = ByteOffset / EltSize;
517     uint64_t Offset = ByteOffset - Index * EltSize;
518 
519     for (; Index != NumElts; ++Index) {
520       if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
521                               BytesLeft, DL))
522         return false;
523 
524       uint64_t BytesWritten = EltSize - Offset;
525       assert(BytesWritten <= EltSize && "Not indexing into this element?");
526       if (BytesWritten >= BytesLeft)
527         return true;
528 
529       Offset = 0;
530       BytesLeft -= BytesWritten;
531       CurPtr += BytesWritten;
532     }
533     return true;
534   }
535 
536   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
537     if (CE->getOpcode() == Instruction::IntToPtr &&
538         CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
539       return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
540                                 BytesLeft, DL);
541     }
542   }
543 
544   // Otherwise, unknown initializer type.
545   return false;
546 }
547 
FoldReinterpretLoadFromConst(Constant * C,Type * LoadTy,int64_t Offset,const DataLayout & DL)548 Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy,
549                                        int64_t Offset, const DataLayout &DL) {
550   // Bail out early. Not expect to load from scalable global variable.
551   if (isa<ScalableVectorType>(LoadTy))
552     return nullptr;
553 
554   auto *IntType = dyn_cast<IntegerType>(LoadTy);
555 
556   // If this isn't an integer load we can't fold it directly.
557   if (!IntType) {
558     // If this is a float/double load, we can try folding it as an int32/64 load
559     // and then bitcast the result.  This can be useful for union cases.  Note
560     // that address spaces don't matter here since we're not going to result in
561     // an actual new load.
562     Type *MapTy;
563     if (LoadTy->isHalfTy())
564       MapTy = Type::getInt16Ty(C->getContext());
565     else if (LoadTy->isFloatTy())
566       MapTy = Type::getInt32Ty(C->getContext());
567     else if (LoadTy->isDoubleTy())
568       MapTy = Type::getInt64Ty(C->getContext());
569     else if (LoadTy->isVectorTy()) {
570       MapTy = PointerType::getIntNTy(
571           C->getContext(), DL.getTypeSizeInBits(LoadTy).getFixedSize());
572     } else
573       return nullptr;
574 
575     if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) {
576       if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
577           !LoadTy->isX86_AMXTy())
578         // Materializing a zero can be done trivially without a bitcast
579         return Constant::getNullValue(LoadTy);
580       Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
581       Res = FoldBitCast(Res, CastTy, DL);
582       if (LoadTy->isPtrOrPtrVectorTy()) {
583         // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
584         if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
585             !LoadTy->isX86_AMXTy())
586           return Constant::getNullValue(LoadTy);
587         if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
588           // Be careful not to replace a load of an addrspace value with an inttoptr here
589           return nullptr;
590         Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy);
591       }
592       return Res;
593     }
594     return nullptr;
595   }
596 
597   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
598   if (BytesLoaded > 32 || BytesLoaded == 0)
599     return nullptr;
600 
601   int64_t InitializerSize = DL.getTypeAllocSize(C->getType()).getFixedSize();
602 
603   // If we're not accessing anything in this constant, the result is undefined.
604   if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
605     return UndefValue::get(IntType);
606 
607   // If we're not accessing anything in this constant, the result is undefined.
608   if (Offset >= InitializerSize)
609     return UndefValue::get(IntType);
610 
611   unsigned char RawBytes[32] = {0};
612   unsigned char *CurPtr = RawBytes;
613   unsigned BytesLeft = BytesLoaded;
614 
615   // If we're loading off the beginning of the global, some bytes may be valid.
616   if (Offset < 0) {
617     CurPtr += -Offset;
618     BytesLeft += Offset;
619     Offset = 0;
620   }
621 
622   if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL))
623     return nullptr;
624 
625   APInt ResultVal = APInt(IntType->getBitWidth(), 0);
626   if (DL.isLittleEndian()) {
627     ResultVal = RawBytes[BytesLoaded - 1];
628     for (unsigned i = 1; i != BytesLoaded; ++i) {
629       ResultVal <<= 8;
630       ResultVal |= RawBytes[BytesLoaded - 1 - i];
631     }
632   } else {
633     ResultVal = RawBytes[0];
634     for (unsigned i = 1; i != BytesLoaded; ++i) {
635       ResultVal <<= 8;
636       ResultVal |= RawBytes[i];
637     }
638   }
639 
640   return ConstantInt::get(IntType->getContext(), ResultVal);
641 }
642 
643 /// If this Offset points exactly to the start of an aggregate element, return
644 /// that element, otherwise return nullptr.
getConstantAtOffset(Constant * Base,APInt Offset,const DataLayout & DL)645 Constant *getConstantAtOffset(Constant *Base, APInt Offset,
646                               const DataLayout &DL) {
647   if (Offset.isZero())
648     return Base;
649 
650   if (!isa<ConstantAggregate>(Base) && !isa<ConstantDataSequential>(Base))
651     return nullptr;
652 
653   Type *ElemTy = Base->getType();
654   SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
655   if (!Offset.isZero() || !Indices[0].isZero())
656     return nullptr;
657 
658   Constant *C = Base;
659   for (const APInt &Index : drop_begin(Indices)) {
660     if (Index.isNegative() || Index.getActiveBits() >= 32)
661       return nullptr;
662 
663     C = C->getAggregateElement(Index.getZExtValue());
664     if (!C)
665       return nullptr;
666   }
667 
668   return C;
669 }
670 
ConstantFoldLoadFromConst(Constant * C,Type * Ty,const APInt & Offset,const DataLayout & DL)671 Constant *ConstantFoldLoadFromConst(Constant *C, Type *Ty, const APInt &Offset,
672                                     const DataLayout &DL) {
673   if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL))
674     if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL))
675       return Result;
676 
677   // Try hard to fold loads from bitcasted strange and non-type-safe things.
678   if (Offset.getMinSignedBits() <= 64)
679     return FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL);
680 
681   return nullptr;
682 }
683 
684 } // end anonymous namespace
685 
ConstantFoldLoadFromConstPtr(Constant * C,Type * Ty,const DataLayout & DL)686 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
687                                              const DataLayout &DL) {
688   APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0);
689   C = cast<Constant>(C->stripAndAccumulateConstantOffsets(
690           DL, Offset, /* AllowNonInbounds */ true));
691 
692   if (auto *GV = dyn_cast<GlobalVariable>(C))
693     if (GV->isConstant() && GV->hasDefinitiveInitializer())
694       if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty,
695                                                        Offset, DL))
696         return Result;
697 
698   // If this load comes from anywhere in a constant global, and if the global
699   // is all undef or zero, we know what it loads.
700   if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C))) {
701     if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
702       if (GV->getInitializer()->isNullValue())
703         return Constant::getNullValue(Ty);
704       if (isa<UndefValue>(GV->getInitializer()))
705         return UndefValue::get(Ty);
706     }
707   }
708 
709   return nullptr;
710 }
711 
712 namespace {
713 
714 /// One of Op0/Op1 is a constant expression.
715 /// Attempt to symbolically evaluate the result of a binary operator merging
716 /// these together.  If target data info is available, it is provided as DL,
717 /// otherwise DL is null.
SymbolicallyEvaluateBinop(unsigned Opc,Constant * Op0,Constant * Op1,const DataLayout & DL)718 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
719                                     const DataLayout &DL) {
720   // SROA
721 
722   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
723   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
724   // bits.
725 
726   if (Opc == Instruction::And) {
727     KnownBits Known0 = computeKnownBits(Op0, DL);
728     KnownBits Known1 = computeKnownBits(Op1, DL);
729     if ((Known1.One | Known0.Zero).isAllOnes()) {
730       // All the bits of Op0 that the 'and' could be masking are already zero.
731       return Op0;
732     }
733     if ((Known0.One | Known1.Zero).isAllOnes()) {
734       // All the bits of Op1 that the 'and' could be masking are already zero.
735       return Op1;
736     }
737 
738     Known0 &= Known1;
739     if (Known0.isConstant())
740       return ConstantInt::get(Op0->getType(), Known0.getConstant());
741   }
742 
743   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
744   // constant.  This happens frequently when iterating over a global array.
745   if (Opc == Instruction::Sub) {
746     GlobalValue *GV1, *GV2;
747     APInt Offs1, Offs2;
748 
749     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
750       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
751         unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
752 
753         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
754         // PtrToInt may change the bitwidth so we have convert to the right size
755         // first.
756         return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
757                                                 Offs2.zextOrTrunc(OpSize));
758       }
759   }
760 
761   return nullptr;
762 }
763 
764 /// If array indices are not pointer-sized integers, explicitly cast them so
765 /// that they aren't implicitly casted by the getelementptr.
CastGEPIndices(Type * SrcElemTy,ArrayRef<Constant * > Ops,Type * ResultTy,Optional<unsigned> InRangeIndex,const DataLayout & DL,const TargetLibraryInfo * TLI)766 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
767                          Type *ResultTy, Optional<unsigned> InRangeIndex,
768                          const DataLayout &DL, const TargetLibraryInfo *TLI) {
769   Type *IntIdxTy = DL.getIndexType(ResultTy);
770   Type *IntIdxScalarTy = IntIdxTy->getScalarType();
771 
772   bool Any = false;
773   SmallVector<Constant*, 32> NewIdxs;
774   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
775     if ((i == 1 ||
776          !isa<StructType>(GetElementPtrInst::getIndexedType(
777              SrcElemTy, Ops.slice(1, i - 1)))) &&
778         Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
779       Any = true;
780       Type *NewType = Ops[i]->getType()->isVectorTy()
781                           ? IntIdxTy
782                           : IntIdxScalarTy;
783       NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
784                                                                       true,
785                                                                       NewType,
786                                                                       true),
787                                               Ops[i], NewType));
788     } else
789       NewIdxs.push_back(Ops[i]);
790   }
791 
792   if (!Any)
793     return nullptr;
794 
795   Constant *C = ConstantExpr::getGetElementPtr(
796       SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex);
797   return ConstantFoldConstant(C, DL, TLI);
798 }
799 
800 /// Strip the pointer casts, but preserve the address space information.
StripPtrCastKeepAS(Constant * Ptr)801 Constant *StripPtrCastKeepAS(Constant *Ptr) {
802   assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
803   auto *OldPtrTy = cast<PointerType>(Ptr->getType());
804   Ptr = cast<Constant>(Ptr->stripPointerCasts());
805   auto *NewPtrTy = cast<PointerType>(Ptr->getType());
806 
807   // Preserve the address space number of the pointer.
808   if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
809     Ptr = ConstantExpr::getPointerCast(
810         Ptr, PointerType::getWithSamePointeeType(NewPtrTy,
811                                                  OldPtrTy->getAddressSpace()));
812   }
813   return Ptr;
814 }
815 
816 /// If we can symbolically evaluate the GEP constant expression, do so.
SymbolicallyEvaluateGEP(const GEPOperator * GEP,ArrayRef<Constant * > Ops,const DataLayout & DL,const TargetLibraryInfo * TLI)817 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
818                                   ArrayRef<Constant *> Ops,
819                                   const DataLayout &DL,
820                                   const TargetLibraryInfo *TLI) {
821   const GEPOperator *InnermostGEP = GEP;
822   bool InBounds = GEP->isInBounds();
823 
824   Type *SrcElemTy = GEP->getSourceElementType();
825   Type *ResElemTy = GEP->getResultElementType();
826   Type *ResTy = GEP->getType();
827   if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
828     return nullptr;
829 
830   if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy,
831                                    GEP->getInRangeIndex(), DL, TLI))
832     return C;
833 
834   Constant *Ptr = Ops[0];
835   if (!Ptr->getType()->isPointerTy())
836     return nullptr;
837 
838   Type *IntIdxTy = DL.getIndexType(Ptr->getType());
839 
840   // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
841   // "inttoptr (sub (ptrtoint Ptr), V)"
842   if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) {
843     auto *CE = dyn_cast<ConstantExpr>(Ops[1]);
844     assert((!CE || CE->getType() == IntIdxTy) &&
845            "CastGEPIndices didn't canonicalize index types!");
846     if (CE && CE->getOpcode() == Instruction::Sub &&
847         CE->getOperand(0)->isNullValue()) {
848       Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
849       Res = ConstantExpr::getSub(Res, CE->getOperand(1));
850       Res = ConstantExpr::getIntToPtr(Res, ResTy);
851       return ConstantFoldConstant(Res, DL, TLI);
852     }
853   }
854 
855   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
856     if (!isa<ConstantInt>(Ops[i]))
857       return nullptr;
858 
859   unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
860   APInt Offset =
861       APInt(BitWidth,
862             DL.getIndexedOffsetInType(
863                 SrcElemTy,
864                 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
865   Ptr = StripPtrCastKeepAS(Ptr);
866 
867   // If this is a GEP of a GEP, fold it all into a single GEP.
868   while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
869     InnermostGEP = GEP;
870     InBounds &= GEP->isInBounds();
871 
872     SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
873 
874     // Do not try the incorporate the sub-GEP if some index is not a number.
