1 //===-- llvm/CodeGen/DIEHash.cpp - Dwarf Hashing Framework ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for DWARF4 hashing of DIEs.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "DIEHash.h"
14 #include "ByteStreamer.h"
15 #include "DwarfCompileUnit.h"
16 #include "DwarfDebug.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/BinaryFormat/Dwarf.h"
20 #include "llvm/CodeGen/AsmPrinter.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/Endian.h"
23 #include "llvm/Support/raw_ostream.h"
24 
25 using namespace llvm;
26 
27 #define DEBUG_TYPE "dwarfdebug"
28 
29 /// Grabs the string in whichever attribute is passed in and returns
30 /// a reference to it.
getDIEStringAttr(const DIE & Die,uint16_t Attr)31 static StringRef getDIEStringAttr(const DIE &Die, uint16_t Attr) {
32   // Iterate through all the attributes until we find the one we're
33   // looking for, if we can't find it return an empty string.
34   for (const auto &V : Die.values())
35     if (V.getAttribute() == Attr)
36       return V.getDIEString().getString();
37 
38   return StringRef("");
39 }
40 
41 /// Adds the string in \p Str to the hash. This also hashes
42 /// a trailing NULL with the string.
addString(StringRef Str)43 void DIEHash::addString(StringRef Str) {
44   LLVM_DEBUG(dbgs() << "Adding string " << Str << " to hash.\n");
45   Hash.update(Str);
46   Hash.update(makeArrayRef((uint8_t)'\0'));
47 }
48 
49 // FIXME: The LEB128 routines are copied and only slightly modified out of
50 // LEB128.h.
51 
52 /// Adds the unsigned in \p Value to the hash encoded as a ULEB128.
addULEB128(uint64_t Value)53 void DIEHash::addULEB128(uint64_t Value) {
54   LLVM_DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n");
55   do {
56     uint8_t Byte = Value & 0x7f;
57     Value >>= 7;
58     if (Value != 0)
59       Byte |= 0x80; // Mark this byte to show that more bytes will follow.
60     Hash.update(Byte);
61   } while (Value != 0);
62 }
63 
addSLEB128(int64_t Value)64 void DIEHash::addSLEB128(int64_t Value) {
65   LLVM_DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n");
66   bool More;
67   do {
68     uint8_t Byte = Value & 0x7f;
69     Value >>= 7;
70     More = !((((Value == 0) && ((Byte & 0x40) == 0)) ||
71               ((Value == -1) && ((Byte & 0x40) != 0))));
72     if (More)
73       Byte |= 0x80; // Mark this byte to show that more bytes will follow.
74     Hash.update(Byte);
75   } while (More);
76 }
77 
78 /// Including \p Parent adds the context of Parent to the hash..
addParentContext(const DIE & Parent)79 void DIEHash::addParentContext(const DIE &Parent) {
80 
81   LLVM_DEBUG(dbgs() << "Adding parent context to hash...\n");
82 
83   // [7.27.2] For each surrounding type or namespace beginning with the
84   // outermost such construct...
85   SmallVector<const DIE *, 1> Parents;
86   const DIE *Cur = &Parent;
87   while (Cur->getParent()) {
88     Parents.push_back(Cur);
89     Cur = Cur->getParent();
90   }
91   assert(Cur->getTag() == dwarf::DW_TAG_compile_unit ||
92          Cur->getTag() == dwarf::DW_TAG_type_unit);
93 
94   // Reverse iterate over our list to go from the outermost construct to the
95   // innermost.
96   for (SmallVectorImpl<const DIE *>::reverse_iterator I = Parents.rbegin(),
97                                                       E = Parents.rend();
98        I != E; ++I) {
99     const DIE &Die = **I;
100 
101     // ... Append the letter "C" to the sequence...
102     addULEB128('C');
103 
104     // ... Followed by the DWARF tag of the construct...
105     addULEB128(Die.getTag());
106 
107     // ... Then the name, taken from the DW_AT_name attribute.
