1 //===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This library implements `print` family of functions in classes like
10 // Module, Function, Value, etc. In-memory representation of those classes is
11 // converted to IR strings.
12 //
13 // Note that these routines must be extremely tolerant of various errors in the
14 // LLVM code, because it can be used for debugging transformations.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/None.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/ADT/iterator_range.h"
32 #include "llvm/BinaryFormat/Dwarf.h"
33 #include "llvm/Config/llvm-config.h"
34 #include "llvm/IR/Argument.h"
35 #include "llvm/IR/AssemblyAnnotationWriter.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/CallingConv.h"
40 #include "llvm/IR/Comdat.h"
41 #include "llvm/IR/Constant.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DebugInfoMetadata.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalAlias.h"
47 #include "llvm/IR/GlobalIFunc.h"
48 #include "llvm/IR/GlobalIndirectSymbol.h"
49 #include "llvm/IR/GlobalObject.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/IR/GlobalVariable.h"
52 #include "llvm/IR/IRPrintingPasses.h"
53 #include "llvm/IR/InlineAsm.h"
54 #include "llvm/IR/InstrTypes.h"
55 #include "llvm/IR/Instruction.h"
56 #include "llvm/IR/Instructions.h"
57 #include "llvm/IR/IntrinsicInst.h"
58 #include "llvm/IR/LLVMContext.h"
59 #include "llvm/IR/Metadata.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/ModuleSlotTracker.h"
62 #include "llvm/IR/ModuleSummaryIndex.h"
63 #include "llvm/IR/Operator.h"
64 #include "llvm/IR/Type.h"
65 #include "llvm/IR/TypeFinder.h"
66 #include "llvm/IR/Use.h"
67 #include "llvm/IR/User.h"
68 #include "llvm/IR/Value.h"
69 #include "llvm/Support/AtomicOrdering.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/Compiler.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/Format.h"
75 #include "llvm/Support/FormattedStream.h"
76 #include "llvm/Support/SaveAndRestore.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <cctype>
81 #include <cstddef>
82 #include <cstdint>
83 #include <iterator>
84 #include <memory>
85 #include <string>
86 #include <tuple>
87 #include <utility>
88 #include <vector>
89 
90 using namespace llvm;
91 
92 // Make virtual table appear in this compilation unit.
93 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default;
94 
95 //===----------------------------------------------------------------------===//
96 // Helper Functions
97 //===----------------------------------------------------------------------===//
98 
99 using OrderMap = MapVector<const Value *, unsigned>;
100 
101 using UseListOrderMap =
102     DenseMap<const Function *, MapVector<const Value *, std::vector<unsigned>>>;
103 
104 /// Look for a value that might be wrapped as metadata, e.g. a value in a
105 /// metadata operand. Returns the input value as-is if it is not wrapped.
skipMetadataWrapper(const Value * V)106 static const Value *skipMetadataWrapper(const Value *V) {
107   if (const auto *MAV = dyn_cast<MetadataAsValue>(V))
108     if (const auto *VAM = dyn_cast<ValueAsMetadata>(MAV->getMetadata()))
109       return VAM->getValue();
110   return V;
111 }
112 
orderValue(const Value * V,OrderMap & OM)113 static void orderValue(const Value *V, OrderMap &OM) {
114   if (OM.lookup(V))
115     return;
116 
117   if (const Constant *C = dyn_cast<Constant>(V))
118     if (C->getNumOperands() && !isa<GlobalValue>(C))
119       for (const Value *Op : C->operands())
120         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
121           orderValue(Op, OM);
122 
123   // Note: we cannot cache this lookup above, since inserting into the map
124   // changes the map's size, and thus affects the other IDs.
125   unsigned ID = OM.size() + 1;
126   OM[V] = ID;
127 }
128 
orderModule(const Module * M)129 static OrderMap orderModule(const Module *M) {
130   OrderMap OM;
131 
132   for (const GlobalVariable &G : M->globals()) {
133     if (G.hasInitializer())
134       if (!isa<GlobalValue>(G.getInitializer()))
135         orderValue(G.getInitializer(), OM);
136     orderValue(&G, OM);
137   }
138   for (const GlobalAlias &A : M->aliases()) {
139     if (!isa<GlobalValue>(A.getAliasee()))
140       orderValue(A.getAliasee(), OM);
141     orderValue(&A, OM);
142   }
143   for (const GlobalIFunc &I : M->ifuncs()) {
144     if (!isa<GlobalValue>(I.getResolver()))
145       orderValue(I.getResolver(), OM);
146     orderValue(&I, OM);
147   }
148   for (const Function &F : *M) {
149     for (const Use &U : F.operands())
150       if (!isa<GlobalValue>(U.get()))
151         orderValue(U.get(), OM);
152 
153     orderValue(&F, OM);
154 
155     if (F.isDeclaration())
156       continue;
157 
158     for (const Argument &A : F.args())
159       orderValue(&A, OM);
160     for (const BasicBlock &BB : F) {
161       orderValue(&BB, OM);
162       for (const Instruction &I : BB) {
163         for (const Value *Op : I.operands()) {
164           Op = skipMetadataWrapper(Op);
165           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
166               isa<InlineAsm>(*Op))
167             orderValue(Op, OM);
168         }
169         orderValue(&I, OM);
170       }
171     }
172   }
173   return OM;
174 }
175 
176 static std::vector<unsigned>
predictValueUseListOrder(const Value * V,unsigned ID,const OrderMap & OM)177 predictValueUseListOrder(const Value *V, unsigned ID, const OrderMap &OM) {
178   // Predict use-list order for this one.
179   using Entry = std::pair<const Use *, unsigned>;
180   SmallVector<Entry, 64> List;
181   for (const Use &U : V->uses())
182     // Check if this user will be serialized.
183     if (OM.lookup(U.getUser()))
184       List.push_back(std::make_pair(&U, List.size()));
185 
186   if (List.size() < 2)
187     // We may have lost some users.
188     return {};
189 
190   // When referencing a value before its declaration, a temporary value is
191   // created, which will later be RAUWed with the actual value. This reverses
192   // the use list. This happens for all values apart from basic blocks.
193   bool GetsReversed = !isa<BasicBlock>(V);
194   if (auto *BA = dyn_cast<BlockAddress>(V))
195     ID = OM.lookup(BA->getBasicBlock());
196   llvm::sort(List, [&](const Entry &L, const Entry &R) {
197     const Use *LU = L.first;
198     const Use *RU = R.first;
199     if (LU == RU)
200       return false;
201 
202     auto LID = OM.lookup(LU->getUser());
203     auto RID = OM.lookup(RU->getUser());
204 
205     // If ID is 4, then expect: 7 6 5 1 2 3.
206     if (LID < RID) {
207       if (GetsReversed)
208         if (RID <= ID)
209           return true;
210       return false;
211     }
212     if (RID < LID) {
213       if (GetsReversed)
214         if (LID <= ID)
215           return false;
216       return true;
217     }
218 
219     // LID and RID are equal, so we have different operands of the same user.
220     // Assume operands are added in order for all instructions.
221     if (GetsReversed)
222       if (LID <= ID)
223         return LU->getOperandNo() < RU->getOperandNo();
224     return LU->getOperandNo() > RU->getOperandNo();
225   });
226 
227   if (llvm::is_sorted(List, [](const Entry &L, const Entry &R) {
228         return L.second < R.second;
229       }))
230     // Order is already correct.
231     return {};
232 
233   // Store the shuffle.
234   std::vector<unsigned> Shuffle(List.size());
235   for (size_t I = 0, E = List.size(); I != E; ++I)
236     Shuffle[I] = List[I].second;
237   return Shuffle;
238 }
239 
predictUseListOrder(const Module * M)240 static UseListOrderMap predictUseListOrder(const Module *M) {
241   OrderMap OM = orderModule(M);
242   UseListOrderMap ULOM;
243   for (const auto &Pair : OM) {
244     const Value *V = Pair.first;
245     if (V->use_empty() || std::next(V->use_begin()) == V->use_end())
246       continue;
247 
248     std::vector<unsigned> Shuffle =
249         predictValueUseListOrder(V, Pair.second, OM);
250     if (Shuffle.empty())
251       continue;
252 
253     const Function *F = nullptr;
254     if (auto *I = dyn_cast<Instruction>(V))
255       F = I->getFunction();
256     if (auto *A = dyn_cast<Argument>(V))
257       F = A->getParent();
258     if (auto *BB = dyn_cast<BasicBlock>(V))
259       F = BB->getParent();
260     ULOM[F][V] = std::move(Shuffle);
261   }
262   return ULOM;
263 }
264 
getModuleFromVal(const Value * V)265 static const Module *getModuleFromVal(const Value *V) {
266   if (const Argument *MA = dyn_cast<Argument>(V))
267     return MA->getParent() ? MA->getParent()->getParent() : nullptr;
268 
269   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
270     return BB->getParent() ? BB->getParent()->getParent() : nullptr;
271 
272   if (const Instruction *I = dyn_cast<Instruction>(V)) {
273     const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
274     return M ? M->getParent() : nullptr;
275   }
276 
277   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
278     return GV->getParent();
279 
280   if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
281     for (const User *U : MAV->users())
282       if (isa<Instruction>(U))
283         if (const Module *M = getModuleFromVal(U))
284           return M;
285     return nullptr;
286   }
287 
288   return nullptr;
289 }
290 
PrintCallingConv(unsigned cc,raw_ostream & Out)291 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
292   switch (cc) {
293   default:                         Out << "cc" << cc; break;
294   case CallingConv::Fast:          Out << "fastcc"; break;
295   case CallingConv::Cold:          Out << "coldcc"; break;
296   case CallingConv::WebKit_JS:     Out << "webkit_jscc"; break;
297   case CallingConv::AnyReg:        Out << "anyregcc"; break;
298   case CallingConv::PreserveMost:  Out << "preserve_mostcc"; break;
299   case CallingConv::PreserveAll:   Out << "preserve_allcc"; break;
300   case CallingConv::CXX_FAST_TLS:  Out << "cxx_fast_tlscc"; break;
301   case CallingConv::GHC:           Out << "ghccc"; break;
302   case CallingConv::Tail:          Out << "tailcc"; break;
303   case CallingConv::CFGuard_Check: Out << "cfguard_checkcc"; break;
304   case CallingConv::X86_StdCall:   Out << "x86_stdcallcc"; break;
305   case CallingConv::X86_FastCall:  Out << "x86_fastcallcc"; break;
306   case CallingConv::X86_ThisCall:  Out << "x86_thiscallcc"; break;
307   case CallingConv::X86_RegCall:   Out << "x86_regcallcc"; break;
308   case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
309   case CallingConv::Intel_OCL_BI:  Out << "intel_ocl_bicc"; break;
310   case CallingConv::ARM_APCS:      Out << "arm_apcscc"; break;
311   case CallingConv::ARM_AAPCS:     Out << "arm_aapcscc"; break;
312   case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
313   case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break;
314   case CallingConv::AArch64_SVE_VectorCall:
315     Out << "aarch64_sve_vector_pcs";
316     break;
317   case CallingConv::MSP430_INTR:   Out << "msp430_intrcc"; break;
318   case CallingConv::AVR_INTR:      Out << "avr_intrcc "; break;
319   case CallingConv::AVR_SIGNAL:    Out << "avr_signalcc "; break;
320   case CallingConv::PTX_Kernel:    Out << "ptx_kernel"; break;
321   case CallingConv::PTX_Device:    Out << "ptx_device"; break;
322   case CallingConv::X86_64_SysV:   Out << "x86_64_sysvcc"; break;
323   case CallingConv::Win64:         Out << "win64cc"; break;
324   case CallingConv::SPIR_FUNC:     Out << "spir_func"; break;
325   case CallingConv::SPIR_KERNEL:   Out << "spir_kernel"; break;
326   case CallingConv::Swift:         Out << "swiftcc"; break;
327   case CallingConv::SwiftTail:     Out << "swifttailcc"; break;
328   case CallingConv::X86_INTR:      Out << "x86_intrcc"; break;
329   case CallingConv::HHVM:          Out << "hhvmcc"; break;
330   case CallingConv::HHVM_C:        Out << "hhvm_ccc"; break;
331   case CallingConv::AMDGPU_VS:     Out << "amdgpu_vs"; break;
332   case CallingConv::AMDGPU_LS:     Out << "amdgpu_ls"; break;
333   case CallingConv::AMDGPU_HS:     Out << "amdgpu_hs"; break;
334   case CallingConv::AMDGPU_ES:     Out << "amdgpu_es"; break;
335   case CallingConv::AMDGPU_GS:     Out << "amdgpu_gs"; break;
336   case CallingConv::AMDGPU_PS:     Out << "amdgpu_ps"; break;
337   case CallingConv::AMDGPU_CS:     Out << "amdgpu_cs"; break;
338   case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
339   case CallingConv::AMDGPU_Gfx:    Out << "amdgpu_gfx"; break;
340   }
341 }
342 
343 enum PrefixType {
344   GlobalPrefix,
345   ComdatPrefix,
346   LabelPrefix,
347   LocalPrefix,
348   NoPrefix
349 };
350 
printLLVMNameWithoutPrefix(raw_ostream & OS,StringRef Name)351 void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
352   assert(!Name.empty() && "Cannot get empty name!");
353 
354   // Scan the name to see if it needs quotes first.
355   bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
356   if (!NeedsQuotes) {
357     for (unsigned i = 0, e = Name.size(); i != e; ++i) {
358       // By making this unsigned, the value passed in to isalnum will always be
359       // in the range 0-255.  This is important when building with MSVC because
360       // its implementation will assert.  This situation can arise when dealing
361       // with UTF-8 multibyte characters.
362       unsigned char C = Name[i];
363       if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
364           C != '_') {
365         NeedsQuotes = true;
366         break;
367       }
368     }
369   }
370 
371   // If we didn't need any quotes, just write out the name in one blast.
372   if (!NeedsQuotes) {
373     OS << Name;
374     return;
375   }
376 
377   // Okay, we need quotes.  Output the quotes and escape any scary characters as
378   // needed.
379   OS << '"';
380   printEscapedString(Name, OS);
381   OS << '"';
382 }
383 
384 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
385 /// (if the string only contains simple characters) or is surrounded with ""'s
386 /// (if it has special chars in it). Print it out.
PrintLLVMName(raw_ostream & OS,StringRef Name,PrefixType Prefix)387 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
388   switch (Prefix) {
389   case NoPrefix:
390     break;
391   case GlobalPrefix:
392     OS << '@';
393     break;
394   case ComdatPrefix:
395     OS << '$';
396     break;
397   case LabelPrefix:
398     break;
399   case LocalPrefix:
400     OS << '%';
401     break;
402   }
403   printLLVMNameWithoutPrefix(OS, Name);
404 }
405 
406 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
407 /// (if the string only contains simple characters) or is surrounded with ""'s
408 /// (if it has special chars in it). Print it out.
PrintLLVMName(raw_ostream & OS,const Value * V)409 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
410   PrintLLVMName(OS, V->getName(),
411                 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
412 }
413 
PrintShuffleMask(raw_ostream & Out,Type * Ty,ArrayRef<int> Mask)414 static void PrintShuffleMask(raw_ostream &Out, Type *Ty, ArrayRef<int> Mask) {
415   Out << ", <";
416   if (isa<ScalableVectorType>(Ty))
417     Out << "vscale x ";
418   Out << Mask.size() << " x i32> ";
419   bool FirstElt = true;
420   if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
421     Out << "zeroinitializer";
422   } else if (all_of(Mask, [](int Elt) { return Elt == UndefMaskElem; })) {
423     Out << "undef";
424   } else {
425     Out << "<";
426     for (int Elt : Mask) {
427       if (FirstElt)
428         FirstElt = false;
429       else
430         Out << ", ";
431       Out << "i32 ";
432       if (Elt == UndefMaskElem)
433         Out << "undef";
434       else
435         Out << Elt;
436     }
437     Out << ">";
438   }
439 }
440 
441 namespace {
442 
443 class TypePrinting {
444 public:
TypePrinting(const Module * M=nullptr)445   TypePrinting(const Module *M = nullptr) : DeferredM(M) {}
446 
447   TypePrinting(const TypePrinting &) = delete;
448   TypePrinting &operator=(const TypePrinting &) = delete;
449 
450   /// The named types that are used by the current module.
451   TypeFinder &getNamedTypes();
452 
453   /// The numbered types, number to type mapping.
454   std::vector<StructType *> &getNumberedTypes();
455 
456   bool empty();
457 
458   void print(Type *Ty, raw_ostream &OS);
459 
460   void printStructBody(StructType *Ty, raw_ostream &OS);
461 
462 private:
463   void incorporateTypes();
464 
465   /// A module to process lazily when needed. Set to nullptr as soon as used.
466   const Module *DeferredM;
467 
468   TypeFinder NamedTypes;
469 
470   // The numbered types, along with their value.