875     bool AllConstantInt = true;
876     for (Value *NestedOp : NestedOps)
877       if (!isa<ConstantInt>(NestedOp)) {
878         AllConstantInt = false;
879         break;
880       }
881     if (!AllConstantInt)
882       break;
883 
884     Ptr = cast<Constant>(GEP->getOperand(0));
885     SrcElemTy = GEP->getSourceElementType();
886     Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
887     Ptr = StripPtrCastKeepAS(Ptr);
888   }
889 
890   // If the base value for this address is a literal integer value, fold the
891   // getelementptr to the resulting integer value casted to the pointer type.
892   APInt BasePtr(BitWidth, 0);
893   if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
894     if (CE->getOpcode() == Instruction::IntToPtr) {
895       if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
896         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
897     }
898   }
899 
900   auto *PTy = cast<PointerType>(Ptr->getType());
901   if ((Ptr->isNullValue() || BasePtr != 0) &&
902       !DL.isNonIntegralPointerType(PTy)) {
903     Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
904     return ConstantExpr::getIntToPtr(C, ResTy);
905   }
906 
907   // Otherwise form a regular getelementptr. Recompute the indices so that
908   // we eliminate over-indexing of the notional static type array bounds.
909   // This makes it easy to determine if the getelementptr is "inbounds".
910   // Also, this helps GlobalOpt do SROA on GlobalVariables.
911 
912   // For GEPs of GlobalValues, use the value type even for opaque pointers.
913   // Otherwise use an i8 GEP.
914   if (auto *GV = dyn_cast<GlobalValue>(Ptr))
915     SrcElemTy = GV->getValueType();
916   else if (!PTy->isOpaque())
917     SrcElemTy = PTy->getElementType();
918   else
919     SrcElemTy = Type::getInt8Ty(Ptr->getContext());
920 
921   if (!SrcElemTy->isSized())
922     return nullptr;
923 
924   Type *ElemTy = SrcElemTy;
925   SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
926   if (Offset != 0)
927     return nullptr;
928 
929   // Try to add additional zero indices to reach the desired result element
930   // type.
931   // TODO: Should we avoid extra zero indices if ResElemTy can't be reached and
932   // we'll have to insert a bitcast anyway?
933   while (ElemTy != ResElemTy) {
934     Type *NextTy = GetElementPtrInst::getTypeAtIndex(ElemTy, (uint64_t)0);
935     if (!NextTy)
936       break;
937 
938     Indices.push_back(APInt::getZero(isa<StructType>(ElemTy) ? 32 : BitWidth));
939     ElemTy = NextTy;
940   }
941 
942   SmallVector<Constant *, 32> NewIdxs;
943   for (const APInt &Index : Indices)
944     NewIdxs.push_back(ConstantInt::get(
945         Type::getIntNTy(Ptr->getContext(), Index.getBitWidth()), Index));
946 
947   // Preserve the inrange index from the innermost GEP if possible. We must
948   // have calculated the same indices up to and including the inrange index.
949   Optional<unsigned> InRangeIndex;
950   if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex())
951     if (SrcElemTy == InnermostGEP->getSourceElementType() &&
952         NewIdxs.size() > *LastIRIndex) {
953       InRangeIndex = LastIRIndex;
954       for (unsigned I = 0; I <= *LastIRIndex; ++I)
955         if (NewIdxs[I] != InnermostGEP->getOperand(I + 1))
956           return nullptr;
957     }
958 
959   // Create a GEP.
960   Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs,
961                                                InBounds, InRangeIndex);
962   assert(
963       cast<PointerType>(C->getType())->isOpaqueOrPointeeTypeMatches(ElemTy) &&
964       "Computed GetElementPtr has unexpected type!");
965 
966   // If we ended up indexing a member with a type that doesn't match
967   // the type of what the original indices indexed, add a cast.
968   if (C->getType() != ResTy)
969     C = FoldBitCast(C, ResTy, DL);
970 
971   return C;
972 }
973 
974 /// Attempt to constant fold an instruction with the
975 /// specified opcode and operands.  If successful, the constant result is
976 /// returned, if not, null is returned.  Note that this function can fail when
977 /// attempting to fold instructions like loads and stores, which have no
978 /// constant expression form.
ConstantFoldInstOperandsImpl(const Value * InstOrCE,unsigned Opcode,ArrayRef<Constant * > Ops,const DataLayout & DL,const TargetLibraryInfo * TLI)979 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
980                                        ArrayRef<Constant *> Ops,
981                                        const DataLayout &DL,
982                                        const TargetLibraryInfo *TLI) {
983   Type *DestTy = InstOrCE->getType();
984 
985   if (Instruction::isUnaryOp(Opcode))
986     return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
987 
988   if (Instruction::isBinaryOp(Opcode))
989     return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
990 
991   if (Instruction::isCast(Opcode))
992     return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
993 
994   if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
995     if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
996       return C;
997 
998     return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0],
999                                           Ops.slice(1), GEP->isInBounds(),
1000                                           GEP->getInRangeIndex());
1001   }
1002 
1003   if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
1004     return CE->getWithOperands(Ops);
1005 
1006   switch (Opcode) {
1007   default: return nullptr;
1008   case Instruction::ICmp:
1009   case Instruction::FCmp: llvm_unreachable("Invalid for compares");
1010   case Instruction::Freeze:
1011     return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr;
1012   case Instruction::Call:
1013     if (auto *F = dyn_cast<Function>(Ops.back())) {
1014       const auto *Call = cast<CallBase>(InstOrCE);
1015       if (canConstantFoldCallTo(Call, F))
1016         return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI);
1017     }
1018     return nullptr;
1019   case Instruction::Select:
1020     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1021   case Instruction::ExtractElement:
1022     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1023   case Instruction::ExtractValue:
1024     return ConstantExpr::getExtractValue(
1025         Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
1026   case Instruction::InsertElement:
1027     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1028   case Instruction::ShuffleVector:
1029     return ConstantExpr::getShuffleVector(
1030         Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
1031   }
1032 }
1033 
1034 } // end anonymous namespace
1035 
1036 //===----------------------------------------------------------------------===//
1037 // Constant Folding public APIs
1038 //===----------------------------------------------------------------------===//
1039 
1040 namespace {
1041 
1042 Constant *
ConstantFoldConstantImpl(const Constant * C,const DataLayout & DL,const TargetLibraryInfo * TLI,SmallDenseMap<Constant *,Constant * > & FoldedOps)1043 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
1044                          const TargetLibraryInfo *TLI,
1045                          SmallDenseMap<Constant *, Constant *> &FoldedOps) {
1046   if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
1047     return const_cast<Constant *>(C);
1048 
1049   SmallVector<Constant *, 8> Ops;
1050   for (const Use &OldU : C->operands()) {
1051     Constant *OldC = cast<Constant>(&OldU);
1052     Constant *NewC = OldC;
1053     // Recursively fold the ConstantExpr's operands. If we have already folded
1054     // a ConstantExpr, we don't have to process it again.
1055     if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
1056       auto It = FoldedOps.find(OldC);
1057       if (It == FoldedOps.end()) {
1058         NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
1059         FoldedOps.insert({OldC, NewC});
1060       } else {
1061         NewC = It->second;
1062       }
1063     }
1064     Ops.push_back(NewC);
1065   }
1066 
1067   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1068     if (CE->isCompare())
1069       return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
1070                                              DL, TLI);
1071 
1072     return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI);
1073   }
1074 
1075   assert(isa<ConstantVector>(C));
1076   return ConstantVector::get(Ops);
1077 }
1078 
1079 } // end anonymous namespace
1080 
ConstantFoldInstruction(Instruction * I,const DataLayout & DL,const TargetLibraryInfo * TLI)1081 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
1082                                         const TargetLibraryInfo *TLI) {
1083   // Handle PHI nodes quickly here...
1084   if (auto *PN = dyn_cast<PHINode>(I)) {
1085     Constant *CommonValue = nullptr;
1086 
1087     SmallDenseMap<Constant *, Constant *> FoldedOps;
1088     for (Value *Incoming : PN->incoming_values()) {
1089       // If the incoming value is undef then skip it.  Note that while we could
1090       // skip the value if it is equal to the phi node itself we choose not to
1091       // because that would break the rule that constant folding only applies if
1092       // all operands are constants.
1093       if (isa<UndefValue>(Incoming))
1094         continue;
1095       // If the incoming value is not a constant, then give up.
1096       auto *C = dyn_cast<Constant>(Incoming);
1097       if (!C)
1098         return nullptr;
1099       // Fold the PHI's operands.
1100       C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1101       // If the incoming value is a different constant to
1102       // the one we saw previously, then give up.
1103       if (CommonValue && C != CommonValue)
1104         return nullptr;
1105       CommonValue = C;
1106     }
1107 
1108     // If we reach here, all incoming values are the same constant or undef.
1109     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
1110   }
1111 
1112   // Scan the operand list, checking to see if they are all constants, if so,
1113   // hand off to ConstantFoldInstOperandsImpl.
1114   if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
1115     return nullptr;
1116 
1117   SmallDenseMap<Constant *, Constant *> FoldedOps;
1118   SmallVector<Constant *, 8> Ops;
1119   for (const Use &OpU : I->operands()) {
1120     auto *Op = cast<Constant>(&OpU);
1121     // Fold the Instruction's operands.
1122     Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
1123     Ops.push_back(Op);
1124   }
1125 
1126   if (const auto *CI = dyn_cast<CmpInst>(I))
1127     return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
1128                                            DL, TLI);
1129 
1130   if (const auto *LI = dyn_cast<LoadInst>(I)) {
1131     if (LI->isVolatile())
1132       return nullptr;
1133     return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL);
1134   }
1135 
1136   if (auto *IVI = dyn_cast<InsertValueInst>(I))
1137     return ConstantExpr::getInsertValue(Ops[0], Ops[1], IVI->getIndices());
1138 
1139   if (auto *EVI = dyn_cast<ExtractValueInst>(I))
1140     return ConstantExpr::getExtractValue(Ops[0], EVI->getIndices());
1141 
1142   return ConstantFoldInstOperands(I, Ops, DL, TLI);
1143 }
1144 
ConstantFoldConstant(const Constant * C,const DataLayout & DL,const TargetLibraryInfo * TLI)1145 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
1146                                      const TargetLibraryInfo *TLI) {
1147   SmallDenseMap<Constant *, Constant *> FoldedOps;
1148   return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1149 }
1150 
ConstantFoldInstOperands(Instruction * I,ArrayRef<Constant * > Ops,const DataLayout & DL,const TargetLibraryInfo * TLI)1151 Constant *llvm::ConstantFoldInstOperands(Instruction *I,
1152                                          ArrayRef<Constant *> Ops,
1153                                          const DataLayout &DL,
1154                                          const TargetLibraryInfo *TLI) {
1155   return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI);
1156 }
1157 
ConstantFoldCompareInstOperands(unsigned Predicate,Constant * Ops0,Constant * Ops1,const DataLayout & DL,const TargetLibraryInfo * TLI)1158 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
1159                                                 Constant *Ops0, Constant *Ops1,
1160                                                 const DataLayout &DL,
1161                                                 const TargetLibraryInfo *TLI) {
1162   // fold: icmp (inttoptr x), null         -> icmp x, 0
1163   // fold: icmp null, (inttoptr x)         -> icmp 0, x
1164   // fold: icmp (ptrtoint x), 0            -> icmp x, null
1165   // fold: icmp 0, (ptrtoint x)            -> icmp null, x
1166   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1167   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1168   //
1169   // FIXME: The following comment is out of data and the DataLayout is here now.
1170   // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1171   // around to know if bit truncation is happening.
1172   if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1173     if (Ops1->isNullValue()) {
1174       if (CE0->getOpcode() == Instruction::IntToPtr) {
1175         Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1176         // Convert the integer value to the right size to ensure we get the
1177         // proper extension or truncation.
1178         Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1179                                                    IntPtrTy, false);
1180         Constant *Null = Constant::getNullValue(C->getType());
1181         return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1182       }
1183 
1184       // Only do this transformation if the int is intptrty in size, otherwise
1185       // there is a truncation or extension that we aren't modeling.
1186       if (CE0->getOpcode() == Instruction::PtrToInt) {
1187         Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1188         if (CE0->getType() == IntPtrTy) {
1189           Constant *C = CE0->getOperand(0);
1190           Constant *Null = Constant::getNullValue(C->getType());
1191           return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1192         }
1193       }
1194     }
1195 
1196     if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1197       if (CE0->getOpcode() == CE1->getOpcode()) {
1198         if (CE0->getOpcode() == Instruction::IntToPtr) {
1199           Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1200 
1201           // Convert the integer value to the right size to ensure we get the
1202           // proper extension or truncation.
1203           Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1204                                                       IntPtrTy, false);
1205           Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1206                                                       IntPtrTy, false);
1207           return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1208         }
1209 
1210         // Only do this transformation if the int is intptrty in size, otherwise
1211         // there is a truncation or extension that we aren't modeling.
1212         if (CE0->getOpcode() == Instruction::PtrToInt) {
1213           Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1214           if (CE0->getType() == IntPtrTy &&
1215               CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1216             return ConstantFoldCompareInstOperands(
1217                 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1218           }
1219         }
1220       }
1221     }
1222 
1223     // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1224     // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1225     if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1226         CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1227       Constant *LHS = ConstantFoldCompareInstOperands(
1228           Predicate, CE0->getOperand(0), Ops1, DL, TLI);
1229       Constant *RHS = ConstantFoldCompareInstOperands(
1230           Predicate, CE0->getOperand(1), Ops1, DL, TLI);
1231       unsigned OpC =
1232         Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1233       return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL);
1234     }
1235   } else if (isa<ConstantExpr>(Ops1)) {
1236     // If RHS is a constant expression, but the left side isn't, swap the
1237     // operands and try again.