108     StringRef Name = getDIEStringAttr(Die, dwarf::DW_AT_name);
109     LLVM_DEBUG(dbgs() << "... adding context: " << Name << "\n");
110     if (!Name.empty())
111       addString(Name);
112   }
113 }
114 
115 // Collect all of the attributes for a particular DIE in single structure.
collectAttributes(const DIE & Die,DIEAttrs & Attrs)116 void DIEHash::collectAttributes(const DIE &Die, DIEAttrs &Attrs) {
117 
118   for (const auto &V : Die.values()) {
119     LLVM_DEBUG(dbgs() << "Attribute: "
120                       << dwarf::AttributeString(V.getAttribute())
121                       << " added.\n");
122     switch (V.getAttribute()) {
123 #define HANDLE_DIE_HASH_ATTR(NAME)                                             \
124   case dwarf::NAME:                                                            \
125     Attrs.NAME = V;                                                            \
126     break;
127 #include "DIEHashAttributes.def"
128     default:
129       break;
130     }
131   }
132 }
133 
hashShallowTypeReference(dwarf::Attribute Attribute,const DIE & Entry,StringRef Name)134 void DIEHash::hashShallowTypeReference(dwarf::Attribute Attribute,
135                                        const DIE &Entry, StringRef Name) {
136   // append the letter 'N'
137   addULEB128('N');
138 
139   // the DWARF attribute code (DW_AT_type or DW_AT_friend),
140   addULEB128(Attribute);
141 
142   // the context of the tag,
143   if (const DIE *Parent = Entry.getParent())
144     addParentContext(*Parent);
145 
146   // the letter 'E',
147   addULEB128('E');
148 
149   // and the name of the type.
150   addString(Name);
151 
152   // Currently DW_TAG_friends are not used by Clang, but if they do become so,
153   // here's the relevant spec text to implement:
154   //
155   // For DW_TAG_friend, if the referenced entry is the DW_TAG_subprogram,
156   // the context is omitted and the name to be used is the ABI-specific name
157   // of the subprogram (e.g., the mangled linker name).
158 }
159 
hashRepeatedTypeReference(dwarf::Attribute Attribute,unsigned DieNumber)160 void DIEHash::hashRepeatedTypeReference(dwarf::Attribute Attribute,
161                                         unsigned DieNumber) {
162   // a) If T is in the list of [previously hashed types], use the letter
163   // 'R' as the marker
164   addULEB128('R');
165 
166   addULEB128(Attribute);
167 
168   // and use the unsigned LEB128 encoding of [the index of T in the
169   // list] as the attribute value;
170   addULEB128(DieNumber);
171 }
172 
hashDIEEntry(dwarf::Attribute Attribute,dwarf::Tag Tag,const DIE & Entry)173 void DIEHash::hashDIEEntry(dwarf::Attribute Attribute, dwarf::Tag Tag,
174                            const DIE &Entry) {
175   assert(Tag != dwarf::DW_TAG_friend && "No current LLVM clients emit friend "
176                                         "tags. Add support here when there's "
177                                         "a use case");
178   // Step 5
179   // If the tag in Step 3 is one of [the below tags]
180   if ((Tag == dwarf::DW_TAG_pointer_type ||
181        Tag == dwarf::DW_TAG_reference_type ||
182        Tag == dwarf::DW_TAG_rvalue_reference_type ||
183        Tag == dwarf::DW_TAG_ptr_to_member_type) &&
184       // and the referenced type (via the [below attributes])
185       // FIXME: This seems overly restrictive, and causes hash mismatches
186       // there's a decl/def difference in the containing type of a
187       // ptr_to_member_type, but it's what DWARF says, for some reason.
188       Attribute == dwarf::DW_AT_type) {
189     // ... has a DW_AT_name attribute,
190     StringRef Name = getDIEStringAttr(Entry, dwarf::DW_AT_name);
191     if (!Name.empty()) {
192       hashShallowTypeReference(Attribute, Entry, Name);
193       return;
194     }
195   }
196 
197   unsigned &DieNumber = Numbering[&Entry];
198   if (DieNumber) {
199     hashRepeatedTypeReference(Attribute, DieNumber);
200     return;
201   }
202 
203   // otherwise, b) use the letter 'T' as the marker, ...
204   addULEB128('T');
205 
206   addULEB128(Attribute);
207 
208   // ... process the type T recursively by performing Steps 2 through 7, and
209   // use the result as the attribute value.