471   DenseMap<StructType *, unsigned> Type2Number;
472 
473   std::vector<StructType *> NumberedTypes;
474 };
475 
476 } // end anonymous namespace
477 
getNamedTypes()478 TypeFinder &TypePrinting::getNamedTypes() {
479   incorporateTypes();
480   return NamedTypes;
481 }
482 
getNumberedTypes()483 std::vector<StructType *> &TypePrinting::getNumberedTypes() {
484   incorporateTypes();
485 
486   // We know all the numbers that each type is used and we know that it is a
487   // dense assignment. Convert the map to an index table, if it's not done
488   // already (judging from the sizes):
489   if (NumberedTypes.size() == Type2Number.size())
490     return NumberedTypes;
491 
492   NumberedTypes.resize(Type2Number.size());
493   for (const auto &P : Type2Number) {
494     assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?");
495     assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?");
496     NumberedTypes[P.second] = P.first;
497   }
498   return NumberedTypes;
499 }
500 
empty()501 bool TypePrinting::empty() {
502   incorporateTypes();
503   return NamedTypes.empty() && Type2Number.empty();
504 }
505 
incorporateTypes()506 void TypePrinting::incorporateTypes() {
507   if (!DeferredM)
508     return;
509 
510   NamedTypes.run(*DeferredM, false);
511   DeferredM = nullptr;
512 
513   // The list of struct types we got back includes all the struct types, split
514   // the unnamed ones out to a numbering and remove the anonymous structs.
515   unsigned NextNumber = 0;
516 
517   std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
518   for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
519     StructType *STy = *I;
520 
521     // Ignore anonymous types.
522     if (STy->isLiteral())
523       continue;
524 
525     if (STy->getName().empty())
526       Type2Number[STy] = NextNumber++;
527     else
528       *NextToUse++ = STy;
529   }
530 
531   NamedTypes.erase(NextToUse, NamedTypes.end());
532 }
533 
534 /// Write the specified type to the specified raw_ostream, making use of type
535 /// names or up references to shorten the type name where possible.
print(Type * Ty,raw_ostream & OS)536 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
537   switch (Ty->getTypeID()) {
538   case Type::VoidTyID:      OS << "void"; return;
539   case Type::HalfTyID:      OS << "half"; return;
540   case Type::BFloatTyID:    OS << "bfloat"; return;
541   case Type::FloatTyID:     OS << "float"; return;
542   case Type::DoubleTyID:    OS << "double"; return;
543   case Type::X86_FP80TyID:  OS << "x86_fp80"; return;
544   case Type::FP128TyID:     OS << "fp128"; return;
545   case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
546   case Type::LabelTyID:     OS << "label"; return;
547   case Type::MetadataTyID:  OS << "metadata"; return;
548   case Type::X86_MMXTyID:   OS << "x86_mmx"; return;
549   case Type::X86_AMXTyID:   OS << "x86_amx"; return;
550   case Type::TokenTyID:     OS << "token"; return;
551   case Type::IntegerTyID:
552     OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
553     return;
554 
555   case Type::FunctionTyID: {
556     FunctionType *FTy = cast<FunctionType>(Ty);
557     print(FTy->getReturnType(), OS);
558     OS << " (";
559     for (FunctionType::param_iterator I = FTy->param_begin(),
560          E = FTy->param_end(); I != E; ++I) {
561       if (I != FTy->param_begin())
562         OS << ", ";
563       print(*I, OS);
564     }
565     if (FTy->isVarArg()) {
566       if (FTy->getNumParams()) OS << ", ";
567       OS << "...";
568     }
569     OS << ')';
570     return;
571   }
572   case Type::StructTyID: {
573     StructType *STy = cast<StructType>(Ty);
574 
575     if (STy->isLiteral())
576       return printStructBody(STy, OS);
577 
578     if (!STy->getName().empty())
579       return PrintLLVMName(OS, STy->getName(), LocalPrefix);
580 
581     incorporateTypes();
582     const auto I = Type2Number.find(STy);
583     if (I != Type2Number.end())
584       OS << '%' << I->second;
585     else  // Not enumerated, print the hex address.
586       OS << "%\"type " << STy << '\"';
587     return;
588   }
589   case Type::PointerTyID: {
590     PointerType *PTy = cast<PointerType>(Ty);
591     if (PTy->isOpaque()) {
592       OS << "ptr";
593       if (unsigned AddressSpace = PTy->getAddressSpace())
594         OS << " addrspace(" << AddressSpace << ')';
595       return;
596     }
597     print(PTy->getElementType(), OS);
598     if (unsigned AddressSpace = PTy->getAddressSpace())
599       OS << " addrspace(" << AddressSpace << ')';
600     OS << '*';
601     return;
602   }
603   case Type::ArrayTyID: {
604     ArrayType *ATy = cast<ArrayType>(Ty);
605     OS << '[' << ATy->getNumElements() << " x ";
606     print(ATy->getElementType(), OS);
607     OS << ']';
608     return;
609   }
610   case Type::FixedVectorTyID:
611   case Type::ScalableVectorTyID: {
612     VectorType *PTy = cast<VectorType>(Ty);
613     ElementCount EC = PTy->getElementCount();
614     OS << "<";
615     if (EC.isScalable())
616       OS << "vscale x ";
617     OS << EC.getKnownMinValue() << " x ";
618     print(PTy->getElementType(), OS);
619     OS << '>';
620     return;
621   }
622   }
623   llvm_unreachable("Invalid TypeID");
624 }
625 
printStructBody(StructType * STy,raw_ostream & OS)626 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
627   if (STy->isOpaque()) {
628     OS << "opaque";
629     return;
630   }
631 
632   if (STy->isPacked())
633     OS << '<';
634 
635   if (STy->getNumElements() == 0) {
636     OS << "{}";
637   } else {
638     StructType::element_iterator I = STy->element_begin();
639     OS << "{ ";
640     print(*I++, OS);
641     for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
642       OS << ", ";
643       print(*I, OS);
644     }
645 
646     OS << " }";
647   }
648   if (STy->isPacked())
649     OS << '>';
650 }
651 
~AbstractSlotTrackerStorage()652 AbstractSlotTrackerStorage::~AbstractSlotTrackerStorage() {}
653 
654 namespace llvm {
655 
656 //===----------------------------------------------------------------------===//
657 // SlotTracker Class: Enumerate slot numbers for unnamed values
658 //===----------------------------------------------------------------------===//
659 /// This class provides computation of slot numbers for LLVM Assembly writing.
660 ///
661 class SlotTracker : public AbstractSlotTrackerStorage {
662 public:
663   /// ValueMap - A mapping of Values to slot numbers.
664   using ValueMap = DenseMap<const Value *, unsigned>;
665 
666 private:
667   /// TheModule - The module for which we are holding slot numbers.
668   const Module* TheModule;
669 
670   /// TheFunction - The function for which we are holding slot numbers.
671   const Function* TheFunction = nullptr;
672   bool FunctionProcessed = false;
673   bool ShouldInitializeAllMetadata;
674 
675   std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
676       ProcessModuleHookFn;
677   std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
678       ProcessFunctionHookFn;
679 
680   /// The summary index for which we are holding slot numbers.
681   const ModuleSummaryIndex *TheIndex = nullptr;
682 
683   /// mMap - The slot map for the module level data.
684   ValueMap mMap;
685   unsigned mNext = 0;
686 
687   /// fMap - The slot map for the function level data.
688   ValueMap fMap;
689   unsigned fNext = 0;
690 
691   /// mdnMap - Map for MDNodes.
692   DenseMap<const MDNode*, unsigned> mdnMap;
693   unsigned mdnNext = 0;
694 
695   /// asMap - The slot map for attribute sets.
696   DenseMap<AttributeSet, unsigned> asMap;
697   unsigned asNext = 0;
698 
699   /// ModulePathMap - The slot map for Module paths used in the summary index.
700   StringMap<unsigned> ModulePathMap;
701   unsigned ModulePathNext = 0;
702 
703   /// GUIDMap - The slot map for GUIDs used in the summary index.
704   DenseMap<GlobalValue::GUID, unsigned> GUIDMap;
705   unsigned GUIDNext = 0;
706 
707   /// TypeIdMap - The slot map for type ids used in the summary index.
708   StringMap<unsigned> TypeIdMap;
709   unsigned TypeIdNext = 0;
710 
711 public:
712   /// Construct from a module.
713   ///
714   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
715   /// functions, giving correct numbering for metadata referenced only from
716   /// within a function (even if no functions have been initialized).
717   explicit SlotTracker(const Module *M,
718                        bool ShouldInitializeAllMetadata = false);
719 
720   /// Construct from a function, starting out in incorp state.
721   ///
722   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
723   /// functions, giving correct numbering for metadata referenced only from
724   /// within a function (even if no functions have been initialized).
725   explicit SlotTracker(const Function *F,
726                        bool ShouldInitializeAllMetadata = false);
727 
728   /// Construct from a module summary index.
729   explicit SlotTracker(const ModuleSummaryIndex *Index);
730 
731   SlotTracker(const SlotTracker &) = delete;
732   SlotTracker &operator=(const SlotTracker &) = delete;
733 
734   ~SlotTracker() = default;
735 
736   void setProcessHook(
737       std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>);
738   void setProcessHook(std::function<void(AbstractSlotTrackerStorage *,
739                                          const Function *, bool)>);
740 
getNextMetadataSlot()741   unsigned getNextMetadataSlot() override { return mdnNext; }
742 
743   void createMetadataSlot(const MDNode *N) override;
744 
745   /// Return the slot number of the specified value in it's type
746   /// plane.  If something is not in the SlotTracker, return -1.
747   int getLocalSlot(const Value *V);
748   int getGlobalSlot(const GlobalValue *V);
749   int getMetadataSlot(const MDNode *N) override;
750   int getAttributeGroupSlot(AttributeSet AS);
751   int getModulePathSlot(StringRef Path);
752   int getGUIDSlot(GlobalValue::GUID GUID);
753   int getTypeIdSlot(StringRef Id);
754 
755   /// If you'd like to deal with a function instead of just a module, use
756   /// this method to get its data into the SlotTracker.
incorporateFunction(const Function * F)757   void incorporateFunction(const Function *F) {
758     TheFunction = F;
759     FunctionProcessed = false;
760   }
761 
getFunction() const762   const Function *getFunction() const { return TheFunction; }
763 
764   /// After calling incorporateFunction, use this method to remove the
765   /// most recently incorporated function from the SlotTracker. This
766   /// will reset the state of the machine back to just the module contents.
767   void purgeFunction();
768 
769   /// MDNode map iterators.
770   using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator;
771 
mdn_begin()772   mdn_iterator mdn_begin() { return mdnMap.begin(); }
mdn_end()773   mdn_iterator mdn_end() { return mdnMap.end(); }
mdn_size() const774   unsigned mdn_size() const { return mdnMap.size(); }
mdn_empty() const775   bool mdn_empty() const { return mdnMap.empty(); }
776 
777   /// AttributeSet map iterators.
778   using as_iterator = DenseMap<AttributeSet, unsigned>::iterator;
779 
as_begin()780   as_iterator as_begin()   { return asMap.begin(); }
as_end()781   as_iterator as_end()     { return asMap.end(); }
as_size() const782   unsigned as_size() const { return asMap.size(); }
as_empty() const783   bool as_empty() const    { return asMap.empty(); }
784 
785   /// GUID map iterators.
786   using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator;
787 
788   /// These functions do the actual initialization.
789   inline void initializeIfNeeded();
790   int initializeIndexIfNeeded();
791 
792   // Implementation Details
793 private:
794   /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
795   void CreateModuleSlot(const GlobalValue *V);
796 
797   /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
798   void CreateMetadataSlot(const MDNode *N);
799 
800   /// CreateFunctionSlot - Insert the specified Value* into the slot table.
801   void CreateFunctionSlot(const Value *V);
802 
803   /// Insert the specified AttributeSet into the slot table.
804   void CreateAttributeSetSlot(AttributeSet AS);
805 
806   inline void CreateModulePathSlot(StringRef Path);
807   void CreateGUIDSlot(GlobalValue::GUID GUID);
808   void CreateTypeIdSlot(StringRef Id);
809 
810   /// Add all of the module level global variables (and their initializers)
811   /// and function declarations, but not the contents of those functions.
812   void processModule();
813   // Returns number of allocated slots
814   int processIndex();
815 
816   /// Add all of the functions arguments, basic blocks, and instructions.
817   void processFunction();
818 
819   /// Add the metadata directly attached to a GlobalObject.
820   void processGlobalObjectMetadata(const GlobalObject &GO);
821 
822   /// Add all of the metadata from a function.
823   void processFunctionMetadata(const Function &F);
824 
825   /// Add all of the metadata from an instruction.
826   void processInstructionMetadata(const Instruction &I);
827 };
828 
829 } // end namespace llvm
830 
ModuleSlotTracker(SlotTracker & Machine,const Module * M,const Function * F)831 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
832                                      const Function *F)
833     : M(M), F(F), Machine(&Machine) {}
834 
ModuleSlotTracker(const Module * M,bool ShouldInitializeAllMetadata)835 ModuleSlotTracker::ModuleSlotTracker(const Module *M,
836                                      bool ShouldInitializeAllMetadata)
837     : ShouldCreateStorage(M),
838       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
839 
840 ModuleSlotTracker::~ModuleSlotTracker() = default;
841 
getMachine()842 SlotTracker *ModuleSlotTracker::getMachine() {
843   if (!ShouldCreateStorage)
844     return Machine;
845 
846   ShouldCreateStorage = false;
847   MachineStorage =
848       std::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
849   Machine = MachineStorage.get();
850   if (ProcessModuleHookFn)
851     Machine->setProcessHook(ProcessModuleHookFn);
852   if (ProcessFunctionHookFn)
853     Machine->setProcessHook(ProcessFunctionHookFn);
854   return Machine;
855 }
856 
incorporateFunction(const Function & F)857 void ModuleSlotTracker::incorporateFunction(const Function &F) {
858   // Using getMachine() may lazily create the slot tracker.
859   if (!getMachine())
860     return;
861 
862   // Nothing to do if this is the right function already.
863   if (this->F == &F)
864     return;
865   if (this->F)
866     Machine->purgeFunction();
867   Machine->incorporateFunction(&F);
868   this->F = &F;
869 }
870 
getLocalSlot(const Value * V)871 int ModuleSlotTracker::getLocalSlot(const Value *V) {
872   assert(F && "No function incorporated");
873   return Machine->getLocalSlot(V);
874 }
875 
setProcessHook(std::function<void (AbstractSlotTrackerStorage *,const Module *,bool)> Fn)876 void ModuleSlotTracker::setProcessHook(
877     std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
878         Fn) {
879   ProcessModuleHookFn = Fn;
880 }
881 
setProcessHook(std::function<void (AbstractSlotTrackerStorage *,const Function *,bool)> Fn)882 void ModuleSlotTracker::setProcessHook(
883     std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
884         Fn) {
885   ProcessFunctionHookFn = Fn;
886 }
887 
createSlotTracker(const Value * V)888 static SlotTracker *createSlotTracker(const Value *V) {
889   if (const Argument *FA = dyn_cast<Argument>(V))
890     return new SlotTracker(FA->getParent());
891 
892   if (const Instruction *I = dyn_cast<Instruction>(V))
893     if (I->getParent())
894       return new SlotTracker(I->getParent()->getParent());
895 
896   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
897     return new SlotTracker(BB->getParent());
898 
899   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
900     return new SlotTracker(GV->getParent());
901 
902   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
903     return new SlotTracker(GA->getParent());
904 
905   if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
906     return new SlotTracker(GIF->getParent());
907 
908   if (const Function *Func = dyn_cast<Function>(V))
909     return new SlotTracker(Func);
910 
911   return nullptr;
912 }
913 
914 #if 0
915 #define ST_DEBUG(X) dbgs() << X
916 #else
917 #define ST_DEBUG(X)
918 #endif
919 
920 // Module level constructor. Causes the contents of the Module (sans functions)
921 // to be added to the slot table.
SlotTracker(const Module * M,bool ShouldInitializeAllMetadata)922 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
923     : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
924 
925 // Function level constructor. Causes the contents of the Module and the one
926 // function provided to be added to the slot table.
SlotTracker(const Function * F,bool ShouldInitializeAllMetadata)927 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
928     : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
929       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
930 
SlotTracker(const ModuleSummaryIndex * Index)931 SlotTracker::SlotTracker(const ModuleSummaryIndex *Index)
932     : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {}
933 
initializeIfNeeded()934 inline void SlotTracker::initializeIfNeeded() {
935   if (TheModule) {
936     processModule();
937     TheModule = nullptr; ///< Prevent re-processing next time we're called.
938   }
939 
940   if (TheFunction && !FunctionProcessed)
941     processFunction();
942 }
943 
initializeIndexIfNeeded()944 int SlotTracker::initializeIndexIfNeeded() {
945   if (!TheIndex)
946     return 0;
947   int NumSlots = processIndex();
948   TheIndex = nullptr; ///< Prevent re-processing next time we're called.
949   return NumSlots;
950 }
951 
952 // Iterate through all the global variables, functions, and global
953 // variable initializers and create slots for them.
processModule()954 void SlotTracker::processModule() {
955   ST_DEBUG("begin processModule!\n");
956 
957   // Add all of the unnamed global variables to the value table.