1238     Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate);
1239     return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
1240   }
1241 
1242   return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1243 }
1244 
ConstantFoldUnaryOpOperand(unsigned Opcode,Constant * Op,const DataLayout & DL)1245 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
1246                                            const DataLayout &DL) {
1247   assert(Instruction::isUnaryOp(Opcode));
1248 
1249   return ConstantExpr::get(Opcode, Op);
1250 }
1251 
ConstantFoldBinaryOpOperands(unsigned Opcode,Constant * LHS,Constant * RHS,const DataLayout & DL)1252 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
1253                                              Constant *RHS,
1254                                              const DataLayout &DL) {
1255   assert(Instruction::isBinaryOp(Opcode));
1256   if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
1257     if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
1258       return C;
1259 
1260   return ConstantExpr::get(Opcode, LHS, RHS);
1261 }
1262 
ConstantFoldCastOperand(unsigned Opcode,Constant * C,Type * DestTy,const DataLayout & DL)1263 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
1264                                         Type *DestTy, const DataLayout &DL) {
1265   assert(Instruction::isCast(Opcode));
1266   switch (Opcode) {
1267   default:
1268     llvm_unreachable("Missing case");
1269   case Instruction::PtrToInt:
1270     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1271       Constant *FoldedValue = nullptr;
1272       // If the input is a inttoptr, eliminate the pair.  This requires knowing
1273       // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1274       if (CE->getOpcode() == Instruction::IntToPtr) {
1275         // zext/trunc the inttoptr to pointer size.
1276         FoldedValue = ConstantExpr::getIntegerCast(
1277             CE->getOperand(0), DL.getIntPtrType(CE->getType()),
1278             /*IsSigned=*/false);
1279       } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
1280         // If we have GEP, we can perform the following folds:
1281         // (ptrtoint (gep null, x)) -> x
1282         // (ptrtoint (gep (gep null, x), y) -> x + y, etc.
1283         unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
1284         APInt BaseOffset(BitWidth, 0);
1285         auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets(
1286             DL, BaseOffset, /*AllowNonInbounds=*/true));
1287         if (Base->isNullValue()) {
1288           FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
1289         }
1290       }
1291       if (FoldedValue) {
1292         // Do a zext or trunc to get to the ptrtoint dest size.
1293         return ConstantExpr::getIntegerCast(FoldedValue, DestTy,
1294                                             /*IsSigned=*/false);
1295       }
1296     }
1297     return ConstantExpr::getCast(Opcode, C, DestTy);
1298   case Instruction::IntToPtr:
1299     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1300     // the int size is >= the ptr size and the address spaces are the same.
1301     // This requires knowing the width of a pointer, so it can't be done in
1302     // ConstantExpr::getCast.
1303     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1304       if (CE->getOpcode() == Instruction::PtrToInt) {
1305         Constant *SrcPtr = CE->getOperand(0);
1306         unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1307         unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1308 
1309         if (MidIntSize >= SrcPtrSize) {
1310           unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1311           if (SrcAS == DestTy->getPointerAddressSpace())
1312             return FoldBitCast(CE->getOperand(0), DestTy, DL);
1313         }
1314       }
1315     }
1316 
1317     return ConstantExpr::getCast(Opcode, C, DestTy);
1318   case Instruction::Trunc:
1319   case Instruction::ZExt:
1320   case Instruction::SExt:
1321   case Instruction::FPTrunc:
1322   case Instruction::FPExt:
1323   case Instruction::UIToFP:
1324   case Instruction::SIToFP:
1325   case Instruction::FPToUI:
1326   case Instruction::FPToSI:
1327   case Instruction::AddrSpaceCast:
1328       return ConstantExpr::getCast(Opcode, C, DestTy);
1329   case Instruction::BitCast:
1330     return FoldBitCast(C, DestTy, DL);
1331   }
1332 }
1333 
ConstantFoldLoadThroughGEPConstantExpr(Constant * C,ConstantExpr * CE,Type * Ty,const DataLayout & DL)1334 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
1335                                                        ConstantExpr *CE,
1336                                                        Type *Ty,
1337                                                        const DataLayout &DL) {
1338   if (!CE->getOperand(1)->isNullValue())
1339     return nullptr;  // Do not allow stepping over the value!
1340 
1341   // Loop over all of the operands, tracking down which value we are
1342   // addressing.
1343   for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
1344     C = C->getAggregateElement(CE->getOperand(i));
1345     if (!C)
1346       return nullptr;
1347   }
1348   return ConstantFoldLoadThroughBitcast(C, Ty, DL);
1349 }
1350 
1351 Constant *
ConstantFoldLoadThroughGEPIndices(Constant * C,ArrayRef<Constant * > Indices)1352 llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
1353                                         ArrayRef<Constant *> Indices) {
1354   // Loop over all of the operands, tracking down which value we are
1355   // addressing.
1356   for (Constant *Index : Indices) {
1357     C = C->getAggregateElement(Index);
1358     if (!C)
1359       return nullptr;
1360   }
1361   return C;
1362 }
1363 
1364 //===----------------------------------------------------------------------===//
1365 //  Constant Folding for Calls
1366 //
1367 
canConstantFoldCallTo(const CallBase * Call,const Function * F)1368 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
1369   if (Call->isNoBuiltin())
1370     return false;
1371   switch (F->getIntrinsicID()) {
1372   // Operations that do not operate floating-point numbers and do not depend on
1373   // FP environment can be folded even in strictfp functions.
1374   case Intrinsic::bswap:
1375   case Intrinsic::ctpop:
1376   case Intrinsic::ctlz:
1377   case Intrinsic::cttz:
1378   case Intrinsic::fshl:
1379   case Intrinsic::fshr:
1380   case Intrinsic::launder_invariant_group:
1381   case Intrinsic::strip_invariant_group:
1382   case Intrinsic::masked_load:
1383   case Intrinsic::get_active_lane_mask:
1384   case Intrinsic::abs:
1385   case Intrinsic::smax:
1386   case Intrinsic::smin:
1387   case Intrinsic::umax:
1388   case Intrinsic::umin:
1389   case Intrinsic::sadd_with_overflow:
1390   case Intrinsic::uadd_with_overflow:
1391   case Intrinsic::ssub_with_overflow:
1392   case Intrinsic::usub_with_overflow:
1393   case Intrinsic::smul_with_overflow:
1394   case Intrinsic::umul_with_overflow:
1395   case Intrinsic::sadd_sat:
1396   case Intrinsic::uadd_sat:
1397   case Intrinsic::ssub_sat:
1398   case Intrinsic::usub_sat:
1399   case Intrinsic::smul_fix:
1400   case Intrinsic::smul_fix_sat:
1401   case Intrinsic::bitreverse:
1402   case Intrinsic::is_constant:
1403   case Intrinsic::vector_reduce_add:
1404   case Intrinsic::vector_reduce_mul:
1405   case Intrinsic::vector_reduce_and:
1406   case Intrinsic::vector_reduce_or:
1407   case Intrinsic::vector_reduce_xor:
1408   case Intrinsic::vector_reduce_smin:
1409   case Intrinsic::vector_reduce_smax:
1410   case Intrinsic::vector_reduce_umin:
1411   case Intrinsic::vector_reduce_umax:
1412   // Target intrinsics
1413   case Intrinsic::amdgcn_perm:
1414   case Intrinsic::arm_mve_vctp8:
1415   case Intrinsic::arm_mve_vctp16:
1416   case Intrinsic::arm_mve_vctp32:
1417   case Intrinsic::arm_mve_vctp64:
1418   case Intrinsic::aarch64_sve_convert_from_svbool:
1419   // WebAssembly float semantics are always known
1420   case Intrinsic::wasm_trunc_signed:
1421   case Intrinsic::wasm_trunc_unsigned:
1422     return true;
1423 
1424   // Floating point operations cannot be folded in strictfp functions in
1425   // general case. They can be folded if FP environment is known to compiler.
1426   case Intrinsic::minnum:
1427   case Intrinsic::maxnum:
1428   case Intrinsic::minimum:
1429   case Intrinsic::maximum:
1430   case Intrinsic::log:
1431   case Intrinsic::log2:
1432   case Intrinsic::log10:
1433   case Intrinsic::exp:
1434   case Intrinsic::exp2:
1435   case Intrinsic::sqrt:
1436   case Intrinsic::sin:
1437   case Intrinsic::cos:
1438   case Intrinsic::pow:
1439   case Intrinsic::powi:
1440   case Intrinsic::fma:
1441   case Intrinsic::fmuladd:
1442   case Intrinsic::fptoui_sat:
1443   case Intrinsic::fptosi_sat:
1444   case Intrinsic::convert_from_fp16:
1445   case Intrinsic::convert_to_fp16:
1446   case Intrinsic::amdgcn_cos:
1447   case Intrinsic::amdgcn_cubeid:
1448   case Intrinsic::amdgcn_cubema:
1449   case Intrinsic::amdgcn_cubesc:
1450   case Intrinsic::amdgcn_cubetc:
1451   case Intrinsic::amdgcn_fmul_legacy:
1452   case Intrinsic::amdgcn_fma_legacy:
1453   case Intrinsic::amdgcn_fract:
1454   case Intrinsic::amdgcn_ldexp:
1455   case Intrinsic::amdgcn_sin:
1456   // The intrinsics below depend on rounding mode in MXCSR.
1457   case Intrinsic::x86_sse_cvtss2si:
1458   case Intrinsic::x86_sse_cvtss2si64:
1459   case Intrinsic::x86_sse_cvttss2si:
1460   case Intrinsic::x86_sse_cvttss2si64:
1461   case Intrinsic::x86_sse2_cvtsd2si:
1462   case Intrinsic::x86_sse2_cvtsd2si64:
1463   case Intrinsic::x86_sse2_cvttsd2si:
1464   case Intrinsic::x86_sse2_cvttsd2si64:
1465   case Intrinsic::x86_avx512_vcvtss2si32:
1466   case Intrinsic::x86_avx512_vcvtss2si64:
1467   case Intrinsic::x86_avx512_cvttss2si:
1468   case Intrinsic::x86_avx512_cvttss2si64:
1469   case Intrinsic::x86_avx512_vcvtsd2si32:
1470   case Intrinsic::x86_avx512_vcvtsd2si64:
1471   case Intrinsic::x86_avx512_cvttsd2si:
1472   case Intrinsic::x86_avx512_cvttsd2si64:
1473   case Intrinsic::x86_avx512_vcvtss2usi32:
1474   case Intrinsic::x86_avx512_vcvtss2usi64:
1475   case Intrinsic::x86_avx512_cvttss2usi:
1476   case Intrinsic::x86_avx512_cvttss2usi64:
1477   case Intrinsic::x86_avx512_vcvtsd2usi32:
1478   case Intrinsic::x86_avx512_vcvtsd2usi64:
1479   case Intrinsic::x86_avx512_cvttsd2usi:
1480   case Intrinsic::x86_avx512_cvttsd2usi64:
1481     return !Call->isStrictFP();
1482 
1483   // Sign operations are actually bitwise operations, they do not raise
1484   // exceptions even for SNANs.
1485   case Intrinsic::fabs:
1486   case Intrinsic::copysign:
1487   // Non-constrained variants of rounding operations means default FP
1488   // environment, they can be folded in any case.
1489   case Intrinsic::ceil:
1490   case Intrinsic::floor:
1491   case Intrinsic::round:
1492   case Intrinsic::roundeven:
1493   case Intrinsic::trunc:
1494   case Intrinsic::nearbyint:
1495   case Intrinsic::rint:
1496   // Constrained intrinsics can be folded if FP environment is known
1497   // to compiler.
1498   case Intrinsic::experimental_constrained_fma:
1499   case Intrinsic::experimental_constrained_fmuladd:
1500   case Intrinsic::experimental_constrained_fadd:
1501   case Intrinsic::experimental_constrained_fsub:
1502   case Intrinsic::experimental_constrained_fmul:
1503   case Intrinsic::experimental_constrained_fdiv:
1504   case Intrinsic::experimental_constrained_frem:
1505   case Intrinsic::experimental_constrained_ceil:
1506   case Intrinsic::experimental_constrained_floor:
1507   case Intrinsic::experimental_constrained_round:
1508   case Intrinsic::experimental_constrained_roundeven:
1509   case Intrinsic::experimental_constrained_trunc:
1510   case Intrinsic::experimental_constrained_nearbyint:
1511   case Intrinsic::experimental_constrained_rint:
1512     return true;
1513   default:
1514     return false;
1515   case Intrinsic::not_intrinsic: break;
1516   }
1517 
1518   if (!F->hasName() || Call->isStrictFP())
1519     return false;
1520 
1521   // In these cases, the check of the length is required.  We don't want to
1522   // return true for a name like "cos\0blah" which strcmp would return equal to
1523   // "cos", but has length 8.