210   DieNumber = Numbering.size();
211   computeHash(Entry);
212 }
213 
214 // Hash all of the values in a block like set of values. This assumes that
215 // all of the data is going to be added as integers.
hashBlockData(const DIE::const_value_range & Values)216 void DIEHash::hashBlockData(const DIE::const_value_range &Values) {
217   for (const auto &V : Values)
218     if (V.getType() == DIEValue::isBaseTypeRef) {
219       const DIE &C =
220           *CU->ExprRefedBaseTypes[V.getDIEBaseTypeRef().getIndex()].Die;
221       StringRef Name = getDIEStringAttr(C, dwarf::DW_AT_name);
222       assert(!Name.empty() &&
223              "Base types referenced from DW_OP_convert should have a name");
224       hashNestedType(C, Name);
225     } else
226       Hash.update((uint64_t)V.getDIEInteger().getValue());
227 }
228 
229 // Hash the contents of a loclistptr class.
hashLocList(const DIELocList & LocList)230 void DIEHash::hashLocList(const DIELocList &LocList) {
231   HashingByteStreamer Streamer(*this);
232   DwarfDebug &DD = *AP->getDwarfDebug();
233   const DebugLocStream &Locs = DD.getDebugLocs();
234   const DebugLocStream::List &List = Locs.getList(LocList.getValue());
235   for (const DebugLocStream::Entry &Entry : Locs.getEntries(List))
236     DD.emitDebugLocEntry(Streamer, Entry, List.CU);
237 }
238 
239 // Hash an individual attribute \param Attr based on the type of attribute and
240 // the form.
hashAttribute(const DIEValue & Value,dwarf::Tag Tag)241 void DIEHash::hashAttribute(const DIEValue &Value, dwarf::Tag Tag) {
242   dwarf::Attribute Attribute = Value.getAttribute();
243 
244   // Other attribute values use the letter 'A' as the marker, and the value
245   // consists of the form code (encoded as an unsigned LEB128 value) followed by
246   // the encoding of the value according to the form code. To ensure
247   // reproducibility of the signature, the set of forms used in the signature
248   // computation is limited to the following: DW_FORM_sdata, DW_FORM_flag,
249   // DW_FORM_string, and DW_FORM_block.
250 
251   switch (Value.getType()) {
252   case DIEValue::isNone:
253     llvm_unreachable("Expected valid DIEValue");
254 
255     // 7.27 Step 3
256     // ... An attribute that refers to another type entry T is processed as
257     // follows:
258   case DIEValue::isEntry:
259     hashDIEEntry(Attribute, Tag, Value.getDIEEntry().getEntry());
260     break;
261   case DIEValue::isInteger: {
262     addULEB128('A');
263     addULEB128(Attribute);
264     switch (Value.getForm()) {
265     case dwarf::DW_FORM_data1:
266     case dwarf::DW_FORM_data2:
267     case dwarf::DW_FORM_data4:
268     case dwarf::DW_FORM_data8:
269     case dwarf::DW_FORM_udata:
270     case dwarf::DW_FORM_sdata:
271       addULEB128(dwarf::DW_FORM_sdata);
272       addSLEB128((int64_t)Value.getDIEInteger().getValue());
273       break;
274     // DW_FORM_flag_present is just flag with a value of one. We still give it a
275     // value so just use the value.
276     case dwarf::DW_FORM_flag_present:
277     case dwarf::DW_FORM_flag:
278       addULEB128(dwarf::DW_FORM_flag);
279       addULEB128((int64_t)Value.getDIEInteger().getValue());
280       break;
281     default:
282       llvm_unreachable("Unknown integer form!");
283     }
284     break;
285   }
286   case DIEValue::isString:
287     addULEB128('A');
288     addULEB128(Attribute);
289     addULEB128(dwarf::DW_FORM_string);
290     addString(Value.getDIEString().getString());
291     break;
292   case DIEValue::isInlineString:
293     addULEB128('A');
294     addULEB128(Attribute);
295     addULEB128(dwarf::DW_FORM_string);
296     addString(Value.getDIEInlineString().getString());
297     break;
298   case DIEValue::isBlock:
299   case DIEValue::isLoc:
300   case DIEValue::isLocList:
301     addULEB128('A');
302     addULEB128(Attribute);
303     addULEB128(dwarf::DW_FORM_block);
304     if (Value.getType() == DIEValue::isBlock) {
305       addULEB128(Value.getDIEBlock().ComputeSize(AP));
306       hashBlockData(Value.getDIEBlock().values());
307     } else if (Value.getType() == DIEValue::isLoc) {
308       addULEB128(Value.getDIELoc().ComputeSize(AP));
309       hashBlockData(Value.getDIELoc().values());
310     } else {
311       // We could add the block length, but that would take
312       // a bit of work and not add a lot of uniqueness
313       // to the hash in some way we could test.
314       hashLocList(Value.getDIELocList());
315     }
316     break;
317     // FIXME: It's uncertain whether or not we should handle this at the moment.