958   for (const GlobalVariable &Var : TheModule->globals()) {
959     if (!Var.hasName())
960       CreateModuleSlot(&Var);
961     processGlobalObjectMetadata(Var);
962     auto Attrs = Var.getAttributes();
963     if (Attrs.hasAttributes())
964       CreateAttributeSetSlot(Attrs);
965   }
966 
967   for (const GlobalAlias &A : TheModule->aliases()) {
968     if (!A.hasName())
969       CreateModuleSlot(&A);
970   }
971 
972   for (const GlobalIFunc &I : TheModule->ifuncs()) {
973     if (!I.hasName())
974       CreateModuleSlot(&I);
975   }
976 
977   // Add metadata used by named metadata.
978   for (const NamedMDNode &NMD : TheModule->named_metadata()) {
979     for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
980       CreateMetadataSlot(NMD.getOperand(i));
981   }
982 
983   for (const Function &F : *TheModule) {
984     if (!F.hasName())
985       // Add all the unnamed functions to the table.
986       CreateModuleSlot(&F);
987 
988     if (ShouldInitializeAllMetadata)
989       processFunctionMetadata(F);
990 
991     // Add all the function attributes to the table.
992     // FIXME: Add attributes of other objects?
993     AttributeSet FnAttrs = F.getAttributes().getFnAttrs();
994     if (FnAttrs.hasAttributes())
995       CreateAttributeSetSlot(FnAttrs);
996   }
997 
998   if (ProcessModuleHookFn)
999     ProcessModuleHookFn(this, TheModule, ShouldInitializeAllMetadata);
1000 
1001   ST_DEBUG("end processModule!\n");
1002 }
1003 
1004 // Process the arguments, basic blocks, and instructions  of a function.
processFunction()1005 void SlotTracker::processFunction() {
1006   ST_DEBUG("begin processFunction!\n");
1007   fNext = 0;
1008 
1009   // Process function metadata if it wasn't hit at the module-level.
1010   if (!ShouldInitializeAllMetadata)
1011     processFunctionMetadata(*TheFunction);
1012 
1013   // Add all the function arguments with no names.
1014   for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
1015       AE = TheFunction->arg_end(); AI != AE; ++AI)
1016     if (!AI->hasName())
1017       CreateFunctionSlot(&*AI);
1018 
1019   ST_DEBUG("Inserting Instructions:\n");
1020 
1021   // Add all of the basic blocks and instructions with no names.
1022   for (auto &BB : *TheFunction) {
1023     if (!BB.hasName())
1024       CreateFunctionSlot(&BB);
1025 
1026     for (auto &I : BB) {
1027       if (!I.getType()->isVoidTy() && !I.hasName())
1028         CreateFunctionSlot(&I);
1029 
1030       // We allow direct calls to any llvm.foo function here, because the
1031       // target may not be linked into the optimizer.
1032       if (const auto *Call = dyn_cast<CallBase>(&I)) {
1033         // Add all the call attributes to the table.
1034         AttributeSet Attrs = Call->getAttributes().getFnAttrs();
1035         if (Attrs.hasAttributes())
1036           CreateAttributeSetSlot(Attrs);
1037       }
1038     }
1039   }
1040 
1041   if (ProcessFunctionHookFn)
1042     ProcessFunctionHookFn(this, TheFunction, ShouldInitializeAllMetadata);
1043 
1044   FunctionProcessed = true;
1045 
1046   ST_DEBUG("end processFunction!\n");
1047 }
1048 
1049 // Iterate through all the GUID in the index and create slots for them.
processIndex()1050 int SlotTracker::processIndex() {
1051   ST_DEBUG("begin processIndex!\n");
1052   assert(TheIndex);
1053 
1054   // The first block of slots are just the module ids, which start at 0 and are
1055   // assigned consecutively. Since the StringMap iteration order isn't
1056   // guaranteed, use a std::map to order by module ID before assigning slots.
1057   std::map<uint64_t, StringRef> ModuleIdToPathMap;
1058   for (auto &ModPath : TheIndex->modulePaths())
1059     ModuleIdToPathMap[ModPath.second.first] = ModPath.first();
1060   for (auto &ModPair : ModuleIdToPathMap)
1061     CreateModulePathSlot(ModPair.second);
1062 
1063   // Start numbering the GUIDs after the module ids.
1064   GUIDNext = ModulePathNext;
1065 
1066   for (auto &GlobalList : *TheIndex)
1067     CreateGUIDSlot(GlobalList.first);
1068 
1069   for (auto &TId : TheIndex->typeIdCompatibleVtableMap())
1070     CreateGUIDSlot(GlobalValue::getGUID(TId.first));
1071 
1072   // Start numbering the TypeIds after the GUIDs.
1073   TypeIdNext = GUIDNext;
1074   for (const auto &TID : TheIndex->typeIds())
1075     CreateTypeIdSlot(TID.second.first);
1076 
1077   ST_DEBUG("end processIndex!\n");
1078   return TypeIdNext;
1079 }
1080 
processGlobalObjectMetadata(const GlobalObject & GO)1081 void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
1082   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1083   GO.getAllMetadata(MDs);
1084   for (auto &MD : MDs)
1085     CreateMetadataSlot(MD.second);
1086 }
1087 
processFunctionMetadata(const Function & F)1088 void SlotTracker::processFunctionMetadata(const Function &F) {
1089   processGlobalObjectMetadata(F);
1090   for (auto &BB : F) {
1091     for (auto &I : BB)
1092       processInstructionMetadata(I);
1093   }
1094 }
1095 
processInstructionMetadata(const Instruction & I)1096 void SlotTracker::processInstructionMetadata(const Instruction &I) {
1097   // Process metadata used directly by intrinsics.
1098   if (const CallInst *CI = dyn_cast<CallInst>(&I))
1099     if (Function *F = CI->getCalledFunction())
1100       if (F->isIntrinsic())
1101         for (auto &Op : I.operands())
1102           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
1103             if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
1104               CreateMetadataSlot(N);
1105 
1106   // Process metadata attached to this instruction.
1107   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1108   I.getAllMetadata(MDs);
1109   for (auto &MD : MDs)
1110     CreateMetadataSlot(MD.second);
1111 }
1112 
1113 /// Clean up after incorporating a function. This is the only way to get out of
1114 /// the function incorporation state that affects get*Slot/Create*Slot. Function
1115 /// incorporation state is indicated by TheFunction != 0.
purgeFunction()1116 void SlotTracker::purgeFunction() {
1117   ST_DEBUG("begin purgeFunction!\n");
1118   fMap.clear(); // Simply discard the function level map
1119   TheFunction = nullptr;
1120   FunctionProcessed = false;
1121   ST_DEBUG("end purgeFunction!\n");
1122 }
1123 
1124 /// getGlobalSlot - Get the slot number of a global value.
getGlobalSlot(const GlobalValue * V)1125 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
1126   // Check for uninitialized state and do lazy initialization.
1127   initializeIfNeeded();
1128 
1129   // Find the value in the module map
1130   ValueMap::iterator MI = mMap.find(V);
1131   return MI == mMap.end() ? -1 : (int)MI->second;
1132 }
1133 
setProcessHook(std::function<void (AbstractSlotTrackerStorage *,const Module *,bool)> Fn)1134 void SlotTracker::setProcessHook(
1135     std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
1136         Fn) {
1137   ProcessModuleHookFn = Fn;
1138 }
1139 
setProcessHook(std::function<void (AbstractSlotTrackerStorage *,const Function *,bool)> Fn)1140 void SlotTracker::setProcessHook(
1141     std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
1142         Fn) {
1143   ProcessFunctionHookFn = Fn;
1144 }
1145 
1146 /// getMetadataSlot - Get the slot number of a MDNode.
createMetadataSlot(const MDNode * N)1147 void SlotTracker::createMetadataSlot(const MDNode *N) { CreateMetadataSlot(N); }
1148 
1149 /// getMetadataSlot - Get the slot number of a MDNode.
getMetadataSlot(const MDNode * N)1150 int SlotTracker::getMetadataSlot(const MDNode *N) {
1151   // Check for uninitialized state and do lazy initialization.
1152   initializeIfNeeded();
1153 
1154   // Find the MDNode in the module map
1155   mdn_iterator MI = mdnMap.find(N);
1156   return MI == mdnMap.end() ? -1 : (int)MI->second;
1157 }
1158 
1159 /// getLocalSlot - Get the slot number for a value that is local to a function.
getLocalSlot(const Value * V)1160 int SlotTracker::getLocalSlot(const Value *V) {
1161   assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
1162 
1163   // Check for uninitialized state and do lazy initialization.
1164   initializeIfNeeded();
1165 
1166   ValueMap::iterator FI = fMap.find(V);
1167   return FI == fMap.end() ? -1 : (int)FI->second;
1168 }
1169 
getAttributeGroupSlot(AttributeSet AS)1170 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
1171   // Check for uninitialized state and do lazy initialization.
1172   initializeIfNeeded();
1173 
1174   // Find the AttributeSet in the module map.
1175   as_iterator AI = asMap.find(AS);
1176   return AI == asMap.end() ? -1 : (int)AI->second;
1177 }
1178 
getModulePathSlot(StringRef Path)1179 int SlotTracker::getModulePathSlot(StringRef Path) {
1180   // Check for uninitialized state and do lazy initialization.
1181   initializeIndexIfNeeded();
1182 
1183   // Find the Module path in the map
1184   auto I = ModulePathMap.find(Path);
1185   return I == ModulePathMap.end() ? -1 : (int)I->second;
1186 }
1187 
getGUIDSlot(GlobalValue::GUID GUID)1188 int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) {
1189   // Check for uninitialized state and do lazy initialization.
1190   initializeIndexIfNeeded();
1191 
1192   // Find the GUID in the map
1193   guid_iterator I = GUIDMap.find(GUID);
1194   return I == GUIDMap.end() ? -1 : (int)I->second;
1195 }
1196 
getTypeIdSlot(StringRef Id)1197 int SlotTracker::getTypeIdSlot(StringRef Id) {
1198   // Check for uninitialized state and do lazy initialization.
1199   initializeIndexIfNeeded();
1200 
1201   // Find the TypeId string in the map
1202   auto I = TypeIdMap.find(Id);
1203   return I == TypeIdMap.end() ? -1 : (int)I->second;
1204 }
1205 
1206 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
CreateModuleSlot(const GlobalValue * V)1207 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
1208   assert(V && "Can't insert a null Value into SlotTracker!");
1209   assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
1210   assert(!V->hasName() && "Doesn't need a slot!");
1211 
1212   unsigned DestSlot = mNext++;
1213   mMap[V] = DestSlot;
1214 
1215   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1216            DestSlot << " [");
1217   // G = Global, F = Function, A = Alias, I = IFunc, o = other
1218   ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
1219             (isa<Function>(V) ? 'F' :
1220              (isa<GlobalAlias>(V) ? 'A' :
1221               (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
1222 }
1223 
1224 /// CreateSlot - Create a new slot for the specified value if it has no name.
CreateFunctionSlot(const Value * V)1225 void SlotTracker::CreateFunctionSlot(const Value *V) {
1226   assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
1227 
1228   unsigned DestSlot = fNext++;
1229   fMap[V] = DestSlot;
1230 
1231   // G = Global, F = Function, o = other
1232   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1233            DestSlot << " [o]\n");
1234 }
1235 
1236 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
CreateMetadataSlot(const MDNode * N)1237 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
1238   assert(N && "Can't insert a null Value into SlotTracker!");
1239 
1240   // Don't make slots for DIExpressions or DIArgLists. We just print them inline
1241   // everywhere.
1242   if (isa<DIExpression>(N) || isa<DIArgList>(N))
1243     return;
1244 
1245   unsigned DestSlot = mdnNext;
1246   if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
1247     return;
1248   ++mdnNext;
1249 
1250   // Recursively add any MDNodes referenced by operands.
1251   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1252     if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
1253       CreateMetadataSlot(Op);
1254 }
1255 
CreateAttributeSetSlot(AttributeSet AS)1256 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
1257   assert(AS.hasAttributes() && "Doesn't need a slot!");
1258 
1259   as_iterator I = asMap.find(AS);
1260   if (I != asMap.end())
1261     return;
1262 
1263   unsigned DestSlot = asNext++;
1264   asMap[AS] = DestSlot;
1265 }
1266 
1267 /// Create a new slot for the specified Module
CreateModulePathSlot(StringRef Path)1268 void SlotTracker::CreateModulePathSlot(StringRef Path) {
1269   ModulePathMap[Path] = ModulePathNext++;
1270 }
1271 
1272 /// Create a new slot for the specified GUID
CreateGUIDSlot(GlobalValue::GUID GUID)1273 void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) {
1274   GUIDMap[GUID] = GUIDNext++;
1275 }
1276 
1277 /// Create a new slot for the specified Id
CreateTypeIdSlot(StringRef Id)1278 void SlotTracker::CreateTypeIdSlot(StringRef Id) {
1279   TypeIdMap[Id] = TypeIdNext++;
1280 }
1281 
1282 namespace {
1283 /// Common instances used by most of the printer functions.
1284 struct AsmWriterContext {
1285   TypePrinting *TypePrinter = nullptr;
1286   SlotTracker *Machine = nullptr;
1287   const Module *Context = nullptr;
1288 
AsmWriterContext__anona89321510611::AsmWriterContext1289   AsmWriterContext(TypePrinting *TP, SlotTracker *ST, const Module *M = nullptr)
1290       : TypePrinter(TP), Machine(ST), Context(M) {}
1291 
getEmpty__anona89321510611::AsmWriterContext1292   static AsmWriterContext &getEmpty() {
1293     static AsmWriterContext EmptyCtx(nullptr, nullptr);
1294     return EmptyCtx;
1295   }
1296 
1297   /// A callback that will be triggered when the underlying printer
1298   /// prints a Metadata as operand.
onWriteMetadataAsOperand__anona89321510611::AsmWriterContext1299   virtual void onWriteMetadataAsOperand(const Metadata *) {}
1300 
~AsmWriterContext__anona89321510611::AsmWriterContext1301   virtual ~AsmWriterContext() {}
1302 };
1303 } // end anonymous namespace
1304 
1305 //===----------------------------------------------------------------------===//
1306 // AsmWriter Implementation
1307 //===----------------------------------------------------------------------===//
1308 
1309 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1310                                    AsmWriterContext &WriterCtx);
1311 
1312 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1313                                    AsmWriterContext &WriterCtx,
1314                                    bool FromValue = false);
1315 
WriteOptimizationInfo(raw_ostream & Out,const User * U)1316 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
1317   if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
1318     // 'Fast' is an abbreviation for all fast-math-flags.
1319     if (FPO->isFast())
1320       Out << " fast";
1321     else {
1322       if (FPO->hasAllowReassoc())
1323         Out << " reassoc";
1324       if (FPO->hasNoNaNs())
1325         Out << " nnan";
1326       if (FPO->hasNoInfs())
1327         Out << " ninf";
1328       if (FPO->hasNoSignedZeros())
1329         Out << " nsz";
1330       if (FPO->hasAllowReciprocal())
1331         Out << " arcp";
1332       if (FPO->hasAllowContract())
1333         Out << " contract";
1334       if (FPO->hasApproxFunc())
1335         Out << " afn";
1336     }
1337   }
1338 
1339   if (const OverflowingBinaryOperator *OBO =
1340         dyn_cast<OverflowingBinaryOperator>(U)) {
1341     if (OBO->hasNoUnsignedWrap())
1342       Out << " nuw";
1343     if (OBO->hasNoSignedWrap())
1344       Out << " nsw";
1345   } else if (const PossiblyExactOperator *Div =
1346                dyn_cast<PossiblyExactOperator>(U)) {
1347     if (Div->isExact())
1348       Out << " exact";
1349   } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
1350     if (GEP->isInBounds())
1351       Out << " inbounds";
1352   }
1353 }
1354 
WriteConstantInternal(raw_ostream & Out,const Constant * CV,AsmWriterContext & WriterCtx)1355 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
1356                                   AsmWriterContext &WriterCtx) {
1357   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1358     if (CI->getType()->isIntegerTy(1)) {
1359       Out << (CI->getZExtValue() ? "true" : "false");
1360       return;
1361     }
1362     Out << CI->getValue();
1363     return;
1364   }
1365 
1366   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1367     const APFloat &APF = CFP->getValueAPF();
1368     if (&APF.getSemantics() == &APFloat::IEEEsingle() ||
1369         &APF.getSemantics() == &APFloat::IEEEdouble()) {
1370       // We would like to output the FP constant value in exponential notation,
1371       // but we cannot do this if doing so will lose precision.  Check here to
1372       // make sure that we only output it in exponential format if we can parse
1373       // the value back and get the same value.
1374       //
1375       bool ignored;
1376       bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble();
1377       bool isInf = APF.isInfinity();
1378       bool isNaN = APF.isNaN();
1379       if (!isInf && !isNaN) {
1380         double Val = APF.convertToDouble();
1381         SmallString<128> StrVal;
1382         APF.toString(StrVal, 6, 0, false);
1383         // Check to make sure that the stringized number is not some string like
1384         // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
1385         // that the string matches the "[-+]?[0-9]" regex.