1524   StringRef Name = F->getName();
1525   switch (Name[0]) {
1526   default:
1527     return false;
1528   case 'a':
1529     return Name == "acos" || Name == "acosf" ||
1530            Name == "asin" || Name == "asinf" ||
1531            Name == "atan" || Name == "atanf" ||
1532            Name == "atan2" || Name == "atan2f";
1533   case 'c':
1534     return Name == "ceil" || Name == "ceilf" ||
1535            Name == "cos" || Name == "cosf" ||
1536            Name == "cosh" || Name == "coshf";
1537   case 'e':
1538     return Name == "exp" || Name == "expf" ||
1539            Name == "exp2" || Name == "exp2f";
1540   case 'f':
1541     return Name == "fabs" || Name == "fabsf" ||
1542            Name == "floor" || Name == "floorf" ||
1543            Name == "fmod" || Name == "fmodf";
1544   case 'l':
1545     return Name == "log" || Name == "logf" ||
1546            Name == "log2" || Name == "log2f" ||
1547            Name == "log10" || Name == "log10f";
1548   case 'n':
1549     return Name == "nearbyint" || Name == "nearbyintf";
1550   case 'p':
1551     return Name == "pow" || Name == "powf";
1552   case 'r':
1553     return Name == "remainder" || Name == "remainderf" ||
1554            Name == "rint" || Name == "rintf" ||
1555            Name == "round" || Name == "roundf";
1556   case 's':
1557     return Name == "sin" || Name == "sinf" ||
1558            Name == "sinh" || Name == "sinhf" ||
1559            Name == "sqrt" || Name == "sqrtf";
1560   case 't':
1561     return Name == "tan" || Name == "tanf" ||
1562            Name == "tanh" || Name == "tanhf" ||
1563            Name == "trunc" || Name == "truncf";
1564   case '_':
1565     // Check for various function names that get used for the math functions
1566     // when the header files are preprocessed with the macro
1567     // __FINITE_MATH_ONLY__ enabled.
1568     // The '12' here is the length of the shortest name that can match.
1569     // We need to check the size before looking at Name[1] and Name[2]
1570     // so we may as well check a limit that will eliminate mismatches.
1571     if (Name.size() < 12 || Name[1] != '_')
1572       return false;
1573     switch (Name[2]) {
1574     default:
1575       return false;
1576     case 'a':
1577       return Name == "__acos_finite" || Name == "__acosf_finite" ||
1578              Name == "__asin_finite" || Name == "__asinf_finite" ||
1579              Name == "__atan2_finite" || Name == "__atan2f_finite";
1580     case 'c':
1581       return Name == "__cosh_finite" || Name == "__coshf_finite";
1582     case 'e':
1583       return Name == "__exp_finite" || Name == "__expf_finite" ||
1584              Name == "__exp2_finite" || Name == "__exp2f_finite";
1585     case 'l':
1586       return Name == "__log_finite" || Name == "__logf_finite" ||
1587              Name == "__log10_finite" || Name == "__log10f_finite";
1588     case 'p':
1589       return Name == "__pow_finite" || Name == "__powf_finite";
1590     case 's':
1591       return Name == "__sinh_finite" || Name == "__sinhf_finite";
1592     }
1593   }
1594 }
1595 
1596 namespace {
1597 
GetConstantFoldFPValue(double V,Type * Ty)1598 Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1599   if (Ty->isHalfTy() || Ty->isFloatTy()) {
1600     APFloat APF(V);
1601     bool unused;
1602     APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
1603     return ConstantFP::get(Ty->getContext(), APF);
1604   }
1605   if (Ty->isDoubleTy())
1606     return ConstantFP::get(Ty->getContext(), APFloat(V));
1607   llvm_unreachable("Can only constant fold half/float/double");
1608 }
1609 
1610 /// Clear the floating-point exception state.
llvm_fenv_clearexcept()1611 inline void llvm_fenv_clearexcept() {
1612 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1613   feclearexcept(FE_ALL_EXCEPT);
1614 #endif
1615   errno = 0;
1616 }
1617 
1618 /// Test if a floating-point exception was raised.
llvm_fenv_testexcept()1619 inline bool llvm_fenv_testexcept() {
1620   int errno_val = errno;
1621   if (errno_val == ERANGE || errno_val == EDOM)
1622     return true;
1623 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1624   if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
1625     return true;
1626 #endif
1627   return false;
1628 }
1629 
ConstantFoldFP(double (* NativeFP)(double),const APFloat & V,Type * Ty)1630 Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V,
1631                          Type *Ty) {
1632   llvm_fenv_clearexcept();
1633   double Result = NativeFP(V.convertToDouble());
1634   if (llvm_fenv_testexcept()) {
1635     llvm_fenv_clearexcept();
1636     return nullptr;
1637   }
1638 
1639   return GetConstantFoldFPValue(Result, Ty);
1640 }
1641 
ConstantFoldBinaryFP(double (* NativeFP)(double,double),const APFloat & V,const APFloat & W,Type * Ty)1642 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1643                                const APFloat &V, const APFloat &W, Type *Ty) {
1644   llvm_fenv_clearexcept();
1645   double Result = NativeFP(V.convertToDouble(), W.convertToDouble());
1646   if (llvm_fenv_testexcept()) {
1647     llvm_fenv_clearexcept();
1648     return nullptr;
1649   }
1650 
1651   return GetConstantFoldFPValue(Result, Ty);
1652 }
1653 
constantFoldVectorReduce(Intrinsic::ID IID,Constant * Op)1654 Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
1655   FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType());
1656   if (!VT)
1657     return nullptr;
1658 
1659   // This isn't strictly necessary, but handle the special/common case of zero:
1660   // all integer reductions of a zero input produce zero.
1661   if (isa<ConstantAggregateZero>(Op))
1662     return ConstantInt::get(VT->getElementType(), 0);
1663 
1664   // This is the same as the underlying binops - poison propagates.
1665   if (isa<PoisonValue>(Op) || Op->containsPoisonElement())
1666     return PoisonValue::get(VT->getElementType());
1667 
1668   // TODO: Handle undef.
1669   if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op))
1670     return nullptr;
1671 
1672   auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U));
1673   if (!EltC)
1674     return nullptr;
1675 
1676   APInt Acc = EltC->getValue();
1677   for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) {
1678     if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I))))
1679       return nullptr;
1680     const APInt &X = EltC->getValue();
1681     switch (IID) {
1682     case Intrinsic::vector_reduce_add:
1683       Acc = Acc + X;
1684       break;
1685     case Intrinsic::vector_reduce_mul:
1686       Acc = Acc * X;
1687       break;
1688     case Intrinsic::vector_reduce_and:
1689       Acc = Acc & X;
1690       break;
1691     case Intrinsic::vector_reduce_or:
1692       Acc = Acc | X;
1693       break;
1694     case Intrinsic::vector_reduce_xor:
1695       Acc = Acc ^ X;
1696       break;
1697     case Intrinsic::vector_reduce_smin:
1698       Acc = APIntOps::smin(Acc, X);
1699       break;
1700     case Intrinsic::vector_reduce_smax:
1701       Acc = APIntOps::smax(Acc, X);
1702       break;
1703     case Intrinsic::vector_reduce_umin:
1704       Acc = APIntOps::umin(Acc, X);
1705       break;
1706     case Intrinsic::vector_reduce_umax:
1707       Acc = APIntOps::umax(Acc, X);
1708       break;
1709     }
1710   }
1711 
1712   return ConstantInt::get(Op->getContext(), Acc);
1713 }
1714 
1715 /// Attempt to fold an SSE floating point to integer conversion of a constant
1716 /// floating point. If roundTowardZero is false, the default IEEE rounding is
1717 /// used (toward nearest, ties to even). This matches the behavior of the
1718 /// non-truncating SSE instructions in the default rounding mode. The desired
1719 /// integer type Ty is used to select how many bits are available for the
1720 /// result. Returns null if the conversion cannot be performed, otherwise
1721 /// returns the Constant value resulting from the conversion.
ConstantFoldSSEConvertToInt(const APFloat & Val,bool roundTowardZero,Type * Ty,bool IsSigned)1722 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
1723                                       Type *Ty, bool IsSigned) {
1724   // All of these conversion intrinsics form an integer of at most 64bits.
1725   unsigned ResultWidth = Ty->getIntegerBitWidth();
1726   assert(ResultWidth <= 64 &&
1727          "Can only constant fold conversions to 64 and 32 bit ints");
1728 
1729   uint64_t UIntVal;
1730   bool isExact = false;
1731   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1732                                               : APFloat::rmNearestTiesToEven;
1733   APFloat::opStatus status =
1734       Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth,
1735                            IsSigned, mode, &isExact);
1736   if (status != APFloat::opOK &&
1737       (!roundTowardZero || status != APFloat::opInexact))
1738     return nullptr;
1739   return ConstantInt::get(Ty, UIntVal, IsSigned);
1740 }
1741 
getValueAsDouble(ConstantFP * Op)1742 double getValueAsDouble(ConstantFP *Op) {
1743   Type *Ty = Op->getType();
1744 
1745   if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
1746     return Op->getValueAPF().convertToDouble();
1747 
1748   bool unused;
1749   APFloat APF = Op->getValueAPF();
1750   APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
1751   return APF.convertToDouble();
1752 }
1753 
getConstIntOrUndef(Value * Op,const APInt * & C)1754 static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
1755   if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1756     C = &CI->getValue();
1757     return true;
1758   }
1759   if (isa<UndefValue>(Op)) {
1760     C = nullptr;
1761     return true;
1762   }
1763   return false;
1764 }
1765 
1766 /// Checks if the given intrinsic call, which evaluates to constant, is allowed
1767 /// to be folded.
1768 ///
1769 /// \param CI Constrained intrinsic call.
1770 /// \param St Exception flags raised during constant evaluation.
mayFoldConstrained(ConstrainedFPIntrinsic * CI,APFloat::opStatus St)1771 static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI,
1772                                APFloat::opStatus St) {
1773   Optional<RoundingMode> ORM = CI->getRoundingMode();
1774   Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
1775 
1776   // If the operation does not change exception status flags, it is safe
1777   // to fold.
1778   if (St == APFloat::opStatus::opOK) {
1779     // When FP exceptions are not ignored, intrinsic call will not be
1780     // eliminated, because it is considered as having side effect. But we
1781     // know that its evaluation does not raise exceptions, so side effect
1782     // is absent. To allow removing the call, mark it as not accessing memory.
1783     if (EB && *EB != fp::ExceptionBehavior::ebIgnore)
1784       CI->addFnAttr(Attribute::ReadNone);
1785     return true;
1786   }
1787 
1788   // If evaluation raised FP exception, the result can depend on rounding
1789   // mode. If the latter is unknown, folding is not possible.
1790   if (!ORM || *ORM == RoundingMode::Dynamic)
1791     return false;
1792 
1793   // If FP exceptions are ignored, fold the call, even if such exception is
1794   // raised.
1795   if (!EB || *EB != fp::ExceptionBehavior::ebStrict)
1796     return true;
1797 
1798   // Leave the calculation for runtime so that exception flags be correctly set
1799   // in hardware.
1800   return false;
1801 }
1802 
1803 /// Returns the rounding mode that should be used for constant evaluation.
1804 static RoundingMode
getEvaluationRoundingMode(const ConstrainedFPIntrinsic * CI)1805 getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) {
1806   Optional<RoundingMode> ORM = CI->getRoundingMode();
1807   if (!ORM || *ORM == RoundingMode::Dynamic)
1808     // Even if the rounding mode is unknown, try evaluating the operation.
1809     // If it does not raise inexact exception, rounding was not applied,
1810     // so the result is exact and does not depend on rounding mode. Whether
1811     // other FP exceptions are raised, it does not depend on rounding mode.
1812     return RoundingMode::NearestTiesToEven;
1813   return *ORM;
1814 }
1815 
ConstantFoldScalarCall1(StringRef Name,Intrinsic::ID IntrinsicID,Type * Ty,ArrayRef<Constant * > Operands,const TargetLibraryInfo * TLI,const CallBase * Call)1816 static Constant *ConstantFoldScalarCall1(StringRef Name,
1817                                          Intrinsic::ID IntrinsicID,
1818                                          Type *Ty,
1819                                          ArrayRef<Constant *> Operands,
1820                                          const TargetLibraryInfo *TLI,
1821                                          const CallBase *Call) {
1822   assert(Operands.size() == 1 && "Wrong number of operands.");
1823 
1824   if (IntrinsicID == Intrinsic::is_constant) {
1825     // We know we have a "Constant" argument. But we want to only
1826     // return true for manifest constants, not those that depend on
1827     // constants with unknowable values, e.g. GlobalValue or BlockAddress.
1828     if (Operands[0]->isManifestConstant())
1829       return ConstantInt::getTrue(Ty->getContext());
1830     return nullptr;
1831   }
1832   if (isa<UndefValue>(Operands[0])) {
1833     // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
1834     // ctpop() is between 0 and bitwidth, pick 0 for undef.
1835     // fptoui.sat and fptosi.sat can always fold to zero (for a zero input).