318   case DIEValue::isExpr:
319   case DIEValue::isLabel:
320   case DIEValue::isBaseTypeRef:
321   case DIEValue::isDelta:
322   case DIEValue::isAddrOffset:
323     llvm_unreachable("Add support for additional value types.");
324   }
325 }
326 
327 // Go through the attributes from \param Attrs in the order specified in 7.27.4
328 // and hash them.
hashAttributes(const DIEAttrs & Attrs,dwarf::Tag Tag)329 void DIEHash::hashAttributes(const DIEAttrs &Attrs, dwarf::Tag Tag) {
330 #define HANDLE_DIE_HASH_ATTR(NAME)                                             \
331   {                                                                            \
332     if (Attrs.NAME)                                                           \
333       hashAttribute(Attrs.NAME, Tag);                                         \
334   }
335 #include "DIEHashAttributes.def"
336   // FIXME: Add the extended attributes.
337 }
338 
339 // Add all of the attributes for \param Die to the hash.
addAttributes(const DIE & Die)340 void DIEHash::addAttributes(const DIE &Die) {
341   DIEAttrs Attrs = {};
342   collectAttributes(Die, Attrs);
343   hashAttributes(Attrs, Die.getTag());
344 }
345 
hashNestedType(const DIE & Die,StringRef Name)346 void DIEHash::hashNestedType(const DIE &Die, StringRef Name) {
347   // 7.27 Step 7
348   // ... append the letter 'S',
349   addULEB128('S');
350 
351   // the tag of C,
352   addULEB128(Die.getTag());
353 
354   // and the name.
355   addString(Name);
356 }
357 
358 // Compute the hash of a DIE. This is based on the type signature computation
359 // given in section 7.27 of the DWARF4 standard. It is the md5 hash of a
360 // flattened description of the DIE.
computeHash(const DIE & Die)361 void DIEHash::computeHash(const DIE &Die) {
362   // Append the letter 'D', followed by the DWARF tag of the DIE.
363   addULEB128('D');
364   addULEB128(Die.getTag());
365 
366   // Add each of the attributes of the DIE.
367   addAttributes(Die);
368 
369   // Then hash each of the children of the DIE.
370   for (auto &C : Die.children()) {
371     // 7.27 Step 7
372     // If C is a nested type entry or a member function entry, ...
373     if (isType(C.getTag()) || (C.getTag() == dwarf::DW_TAG_subprogram && isType(C.getParent()->getTag()))) {
374       StringRef Name = getDIEStringAttr(C, dwarf::DW_AT_name);
375       // ... and has a DW_AT_name attribute
376       if (!Name.empty()) {
377         hashNestedType(C, Name);
378         continue;
379       }
380     }
381     computeHash(C);
382   }
383 
384   // Following the last (or if there are no children), append a zero byte.
385   Hash.update(makeArrayRef((uint8_t)'\0'));
386 }
387 
388 /// This is based on the type signature computation given in section 7.27 of the
389 /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE
390 /// with the inclusion of the full CU and all top level CU entities.
391 // TODO: Initialize the type chain at 0 instead of 1 for CU signatures.
computeCUSignature(StringRef DWOName,const DIE & Die)392 uint64_t DIEHash::computeCUSignature(StringRef DWOName, const DIE &Die) {
393   Numbering.clear();
394   Numbering[&Die] = 1;
395 
396   if (!DWOName.empty())
397     Hash.update(DWOName);
398   // Hash the DIE.
399   computeHash(Die);
400 
401   // Now return the result.
402   MD5::MD5Result Result;
403   Hash.final(Result);
404 
405   // ... take the least significant 8 bytes and return those. Our MD5
406   // implementation always returns its results in little endian, so we actually
407   // need the "high" word.
408   return Result.high();
409 }
410 
411 /// This is based on the type signature computation given in section 7.27 of the
412 /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE
413 /// with the inclusion of additional forms not specifically called out in the
414 /// standard.
computeTypeSignature(const DIE & Die)415 uint64_t DIEHash::computeTypeSignature(const DIE &Die) {
416   Numbering.clear();
417   Numbering[&Die] = 1;
418 
419   if (const DIE *Parent = Die.getParent())
420     addParentContext(*Parent);
421 
422   // Hash the DIE.
423   computeHash(Die);
424 
425   // Now return the result.
426   MD5::MD5Result Result;
427   Hash.final(Result);
428 
429   // ... take the least significant 8 bytes and return those. Our MD5
430   // implementation always returns its results in little endian, so we actually
431   // need the "high" word.
432   return Result.high();
433 }
434