1386         //
1387         assert((isDigit(StrVal[0]) || ((StrVal[0] == '-' || StrVal[0] == '+') &&
1388                                        isDigit(StrVal[1]))) &&
1389                "[-+]?[0-9] regex does not match!");
1390         // Reparse stringized version!
1391         if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) {
1392           Out << StrVal;
1393           return;
1394         }
1395       }
1396       // Otherwise we could not reparse it to exactly the same value, so we must
1397       // output the string in hexadecimal format!  Note that loading and storing
1398       // floating point types changes the bits of NaNs on some hosts, notably
1399       // x86, so we must not use these types.
1400       static_assert(sizeof(double) == sizeof(uint64_t),
1401                     "assuming that double is 64 bits!");
1402       APFloat apf = APF;
1403       // Floats are represented in ASCII IR as double, convert.
1404       // FIXME: We should allow 32-bit hex float and remove this.
1405       if (!isDouble) {
1406         // A signaling NaN is quieted on conversion, so we need to recreate the
1407         // expected value after convert (quiet bit of the payload is clear).
1408         bool IsSNAN = apf.isSignaling();
1409         apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1410                     &ignored);
1411         if (IsSNAN) {
1412           APInt Payload = apf.bitcastToAPInt();
1413           apf = APFloat::getSNaN(APFloat::IEEEdouble(), apf.isNegative(),
1414                                  &Payload);
1415         }
1416       }
1417       Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1418       return;
1419     }
1420 
1421     // Either half, bfloat or some form of long double.
1422     // These appear as a magic letter identifying the type, then a
1423     // fixed number of hex digits.
1424     Out << "0x";
1425     APInt API = APF.bitcastToAPInt();
1426     if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) {
1427       Out << 'K';
1428       Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
1429                                   /*Upper=*/true);
1430       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1431                                   /*Upper=*/true);
1432       return;
1433     } else if (&APF.getSemantics() == &APFloat::IEEEquad()) {
1434       Out << 'L';
1435       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1436                                   /*Upper=*/true);
1437       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1438                                   /*Upper=*/true);
1439     } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) {
1440       Out << 'M';
1441       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1442                                   /*Upper=*/true);
1443       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1444                                   /*Upper=*/true);
1445     } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) {
1446       Out << 'H';
1447       Out << format_hex_no_prefix(API.getZExtValue(), 4,
1448                                   /*Upper=*/true);
1449     } else if (&APF.getSemantics() == &APFloat::BFloat()) {
1450       Out << 'R';
1451       Out << format_hex_no_prefix(API.getZExtValue(), 4,
1452                                   /*Upper=*/true);
1453     } else
1454       llvm_unreachable("Unsupported floating point type");
1455     return;
1456   }
1457 
1458   if (isa<ConstantAggregateZero>(CV)) {
1459     Out << "zeroinitializer";
1460     return;
1461   }
1462 
1463   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1464     Out << "blockaddress(";
1465     WriteAsOperandInternal(Out, BA->getFunction(), WriterCtx);
1466     Out << ", ";
1467     WriteAsOperandInternal(Out, BA->getBasicBlock(), WriterCtx);
1468     Out << ")";
1469     return;
1470   }
1471 
1472   if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) {
1473     Out << "dso_local_equivalent ";
1474     WriteAsOperandInternal(Out, Equiv->getGlobalValue(), WriterCtx);
1475     return;
1476   }
1477 
1478   if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1479     Type *ETy = CA->getType()->getElementType();
1480     Out << '[';
1481     WriterCtx.TypePrinter->print(ETy, Out);
1482     Out << ' ';
1483     WriteAsOperandInternal(Out, CA->getOperand(0), WriterCtx);
1484     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1485       Out << ", ";
1486       WriterCtx.TypePrinter->print(ETy, Out);
1487       Out << ' ';
1488       WriteAsOperandInternal(Out, CA->getOperand(i), WriterCtx);
1489     }
1490     Out << ']';
1491     return;
1492   }
1493 
1494   if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1495     // As a special case, print the array as a string if it is an array of
1496     // i8 with ConstantInt values.
1497     if (CA->isString()) {
1498       Out << "c\"";
1499       printEscapedString(CA->getAsString(), Out);
1500       Out << '"';
1501       return;
1502     }
1503 
1504     Type *ETy = CA->getType()->getElementType();
1505     Out << '[';
1506     WriterCtx.TypePrinter->print(ETy, Out);
1507     Out << ' ';
1508     WriteAsOperandInternal(Out, CA->getElementAsConstant(0), WriterCtx);
1509     for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1510       Out << ", ";
1511       WriterCtx.TypePrinter->print(ETy, Out);
1512       Out << ' ';
1513       WriteAsOperandInternal(Out, CA->getElementAsConstant(i), WriterCtx);
1514     }
1515     Out << ']';
1516     return;
1517   }
1518 
1519   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1520     if (CS->getType()->isPacked())
1521       Out << '<';
1522     Out << '{';
1523     unsigned N = CS->getNumOperands();
1524     if (N) {
1525       Out << ' ';
1526       WriterCtx.TypePrinter->print(CS->getOperand(0)->getType(), Out);
1527       Out << ' ';
1528 
1529       WriteAsOperandInternal(Out, CS->getOperand(0), WriterCtx);
1530 
1531       for (unsigned i = 1; i < N; i++) {
1532         Out << ", ";
1533         WriterCtx.TypePrinter->print(CS->getOperand(i)->getType(), Out);
1534         Out << ' ';
1535 
1536         WriteAsOperandInternal(Out, CS->getOperand(i), WriterCtx);
1537       }
1538       Out << ' ';
1539     }
1540 
1541     Out << '}';
1542     if (CS->getType()->isPacked())
1543       Out << '>';
1544     return;
1545   }
1546 
1547   if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1548     auto *CVVTy = cast<FixedVectorType>(CV->getType());
1549     Type *ETy = CVVTy->getElementType();
1550     Out << '<';
1551     WriterCtx.TypePrinter->print(ETy, Out);
1552     Out << ' ';
1553     WriteAsOperandInternal(Out, CV->getAggregateElement(0U), WriterCtx);
1554     for (unsigned i = 1, e = CVVTy->getNumElements(); i != e; ++i) {
1555       Out << ", ";
1556       WriterCtx.TypePrinter->print(ETy, Out);
1557       Out << ' ';
1558       WriteAsOperandInternal(Out, CV->getAggregateElement(i), WriterCtx);
1559     }
1560     Out << '>';
1561     return;
1562   }
1563 
1564   if (isa<ConstantPointerNull>(CV)) {
1565     Out << "null";
1566     return;
1567   }
1568 
1569   if (isa<ConstantTokenNone>(CV)) {
1570     Out << "none";
1571     return;
1572   }
1573 
1574   if (isa<PoisonValue>(CV)) {
1575     Out << "poison";
1576     return;
1577   }
1578 
1579   if (isa<UndefValue>(CV)) {
1580     Out << "undef";
1581     return;
1582   }
1583 
1584   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1585     Out << CE->getOpcodeName();
1586     WriteOptimizationInfo(Out, CE);
1587     if (CE->isCompare())
1588       Out << ' ' << CmpInst::getPredicateName(
1589                         static_cast<CmpInst::Predicate>(CE->getPredicate()));
1590     Out << " (";
1591 
1592     Optional<unsigned> InRangeOp;
1593     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
1594       WriterCtx.TypePrinter->print(GEP->getSourceElementType(), Out);
1595       Out << ", ";
1596       InRangeOp = GEP->getInRangeIndex();
1597       if (InRangeOp)
1598         ++*InRangeOp;
1599     }
1600 
1601     for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1602       if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp)
1603         Out << "inrange ";
1604       WriterCtx.TypePrinter->print((*OI)->getType(), Out);
1605       Out << ' ';
1606       WriteAsOperandInternal(Out, *OI, WriterCtx);
1607       if (OI+1 != CE->op_end())
1608         Out << ", ";
1609     }
1610 
1611     if (CE->hasIndices()) {
1612       ArrayRef<unsigned> Indices = CE->getIndices();
1613       for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1614         Out << ", " << Indices[i];
1615     }
1616 
1617     if (CE->isCast()) {
1618       Out << " to ";
1619       WriterCtx.TypePrinter->print(CE->getType(), Out);
1620     }
1621 
1622     if (CE->getOpcode() == Instruction::ShuffleVector)
1623       PrintShuffleMask(Out, CE->getType(), CE->getShuffleMask());
1624 
1625     Out << ')';
1626     return;
1627   }
1628 
1629   Out << "<placeholder or erroneous Constant>";
1630 }
1631 
writeMDTuple(raw_ostream & Out,const MDTuple * Node,AsmWriterContext & WriterCtx)1632 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1633                          AsmWriterContext &WriterCtx) {
1634   Out << "!{";
1635   for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1636     const Metadata *MD = Node->getOperand(mi);
1637     if (!MD)
1638       Out << "null";
1639     else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1640       Value *V = MDV->getValue();
1641       WriterCtx.TypePrinter->print(V->getType(), Out);
1642       Out << ' ';
1643       WriteAsOperandInternal(Out, V, WriterCtx);
1644     } else {
1645       WriteAsOperandInternal(Out, MD, WriterCtx);
1646       WriterCtx.onWriteMetadataAsOperand(MD);
1647     }
1648     if (mi + 1 != me)
1649       Out << ", ";
1650   }
1651 
1652   Out << "}";
1653 }
1654 
1655 namespace {
1656 
1657 struct FieldSeparator {
1658   bool Skip = true;
1659   const char *Sep;
1660 
FieldSeparator__anona89321510711::FieldSeparator1661   FieldSeparator(const char *Sep = ", ") : Sep(Sep) {}
1662 };
1663 
operator <<(raw_ostream & OS,FieldSeparator & FS)1664 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1665   if (FS.Skip) {
1666     FS.Skip = false;
1667     return OS;
1668   }
1669   return OS << FS.Sep;
1670 }
1671 
1672 struct MDFieldPrinter {
1673   raw_ostream &Out;
1674   FieldSeparator FS;
1675   AsmWriterContext &WriterCtx;
1676 
MDFieldPrinter__anona89321510711::MDFieldPrinter1677   explicit MDFieldPrinter(raw_ostream &Out)
1678       : Out(Out), WriterCtx(AsmWriterContext::getEmpty()) {}
MDFieldPrinter__anona89321510711::MDFieldPrinter1679   MDFieldPrinter(raw_ostream &Out, AsmWriterContext &Ctx)
1680       : Out(Out), WriterCtx(Ctx) {}
1681 
1682   void printTag(const DINode *N);
1683   void printMacinfoType(const DIMacroNode *N);
1684   void printChecksum(const DIFile::ChecksumInfo<StringRef> &N);
1685   void printString(StringRef Name, StringRef Value,
1686                    bool ShouldSkipEmpty = true);
1687   void printMetadata(StringRef Name, const Metadata *MD,
1688                      bool ShouldSkipNull = true);
1689   template <class IntTy>
1690   void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1691   void printAPInt(StringRef Name, const APInt &Int, bool IsUnsigned,
1692                   bool ShouldSkipZero);
1693   void printBool(StringRef Name, bool Value, Optional<bool> Default = None);
1694   void printDIFlags(StringRef Name, DINode::DIFlags Flags);
1695   void printDISPFlags(StringRef Name, DISubprogram::DISPFlags Flags);
1696   template <class IntTy, class Stringifier>
1697   void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1698                       bool ShouldSkipZero = true);
1699   void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
1700   void printNameTableKind(StringRef Name,
1701                           DICompileUnit::DebugNameTableKind NTK);
1702 };
1703 
1704 } // end anonymous namespace
1705 
printTag(const DINode * N)1706 void MDFieldPrinter::printTag(const DINode *N) {
1707   Out << FS << "tag: ";
1708   auto Tag = dwarf::TagString(N->getTag());
1709   if (!Tag.empty())
1710     Out << Tag;
1711   else
1712     Out << N->getTag();
1713 }
1714 
printMacinfoType(const DIMacroNode * N)1715 void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
1716   Out << FS << "type: ";
1717   auto Type = dwarf::MacinfoString(N->getMacinfoType());
1718   if (!Type.empty())
1719     Out << Type;
1720   else
1721     Out << N->getMacinfoType();
1722 }
1723 
printChecksum(const DIFile::ChecksumInfo<StringRef> & Checksum)1724 void MDFieldPrinter::printChecksum(
1725     const DIFile::ChecksumInfo<StringRef> &Checksum) {
1726   Out << FS << "checksumkind: " << Checksum.getKindAsString();
1727   printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false);
1728 }
1729 
printString(StringRef Name,StringRef Value,bool ShouldSkipEmpty)1730 void MDFieldPrinter::printString(StringRef Name, StringRef Value,
1731                                  bool ShouldSkipEmpty) {
1732   if (ShouldSkipEmpty && Value.empty())
1733     return;
1734 
1735   Out << FS << Name << ": \"";
1736   printEscapedString(Value, Out);
1737   Out << "\"";
1738 }
1739 
writeMetadataAsOperand(raw_ostream & Out,const Metadata * MD,AsmWriterContext & WriterCtx)1740 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
1741                                    AsmWriterContext &WriterCtx) {
1742   if (!MD) {
1743     Out << "null";
1744     return;
1745   }
1746   WriteAsOperandInternal(Out, MD, WriterCtx);
1747   WriterCtx.onWriteMetadataAsOperand(MD);
1748 }
1749 
printMetadata(StringRef Name,const Metadata * MD,bool ShouldSkipNull)1750 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1751                                    bool ShouldSkipNull) {
1752   if (ShouldSkipNull && !MD)
1753     return;
1754 
1755   Out << FS << Name << ": ";
1756   writeMetadataAsOperand(Out, MD, WriterCtx);
1757 }
1758 
1759 template <class IntTy>
printInt(StringRef Name,IntTy Int,bool ShouldSkipZero)1760 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1761   if (ShouldSkipZero && !Int)
1762     return;
1763 
1764   Out << FS << Name << ": " << Int;
1765 }
1766 
printAPInt(StringRef Name,const APInt & Int,bool IsUnsigned,bool ShouldSkipZero)1767 void MDFieldPrinter::printAPInt(StringRef Name, const APInt &Int,
1768                                 bool IsUnsigned, bool ShouldSkipZero) {
1769   if (ShouldSkipZero && Int.isZero())
1770     return;
1771 
1772   Out << FS << Name << ": ";
1773   Int.print(Out, !IsUnsigned);
1774 }
1775 
printBool(StringRef Name,bool Value,Optional<bool> Default)1776 void MDFieldPrinter::printBool(StringRef Name, bool Value,
1777                                Optional<bool> Default) {
1778   if (Default && Value == *Default)
1779     return;
1780   Out << FS << Name << ": " << (Value ? "true" : "false");
1781 }
1782 
printDIFlags(StringRef Name,DINode::DIFlags Flags)1783 void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) {
1784   if (!Flags)
1785     return;
1786 
1787   Out << FS << Name << ": ";
1788 
1789   SmallVector<DINode::DIFlags, 8> SplitFlags;
1790   auto Extra = DINode::splitFlags(Flags, SplitFlags);
1791 
1792   FieldSeparator FlagsFS(" | ");
1793   for (auto F : SplitFlags) {
1794     auto StringF = DINode::getFlagString(F);
1795     assert(!StringF.empty() && "Expected valid flag");
1796     Out << FlagsFS << StringF;
1797   }
1798   if (Extra || SplitFlags.empty())
1799     Out << FlagsFS << Extra;
1800 }
1801 
printDISPFlags(StringRef Name,DISubprogram::DISPFlags Flags)1802 void MDFieldPrinter::printDISPFlags(StringRef Name,
1803                                     DISubprogram::DISPFlags Flags) {
1804   // Always print this field, because no flags in the IR at all will be
1805   // interpreted as old-style isDefinition: true.