1836     if (IntrinsicID == Intrinsic::cos ||
1837         IntrinsicID == Intrinsic::ctpop ||
1838         IntrinsicID == Intrinsic::fptoui_sat ||
1839         IntrinsicID == Intrinsic::fptosi_sat)
1840       return Constant::getNullValue(Ty);
1841     if (IntrinsicID == Intrinsic::bswap ||
1842         IntrinsicID == Intrinsic::bitreverse ||
1843         IntrinsicID == Intrinsic::launder_invariant_group ||
1844         IntrinsicID == Intrinsic::strip_invariant_group)
1845       return Operands[0];
1846   }
1847 
1848   if (isa<ConstantPointerNull>(Operands[0])) {
1849     // launder(null) == null == strip(null) iff in addrspace 0
1850     if (IntrinsicID == Intrinsic::launder_invariant_group ||
1851         IntrinsicID == Intrinsic::strip_invariant_group) {
1852       // If instruction is not yet put in a basic block (e.g. when cloning
1853       // a function during inlining), Call's caller may not be available.
1854       // So check Call's BB first before querying Call->getCaller.
1855       const Function *Caller =
1856           Call->getParent() ? Call->getCaller() : nullptr;
1857       if (Caller &&
1858           !NullPointerIsDefined(
1859               Caller, Operands[0]->getType()->getPointerAddressSpace())) {
1860         return Operands[0];
1861       }
1862       return nullptr;
1863     }
1864   }
1865 
1866   if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
1867     if (IntrinsicID == Intrinsic::convert_to_fp16) {
1868       APFloat Val(Op->getValueAPF());
1869 
1870       bool lost = false;
1871       Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
1872 
1873       return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
1874     }
1875 
1876     APFloat U = Op->getValueAPF();
1877 
1878     if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
1879         IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
1880       bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
1881 
1882       if (U.isNaN())
1883         return nullptr;
1884 
1885       unsigned Width = Ty->getIntegerBitWidth();
1886       APSInt Int(Width, !Signed);
1887       bool IsExact = false;
1888       APFloat::opStatus Status =
1889           U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
1890 
1891       if (Status == APFloat::opOK || Status == APFloat::opInexact)
1892         return ConstantInt::get(Ty, Int);
1893 
1894       return nullptr;
1895     }
1896 
1897     if (IntrinsicID == Intrinsic::fptoui_sat ||
1898         IntrinsicID == Intrinsic::fptosi_sat) {
1899       // convertToInteger() already has the desired saturation semantics.
1900       APSInt Int(Ty->getIntegerBitWidth(),
1901                  IntrinsicID == Intrinsic::fptoui_sat);
1902       bool IsExact;
1903       U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
1904       return ConstantInt::get(Ty, Int);
1905     }
1906 
1907     if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1908       return nullptr;
1909 
1910     // Use internal versions of these intrinsics.
1911 
1912     if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
1913       U.roundToIntegral(APFloat::rmNearestTiesToEven);
1914       return ConstantFP::get(Ty->getContext(), U);
1915     }
1916 
1917     if (IntrinsicID == Intrinsic::round) {
1918       U.roundToIntegral(APFloat::rmNearestTiesToAway);
1919       return ConstantFP::get(Ty->getContext(), U);
1920     }
1921 
1922     if (IntrinsicID == Intrinsic::roundeven) {
1923       U.roundToIntegral(APFloat::rmNearestTiesToEven);
1924       return ConstantFP::get(Ty->getContext(), U);
1925     }
1926 
1927     if (IntrinsicID == Intrinsic::ceil) {
1928       U.roundToIntegral(APFloat::rmTowardPositive);
1929       return ConstantFP::get(Ty->getContext(), U);
1930     }
1931 
1932     if (IntrinsicID == Intrinsic::floor) {
1933       U.roundToIntegral(APFloat::rmTowardNegative);
1934       return ConstantFP::get(Ty->getContext(), U);
1935     }
1936 
1937     if (IntrinsicID == Intrinsic::trunc) {
1938       U.roundToIntegral(APFloat::rmTowardZero);
1939       return ConstantFP::get(Ty->getContext(), U);
1940     }
1941 
1942     if (IntrinsicID == Intrinsic::fabs) {
1943       U.clearSign();
1944       return ConstantFP::get(Ty->getContext(), U);
1945     }
1946 
1947     if (IntrinsicID == Intrinsic::amdgcn_fract) {
1948       // The v_fract instruction behaves like the OpenCL spec, which defines
1949       // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
1950       //   there to prevent fract(-small) from returning 1.0. It returns the
1951       //   largest positive floating-point number less than 1.0."
1952       APFloat FloorU(U);
1953       FloorU.roundToIntegral(APFloat::rmTowardNegative);
1954       APFloat FractU(U - FloorU);
1955       APFloat AlmostOne(U.getSemantics(), 1);
1956       AlmostOne.next(/*nextDown*/ true);
1957       return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne));
1958     }
1959 
1960     // Rounding operations (floor, trunc, ceil, round and nearbyint) do not
1961     // raise FP exceptions, unless the argument is signaling NaN.
1962 
1963     Optional<APFloat::roundingMode> RM;
1964     switch (IntrinsicID) {
1965     default:
1966       break;
1967     case Intrinsic::experimental_constrained_nearbyint:
1968     case Intrinsic::experimental_constrained_rint: {
1969       auto CI = cast<ConstrainedFPIntrinsic>(Call);
1970       RM = CI->getRoundingMode();
1971       if (!RM || RM.getValue() == RoundingMode::Dynamic)
1972         return nullptr;
1973       break;
1974     }
1975     case Intrinsic::experimental_constrained_round:
1976       RM = APFloat::rmNearestTiesToAway;
1977       break;
1978     case Intrinsic::experimental_constrained_ceil:
1979       RM = APFloat::rmTowardPositive;
1980       break;
1981     case Intrinsic::experimental_constrained_floor:
1982       RM = APFloat::rmTowardNegative;
1983       break;
1984     case Intrinsic::experimental_constrained_trunc:
1985       RM = APFloat::rmTowardZero;
1986       break;
1987     }
1988     if (RM) {
1989       auto CI = cast<ConstrainedFPIntrinsic>(Call);
1990       if (U.isFinite()) {
1991         APFloat::opStatus St = U.roundToIntegral(*RM);
1992         if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
1993             St == APFloat::opInexact) {
1994           Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
1995           if (EB && *EB == fp::ebStrict)
1996             return nullptr;
1997         }
1998       } else if (U.isSignaling()) {
1999         Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2000         if (EB && *EB != fp::ebIgnore)
2001           return nullptr;
2002         U = APFloat::getQNaN(U.getSemantics());
2003       }
2004       return ConstantFP::get(Ty->getContext(), U);
2005     }
2006 
2007     /// We only fold functions with finite arguments. Folding NaN and inf is
2008     /// likely to be aborted with an exception anyway, and some host libms
2009     /// have known errors raising exceptions.
2010     if (!U.isFinite())
2011       return nullptr;
2012 
2013     /// Currently APFloat versions of these functions do not exist, so we use
2014     /// the host native double versions.  Float versions are not called
2015     /// directly but for all these it is true (float)(f((double)arg)) ==
2016     /// f(arg).  Long double not supported yet.
2017     APFloat APF = Op->getValueAPF();
2018 
2019     switch (IntrinsicID) {
2020       default: break;
2021       case Intrinsic::log:
2022         return ConstantFoldFP(log, APF, Ty);
2023       case Intrinsic::log2:
2024         // TODO: What about hosts that lack a C99 library?
2025         return ConstantFoldFP(Log2, APF, Ty);
2026       case Intrinsic::log10:
2027         // TODO: What about hosts that lack a C99 library?
2028         return ConstantFoldFP(log10, APF, Ty);
2029       case Intrinsic::exp:
2030         return ConstantFoldFP(exp, APF, Ty);
2031       case Intrinsic::exp2:
2032         // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2033         return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2034       case Intrinsic::sin:
2035         return ConstantFoldFP(sin, APF, Ty);
2036       case Intrinsic::cos:
2037         return ConstantFoldFP(cos, APF, Ty);
2038       case Intrinsic::sqrt:
2039         return ConstantFoldFP(sqrt, APF, Ty);
2040       case Intrinsic::amdgcn_cos:
2041       case Intrinsic::amdgcn_sin: {
2042         double V = getValueAsDouble(Op);
2043         if (V < -256.0 || V > 256.0)
2044           // The gfx8 and gfx9 architectures handle arguments outside the range
2045           // [-256, 256] differently. This should be a rare case so bail out
2046           // rather than trying to handle the difference.
2047           return nullptr;
2048         bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2049         double V4 = V * 4.0;
2050         if (V4 == floor(V4)) {
2051           // Force exact results for quarter-integer inputs.
2052           const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2053           V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2054         } else {
2055           if (IsCos)
2056             V = cos(V * 2.0 * numbers::pi);
2057           else
2058             V = sin(V * 2.0 * numbers::pi);
2059         }
2060         return GetConstantFoldFPValue(V, Ty);
2061       }
2062     }
2063 
2064     if (!TLI)
2065       return nullptr;
2066 
2067     LibFunc Func = NotLibFunc;
2068     TLI->getLibFunc(Name, Func);
2069     switch (Func) {
2070     default:
2071       break;
2072     case LibFunc_acos:
2073     case LibFunc_acosf:
2074     case LibFunc_acos_finite:
2075     case LibFunc_acosf_finite:
2076       if (TLI->has(Func))
2077         return ConstantFoldFP(acos, APF, Ty);
2078       break;
2079     case LibFunc_asin:
2080     case LibFunc_asinf:
2081     case LibFunc_asin_finite:
2082     case LibFunc_asinf_finite:
2083       if (TLI->has(Func))
2084         return ConstantFoldFP(asin, APF, Ty);
2085       break;
2086     case LibFunc_atan:
2087     case LibFunc_atanf:
2088       if (TLI->has(Func))
2089         return ConstantFoldFP(atan, APF, Ty);
2090       break;
2091     case LibFunc_ceil:
2092     case LibFunc_ceilf:
2093       if (TLI->has(Func)) {
2094         U.roundToIntegral(APFloat::rmTowardPositive);
2095         return ConstantFP::get(Ty->getContext(), U);
2096       }
2097       break;
2098     case LibFunc_cos:
2099     case LibFunc_cosf:
2100       if (TLI->has(Func))
2101         return ConstantFoldFP(cos, APF, Ty);
2102       break;
2103     case LibFunc_cosh:
2104     case LibFunc_coshf:
2105     case LibFunc_cosh_finite:
2106     case LibFunc_coshf_finite:
2107       if (TLI->has(Func))
2108         return ConstantFoldFP(cosh, APF, Ty);
2109       break;
2110     case LibFunc_exp:
2111     case LibFunc_expf:
2112     case LibFunc_exp_finite:
2113     case LibFunc_expf_finite:
2114       if (TLI->has(Func))
2115         return ConstantFoldFP(exp, APF, Ty);
2116       break;
2117     case LibFunc_exp2:
2118     case LibFunc_exp2f:
2119     case LibFunc_exp2_finite:
2120     case LibFunc_exp2f_finite:
2121       if (TLI->has(Func))
2122         // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2123         return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2124       break;
2125     case LibFunc_fabs:
2126     case LibFunc_fabsf:
2127       if (TLI->has(Func)) {
2128         U.clearSign();
2129         return ConstantFP::get(Ty->getContext(), U);
2130       }
2131       break;
2132     case LibFunc_floor:
2133     case LibFunc_floorf:
2134       if (TLI->has(Func)) {
2135         U.roundToIntegral(APFloat::rmTowardNegative);
2136         return ConstantFP::get(Ty->getContext(), U);
2137       }
2138       break;
2139     case LibFunc_log:
2140     case LibFunc_logf:
2141     case LibFunc_log_finite:
2142     case LibFunc_logf_finite:
2143       if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2144         return ConstantFoldFP(log, APF, Ty);
2145       break;
2146     case LibFunc_log2:
2147     case LibFunc_log2f:
2148     case LibFunc_log2_finite:
2149     case LibFunc_log2f_finite:
2150       if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2151         // TODO: What about hosts that lack a C99 library?
2152         return ConstantFoldFP(Log2, APF, Ty);
2153       break;
2154     case LibFunc_log10:
2155     case LibFunc_log10f:
2156     case LibFunc_log10_finite:
2157     case LibFunc_log10f_finite:
2158       if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2159         // TODO: What about hosts that lack a C99 library?
2160         return ConstantFoldFP(log10, APF, Ty);
2161       break;
2162     case LibFunc_nearbyint:
2163     case LibFunc_nearbyintf:
2164     case LibFunc_rint:
2165     case LibFunc_rintf:
2166       if (TLI->has(Func)) {
2167         U.roundToIntegral(APFloat::rmNearestTiesToEven);
2168         return ConstantFP::get(Ty->getContext(), U);
2169       }
2170       break;
2171     case LibFunc_round:
2172     case LibFunc_roundf:
2173       if (TLI->has(Func)) {
2174         U.roundToIntegral(APFloat::rmNearestTiesToAway);
2175         return ConstantFP::get(Ty->getContext(), U);
2176       }
2177       break;
2178     case LibFunc_sin:
2179     case LibFunc_sinf:
2180       if (TLI->has(Func))
2181         return ConstantFoldFP(sin, APF, Ty);
2182       break;
2183     case LibFunc_sinh:
2184     case LibFunc_sinhf:
2185     case LibFunc_sinh_finite:
2186     case LibFunc_sinhf_finite:
2187       if (TLI->has(Func))
2188         return ConstantFoldFP(sinh, APF, Ty);
2189       break;
2190     case LibFunc_sqrt:
2191     case LibFunc_sqrtf:
2192       if (!APF.isNegative() && TLI->has(Func))
2193         return ConstantFoldFP(sqrt, APF, Ty);
2194       break;
2195     case LibFunc_tan:
2196     case LibFunc_tanf:
2197       if (TLI->has(Func))
2198         return ConstantFoldFP(tan, APF, Ty);
2199       break;
2200     case LibFunc_tanh:
2201     case LibFunc_tanhf:
2202       if (TLI->has(Func))
2203         return ConstantFoldFP(tanh, APF, Ty);
2204       break;
2205     case LibFunc_trunc:
2206     case LibFunc_truncf:
2207       if (TLI->has(Func)) {
2208         U.roundToIntegral(APFloat::rmTowardZero);
2209         return ConstantFP::get(Ty->getContext(), U);
2210       }
2211       break;
2212     }
2213     return nullptr;
2214   }
2215 
2216   if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
2217     switch (IntrinsicID) {
2218     case Intrinsic::bswap:
2219       return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
2220     case Intrinsic::ctpop:
2221       return ConstantInt::get(Ty, Op->getValue().countPopulation());
2222     case Intrinsic::bitreverse:
2223       return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
2224     case Intrinsic::convert_from_fp16: {
2225       APFloat Val(APFloat::IEEEhalf(), Op->getValue());
2226 
2227       bool lost = false;
2228       APFloat::opStatus status = Val.convert(
2229           Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
2230 
2231       // Conversion is always precise.
2232       (void)status;
2233       assert(status == APFloat::opOK && !lost &&
2234              "Precision lost during fp16 constfolding");
2235 
2236       return ConstantFP::get(Ty->getContext(), Val);
2237     }
2238     default:
2239       return nullptr;
2240     }
2241   }
2242 
2243   switch (IntrinsicID) {
2244   default: break;
2245   case Intrinsic::vector_reduce_add:
2246   case Intrinsic::vector_reduce_mul:
2247   case Intrinsic::vector_reduce_and:
2248   case Intrinsic::vector_reduce_or:
2249   case Intrinsic::vector_reduce_xor:
2250   case Intrinsic::vector_reduce_smin:
2251   case Intrinsic::vector_reduce_smax:
2252   case Intrinsic::vector_reduce_umin:
2253   case Intrinsic::vector_reduce_umax:
2254     if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
2255       return C;
2256     break;
2257   }
2258 
2259   // Support ConstantVector in case we have an Undef in the top.
2260   if (isa<ConstantVector>(Operands[0]) ||
2261       isa<ConstantDataVector>(Operands[0])) {
2262     auto *Op = cast<Constant>(Operands[0]);
2263     switch (IntrinsicID) {
2264     default: break;
2265     case Intrinsic::x86_sse_cvtss2si:
2266     case Intrinsic::x86_sse_cvtss2si64:
2267     case Intrinsic::x86_sse2_cvtsd2si:
2268     case Intrinsic::x86_sse2_cvtsd2si64:
2269       if (ConstantFP *FPOp =
2270               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2271         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2272                                            /*roundTowardZero=*/false, Ty,
2273                                            /*IsSigned*/true);
2274       break;
2275     case Intrinsic::x86_sse_cvttss2si:
2276     case Intrinsic::x86_sse_cvttss2si64:
2277     case Intrinsic::x86_sse2_cvttsd2si:
2278     case Intrinsic::x86_sse2_cvttsd2si64:
2279       if (ConstantFP *FPOp =
2280               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2281         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2282                                            /*roundTowardZero=*/true, Ty,
2283                                            /*IsSigned*/true);
2284       break;
2285     }
2286   }
2287 
2288   return nullptr;
2289 }
2290 
ConstantFoldScalarCall2(StringRef Name,Intrinsic::ID IntrinsicID,Type * Ty,ArrayRef<Constant * > Operands,const TargetLibraryInfo * TLI,const CallBase * Call)2291 static Constant *ConstantFoldScalarCall2(StringRef Name,
2292                                          Intrinsic::ID IntrinsicID,
2293                                          Type *Ty,
2294                                          ArrayRef<Constant *> Operands,
2295                                          const TargetLibraryInfo *TLI,
2296                                          const CallBase *Call) {
2297   assert(Operands.size() == 2 && "Wrong number of operands.");
2298 
2299   if (Ty->isFloatingPointTy()) {
2300     // TODO: We should have undef handling for all of the FP intrinsics that
2301     //       are attempted to be folded in this function.
2302     bool IsOp0Undef = isa<UndefValue>(Operands[0]);
2303     bool IsOp1Undef = isa<UndefValue>(Operands[1]);
2304     switch (IntrinsicID) {
2305     case Intrinsic::maxnum:
2306     case Intrinsic::minnum:
2307     case Intrinsic::maximum:
2308     case Intrinsic::minimum:
2309       // If one argument is undef, return the other argument.
2310       if (IsOp0Undef)
2311         return Operands[1];
2312       if (IsOp1Undef)
2313         return Operands[0];
2314       break;
2315     }
2316   }
2317 
2318   if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2319     if (!Ty->isFloatingPointTy())
2320       return nullptr;
2321     APFloat Op1V = Op1->getValueAPF();
2322 
2323     if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2324       if (Op2->getType() != Op1->getType())
2325         return nullptr;
2326       APFloat Op2V = Op2->getValueAPF();
2327 
2328       if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
2329         RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
2330         APFloat Res = Op1V;
2331         APFloat::opStatus St;
2332         switch (IntrinsicID) {
2333         default:
2334           return nullptr;
2335         case Intrinsic::experimental_constrained_fadd:
2336           St = Res.add(Op2V, RM);
2337           break;
2338         case Intrinsic::experimental_constrained_fsub:
2339           St = Res.subtract(Op2V, RM);
2340           break;
2341         case Intrinsic::experimental_constrained_fmul:
2342           St = Res.multiply(Op2V, RM);
2343           break;
2344         case Intrinsic::experimental_constrained_fdiv:
2345           St = Res.divide(Op2V, RM);
2346           break;
2347         case Intrinsic::experimental_constrained_frem:
2348           St = Res.mod(Op2V);
2349           break;
2350         }
2351         if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr),
2352                                St))
2353           return ConstantFP::get(Ty->getContext(), Res);
2354         return nullptr;
2355       }
2356 
2357       switch (IntrinsicID) {
2358       default:
2359         break;
2360       case Intrinsic::copysign:
2361         return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V));
2362       case Intrinsic::minnum:
2363         return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V));
2364       case Intrinsic::maxnum:
2365         return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V));
2366       case Intrinsic::minimum:
2367         return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V));
2368       case Intrinsic::maximum:
2369         return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V));
2370       }
2371 
2372       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2373         return nullptr;
2374 
2375       switch (IntrinsicID) {
2376       default:
2377         break;
2378       case Intrinsic::pow:
2379         return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2380       case Intrinsic::amdgcn_fmul_legacy:
2381         // The legacy behaviour is that multiplying +/- 0.0 by anything, even
2382         // NaN or infinity, gives +0.0.
2383         if (Op1V.isZero() || Op2V.isZero())
2384           return ConstantFP::getNullValue(Ty);
2385         return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
2386       }
2387 
2388       if (!TLI)
2389         return nullptr;
2390 
2391       LibFunc Func = NotLibFunc;
2392       TLI->getLibFunc(Name, Func);
2393       switch (Func) {
2394       default:
2395         break;
2396       case LibFunc_pow:
2397       case LibFunc_powf:
2398       case LibFunc_pow_finite:
2399       case LibFunc_powf_finite:
2400         if (TLI->has(Func))
2401           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2402         break;
2403       case LibFunc_fmod:
2404       case LibFunc_fmodf:
2405         if (TLI->has(Func)) {
2406           APFloat V = Op1->getValueAPF();
2407           if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
2408             return ConstantFP::get(Ty->getContext(), V);
2409         }
2410         break;
2411       case LibFunc_remainder:
2412       case LibFunc_remainderf:
2413         if (TLI->has(Func)) {
2414           APFloat V = Op1->getValueAPF();
2415           if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
2416             return ConstantFP::get(Ty->getContext(), V);
2417         }
2418         break;
2419       case LibFunc_atan2:
2420       case LibFunc_atan2f:
2421       case LibFunc_atan2_finite:
2422       case LibFunc_atan2f_finite:
2423         if (TLI->has(Func))
2424           return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
2425         break;
2426       }
2427     } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
2428       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2429         return nullptr;
2430       if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
2431         return ConstantFP::get(
2432             Ty->getContext(),
2433             APFloat((float)std::pow((float)Op1V.convertToDouble(),
2434                                     (int)Op2C->getZExtValue())));
2435       if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
2436         return ConstantFP::get(
2437             Ty->getContext(),
2438             APFloat((float)std::pow((float)Op1V.convertToDouble(),
2439                                     (int)Op2C->getZExtValue())));
2440       if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
2441         return ConstantFP::get(
2442             Ty->getContext(),
2443             APFloat((double)std::pow(Op1V.convertToDouble(),
2444                                      (int)Op2C->getZExtValue())));
2445 
2446       if (IntrinsicID == Intrinsic::amdgcn_ldexp) {
2447         // FIXME: Should flush denorms depending on FP mode, but that's ignored
2448         // everywhere else.
2449 
2450         // scalbn is equivalent to ldexp with float radix 2
2451         APFloat Result = scalbn(Op1->getValueAPF(), Op2C->getSExtValue(),
2452                                 APFloat::rmNearestTiesToEven);
2453         return ConstantFP::get(Ty->getContext(), Result);
2454       }
2455     }
2456     return nullptr;
2457   }
2458 
2459   if (Operands[0]->getType()->isIntegerTy() &&
2460       Operands[1]->getType()->isIntegerTy()) {
2461     const APInt *C0, *C1;
2462     if (!getConstIntOrUndef(Operands[0], C0) ||
2463         !getConstIntOrUndef(Operands[1], C1))
2464       return nullptr;
2465 
2466     unsigned BitWidth = Ty->getScalarSizeInBits();
2467     switch (IntrinsicID) {
2468     default: break;
2469     case Intrinsic::smax:
2470       if (!C0 && !C1)
2471         return UndefValue::get(Ty);
2472       if (!C0 || !C1)
2473         return ConstantInt::get(Ty, APInt::getSignedMaxValue(BitWidth));
2474       return ConstantInt::get(Ty, C0->sgt(*C1) ? *C0 : *C1);
2475 
2476     case Intrinsic::smin:
2477       if (!C0 && !C1)
2478         return UndefValue::get(Ty);
2479       if (!C0 || !C1)
2480         return ConstantInt::get(Ty, APInt::getSignedMinValue(BitWidth));
2481       return ConstantInt::get(Ty, C0->slt(*C1) ? *C0 : *C1);
2482 
2483     case Intrinsic::umax:
2484       if (!C0 && !C1)
2485         return UndefValue::get(Ty);
2486       if (!C0 || !C1)
2487         return ConstantInt::get(Ty, APInt::getMaxValue(BitWidth));
2488       return ConstantInt::get(Ty, C0->ugt(*C1) ? *C0 : *C1);
2489 
2490     case Intrinsic::umin:
2491       if (!C0 && !C1)
2492         return UndefValue::get(Ty);
2493       if (!C0 || !C1)
2494         return ConstantInt::get(Ty, APInt::getMinValue(BitWidth));
2495       return ConstantInt::get(Ty, C0->ult(*C1) ? *C0 : *C1);
2496 
2497     case Intrinsic::usub_with_overflow:
2498     case Intrinsic::ssub_with_overflow:
2499       // X - undef -> { 0, false }
2500       // undef - X -> { 0, false }
2501       if (!C0 || !C1)
2502         return Constant::getNullValue(Ty);
2503       LLVM_FALLTHROUGH;
2504     case Intrinsic::uadd_with_overflow:
2505     case Intrinsic::sadd_with_overflow:
2506       // X + undef -> { -1, false }
2507       // undef + x -> { -1, false }
2508       if (!C0 || !C1) {
2509         return ConstantStruct::get(
2510             cast<StructType>(Ty),
2511             {Constant::getAllOnesValue(Ty->getStructElementType(0)),
2512              Constant::getNullValue(Ty->getStructElementType(1))});
2513       }
2514       LLVM_FALLTHROUGH;
2515     case Intrinsic::smul_with_overflow:
2516     case Intrinsic::umul_with_overflow: {
2517       // undef * X -> { 0, false }
2518       // X * undef -> { 0, false }
2519       if (!C0 || !C1)
2520         return Constant::getNullValue(Ty);
2521 
2522       APInt Res;
2523       bool Overflow;
2524       switch (IntrinsicID) {
2525       default: llvm_unreachable("Invalid case");
2526       case Intrinsic::sadd_with_overflow:
2527         Res = C0->sadd_ov(*C1, Overflow);
2528         break;
2529       case Intrinsic::uadd_with_overflow:
2530         Res = C0->uadd_ov(*C1, Overflow);
2531         break;
2532       case Intrinsic::ssub_with_overflow:
2533         Res = C0->ssub_ov(*C1, Overflow);
2534         break;
2535       case Intrinsic::usub_with_overflow:
2536         Res = C0->usub_ov(*C1, Overflow);
2537         break;
2538       case Intrinsic::smul_with_overflow:
2539         Res = C0->smul_ov(*C1, Overflow);
2540         break;
2541       case Intrinsic::umul_with_overflow:
2542         Res = C0->umul_ov(*C1, Overflow);
2543         break;
2544       }
2545       Constant *Ops[] = {
2546         ConstantInt::get(Ty->getContext(), Res),
2547         ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
2548       };
2549       return ConstantStruct::get(cast<StructType>(Ty), Ops);
2550     }
2551     case Intrinsic::uadd_sat:
2552     case Intrinsic::sadd_sat:
2553       if (!C0 && !C1)
2554         return UndefValue::get(Ty);
2555       if (!C0 || !C1)
2556         return Constant::getAllOnesValue(Ty);
2557       if (IntrinsicID == Intrinsic::uadd_sat)
2558         return ConstantInt::get(Ty, C0->uadd_sat(*C1));
2559       else
2560         return ConstantInt::get(Ty, C0->sadd_sat(*C1));
2561     case Intrinsic::usub_sat:
2562     case Intrinsic::ssub_sat:
2563       if (!C0 && !C1)
2564         return UndefValue::get(Ty);
2565       if (!C0 || !C1)
2566         return Constant::getNullValue(Ty);
2567       if (IntrinsicID == Intrinsic::usub_sat)
2568         return ConstantInt::get(Ty, C0->usub_sat(*C1));
2569       else
2570         return ConstantInt::get(Ty, C0->ssub_sat(*C1));
2571     case Intrinsic::cttz:
2572     case Intrinsic::ctlz:
2573       assert(C1 && "Must be constant int");
2574 
2575       // cttz(0, 1) and ctlz(0, 1) are undef.