1806   Out << FS << Name << ": ";
1807 
1808   if (!Flags) {
1809     Out << 0;
1810     return;
1811   }
1812 
1813   SmallVector<DISubprogram::DISPFlags, 8> SplitFlags;
1814   auto Extra = DISubprogram::splitFlags(Flags, SplitFlags);
1815 
1816   FieldSeparator FlagsFS(" | ");
1817   for (auto F : SplitFlags) {
1818     auto StringF = DISubprogram::getFlagString(F);
1819     assert(!StringF.empty() && "Expected valid flag");
1820     Out << FlagsFS << StringF;
1821   }
1822   if (Extra || SplitFlags.empty())
1823     Out << FlagsFS << Extra;
1824 }
1825 
printEmissionKind(StringRef Name,DICompileUnit::DebugEmissionKind EK)1826 void MDFieldPrinter::printEmissionKind(StringRef Name,
1827                                        DICompileUnit::DebugEmissionKind EK) {
1828   Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK);
1829 }
1830 
printNameTableKind(StringRef Name,DICompileUnit::DebugNameTableKind NTK)1831 void MDFieldPrinter::printNameTableKind(StringRef Name,
1832                                         DICompileUnit::DebugNameTableKind NTK) {
1833   if (NTK == DICompileUnit::DebugNameTableKind::Default)
1834     return;
1835   Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK);
1836 }
1837 
1838 template <class IntTy, class Stringifier>
printDwarfEnum(StringRef Name,IntTy Value,Stringifier toString,bool ShouldSkipZero)1839 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
1840                                     Stringifier toString, bool ShouldSkipZero) {
1841   if (!Value)
1842     return;
1843 
1844   Out << FS << Name << ": ";
1845   auto S = toString(Value);
1846   if (!S.empty())
1847     Out << S;
1848   else
1849     Out << Value;
1850 }
1851 
writeGenericDINode(raw_ostream & Out,const GenericDINode * N,AsmWriterContext & WriterCtx)1852 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
1853                                AsmWriterContext &WriterCtx) {
1854   Out << "!GenericDINode(";
1855   MDFieldPrinter Printer(Out, WriterCtx);
1856   Printer.printTag(N);
1857   Printer.printString("header", N->getHeader());
1858   if (N->getNumDwarfOperands()) {
1859     Out << Printer.FS << "operands: {";
1860     FieldSeparator IFS;
1861     for (auto &I : N->dwarf_operands()) {
1862       Out << IFS;
1863       writeMetadataAsOperand(Out, I, WriterCtx);
1864     }
1865     Out << "}";
1866   }
1867   Out << ")";
1868 }
1869 
writeDILocation(raw_ostream & Out,const DILocation * DL,AsmWriterContext & WriterCtx)1870 static void writeDILocation(raw_ostream &Out, const DILocation *DL,
1871                             AsmWriterContext &WriterCtx) {
1872   Out << "!DILocation(";
1873   MDFieldPrinter Printer(Out, WriterCtx);
1874   // Always output the line, since 0 is a relevant and important value for it.
1875   Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
1876   Printer.printInt("column", DL->getColumn());
1877   Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
1878   Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
1879   Printer.printBool("isImplicitCode", DL->isImplicitCode(),
1880                     /* Default */ false);
1881   Out << ")";
1882 }
1883 
writeDISubrange(raw_ostream & Out,const DISubrange * N,AsmWriterContext & WriterCtx)1884 static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
1885                             AsmWriterContext &WriterCtx) {
1886   Out << "!DISubrange(";
1887   MDFieldPrinter Printer(Out, WriterCtx);
1888 
1889   auto *Count = N->getRawCountNode();
1890   if (auto *CE = dyn_cast_or_null<ConstantAsMetadata>(Count)) {
1891     auto *CV = cast<ConstantInt>(CE->getValue());
1892     Printer.printInt("count", CV->getSExtValue(),
1893                      /* ShouldSkipZero */ false);
1894   } else
1895     Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
1896 
1897   // A lowerBound of constant 0 should not be skipped, since it is different
1898   // from an unspecified lower bound (= nullptr).
1899   auto *LBound = N->getRawLowerBound();
1900   if (auto *LE = dyn_cast_or_null<ConstantAsMetadata>(LBound)) {
1901     auto *LV = cast<ConstantInt>(LE->getValue());
1902     Printer.printInt("lowerBound", LV->getSExtValue(),
1903                      /* ShouldSkipZero */ false);
1904   } else
1905     Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
1906 
1907   auto *UBound = N->getRawUpperBound();
1908   if (auto *UE = dyn_cast_or_null<ConstantAsMetadata>(UBound)) {
1909     auto *UV = cast<ConstantInt>(UE->getValue());
1910     Printer.printInt("upperBound", UV->getSExtValue(),
1911                      /* ShouldSkipZero */ false);
1912   } else
1913     Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
1914 
1915   auto *Stride = N->getRawStride();
1916   if (auto *SE = dyn_cast_or_null<ConstantAsMetadata>(Stride)) {
1917     auto *SV = cast<ConstantInt>(SE->getValue());
1918     Printer.printInt("stride", SV->getSExtValue(), /* ShouldSkipZero */ false);
1919   } else
1920     Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
1921 
1922   Out << ")";
1923 }
1924 
writeDIGenericSubrange(raw_ostream & Out,const DIGenericSubrange * N,AsmWriterContext & WriterCtx)1925 static void writeDIGenericSubrange(raw_ostream &Out, const DIGenericSubrange *N,
1926                                    AsmWriterContext &WriterCtx) {
1927   Out << "!DIGenericSubrange(";
1928   MDFieldPrinter Printer(Out, WriterCtx);
1929 
1930   auto IsConstant = [&](Metadata *Bound) -> bool {
1931     if (auto *BE = dyn_cast_or_null<DIExpression>(Bound)) {
1932       return BE->isConstant() &&
1933              DIExpression::SignedOrUnsignedConstant::SignedConstant ==
1934                  *BE->isConstant();
1935     }
1936     return false;
1937   };
1938 
1939   auto GetConstant = [&](Metadata *Bound) -> int64_t {
1940     assert(IsConstant(Bound) && "Expected constant");
1941     auto *BE = dyn_cast_or_null<DIExpression>(Bound);
1942     return static_cast<int64_t>(BE->getElement(1));
1943   };
1944 
1945   auto *Count = N->getRawCountNode();
1946   if (IsConstant(Count))
1947     Printer.printInt("count", GetConstant(Count),
1948                      /* ShouldSkipZero */ false);
1949   else
1950     Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
1951 
1952   auto *LBound = N->getRawLowerBound();
1953   if (IsConstant(LBound))
1954     Printer.printInt("lowerBound", GetConstant(LBound),
1955                      /* ShouldSkipZero */ false);
1956   else
1957     Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
1958 
1959   auto *UBound = N->getRawUpperBound();
1960   if (IsConstant(UBound))
1961     Printer.printInt("upperBound", GetConstant(UBound),
1962                      /* ShouldSkipZero */ false);
1963   else
1964     Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
1965 
1966   auto *Stride = N->getRawStride();
1967   if (IsConstant(Stride))
1968     Printer.printInt("stride", GetConstant(Stride),
1969                      /* ShouldSkipZero */ false);
1970   else
1971     Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
1972 
1973   Out << ")";
1974 }
1975 
writeDIEnumerator(raw_ostream & Out,const DIEnumerator * N,AsmWriterContext &)1976 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
1977                               AsmWriterContext &) {
1978   Out << "!DIEnumerator(";
1979   MDFieldPrinter Printer(Out);
1980   Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
1981   Printer.printAPInt("value", N->getValue(), N->isUnsigned(),
1982                      /*ShouldSkipZero=*/false);
1983   if (N->isUnsigned())
1984     Printer.printBool("isUnsigned", true);
1985   Out << ")";
1986 }
1987 
writeDIBasicType(raw_ostream & Out,const DIBasicType * N,AsmWriterContext &)1988 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
1989                              AsmWriterContext &) {
1990   Out << "!DIBasicType(";
1991   MDFieldPrinter Printer(Out);
1992   if (N->getTag() != dwarf::DW_TAG_base_type)
1993     Printer.printTag(N);
1994   Printer.printString("name", N->getName());
1995   Printer.printInt("size", N->getSizeInBits());
1996   Printer.printInt("align", N->getAlignInBits());
1997   Printer.printDwarfEnum("encoding", N->getEncoding(),
1998                          dwarf::AttributeEncodingString);
1999   Printer.printDIFlags("flags", N->getFlags());
2000   Out << ")";
2001 }
2002 
writeDIStringType(raw_ostream & Out,const DIStringType * N,AsmWriterContext & WriterCtx)2003 static void writeDIStringType(raw_ostream &Out, const DIStringType *N,
2004                               AsmWriterContext &WriterCtx) {
2005   Out << "!DIStringType(";
2006   MDFieldPrinter Printer(Out, WriterCtx);
2007   if (N->getTag() != dwarf::DW_TAG_string_type)
2008     Printer.printTag(N);
2009   Printer.printString("name", N->getName());
2010   Printer.printMetadata("stringLength", N->getRawStringLength());
2011   Printer.printMetadata("stringLengthExpression", N->getRawStringLengthExp());
2012   Printer.printInt("size", N->getSizeInBits());
2013   Printer.printInt("align", N->getAlignInBits());
2014   Printer.printDwarfEnum("encoding", N->getEncoding(),
2015                          dwarf::AttributeEncodingString);
2016   Out << ")";
2017 }
2018 
writeDIDerivedType(raw_ostream & Out,const DIDerivedType * N,AsmWriterContext & WriterCtx)2019 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
2020                                AsmWriterContext &WriterCtx) {
2021   Out << "!DIDerivedType(";
2022   MDFieldPrinter Printer(Out, WriterCtx);
2023   Printer.printTag(N);
2024   Printer.printString("name", N->getName());
2025   Printer.printMetadata("scope", N->getRawScope());
2026   Printer.printMetadata("file", N->getRawFile());
2027   Printer.printInt("line", N->getLine());
2028   Printer.printMetadata("baseType", N->getRawBaseType(),
2029                         /* ShouldSkipNull */ false);
2030   Printer.printInt("size", N->getSizeInBits());
2031   Printer.printInt("align", N->getAlignInBits());
2032   Printer.printInt("offset", N->getOffsetInBits());
2033   Printer.printDIFlags("flags", N->getFlags());
2034   Printer.printMetadata("extraData", N->getRawExtraData());
2035   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
2036     Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace,
2037                      /* ShouldSkipZero */ false);
2038   Printer.printMetadata("annotations", N->getRawAnnotations());
2039   Out << ")";
2040 }
2041 
writeDICompositeType(raw_ostream & Out,const DICompositeType * N,AsmWriterContext & WriterCtx)2042 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
2043                                  AsmWriterContext &WriterCtx) {
2044   Out << "!DICompositeType(";
2045   MDFieldPrinter Printer(Out, WriterCtx);
2046   Printer.printTag(N);
2047   Printer.printString("name", N->getName());
2048   Printer.printMetadata("scope", N->getRawScope());
2049   Printer.printMetadata("file", N->getRawFile());
2050   Printer.printInt("line", N->getLine());
2051   Printer.printMetadata("baseType", N->getRawBaseType());
2052   Printer.printInt("size", N->getSizeInBits());
2053   Printer.printInt("align", N->getAlignInBits());
2054   Printer.printInt("offset", N->getOffsetInBits());
2055   Printer.printDIFlags("flags", N->getFlags());
2056   Printer.printMetadata("elements", N->getRawElements());
2057   Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
2058                          dwarf::LanguageString);
2059   Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
2060   Printer.printMetadata("templateParams", N->getRawTemplateParams());
2061   Printer.printString("identifier", N->getIdentifier());
2062   Printer.printMetadata("discriminator", N->getRawDiscriminator());
2063   Printer.printMetadata("dataLocation", N->getRawDataLocation());
2064   Printer.printMetadata("associated", N->getRawAssociated());
2065   Printer.printMetadata("allocated", N->getRawAllocated());
2066   if (auto *RankConst = N->getRankConst())
2067     Printer.printInt("rank", RankConst->getSExtValue(),
2068                      /* ShouldSkipZero */ false);
2069   else
2070     Printer.printMetadata("rank", N->getRawRank(), /*ShouldSkipNull */ true);
2071   Printer.printMetadata("annotations", N->getRawAnnotations());
2072   Out << ")";
2073 }
2074 
writeDISubroutineType(raw_ostream & Out,const DISubroutineType * N,AsmWriterContext & WriterCtx)2075 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
2076                                   AsmWriterContext &WriterCtx) {
2077   Out << "!DISubroutineType(";
2078   MDFieldPrinter Printer(Out, WriterCtx);
2079   Printer.printDIFlags("flags", N->getFlags());
2080   Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
2081   Printer.printMetadata("types", N->getRawTypeArray(),
2082                         /* ShouldSkipNull */ false);
2083   Out << ")";
2084 }
2085 
writeDIFile(raw_ostream & Out,const DIFile * N,AsmWriterContext &)2086 static void writeDIFile(raw_ostream &Out, const DIFile *N, AsmWriterContext &) {
2087   Out << "!DIFile(";
2088   MDFieldPrinter Printer(Out);
2089   Printer.printString("filename", N->getFilename(),
2090                       /* ShouldSkipEmpty */ false);
2091   Printer.printString("directory", N->getDirectory(),
2092                       /* ShouldSkipEmpty */ false);
2093   // Print all values for checksum together, or not at all.