2576       if (C1->isOne() && (!C0 || C0->isZero()))
2577         return UndefValue::get(Ty);
2578       if (!C0)
2579         return Constant::getNullValue(Ty);
2580       if (IntrinsicID == Intrinsic::cttz)
2581         return ConstantInt::get(Ty, C0->countTrailingZeros());
2582       else
2583         return ConstantInt::get(Ty, C0->countLeadingZeros());
2584 
2585     case Intrinsic::abs:
2586       // Undef or minimum val operand with poison min --> undef
2587       assert(C1 && "Must be constant int");
2588       if (C1->isOne() && (!C0 || C0->isMinSignedValue()))
2589         return UndefValue::get(Ty);
2590 
2591       // Undef operand with no poison min --> 0 (sign bit must be clear)
2592       if (C1->isZero() && !C0)
2593         return Constant::getNullValue(Ty);
2594 
2595       return ConstantInt::get(Ty, C0->abs());
2596     }
2597 
2598     return nullptr;
2599   }
2600 
2601   // Support ConstantVector in case we have an Undef in the top.
2602   if ((isa<ConstantVector>(Operands[0]) ||
2603        isa<ConstantDataVector>(Operands[0])) &&
2604       // Check for default rounding mode.
2605       // FIXME: Support other rounding modes?
2606       isa<ConstantInt>(Operands[1]) &&
2607       cast<ConstantInt>(Operands[1])->getValue() == 4) {
2608     auto *Op = cast<Constant>(Operands[0]);
2609     switch (IntrinsicID) {
2610     default: break;
2611     case Intrinsic::x86_avx512_vcvtss2si32:
2612     case Intrinsic::x86_avx512_vcvtss2si64:
2613     case Intrinsic::x86_avx512_vcvtsd2si32:
2614     case Intrinsic::x86_avx512_vcvtsd2si64:
2615       if (ConstantFP *FPOp =
2616               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2617         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2618                                            /*roundTowardZero=*/false, Ty,
2619                                            /*IsSigned*/true);
2620       break;
2621     case Intrinsic::x86_avx512_vcvtss2usi32:
2622     case Intrinsic::x86_avx512_vcvtss2usi64:
2623     case Intrinsic::x86_avx512_vcvtsd2usi32:
2624     case Intrinsic::x86_avx512_vcvtsd2usi64:
2625       if (ConstantFP *FPOp =
2626               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2627         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2628                                            /*roundTowardZero=*/false, Ty,
2629                                            /*IsSigned*/false);
2630       break;
2631     case Intrinsic::x86_avx512_cvttss2si:
2632     case Intrinsic::x86_avx512_cvttss2si64:
2633     case Intrinsic::x86_avx512_cvttsd2si:
2634     case Intrinsic::x86_avx512_cvttsd2si64:
2635       if (ConstantFP *FPOp =
2636               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2637         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2638                                            /*roundTowardZero=*/true, Ty,
2639                                            /*IsSigned*/true);
2640       break;
2641     case Intrinsic::x86_avx512_cvttss2usi:
2642     case Intrinsic::x86_avx512_cvttss2usi64:
2643     case Intrinsic::x86_avx512_cvttsd2usi:
2644     case Intrinsic::x86_avx512_cvttsd2usi64:
2645       if (ConstantFP *FPOp =
2646               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2647         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2648                                            /*roundTowardZero=*/true, Ty,
2649                                            /*IsSigned*/false);
2650       break;
2651     }
2652   }
2653   return nullptr;
2654 }
2655 
ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,const APFloat & S0,const APFloat & S1,const APFloat & S2)2656 static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,
2657                                                const APFloat &S0,
2658                                                const APFloat &S1,
2659                                                const APFloat &S2) {
2660   unsigned ID;
2661   const fltSemantics &Sem = S0.getSemantics();
2662   APFloat MA(Sem), SC(Sem), TC(Sem);
2663   if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) {
2664     if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) {
2665       // S2 < 0
2666       ID = 5;
2667       SC = -S0;
2668     } else {
2669       ID = 4;
2670       SC = S0;
2671     }
2672     MA = S2;
2673     TC = -S1;
2674   } else if (abs(S1) >= abs(S0)) {
2675     if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) {
2676       // S1 < 0
2677       ID = 3;
2678       TC = -S2;
2679     } else {
2680       ID = 2;
2681       TC = S2;
2682     }
2683     MA = S1;
2684     SC = S0;
2685   } else {
2686     if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) {
2687       // S0 < 0
2688       ID = 1;
2689       SC = S2;
2690     } else {
2691       ID = 0;
2692       SC = -S2;
2693     }
2694     MA = S0;
2695     TC = -S1;
2696   }
2697   switch (IntrinsicID) {
2698   default:
2699     llvm_unreachable("unhandled amdgcn cube intrinsic");
2700   case Intrinsic::amdgcn_cubeid:
2701     return APFloat(Sem, ID);
2702   case Intrinsic::amdgcn_cubema:
2703     return MA + MA;
2704   case Intrinsic::amdgcn_cubesc:
2705     return SC;
2706   case Intrinsic::amdgcn_cubetc:
2707     return TC;
2708   }
2709 }
2710 
ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant * > Operands,Type * Ty)2711 static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands,
2712                                                  Type *Ty) {
2713   const APInt *C0, *C1, *C2;
2714   if (!getConstIntOrUndef(Operands[0], C0) ||
2715       !getConstIntOrUndef(Operands[1], C1) ||
2716       !getConstIntOrUndef(Operands[2], C2))
2717     return nullptr;
2718 
2719   if (!C2)
2720     return UndefValue::get(Ty);
2721 
2722   APInt Val(32, 0);
2723   unsigned NumUndefBytes = 0;
2724   for (unsigned I = 0; I < 32; I += 8) {
2725     unsigned Sel = C2->extractBitsAsZExtValue(8, I);
2726     unsigned B = 0;
2727 
2728     if (Sel >= 13)
2729       B = 0xff;
2730     else if (Sel == 12)
2731       B = 0x00;
2732     else {
2733       const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
2734       if (!Src)
2735         ++NumUndefBytes;
2736       else if (Sel < 8)
2737         B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
2738       else
2739         B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
2740     }
2741 
2742     Val.insertBits(B, I, 8);
2743   }
2744 
2745   if (NumUndefBytes == 4)
2746     return UndefValue::get(Ty);
2747 
2748   return ConstantInt::get(Ty, Val);
2749 }
2750 
ConstantFoldScalarCall3(StringRef Name,Intrinsic::ID IntrinsicID,Type * Ty,ArrayRef<Constant * > Operands,const TargetLibraryInfo * TLI,const CallBase * Call)2751 static Constant *ConstantFoldScalarCall3(StringRef Name,
2752                                          Intrinsic::ID IntrinsicID,
2753                                          Type *Ty,
2754                                          ArrayRef<Constant *> Operands,
2755                                          const TargetLibraryInfo *TLI,
2756                                          const CallBase *Call) {
2757   assert(Operands.size() == 3 && "Wrong number of operands.");
2758 
2759   if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2760     if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2761       if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
2762         const APFloat &C1 = Op1->getValueAPF();
2763         const APFloat &C2 = Op2->getValueAPF();
2764         const APFloat &C3 = Op3->getValueAPF();
2765 
2766         if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
2767           RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
2768           APFloat Res = C1;
2769           APFloat::opStatus St;
2770           switch (IntrinsicID) {
2771           default:
2772             return nullptr;
2773           case Intrinsic::experimental_constrained_fma:
2774           case Intrinsic::experimental_constrained_fmuladd:
2775             St = Res.fusedMultiplyAdd(C2, C3, RM);
2776             break;
2777           }
2778           if (mayFoldConstrained(
2779                   const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St))
2780             return ConstantFP::get(Ty->getContext(), Res);
2781           return nullptr;
2782         }
2783 
2784         switch (IntrinsicID) {
2785         default: break;
2786         case Intrinsic::amdgcn_fma_legacy: {
2787           // The legacy behaviour is that multiplying +/- 0.0 by anything, even
2788           // NaN or infinity, gives +0.0.
2789           if (C1.isZero() || C2.isZero()) {
2790             // It's tempting to just return C3 here, but that would give the
2791             // wrong result if C3 was -0.0.
2792             return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3);
2793           }
2794           LLVM_FALLTHROUGH;
2795         }
2796         case Intrinsic::fma:
2797         case Intrinsic::fmuladd: {
2798           APFloat V = C1;
2799           V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven);
2800           return ConstantFP::get(Ty->getContext(), V);
2801         }
2802         case Intrinsic::amdgcn_cubeid:
2803         case Intrinsic::amdgcn_cubema:
2804         case Intrinsic::amdgcn_cubesc:
2805         case Intrinsic::amdgcn_cubetc: {
2806           APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
2807           return ConstantFP::get(Ty->getContext(), V);
2808         }
2809         }
2810       }
2811     }
2812   }
2813 
2814   if (IntrinsicID == Intrinsic::smul_fix ||
2815       IntrinsicID == Intrinsic::smul_fix_sat) {
2816     // poison * C -> poison
2817     // C * poison -> poison
2818     if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2819       return PoisonValue::get(Ty);
2820 
2821     const APInt *C0, *C1;
2822     if (!getConstIntOrUndef(Operands[0], C0) ||
2823         !getConstIntOrUndef(Operands[1], C1))
2824       return nullptr;
2825 
2826     // undef * C -> 0
2827     // C * undef -> 0
2828     if (!C0 || !C1)
2829       return Constant::getNullValue(Ty);
2830 
2831     // This code performs rounding towards negative infinity in case the result
2832     // cannot be represented exactly for the given scale. Targets that do care
2833     // about rounding should use a target hook for specifying how rounding
2834     // should be done, and provide their own folding to be consistent with
2835     // rounding. This is the same approach as used by
2836     // DAGTypeLegalizer::ExpandIntRes_MULFIX.
2837     unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue();
2838     unsigned Width = C0->getBitWidth();
2839     assert(Scale < Width && "Illegal scale.");
2840     unsigned ExtendedWidth = Width * 2;
2841     APInt Product = (C0->sextOrSelf(ExtendedWidth) *
2842                      C1->sextOrSelf(ExtendedWidth)).ashr(Scale);
2843     if (IntrinsicID == Intrinsic::smul_fix_sat) {
2844       APInt Max = APInt::getSignedMaxValue(Width).sextOrSelf(ExtendedWidth);
2845       APInt Min = APInt::getSignedMinValue(Width).sextOrSelf(ExtendedWidth);
2846       Product = APIntOps::smin(Product, Max);
2847       Product = APIntOps::smax(Product, Min);
2848     }
2849     return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width));
2850   }
2851 
2852   if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
2853     const APInt *C0, *C1, *C2;
2854     if (!getConstIntOrUndef(Operands[0], C0) ||
2855         !getConstIntOrUndef(Operands[1], C1) ||
2856         !getConstIntOrUndef(Operands[2], C2))
2857       return nullptr;
2858 
2859     bool IsRight = IntrinsicID == Intrinsic::fshr;
2860     if (!C2)
2861       return Operands[IsRight ? 1 : 0];
2862     if (!C0 && !C1)
2863       return UndefValue::get(Ty);
2864 
2865     // The shift amount is interpreted as modulo the bitwidth. If the shift
2866     // amount is effectively 0, avoid UB due to oversized inverse shift below.