2094   if (N->getChecksum())
2095     Printer.printChecksum(*N->getChecksum());
2096   Printer.printString("source", N->getSource().getValueOr(StringRef()),
2097                       /* ShouldSkipEmpty */ true);
2098   Out << ")";
2099 }
2100 
writeDICompileUnit(raw_ostream & Out,const DICompileUnit * N,AsmWriterContext & WriterCtx)2101 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
2102                                AsmWriterContext &WriterCtx) {
2103   Out << "!DICompileUnit(";
2104   MDFieldPrinter Printer(Out, WriterCtx);
2105   Printer.printDwarfEnum("language", N->getSourceLanguage(),
2106                          dwarf::LanguageString, /* ShouldSkipZero */ false);
2107   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2108   Printer.printString("producer", N->getProducer());
2109   Printer.printBool("isOptimized", N->isOptimized());
2110   Printer.printString("flags", N->getFlags());
2111   Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
2112                    /* ShouldSkipZero */ false);
2113   Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
2114   Printer.printEmissionKind("emissionKind", N->getEmissionKind());
2115   Printer.printMetadata("enums", N->getRawEnumTypes());
2116   Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
2117   Printer.printMetadata("globals", N->getRawGlobalVariables());
2118   Printer.printMetadata("imports", N->getRawImportedEntities());
2119   Printer.printMetadata("macros", N->getRawMacros());
2120   Printer.printInt("dwoId", N->getDWOId());
2121   Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
2122   Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(),
2123                     false);
2124   Printer.printNameTableKind("nameTableKind", N->getNameTableKind());
2125   Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false);
2126   Printer.printString("sysroot", N->getSysRoot());
2127   Printer.printString("sdk", N->getSDK());
2128   Out << ")";
2129 }
2130 
writeDISubprogram(raw_ostream & Out,const DISubprogram * N,AsmWriterContext & WriterCtx)2131 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
2132                               AsmWriterContext &WriterCtx) {
2133   Out << "!DISubprogram(";
2134   MDFieldPrinter Printer(Out, WriterCtx);
2135   Printer.printString("name", N->getName());
2136   Printer.printString("linkageName", N->getLinkageName());
2137   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2138   Printer.printMetadata("file", N->getRawFile());
2139   Printer.printInt("line", N->getLine());
2140   Printer.printMetadata("type", N->getRawType());
2141   Printer.printInt("scopeLine", N->getScopeLine());
2142   Printer.printMetadata("containingType", N->getRawContainingType());
2143   if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
2144       N->getVirtualIndex() != 0)
2145     Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
2146   Printer.printInt("thisAdjustment", N->getThisAdjustment());
2147   Printer.printDIFlags("flags", N->getFlags());
2148   Printer.printDISPFlags("spFlags", N->getSPFlags());
2149   Printer.printMetadata("unit", N->getRawUnit());
2150   Printer.printMetadata("templateParams", N->getRawTemplateParams());
2151   Printer.printMetadata("declaration", N->getRawDeclaration());
2152   Printer.printMetadata("retainedNodes", N->getRawRetainedNodes());
2153   Printer.printMetadata("thrownTypes", N->getRawThrownTypes());
2154   Printer.printMetadata("annotations", N->getRawAnnotations());
2155   Out << ")";
2156 }
2157 
writeDILexicalBlock(raw_ostream & Out,const DILexicalBlock * N,AsmWriterContext & WriterCtx)2158 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
2159                                 AsmWriterContext &WriterCtx) {
2160   Out << "!DILexicalBlock(";
2161   MDFieldPrinter Printer(Out, WriterCtx);
2162   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2163   Printer.printMetadata("file", N->getRawFile());
2164   Printer.printInt("line", N->getLine());
2165   Printer.printInt("column", N->getColumn());
2166   Out << ")";
2167 }
2168 
writeDILexicalBlockFile(raw_ostream & Out,const DILexicalBlockFile * N,AsmWriterContext & WriterCtx)2169 static void writeDILexicalBlockFile(raw_ostream &Out,
2170                                     const DILexicalBlockFile *N,
2171                                     AsmWriterContext &WriterCtx) {
2172   Out << "!DILexicalBlockFile(";
2173   MDFieldPrinter Printer(Out, WriterCtx);
2174   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2175   Printer.printMetadata("file", N->getRawFile());
2176   Printer.printInt("discriminator", N->getDiscriminator(),
2177                    /* ShouldSkipZero */ false);
2178   Out << ")";
2179 }
2180 
writeDINamespace(raw_ostream & Out,const DINamespace * N,AsmWriterContext & WriterCtx)2181 static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
2182                              AsmWriterContext &WriterCtx) {
2183   Out << "!DINamespace(";
2184   MDFieldPrinter Printer(Out, WriterCtx);
2185   Printer.printString("name", N->getName());
2186   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2187   Printer.printBool("exportSymbols", N->getExportSymbols(), false);
2188   Out << ")";
2189 }
2190 
writeDICommonBlock(raw_ostream & Out,const DICommonBlock * N,AsmWriterContext & WriterCtx)2191 static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N,
2192                                AsmWriterContext &WriterCtx) {
2193   Out << "!DICommonBlock(";
2194   MDFieldPrinter Printer(Out, WriterCtx);
2195   Printer.printMetadata("scope", N->getRawScope(), false);
2196   Printer.printMetadata("declaration", N->getRawDecl(), false);
2197   Printer.printString("name", N->getName());
2198   Printer.printMetadata("file", N->getRawFile());
2199   Printer.printInt("line", N->getLineNo());
2200   Out << ")";
2201 }
2202 
writeDIMacro(raw_ostream & Out,const DIMacro * N,AsmWriterContext & WriterCtx)2203 static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
2204                          AsmWriterContext &WriterCtx) {
2205   Out << "!DIMacro(";
2206   MDFieldPrinter Printer(Out, WriterCtx);
2207   Printer.printMacinfoType(N);
2208   Printer.printInt("line", N->getLine());
2209   Printer.printString("name", N->getName());
2210   Printer.printString("value", N->getValue());
2211   Out << ")";
2212 }
2213 
writeDIMacroFile(raw_ostream & Out,const DIMacroFile * N,AsmWriterContext & WriterCtx)2214 static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
2215                              AsmWriterContext &WriterCtx) {
2216   Out << "!DIMacroFile(";
2217   MDFieldPrinter Printer(Out, WriterCtx);
2218   Printer.printInt("line", N->getLine());
2219   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2220   Printer.printMetadata("nodes", N->getRawElements());
2221   Out << ")";
2222 }
2223 
writeDIModule(raw_ostream & Out,const DIModule * N,AsmWriterContext & WriterCtx)2224 static void writeDIModule(raw_ostream &Out, const DIModule *N,
2225                           AsmWriterContext &WriterCtx) {
2226   Out << "!DIModule(";
2227   MDFieldPrinter Printer(Out, WriterCtx);
2228   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2229   Printer.printString("name", N->getName());
2230   Printer.printString("configMacros", N->getConfigurationMacros());
2231   Printer.printString("includePath", N->getIncludePath());
2232   Printer.printString("apinotes", N->getAPINotesFile());
2233   Printer.printMetadata("file", N->getRawFile());
2234   Printer.printInt("line", N->getLineNo());
2235   Printer.printBool("isDecl", N->getIsDecl(), /* Default */ false);
2236   Out << ")";
2237 }
2238 
writeDITemplateTypeParameter(raw_ostream & Out,const DITemplateTypeParameter * N,AsmWriterContext & WriterCtx)2239 static void writeDITemplateTypeParameter(raw_ostream &Out,
2240                                          const DITemplateTypeParameter *N,
2241                                          AsmWriterContext &WriterCtx) {
2242   Out << "!DITemplateTypeParameter(";
2243   MDFieldPrinter Printer(Out, WriterCtx);
2244   Printer.printString("name", N->getName());
2245   Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
2246   Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2247   Out << ")";
2248 }
2249 
writeDITemplateValueParameter(raw_ostream & Out,const DITemplateValueParameter * N,AsmWriterContext & WriterCtx)2250 static void writeDITemplateValueParameter(raw_ostream &Out,
2251                                           const DITemplateValueParameter *N,
2252                                           AsmWriterContext &WriterCtx) {
2253   Out << "!DITemplateValueParameter(";
2254   MDFieldPrinter Printer(Out, WriterCtx);
2255   if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
2256     Printer.printTag(N);
2257   Printer.printString("name", N->getName());
2258   Printer.printMetadata("type", N->getRawType());
2259   Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2260   Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
2261   Out << ")";
2262 }
2263 
writeDIGlobalVariable(raw_ostream & Out,const DIGlobalVariable * N,AsmWriterContext & WriterCtx)2264 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
2265                                   AsmWriterContext &WriterCtx) {
2266   Out << "!DIGlobalVariable(";
2267   MDFieldPrinter Printer(Out, WriterCtx);
2268   Printer.printString("name", N->getName());
2269   Printer.printString("linkageName", N->getLinkageName());
2270   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2271   Printer.printMetadata("file", N->getRawFile());
2272   Printer.printInt("line", N->getLine());
2273   Printer.printMetadata("type", N->getRawType());
2274   Printer.printBool("isLocal", N->isLocalToUnit());
2275   Printer.printBool("isDefinition", N->isDefinition());
2276   Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
2277   Printer.printMetadata("templateParams", N->getRawTemplateParams());
2278   Printer.printInt("align", N->getAlignInBits());
2279   Printer.printMetadata("annotations", N->getRawAnnotations());
2280   Out << ")";
2281 }
2282 
writeDILocalVariable(raw_ostream & Out,const DILocalVariable * N,AsmWriterContext & WriterCtx)2283 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
2284                                  AsmWriterContext &WriterCtx) {
2285   Out << "!DILocalVariable(";
2286   MDFieldPrinter Printer(Out, WriterCtx);
2287   Printer.printString("name", N->getName());
2288   Printer.printInt("arg", N->getArg());
2289   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2290   Printer.printMetadata("file", N->getRawFile());
2291   Printer.printInt("line", N->getLine());
2292   Printer.printMetadata("type", N->getRawType());
2293   Printer.printDIFlags("flags", N->getFlags());
2294   Printer.printInt("align", N->getAlignInBits());
2295   Printer.printMetadata("annotations", N->getRawAnnotations());
2296   Out << ")";
2297 }
2298 
writeDILabel(raw_ostream & Out,const DILabel * N,AsmWriterContext & WriterCtx)2299 static void writeDILabel(raw_ostream &Out, const DILabel *N,
2300                          AsmWriterContext &WriterCtx) {
2301   Out << "!DILabel(";
2302   MDFieldPrinter Printer(Out, WriterCtx);
2303   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2304   Printer.printString("name", N->getName());
2305   Printer.printMetadata("file", N->getRawFile());
2306   Printer.printInt("line", N->getLine());
2307   Out << ")";
2308 }
2309 
writeDIExpression(raw_ostream & Out,const DIExpression * N,AsmWriterContext & WriterCtx)2310 static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
2311                               AsmWriterContext &WriterCtx) {
2312   Out << "!DIExpression(";
2313   FieldSeparator FS;
2314   if (N->isValid()) {
2315     for (const DIExpression::ExprOperand &Op : N->expr_ops()) {
2316       auto OpStr = dwarf::OperationEncodingString(Op.getOp());
2317       assert(!OpStr.empty() && "Expected valid opcode");
2318 
2319       Out << FS << OpStr;
2320       if (Op.getOp() == dwarf::DW_OP_LLVM_convert) {
2321         Out << FS << Op.getArg(0);
2322         Out << FS << dwarf::AttributeEncodingString(Op.getArg(1));
2323       } else {
2324         for (unsigned A = 0, AE = Op.getNumArgs(); A != AE; ++A)
2325           Out << FS << Op.getArg(A);
2326       }
2327     }
2328   } else {
2329     for (const auto &I : N->getElements())
2330       Out << FS << I;
2331   }
2332   Out << ")";
2333 }
2334 
writeDIArgList(raw_ostream & Out,const DIArgList * N,AsmWriterContext & WriterCtx,bool FromValue=false)2335 static void writeDIArgList(raw_ostream &Out, const DIArgList *N,
2336                            AsmWriterContext &WriterCtx,
2337                            bool FromValue = false) {
2338   assert(FromValue &&
2339          "Unexpected DIArgList metadata outside of value argument");
2340   Out << "!DIArgList(";
2341   FieldSeparator FS;
2342   MDFieldPrinter Printer(Out, WriterCtx);
2343   for (Metadata *Arg : N->getArgs()) {
2344     Out << FS;
2345     WriteAsOperandInternal(Out, Arg, WriterCtx, true);
2346   }
2347   Out << ")";
2348 }
2349 
writeDIGlobalVariableExpression(raw_ostream & Out,const DIGlobalVariableExpression * N,AsmWriterContext & WriterCtx)2350 static void writeDIGlobalVariableExpression(raw_ostream &Out,
2351                                             const DIGlobalVariableExpression *N,
2352                                             AsmWriterContext &WriterCtx) {
2353   Out << "!DIGlobalVariableExpression(";
2354   MDFieldPrinter Printer(Out, WriterCtx);
2355   Printer.printMetadata("var", N->getVariable());
2356   Printer.printMetadata("expr", N->getExpression());
2357   Out << ")";
2358 }
2359 
writeDIObjCProperty(raw_ostream & Out,const DIObjCProperty * N,AsmWriterContext & WriterCtx)2360 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
2361                                 AsmWriterContext &WriterCtx) {
2362   Out << "!DIObjCProperty(";
2363   MDFieldPrinter Printer(Out, WriterCtx);
2364   Printer.printString("name", N->getName());
2365   Printer.printMetadata("file", N->getRawFile());
2366   Printer.printInt("line", N->getLine());
2367   Printer.printString("setter", N->getSetterName());
2368   Printer.printString("getter", N->getGetterName());
2369   Printer.printInt("attributes", N->getAttributes());
2370   Printer.printMetadata("type", N->getRawType());
2371   Out << ")";
2372 }
2373 
writeDIImportedEntity(raw_ostream & Out,const DIImportedEntity * N,AsmWriterContext & WriterCtx)2374 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
2375                                   AsmWriterContext &WriterCtx) {
2376   Out << "!DIImportedEntity(";
2377   MDFieldPrinter Printer(Out, WriterCtx);
2378   Printer.printTag(N);
2379   Printer.printString("name", N->getName());
2380   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2381   Printer.printMetadata("entity", N->getRawEntity());
2382   Printer.printMetadata("file", N->getRawFile());
2383   Printer.printInt("line", N->getLine());
2384   Printer.printMetadata("elements", N->getRawElements());
2385   Out << ")";
2386 }
2387 
WriteMDNodeBodyInternal(raw_ostream & Out,const MDNode * Node,AsmWriterContext & Ctx)2388 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
2389                                     AsmWriterContext &Ctx) {
2390   if (Node->isDistinct())
2391     Out << "distinct ";
2392   else if (Node->isTemporary())
2393     Out << "<temporary!> "; // Handle broken code.
2394 
2395   switch (Node->getMetadataID()) {
2396   default:
2397     llvm_unreachable("Expected uniquable MDNode");
2398 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
2399   case Metadata::CLASS##Kind:                                                  \
2400     write##CLASS(Out, cast<CLASS>(Node), Ctx);                                 \
2401     break;
2402 #include "llvm/IR/Metadata.def"
2403   }
2404 }
2405 
2406 // Full implementation of printing a Value as an operand with support for
2407 // TypePrinting, etc.
WriteAsOperandInternal(raw_ostream & Out,const Value * V,AsmWriterContext & WriterCtx)2408 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
2409                                    AsmWriterContext &WriterCtx) {
2410   if (V->hasName()) {
2411     PrintLLVMName(Out, V);
2412     return;
2413   }
2414 
2415   const Constant *CV = dyn_cast<Constant>(V);
2416   if (CV && !isa<GlobalValue>(CV)) {
2417     assert(WriterCtx.TypePrinter && "Constants require TypePrinting!");
2418     WriteConstantInternal(Out, CV, WriterCtx);
2419     return;
2420   }
2421 
2422   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2423     Out << "asm ";
2424     if (IA->hasSideEffects())
2425       Out << "sideeffect ";
2426     if (IA->isAlignStack())
2427       Out << "alignstack ";
2428     // We don't emit the AD_ATT dialect as it's the assumed default.
2429     if (IA->getDialect() == InlineAsm::AD_Intel)
2430       Out << "inteldialect ";
2431     if (IA->canThrow())
2432       Out << "unwind ";
2433     Out << '"';
2434     printEscapedString(IA->getAsmString(), Out);
2435     Out << "\", \"";
2436     printEscapedString(IA->getConstraintString(), Out);
2437     Out << '"';
2438     return;
2439   }
2440 
2441   if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
2442     WriteAsOperandInternal(Out, MD->getMetadata(), WriterCtx,
2443                            /* FromValue */ true);
2444     return;
2445   }
2446 
2447   char Prefix = '%';
2448   int Slot;
2449   auto *Machine = WriterCtx.Machine;
2450   // If we have a SlotTracker, use it.
2451   if (Machine) {
2452     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2453       Slot = Machine->getGlobalSlot(GV);
2454       Prefix = '@';
2455     } else {
2456       Slot = Machine->getLocalSlot(V);
2457 
2458       // If the local value didn't succeed, then we may be referring to a value
2459       // from a different function.  Translate it, as this can happen when using
2460       // address of blocks.
2461       if (Slot == -1)
2462         if ((Machine = createSlotTracker(V))) {
2463           Slot = Machine->getLocalSlot(V);
2464           delete Machine;
2465         }
2466     }
2467   } else if ((Machine = createSlotTracker(V))) {
2468     // Otherwise, create one to get the # and then destroy it.
2469     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2470       Slot = Machine->getGlobalSlot(GV);
2471       Prefix = '@';
2472     } else {
2473       Slot = Machine->getLocalSlot(V);
2474     }
2475     delete Machine;
2476     Machine = nullptr;
2477   } else {
2478     Slot = -1;
2479   }
2480 
2481   if (Slot != -1)
2482     Out << Prefix << Slot;
2483   else
2484     Out << "<badref>";
2485 }
2486 
WriteAsOperandInternal(raw_ostream & Out,const Metadata * MD,AsmWriterContext & WriterCtx,bool FromValue)2487 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
2488                                    AsmWriterContext &WriterCtx,
2489                                    bool FromValue) {
2490   // Write DIExpressions and DIArgLists inline when used as a value. Improves
2491   // readability of debug info intrinsics.
2492   if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) {
2493     writeDIExpression(Out, Expr, WriterCtx);
2494     return;
2495   }
2496   if (const DIArgList *ArgList = dyn_cast<DIArgList>(MD)) {
2497     writeDIArgList(Out, ArgList, WriterCtx, FromValue);
2498     return;
2499   }
2500 
2501   if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2502     std::unique_ptr<SlotTracker> MachineStorage;
2503     SaveAndRestore<SlotTracker *> SARMachine(WriterCtx.Machine);
2504     if (!WriterCtx.Machine) {
2505       MachineStorage = std::make_unique<SlotTracker>(WriterCtx.Context);
2506       WriterCtx.Machine = MachineStorage.get();
2507     }
2508     int Slot = WriterCtx.Machine->getMetadataSlot(N);
2509     if (Slot == -1) {
2510       if (const DILocation *Loc = dyn_cast<DILocation>(N)) {
2511         writeDILocation(Out, Loc, WriterCtx);
2512         return;
2513       }
2514       // Give the pointer value instead of "badref", since this comes up all
2515       // the time when debugging.
2516       Out << "<" << N << ">";
2517     } else
2518       Out << '!' << Slot;
2519     return;
2520   }
2521 
2522   if (const MDString *MDS = dyn_cast<MDString>(MD)) {
2523     Out << "!\"";
2524     printEscapedString(MDS->getString(), Out);
2525     Out << '"';
2526     return;
2527   }
2528 
2529   auto *V = cast<ValueAsMetadata>(MD);
2530   assert(WriterCtx.TypePrinter && "TypePrinter required for metadata values");
2531   assert((FromValue || !isa<LocalAsMetadata>(V)) &&
2532          "Unexpected function-local metadata outside of value argument");
2533 
2534   WriterCtx.TypePrinter->print(V->getValue()->getType(), Out);
2535   Out << ' ';
2536   WriteAsOperandInternal(Out, V->getValue(), WriterCtx);
2537 }
2538 
2539 namespace {
2540 
2541 class AssemblyWriter {
2542   formatted_raw_ostream &Out;
2543   const Module *TheModule = nullptr;
2544   const ModuleSummaryIndex *TheIndex = nullptr;
2545   std::unique_ptr<SlotTracker> SlotTrackerStorage;
2546   SlotTracker &Machine;
2547   TypePrinting TypePrinter;
2548   AssemblyAnnotationWriter *AnnotationWriter = nullptr;
2549   SetVector<const Comdat *> Comdats;
2550   bool IsForDebug;
2551   bool ShouldPreserveUseListOrder;
2552   UseListOrderMap UseListOrders;
2553   SmallVector<StringRef, 8> MDNames;
2554   /// Synchronization scope names registered with LLVMContext.
2555   SmallVector<StringRef, 8> SSNs;
2556   DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap;
2557 
2558 public:
2559   /// Construct an AssemblyWriter with an external SlotTracker
2560   AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2561                  AssemblyAnnotationWriter *AAW, bool IsForDebug,
2562                  bool ShouldPreserveUseListOrder = false);
2563 
2564   AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2565                  const ModuleSummaryIndex *Index, bool IsForDebug);
2566 
getContext()2567   AsmWriterContext getContext() {
2568     return AsmWriterContext(&TypePrinter, &Machine, TheModule);
2569   }
2570 
2571   void printMDNodeBody(const MDNode *MD);
2572   void printNamedMDNode(const NamedMDNode *NMD);
2573 
2574   void printModule(const Module *M);
2575 
2576   void writeOperand(const Value *Op, bool PrintType);
2577   void writeParamOperand(const Value *Operand, AttributeSet Attrs);
2578   void writeOperandBundles(const CallBase *Call);
2579   void writeSyncScope(const LLVMContext &Context,
2580                       SyncScope::ID SSID);
2581   void writeAtomic(const LLVMContext &Context,
2582                    AtomicOrdering Ordering,
2583                    SyncScope::ID SSID);
2584   void writeAtomicCmpXchg(const LLVMContext &Context,
2585                           AtomicOrdering SuccessOrdering,
2586                           AtomicOrdering FailureOrdering,
2587                           SyncScope::ID SSID);
2588 
2589   void writeAllMDNodes();
2590   void writeMDNode(unsigned Slot, const MDNode *Node);
2591   void writeAttribute(const Attribute &Attr, bool InAttrGroup = false);
2592   void writeAttributeSet(const AttributeSet &AttrSet, bool InAttrGroup = false);
2593   void writeAllAttributeGroups();
2594 
2595   void printTypeIdentities();
2596   void printGlobal(const GlobalVariable *GV);
2597   void printIndirectSymbol(const GlobalIndirectSymbol *GIS);
2598   void printComdat(const Comdat *C);
2599   void printFunction(const Function *F);
2600   void printArgument(const Argument *FA, AttributeSet Attrs);
2601   void printBasicBlock(const BasicBlock *BB);
2602   void printInstructionLine(const Instruction &I);
2603   void printInstruction(const Instruction &I);
2604 
2605   void printUseListOrder(const Value *V, const std::vector<unsigned> &Shuffle);
2606   void printUseLists(const Function *F);
2607 
2608   void printModuleSummaryIndex();
2609   void printSummaryInfo(unsigned Slot, const ValueInfo &VI);
2610   void printSummary(const GlobalValueSummary &Summary);
2611   void printAliasSummary(const AliasSummary *AS);
2612   void printGlobalVarSummary(const GlobalVarSummary *GS);
2613   void printFunctionSummary(const FunctionSummary *FS);
2614   void printTypeIdSummary(const TypeIdSummary &TIS);
2615   void printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo &TI);
2616   void printTypeTestResolution(const TypeTestResolution &TTRes);
2617   void printArgs(const std::vector<uint64_t> &Args);
2618   void printWPDRes(const WholeProgramDevirtResolution &WPDRes);
2619   void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo);
2620   void printVFuncId(const FunctionSummary::VFuncId VFId);
2621   void
2622   printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> &VCallList,
2623                       const char *Tag);
2624   void
2625   printConstVCalls(const std::vector<FunctionSummary::ConstVCall> &VCallList,
2626                    const char *Tag);
2627 
2628 private:
2629   /// Print out metadata attachments.
2630   void printMetadataAttachments(
2631       const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2632       StringRef Separator);
2633 
2634   // printInfoComment - Print a little comment after the instruction indicating
2635   // which slot it occupies.
2636   void printInfoComment(const Value &V);
2637 
2638   // printGCRelocateComment - print comment after call to the gc.relocate
2639   // intrinsic indicating base and derived pointer names.
2640   void printGCRelocateComment(const GCRelocateInst &Relocate);
2641 };
2642 
2643 } // end anonymous namespace
2644 
AssemblyWriter(formatted_raw_ostream & o,SlotTracker & Mac,const Module * M,AssemblyAnnotationWriter * AAW,bool IsForDebug,bool ShouldPreserveUseListOrder)2645 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2646                                const Module *M, AssemblyAnnotationWriter *AAW,
2647                                bool IsForDebug, bool ShouldPreserveUseListOrder)
2648     : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW),
2649       IsForDebug(IsForDebug),
2650       ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2651   if (!TheModule)
2652     return;
2653   for (const GlobalObject &GO : TheModule->global_objects())
2654     if (const Comdat *C = GO.getComdat())
2655       Comdats.insert(C);
2656 }
2657 
AssemblyWriter(formatted_raw_ostream & o,SlotTracker & Mac,const ModuleSummaryIndex * Index,bool IsForDebug)2658 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2659                                const ModuleSummaryIndex *Index, bool IsForDebug)
2660     : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr),
2661       IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {}
2662 
writeOperand(const Value * Operand,bool PrintType)2663 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2664   if (!Operand) {
2665     Out << "<null operand!>";
2666     return;
2667   }
2668   if (PrintType) {
2669     TypePrinter.print(Operand->getType(), Out);
2670     Out << ' ';
2671   }
2672   auto WriterCtx = getContext();
2673   WriteAsOperandInternal(Out, Operand, WriterCtx);
2674 }
2675 
writeSyncScope(const LLVMContext & Context,SyncScope::ID SSID)2676 void AssemblyWriter::writeSyncScope(const LLVMContext &Context,
2677                                     SyncScope::ID SSID) {
2678   switch (SSID) {
2679   case SyncScope::System: {
2680     break;
2681   }
2682   default: {
2683     if (SSNs.empty())
2684       Context.getSyncScopeNames(SSNs);
2685 
2686     Out << " syncscope(\"";
2687     printEscapedString(SSNs[SSID], Out);
2688     Out << "\")";
2689     break;
2690   }
2691   }
2692 }
2693 
writeAtomic(const LLVMContext & Context,AtomicOrdering Ordering,SyncScope::ID SSID)2694 void AssemblyWriter::writeAtomic(const LLVMContext &Context,
2695                                  AtomicOrdering Ordering,
2696                                  SyncScope::ID SSID) {
2697   if (Ordering == AtomicOrdering::NotAtomic)
2698     return;
2699 
2700   writeSyncScope(Context, SSID);
2701   Out << " " << toIRString(Ordering);
2702 }
2703 
writeAtomicCmpXchg(const LLVMContext & Context,AtomicOrdering SuccessOrdering,AtomicOrdering FailureOrdering,SyncScope::ID SSID)2704 void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context,
2705                                         AtomicOrdering SuccessOrdering,
2706                                         AtomicOrdering FailureOrdering,
2707                                         SyncScope::ID SSID) {
2708   assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
2709          FailureOrdering != AtomicOrdering::NotAtomic);
2710 
2711   writeSyncScope(Context, SSID);
2712   Out << " " << toIRString(SuccessOrdering);
2713   Out << " " << toIRString(FailureOrdering);
2714 }
2715 
writeParamOperand(const Value * Operand,AttributeSet Attrs)2716 void AssemblyWriter::writeParamOperand(const Value *Operand,
2717                                        AttributeSet Attrs) {
2718   if (!Operand) {
2719     Out << "<null operand!>";
2720     return;
2721   }
2722 
2723   // Print the type
2724   TypePrinter.print(Operand->getType(), Out);
2725   // Print parameter attributes list
2726   if (Attrs.hasAttributes()) {
2727     Out << ' ';
2728     writeAttributeSet(Attrs);
2729   }
2730   Out << ' ';
2731   // Print the operand
2732   auto WriterCtx = getContext();
2733   WriteAsOperandInternal(Out, Operand, WriterCtx);
2734 }
2735 
writeOperandBundles(const CallBase * Call)2736 void AssemblyWriter::writeOperandBundles(const CallBase *Call) {
2737   if (!Call->hasOperandBundles())
2738     return;
2739 
2740   Out << " [ ";
2741 
2742   bool FirstBundle = true;
2743   for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) {
2744     OperandBundleUse BU = Call->getOperandBundleAt(i);
2745 
2746     if (!FirstBundle)
2747       Out << ", ";
2748     FirstBundle = false;
2749 
2750     Out << '"';
2751     printEscapedString(BU.getTagName(), Out);
2752     Out << '"';
2753 
2754     Out << '(';
2755 
2756     bool FirstInput = true;
2757     auto WriterCtx = getContext();
2758     for (const auto &Input : BU.Inputs) {
2759       if (!FirstInput)
2760         Out << ", ";
2761       FirstInput = false;
2762 
2763       TypePrinter.print(Input->getType(), Out);
2764       Out << " ";
2765       WriteAsOperandInternal(Out, Input, WriterCtx);
2766     }
2767 
2768     Out << ')';
2769   }
2770 
2771   Out << " ]";
2772 }
2773 
printModule(const Module * M)2774 void AssemblyWriter::printModule(const Module *M) {
2775   Machine.initializeIfNeeded();
2776 
2777   if (ShouldPreserveUseListOrder)
2778     UseListOrders = predictUseListOrder(M);
2779 
2780   if (!M->getModuleIdentifier().empty() &&
2781       // Don't print the ID if it will start a new line (which would
2782       // require a comment char before it).
2783       M->getModuleIdentifier().find('\n') == std::string::npos)
2784     Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2785 
2786   if (!M->getSourceFileName().empty()) {
2787     Out << "source_filename = \"";
2788     printEscapedString(M->getSourceFileName(), Out);
2789     Out << "\"\n";
2790   }
2791 
2792   const std::string &DL = M->getDataLayoutStr();
2793   if (!DL.empty())
2794     Out << "target datalayout = \"" << DL << "\"\n";
2795   if (!M->getTargetTriple().empty())
2796     Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2797 
2798   if (!M->getModuleInlineAsm().empty()) {
2799     Out << '\n';
2800 
2801     // Split the string into lines, to make it easier to read the .ll file.
2802     StringRef Asm = M->getModuleInlineAsm();
2803     do {
2804       StringRef Front;
2805       std::tie(Front, Asm) = Asm.split('\n');
2806 
2807       // We found a newline, print the portion of the asm string from the
2808       // last newline up to this newline.
2809       Out << "module asm \"";
2810       printEscapedString(Front, Out);
2811       Out << "\"\n";
2812     } while (!Asm.empty());
2813   }
2814 
2815   printTypeIdentities();
2816 
2817   // Output all comdats.
2818   if (!Comdats.empty())
2819     Out << '\n';
2820   for (const Comdat *C : Comdats) {
2821     printComdat(C);
2822     if (C != Comdats.back())
2823       Out << '\n';
2824   }
2825 
2826   // Output all globals.
2827   if (!M->global_empty()) Out << '\n';
2828   for (const GlobalVariable &GV : M->globals()) {
2829     printGlobal(&GV); Out << '\n';
2830   }
2831 
2832   // Output all aliases.
2833   if (!M->alias_empty()) Out << "\n";
2834   for (const GlobalAlias &GA : M->aliases())
2835     printIndirectSymbol(&GA);
2836 
2837   // Output all ifuncs.
2838   if (!M->ifunc_empty()) Out << "\n";
2839   for (const GlobalIFunc &GI : M->ifuncs())
2840     printIndirectSymbol(&GI);
2841 
2842   // Output all of the functions.
2843   for (const Function &F : *M) {
2844     Out << '\n';
2845     printFunction(&F);
2846   }
2847 
2848   // Output global use-lists.
2849   printUseLists(nullptr);
2850 
2851   // Output all attribute groups.
2852   if (!Machine.as_empty()) {
2853     Out << '\n';
2854     writeAllAttributeGroups();
2855   }
2856 
2857   // Output named metadata.
2858   if (!M->named_metadata_empty()) Out << '\n';
2859 
2860   for (const NamedMDNode &Node : M->named_metadata())
2861     printNamedMDNode(&Node);
2862 
2863   // Output metadata.
2864   if (!Machine.mdn_empty()) {
2865     Out << '\n';
2866     writeAllMDNodes();
2867   }
2868 }
2869 
printModuleSummaryIndex()2870 void AssemblyWriter::printModuleSummaryIndex() {
2871   assert(TheIndex);
2872   int NumSlots = Machine.initializeIndexIfNeeded();
2873 
2874   Out << "\n";
2875 
2876   // Print module path entries. To print in order, add paths to a vector
2877   // indexed by module slot.
2878   std::vector<std::pair<std::string, ModuleHash>> moduleVec;
2879   std::string RegularLTOModuleName =
2880       ModuleSummaryIndex::getRegularLTOModuleName();
2881   moduleVec.resize(TheIndex->modulePaths().size());
2882   for (auto &ModPath : TheIndex->modulePaths())
2883     moduleVec[Machine.getModulePathSlot(ModPath.first())] = std::make_pair(
2884         // A module id of -1 is a special entry for a regular LTO module created
2885         // during the thin link.
2886         ModPath.second.first == -1u ? RegularLTOModuleName
2887                                     : (std::string)std::string(ModPath.first()),
2888         ModPath.second.second);
2889 
2890   unsigned i = 0;
2891   for (auto &ModPair : moduleVec) {
2892     Out << "^" << i++ << " = module: (";
2893     Out << "path: \"";
2894     printEscapedString(ModPair.first, Out);
2895     Out << "\", hash: (";
2896     FieldSeparator FS;
2897     for (auto Hash : ModPair.second)
2898       Out << FS << Hash;
2899     Out << "))\n";
2900   }
2901 
2902   // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer
2903   // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID).
2904   for (auto &GlobalList : *TheIndex) {
2905     auto GUID = GlobalList.first;
2906     for (auto &Summary : GlobalList.second.SummaryList)
2907       SummaryToGUIDMap[Summary.get()] = GUID;
2908   }
2909 
2910   // Print the global value summary entries.
2911   for (auto &GlobalList : *TheIndex) {
2912     auto GUID = GlobalList.first;
2913     auto VI = TheIndex->getValueInfo(GlobalList);
2914     printSummaryInfo(Machine.getGUIDSlot(GUID), VI);
2915   }
2916 
2917   // Print the TypeIdMap entries.
2918   for (const auto &TID : TheIndex->typeIds()) {
2919     Out << "^" << Machine.getTypeIdSlot(TID.second.first)
2920         << " = typeid: (name: \"" << TID.second.first << "\"";
2921     printTypeIdSummary(TID.second.second);
2922     Out << ") ; guid = " << TID.first << "\n";
2923   }
2924 
2925   // Print the TypeIdCompatibleVtableMap entries.
2926   for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) {
2927     auto GUID = GlobalValue::getGUID(TId.first);
2928     Out << "^" << Machine.getGUIDSlot(GUID)
2929         << " = typeidCompatibleVTable: (name: \"" << TId.first << "\"";
2930     printTypeIdCompatibleVtableSummary(TId.second);
2931     Out << ") ; guid = " << GUID << "\n";
2932   }
2933 
2934   // Don't emit flags when it's not really needed (value is zero by default).
2935   if (TheIndex->getFlags()) {
2936     Out << "^" << NumSlots << " = flags: " << TheIndex->getFlags() << "\n";
2937     ++NumSlots;
2938   }
2939 
2940   Out << "^" << NumSlots << " = blockcount: " << TheIndex->getBlockCount()
2941       << "\n";
2942 }
2943 
2944 static const char *
getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K)2945 getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) {
2946   switch (K) {
2947   case WholeProgramDevirtResolution::Indir:
2948     return "indir";
2949   case WholeProgramDevirtResolution::SingleImpl:
2950     return "singleImpl";
2951   case WholeProgramDevirtResolution::BranchFunnel:
2952     return "branchFunnel";
2953   }
2954   llvm_unreachable("invalid WholeProgramDevirtResolution kind");
2955 }
2956 
getWholeProgDevirtResByArgKindName(WholeProgramDevirtResolution::ByArg::Kind K)2957 static const char *getWholeProgDevirtResByArgKindName(
2958     WholeProgramDevirtResolution::ByArg::Kind K) {
2959   switch (K) {
2960   case WholeProgramDevirtResolution::ByArg::Indir:
2961     return "indir";
2962   case WholeProgramDevirtResolution::ByArg::UniformRetVal:
2963     return "uniformRetVal";
2964   case WholeProgramDevirtResolution::ByArg::UniqueRetVal:
2965     return "uniqueRetVal";
2966   case WholeProgramDevirtResolution::ByArg::VirtualConstProp:
2967     return "virtualConstProp";
2968   }
2969   llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind");
2970 }
2971 
getTTResKindName(TypeTestResolution::Kind K)2972 static const char *getTTResKindName(TypeTestResolution::Kind K) {
2973   switch (K) {
2974   case TypeTestResolution::Unknown:
2975     return "unknown";
2976   case TypeTestResolution::Unsat:
2977     return "unsat";
2978   case TypeTestResolution::ByteArray:
2979     return "byteArray";
2980   case TypeTestResolution::Inline:
2981     return "inline";
2982   case TypeTestResolution::Single:
2983     return "single";
2984   case TypeTestResolution::AllOnes:
2985     return "allOnes";
2986   }
2987   llvm_unreachable("invalid TypeTestResolution kind");
2988 }
2989 
printTypeTestResolution(const TypeTestResolution & TTRes)2990 void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) {
2991   Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind)
2992       << ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth;
2993 
2994   // The following fields are only used if the target does not support the use
2995   // of absolute symbols to store constants. Print only if non-zero.
2996   if (TTRes.AlignLog2)
2997     Out << ", alignLog2: " << TTRes.AlignLog2;
2998   if (TTRes.SizeM1)
2999     Out << ", sizeM1: " << TTRes.SizeM1;
3000   if (TTRes.BitMask)
3001     // BitMask is uint8_t which causes it to print the corresponding char.