2867     unsigned BitWidth = C2->getBitWidth();
2868     unsigned ShAmt = C2->urem(BitWidth);
2869     if (!ShAmt)
2870       return Operands[IsRight ? 1 : 0];
2871 
2872     // (C0 << ShlAmt) | (C1 >> LshrAmt)
2873     unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
2874     unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
2875     if (!C0)
2876       return ConstantInt::get(Ty, C1->lshr(LshrAmt));
2877     if (!C1)
2878       return ConstantInt::get(Ty, C0->shl(ShlAmt));
2879     return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
2880   }
2881 
2882   if (IntrinsicID == Intrinsic::amdgcn_perm)
2883     return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
2884 
2885   return nullptr;
2886 }
2887 
ConstantFoldScalarCall(StringRef Name,Intrinsic::ID IntrinsicID,Type * Ty,ArrayRef<Constant * > Operands,const TargetLibraryInfo * TLI,const CallBase * Call)2888 static Constant *ConstantFoldScalarCall(StringRef Name,
2889                                         Intrinsic::ID IntrinsicID,
2890                                         Type *Ty,
2891                                         ArrayRef<Constant *> Operands,
2892                                         const TargetLibraryInfo *TLI,
2893                                         const CallBase *Call) {
2894   if (Operands.size() == 1)
2895     return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
2896 
2897   if (Operands.size() == 2)
2898     return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call);
2899 
2900   if (Operands.size() == 3)
2901     return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
2902 
2903   return nullptr;
2904 }
2905 
ConstantFoldFixedVectorCall(StringRef Name,Intrinsic::ID IntrinsicID,FixedVectorType * FVTy,ArrayRef<Constant * > Operands,const DataLayout & DL,const TargetLibraryInfo * TLI,const CallBase * Call)2906 static Constant *ConstantFoldFixedVectorCall(
2907     StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy,
2908     ArrayRef<Constant *> Operands, const DataLayout &DL,
2909     const TargetLibraryInfo *TLI, const CallBase *Call) {
2910   SmallVector<Constant *, 4> Result(FVTy->getNumElements());
2911   SmallVector<Constant *, 4> Lane(Operands.size());
2912   Type *Ty = FVTy->getElementType();
2913 
2914   switch (IntrinsicID) {
2915   case Intrinsic::masked_load: {
2916     auto *SrcPtr = Operands[0];
2917     auto *Mask = Operands[2];
2918     auto *Passthru = Operands[3];
2919 
2920     Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL);
2921 
2922     SmallVector<Constant *, 32> NewElements;
2923     for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
2924       auto *MaskElt = Mask->getAggregateElement(I);
2925       if (!MaskElt)
2926         break;
2927       auto *PassthruElt = Passthru->getAggregateElement(I);
2928       auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
2929       if (isa<UndefValue>(MaskElt)) {
2930         if (PassthruElt)
2931           NewElements.push_back(PassthruElt);
2932         else if (VecElt)
2933           NewElements.push_back(VecElt);
2934         else
2935           return nullptr;
2936       }
2937       if (MaskElt->isNullValue()) {
2938         if (!PassthruElt)
2939           return nullptr;
2940         NewElements.push_back(PassthruElt);
2941       } else if (MaskElt->isOneValue()) {
2942         if (!VecElt)
2943           return nullptr;
2944         NewElements.push_back(VecElt);
2945       } else {
2946         return nullptr;
2947       }
2948     }
2949     if (NewElements.size() != FVTy->getNumElements())
2950       return nullptr;
2951     return ConstantVector::get(NewElements);
2952   }
2953   case Intrinsic::arm_mve_vctp8:
2954   case Intrinsic::arm_mve_vctp16:
2955   case Intrinsic::arm_mve_vctp32:
2956   case Intrinsic::arm_mve_vctp64: {
2957     if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
2958       unsigned Lanes = FVTy->getNumElements();
2959       uint64_t Limit = Op->getZExtValue();
2960       // vctp64 are currently modelled as returning a v4i1, not a v2i1. Make
2961       // sure we get the limit right in that case and set all relevant lanes.
2962       if (IntrinsicID == Intrinsic::arm_mve_vctp64)
2963         Limit *= 2;
2964 
2965       SmallVector<Constant *, 16> NCs;
2966       for (unsigned i = 0; i < Lanes; i++) {
2967         if (i < Limit)
2968           NCs.push_back(ConstantInt::getTrue(Ty));
2969         else
2970           NCs.push_back(ConstantInt::getFalse(Ty));
2971       }
2972       return ConstantVector::get(NCs);
2973     }
2974     break;
2975   }
2976   case Intrinsic::get_active_lane_mask: {
2977     auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
2978     auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
2979     if (Op0 && Op1) {
2980       unsigned Lanes = FVTy->getNumElements();
2981       uint64_t Base = Op0->getZExtValue();
2982       uint64_t Limit = Op1->getZExtValue();
2983 
2984       SmallVector<Constant *, 16> NCs;
2985       for (unsigned i = 0; i < Lanes; i++) {
2986         if (Base + i < Limit)
2987           NCs.push_back(ConstantInt::getTrue(Ty));
2988         else
2989           NCs.push_back(ConstantInt::getFalse(Ty));
2990       }
2991       return ConstantVector::get(NCs);
2992     }
2993     break;
2994   }
2995   default:
2996     break;
2997   }
2998 
2999   for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
3000     // Gather a column of constants.
3001     for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
3002       // Some intrinsics use a scalar type for certain arguments.
3003       if (hasVectorInstrinsicScalarOpd(IntrinsicID, J)) {
3004         Lane[J] = Operands[J];
3005         continue;
3006       }
3007 
3008       Constant *Agg = Operands[J]->getAggregateElement(I);
3009       if (!Agg)
3010         return nullptr;
3011 
3012       Lane[J] = Agg;
3013     }
3014 
3015     // Use the regular scalar folding to simplify this column.
3016     Constant *Folded =
3017         ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
3018     if (!Folded)
3019       return nullptr;
3020     Result[I] = Folded;
3021   }
3022 
3023   return ConstantVector::get(Result);
3024 }
3025 
ConstantFoldScalableVectorCall(StringRef Name,Intrinsic::ID IntrinsicID,ScalableVectorType * SVTy,ArrayRef<Constant * > Operands,const DataLayout & DL,const TargetLibraryInfo * TLI,const CallBase * Call)3026 static Constant *ConstantFoldScalableVectorCall(
3027     StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy,
3028     ArrayRef<Constant *> Operands, const DataLayout &DL,
3029     const TargetLibraryInfo *TLI, const CallBase *Call) {
3030   switch (IntrinsicID) {
3031   case Intrinsic::aarch64_sve_convert_from_svbool: {
3032     auto *Src = dyn_cast<Constant>(Operands[0]);
3033     if (!Src || !Src->isNullValue())
3034       break;
3035 
3036     return ConstantInt::getFalse(SVTy);
3037   }
3038   default:
3039     break;
3040   }
3041   return nullptr;
3042 }
3043 
3044 } // end anonymous namespace
3045 
ConstantFoldCall(const CallBase * Call,Function * F,ArrayRef<Constant * > Operands,const TargetLibraryInfo * TLI)3046 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F,
3047                                  ArrayRef<Constant *> Operands,
3048                                  const TargetLibraryInfo *TLI) {
3049   if (Call->isNoBuiltin())
3050     return nullptr;
3051   if (!F->hasName())
3052     return nullptr;
3053 
3054   // If this is not an intrinsic and not recognized as a library call, bail out.
3055   if (F->getIntrinsicID() == Intrinsic::not_intrinsic) {
3056     if (!TLI)
3057       return nullptr;
3058     LibFunc LibF;
3059     if (!TLI->getLibFunc(*F, LibF))
3060       return nullptr;
3061   }
3062 
3063   StringRef Name = F->getName();
3064   Type *Ty = F->getReturnType();
3065   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty))
3066     return ConstantFoldFixedVectorCall(
3067         Name, F->getIntrinsicID(), FVTy, Operands,
3068         F->getParent()->getDataLayout(), TLI, Call);
3069 
3070   if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty))
3071     return ConstantFoldScalableVectorCall(
3072         Name, F->getIntrinsicID(), SVTy, Operands,
3073         F->getParent()->getDataLayout(), TLI, Call);
3074 
3075   // TODO: If this is a library function, we already discovered that above,
3076   //       so we should pass the LibFunc, not the name (and it might be better
3077   //       still to separate intrinsic handling from libcalls).
3078   return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI,
3079                                 Call);
3080 }
3081 
isMathLibCallNoop(const CallBase * Call,const TargetLibraryInfo * TLI)3082 bool llvm::isMathLibCallNoop(const CallBase *Call,
3083                              const TargetLibraryInfo *TLI) {
3084   // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
3085   // (and to some extent ConstantFoldScalarCall).
3086   if (Call->isNoBuiltin() || Call->isStrictFP())
3087     return false;
3088   Function *F = Call->getCalledFunction();
3089   if (!F)
3090     return false;
3091 
3092   LibFunc Func;
3093   if (!TLI || !TLI->getLibFunc(*F, Func))
3094     return false;
3095 
3096   if (Call->arg_size() == 1) {
3097     if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
3098       const APFloat &Op = OpC->getValueAPF();
3099       switch (Func) {
3100       case LibFunc_logl:
3101       case LibFunc_log:
3102       case LibFunc_logf:
3103       case LibFunc_log2l:
3104       case LibFunc_log2:
3105       case LibFunc_log2f:
3106       case LibFunc_log10l:
3107       case LibFunc_log10:
3108       case LibFunc_log10f:
3109         return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
3110 
3111       case LibFunc_expl:
3112       case LibFunc_exp:
3113       case LibFunc_expf:
3114         // FIXME: These boundaries are slightly conservative.
3115         if (OpC->getType()->isDoubleTy())
3116           return !(Op < APFloat(-745.0) || Op > APFloat(709.0));
3117         if (OpC->getType()->isFloatTy())
3118           return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f));
3119         break;
3120 
3121       case LibFunc_exp2l:
3122       case LibFunc_exp2:
3123       case LibFunc_exp2f:
3124         // FIXME: These boundaries are slightly conservative.
3125         if (OpC->getType()->isDoubleTy())
3126           return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0));
3127         if (OpC->getType()->isFloatTy())
3128           return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f));
3129         break;
3130 
3131       case LibFunc_sinl:
3132       case LibFunc_sin:
3133       case LibFunc_sinf:
3134       case LibFunc_cosl:
3135       case LibFunc_cos:
3136       case LibFunc_cosf:
3137         return !Op.isInfinity();
3138 
3139       case LibFunc_tanl:
3140       case LibFunc_tan:
3141       case LibFunc_tanf: {
3142         // FIXME: Stop using the host math library.
3143         // FIXME: The computation isn't done in the right precision.
3144         Type *Ty = OpC->getType();
3145         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
3146           return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr;
3147         break;
3148       }
3149 
3150       case LibFunc_asinl:
3151       case LibFunc_asin:
3152       case LibFunc_asinf:
3153       case LibFunc_acosl:
3154       case LibFunc_acos:
3155       case LibFunc_acosf:
3156         return !(Op < APFloat(Op.getSemantics(), "-1") ||
3157                  Op > APFloat(Op.getSemantics(), "1"));
3158 
3159       case LibFunc_sinh:
3160       case LibFunc_cosh:
3161       case LibFunc_sinhf:
3162       case LibFunc_coshf:
3163       case LibFunc_sinhl:
3164       case LibFunc_coshl:
3165         // FIXME: These boundaries are slightly conservative.
3166         if (OpC->getType()->isDoubleTy())
3167           return !(Op < APFloat(-710.0) || Op > APFloat(710.0));
3168         if (OpC->getType()->isFloatTy())
3169           return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f));
3170         break;
3171 
3172       case LibFunc_sqrtl:
3173       case LibFunc_sqrt:
3174       case LibFunc_sqrtf:
3175         return Op.isNaN() || Op.isZero() || !Op.isNegative();
3176 
3177       // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
3178       // maybe others?
3179       default:
3180         break;
3181       }
3182     }
3183   }
3184 
3185   if (Call->arg_size() == 2) {
3186     ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
3187     ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
3188     if (Op0C && Op1C) {
3189       const APFloat &Op0 = Op0C->getValueAPF();
3190       const APFloat &Op1 = Op1C->getValueAPF();
3191 
3192       switch (Func) {
3193       case LibFunc_powl:
3194       case LibFunc_pow:
3195       case LibFunc_powf: {
3196         // FIXME: Stop using the host math library.
3197         // FIXME: The computation isn't done in the right precision.
3198         Type *Ty = Op0C->getType();
3199         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
3200           if (Ty == Op1C->getType())
3201             return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr;
3202         }
3203         break;
3204       }
3205 
3206       case LibFunc_fmodl:
3207       case LibFunc_fmod:
3208       case LibFunc_fmodf:
3209       case LibFunc_remainderl:
3210       case LibFunc_remainder:
3211       case LibFunc_remainderf:
3212         return Op0.isNaN() || Op1.isNaN() ||
3213                (!Op0.isInfinity() && !Op1.isZero());
3214 
3215       default:
3216         break;
3217       }
3218     }
3219   }
3220 
3221   return false;
3222 }
3223 
anchor()3224 void TargetFolder::anchor() {}
3225