3002     Out << ", bitMask: " << (unsigned)TTRes.BitMask;
3003   if (TTRes.InlineBits)
3004     Out << ", inlineBits: " << TTRes.InlineBits;
3005 
3006   Out << ")";
3007 }
3008 
printTypeIdSummary(const TypeIdSummary & TIS)3009 void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) {
3010   Out << ", summary: (";
3011   printTypeTestResolution(TIS.TTRes);
3012   if (!TIS.WPDRes.empty()) {
3013     Out << ", wpdResolutions: (";
3014     FieldSeparator FS;
3015     for (auto &WPDRes : TIS.WPDRes) {
3016       Out << FS;
3017       Out << "(offset: " << WPDRes.first << ", ";
3018       printWPDRes(WPDRes.second);
3019       Out << ")";
3020     }
3021     Out << ")";
3022   }
3023   Out << ")";
3024 }
3025 
printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo & TI)3026 void AssemblyWriter::printTypeIdCompatibleVtableSummary(
3027     const TypeIdCompatibleVtableInfo &TI) {
3028   Out << ", summary: (";
3029   FieldSeparator FS;
3030   for (auto &P : TI) {
3031     Out << FS;
3032     Out << "(offset: " << P.AddressPointOffset << ", ";
3033     Out << "^" << Machine.getGUIDSlot(P.VTableVI.getGUID());
3034     Out << ")";
3035   }
3036   Out << ")";
3037 }
3038 
printArgs(const std::vector<uint64_t> & Args)3039 void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) {
3040   Out << "args: (";
3041   FieldSeparator FS;
3042   for (auto arg : Args) {
3043     Out << FS;
3044     Out << arg;
3045   }
3046   Out << ")";
3047 }
3048 
printWPDRes(const WholeProgramDevirtResolution & WPDRes)3049 void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) {
3050   Out << "wpdRes: (kind: ";
3051   Out << getWholeProgDevirtResKindName(WPDRes.TheKind);
3052 
3053   if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl)
3054     Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\"";
3055 
3056   if (!WPDRes.ResByArg.empty()) {
3057     Out << ", resByArg: (";
3058     FieldSeparator FS;
3059     for (auto &ResByArg : WPDRes.ResByArg) {
3060       Out << FS;
3061       printArgs(ResByArg.first);
3062       Out << ", byArg: (kind: ";
3063       Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind);
3064       if (ResByArg.second.TheKind ==
3065               WholeProgramDevirtResolution::ByArg::UniformRetVal ||
3066           ResByArg.second.TheKind ==
3067               WholeProgramDevirtResolution::ByArg::UniqueRetVal)
3068         Out << ", info: " << ResByArg.second.Info;
3069 
3070       // The following fields are only used if the target does not support the
3071       // use of absolute symbols to store constants. Print only if non-zero.
3072       if (ResByArg.second.Byte || ResByArg.second.Bit)
3073         Out << ", byte: " << ResByArg.second.Byte
3074             << ", bit: " << ResByArg.second.Bit;
3075 
3076       Out << ")";
3077     }
3078     Out << ")";
3079   }
3080   Out << ")";
3081 }
3082 
getSummaryKindName(GlobalValueSummary::SummaryKind SK)3083 static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) {
3084   switch (SK) {
3085   case GlobalValueSummary::AliasKind:
3086     return "alias";
3087   case GlobalValueSummary::FunctionKind:
3088     return "function";
3089   case GlobalValueSummary::GlobalVarKind:
3090     return "variable";
3091   }
3092   llvm_unreachable("invalid summary kind");
3093 }
3094 
printAliasSummary(const AliasSummary * AS)3095 void AssemblyWriter::printAliasSummary(const AliasSummary *AS) {
3096   Out << ", aliasee: ";
3097   // The indexes emitted for distributed backends may not include the
3098   // aliasee summary (only if it is being imported directly). Handle
3099   // that case by just emitting "null" as the aliasee.
3100   if (AS->hasAliasee())
3101     Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]);
3102   else
3103     Out << "null";
3104 }
3105 
printGlobalVarSummary(const GlobalVarSummary * GS)3106 void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) {
3107   auto VTableFuncs = GS->vTableFuncs();
3108   Out << ", varFlags: (readonly: " << GS->VarFlags.MaybeReadOnly << ", "
3109       << "writeonly: " << GS->VarFlags.MaybeWriteOnly << ", "
3110       << "constant: " << GS->VarFlags.Constant;
3111   if (!VTableFuncs.empty())
3112     Out << ", "
3113         << "vcall_visibility: " << GS->VarFlags.VCallVisibility;
3114   Out << ")";
3115 
3116   if (!VTableFuncs.empty()) {
3117     Out << ", vTableFuncs: (";
3118     FieldSeparator FS;
3119     for (auto &P : VTableFuncs) {
3120       Out << FS;
3121       Out << "(virtFunc: ^" << Machine.getGUIDSlot(P.FuncVI.getGUID())
3122           << ", offset: " << P.VTableOffset;
3123       Out << ")";
3124     }
3125     Out << ")";
3126   }
3127 }
3128 
getLinkageName(GlobalValue::LinkageTypes LT)3129 static std::string getLinkageName(GlobalValue::LinkageTypes LT) {
3130   switch (LT) {
3131   case GlobalValue::ExternalLinkage:
3132     return "external";
3133   case GlobalValue::PrivateLinkage:
3134     return "private";
3135   case GlobalValue::InternalLinkage:
3136     return "internal";
3137   case GlobalValue::LinkOnceAnyLinkage:
3138     return "linkonce";
3139   case GlobalValue::LinkOnceODRLinkage:
3140     return "linkonce_odr";
3141   case GlobalValue::WeakAnyLinkage:
3142     return "weak";
3143   case GlobalValue::WeakODRLinkage:
3144     return "weak_odr";
3145   case GlobalValue::CommonLinkage:
3146     return "common";
3147   case GlobalValue::AppendingLinkage:
3148     return "appending";
3149   case GlobalValue::ExternalWeakLinkage:
3150     return "extern_weak";
3151   case GlobalValue::AvailableExternallyLinkage:
3152     return "available_externally";
3153   }
3154   llvm_unreachable("invalid linkage");
3155 }
3156 
3157 // When printing the linkage types in IR where the ExternalLinkage is
3158 // not printed, and other linkage types are expected to be printed with
3159 // a space after the name.
getLinkageNameWithSpace(GlobalValue::LinkageTypes LT)3160 static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) {
3161   if (LT == GlobalValue::ExternalLinkage)
3162     return "";
3163   return getLinkageName(LT) + " ";
3164 }
3165 
getVisibilityName(GlobalValue::VisibilityTypes Vis)3166 static const char *getVisibilityName(GlobalValue::VisibilityTypes Vis) {
3167   switch (Vis) {
3168   case GlobalValue::DefaultVisibility:
3169     return "default";
3170   case GlobalValue::HiddenVisibility:
3171     return "hidden";
3172   case GlobalValue::ProtectedVisibility:
3173     return "protected";
3174   }
3175   llvm_unreachable("invalid visibility");
3176 }
3177 
printFunctionSummary(const FunctionSummary * FS)3178 void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) {
3179   Out << ", insts: " << FS->instCount();
3180   if (FS->fflags().anyFlagSet())
3181     Out << ", " << FS->fflags();
3182 
3183   if (!FS->calls().empty()) {
3184     Out << ", calls: (";
3185     FieldSeparator IFS;
3186     for (auto &Call : FS->calls()) {
3187       Out << IFS;
3188       Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID());
3189       if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
3190         Out << ", hotness: " << getHotnessName(Call.second.getHotness());
3191       else if (Call.second.RelBlockFreq)
3192         Out << ", relbf: " << Call.second.RelBlockFreq;
3193       Out << ")";
3194     }
3195     Out << ")";
3196   }
3197 
3198   if (const auto *TIdInfo = FS->getTypeIdInfo())
3199     printTypeIdInfo(*TIdInfo);
3200 
3201   auto PrintRange = [&](const ConstantRange &Range) {
3202     Out << "[" << Range.getSignedMin() << ", " << Range.getSignedMax() << "]";
3203   };
3204 
3205   if (!FS->paramAccesses().empty()) {
3206     Out << ", params: (";
3207     FieldSeparator IFS;
3208     for (auto &PS : FS->paramAccesses()) {
3209       Out << IFS;
3210       Out << "(param: " << PS.ParamNo;
3211       Out << ", offset: ";
3212       PrintRange(PS.Use);
3213       if (!PS.Calls.empty()) {
3214         Out << ", calls: (";
3215         FieldSeparator IFS;
3216         for (auto &Call : PS.Calls) {
3217           Out << IFS;
3218           Out << "(callee: ^" << Machine.getGUIDSlot(Call.Callee.getGUID());
3219           Out << ", param: " << Call.ParamNo;
3220           Out << ", offset: ";
3221           PrintRange(Call.Offsets);
3222           Out << ")";
3223         }
3224         Out << ")";
3225       }
3226       Out << ")";
3227     }
3228     Out << ")";
3229   }
3230 }
3231 
printTypeIdInfo(const FunctionSummary::TypeIdInfo & TIDInfo)3232 void AssemblyWriter::printTypeIdInfo(
3233     const FunctionSummary::TypeIdInfo &TIDInfo) {
3234   Out << ", typeIdInfo: (";
3235   FieldSeparator TIDFS;
3236   if (!TIDInfo.TypeTests.empty()) {
3237     Out << TIDFS;
3238     Out << "typeTests: (";
3239     FieldSeparator FS;
3240     for (auto &GUID : TIDInfo.TypeTests) {
3241       auto TidIter = TheIndex->typeIds().equal_range(GUID);
3242       if (TidIter.first == TidIter.second) {
3243         Out << FS;
3244         Out << GUID;
3245         continue;
3246       }
3247       // Print all type id that correspond to this GUID.
3248       for (auto It = TidIter.first; It != TidIter.second; ++It) {
3249         Out << FS;
3250         auto Slot = Machine.getTypeIdSlot(It->second.first);
3251         assert(Slot != -1);
3252         Out << "^" << Slot;
3253       }
3254     }
3255     Out << ")";
3256   }
3257   if (!TIDInfo.TypeTestAssumeVCalls.empty()) {
3258     Out << TIDFS;
3259     printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls");
3260   }
3261   if (!TIDInfo.TypeCheckedLoadVCalls.empty()) {
3262     Out << TIDFS;
3263     printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls");
3264   }
3265   if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) {
3266     Out << TIDFS;
3267     printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls,
3268                      "typeTestAssumeConstVCalls");
3269   }
3270   if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) {
3271     Out << TIDFS;
3272     printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls,
3273                      "typeCheckedLoadConstVCalls");
3274   }
3275   Out << ")";
3276 }
3277 
printVFuncId(const FunctionSummary::VFuncId VFId)3278 void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) {
3279   auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID);
3280   if (TidIter.first == TidIter.second) {
3281     Out << "vFuncId: (";
3282     Out << "guid: " << VFId.GUID;
3283     Out << ", offset: " << VFId.Offset;
3284     Out << ")";
3285     return;
3286   }
3287   // Print all type id that correspond to this GUID.
3288   FieldSeparator FS;
3289   for (auto It = TidIter.first; It != TidIter.second; ++It) {
3290     Out << FS;
3291     Out << "vFuncId: (";
3292     auto Slot = Machine.getTypeIdSlot(It->second.first);
3293     assert(Slot != -1);
3294     Out << "^" << Slot;
3295     Out << ", offset: " << VFId.Offset;
3296     Out << ")";
3297   }
3298 }
3299 
printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> & VCallList,const char * Tag)3300 void AssemblyWriter::printNonConstVCalls(
3301     const std::vector<FunctionSummary::VFuncId> &VCallList, const char *Tag) {
3302   Out << Tag << ": (";
3303   FieldSeparator FS;
3304   for (auto &VFuncId : VCallList) {
3305     Out << FS;
3306     printVFuncId(VFuncId);
3307   }
3308   Out << ")";
3309 }
3310 
printConstVCalls(const std::vector<FunctionSummary::ConstVCall> & VCallList,const char * Tag)3311 void AssemblyWriter::printConstVCalls(
3312     const std::vector<FunctionSummary::ConstVCall> &VCallList,
3313     const char *Tag) {
3314   Out << Tag << ": (";
3315   FieldSeparator FS;
3316   for (auto &ConstVCall : VCallList) {
3317     Out << FS;
3318     Out << "(";
3319     printVFuncId(ConstVCall.VFunc);
3320     if (!ConstVCall.Args.empty()) {
3321       Out << ", ";
3322       printArgs(ConstVCall.Args);
3323     }
3324     Out << ")";
3325   }
3326   Out << ")";
3327 }
3328 
printSummary(const GlobalValueSummary & Summary)3329 void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) {
3330   GlobalValueSummary::GVFlags GVFlags = Summary.flags();
3331   GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage;
3332   Out << getSummaryKindName(Summary.getSummaryKind()) << ": ";
3333   Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath())
3334       << ", flags: (";
3335   Out << "linkage: " << getLinkageName(LT);
3336   Out << ", visibility: "
3337       << getVisibilityName((GlobalValue::VisibilityTypes)GVFlags.Visibility);
3338   Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport;
3339   Out << ", live: " << GVFlags.Live;
3340   Out << ", dsoLocal: " << GVFlags.DSOLocal;
3341   Out << ", canAutoHide: " << GVFlags.CanAutoHide;
3342   Out << ")";
3343 
3344   if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind)
3345     printAliasSummary(cast<AliasSummary>(&Summary));
3346   else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind)
3347     printFunctionSummary(cast<FunctionSummary>(&Summary));
3348   else
3349     printGlobalVarSummary(cast<GlobalVarSummary>(&Summary));
3350 
3351   auto RefList = Summary.refs();
3352   if (!RefList.empty()) {
3353     Out << ", refs: (";
3354     FieldSeparator FS;
3355     for (auto &Ref : RefList) {
3356       Out << FS;
3357       if (Ref.isReadOnly())
3358         Out << "readonly ";
3359       else if (Ref.isWriteOnly())
3360         Out << "writeonly ";
3361       Out << "^" << Machine.getGUIDSlot(Ref.getGUID());
3362     }
3363     Out << ")";
3364   }
3365 
3366   Out << ")";
3367 }
3368 
printSummaryInfo(unsigned Slot,const ValueInfo & VI)3369 void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) {
3370   Out << "^" << Slot << " = gv: (";
3371   if (!VI.name().empty())
3372     Out << "name: \"" << VI.name() << "\"";
3373   else
3374     Out << "guid: " << VI.getGUID();
3375   if (!VI.getSummaryList().empty()) {
3376     Out << ", summaries: (";
3377     FieldSeparator FS;
3378     for (auto &Summary : VI.getSummaryList()) {
3379       Out << FS;
3380       printSummary(*Summary);
3381     }
3382     Out << ")";
3383   }
3384   Out << ")";
3385   if (!VI.name().empty())
3386     Out << " ; guid = " << VI.getGUID();
3387   Out << "\n";
3388 }
3389 
printMetadataIdentifier(StringRef Name,formatted_raw_ostream & Out)3390 static void printMetadataIdentifier(StringRef Name,
3391                                     formatted_raw_ostream &Out) {
3392   if (Name.empty()) {
3393     Out << "<empty name> ";
3394   } else {
3395     if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
3396         Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
3397       Out << Name[0];
3398     else
3399       Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
3400     for (unsigned i = 1, e = Name.size(); i != e; ++i) {
3401       unsigned char C = Name[i];
3402       if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
3403           C == '.' || C == '_')
3404         Out << C;
3405       else
3406         Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
3407     }
3408   }
3409 }
3410 
printNamedMDNode(const NamedMDNode * NMD)3411 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
3412   Out << '!';
3413   printMetadataIdentifier(NMD->getName(), Out);
3414   Out << " = !{";
3415   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
3416     if (i)
3417       Out << ", ";
3418 
3419     // Write DIExpressions inline.
3420     // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose.
3421     MDNode *Op = NMD->getOperand(i);
3422     assert(!isa<DIArgList>(Op) &&
3423            "DIArgLists should not appear in NamedMDNodes");
3424     if (auto *Expr = dyn_cast<DIExpression>(Op)) {
3425       writeDIExpression(Out, Expr, AsmWriterContext::getEmpty());
3426       continue;
3427     }
3428 
3429     int Slot = Machine.getMetadataSlot(Op);
3430     if (Slot == -1)
3431       Out << "<badref>";
3432     else
3433       Out << '!' << Slot;
3434   }
3435   Out << "}\n";
3436 }
3437 
PrintVisibility(GlobalValue::VisibilityTypes Vis,formatted_raw_ostream & Out)3438 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
3439                             formatted_raw_ostream &Out) {
3440   switch (Vis) {
3441   case GlobalValue::DefaultVisibility: break;
3442   case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
3443   case GlobalValue::ProtectedVisibility: Out << "protected "; break;
3444   }
3445 }
3446 
PrintDSOLocation(const GlobalValue & GV,formatted_raw_ostream & Out)3447 static void PrintDSOLocation(const GlobalValue &GV,
3448                              formatted_raw_ostream &Out) {
3449   if (GV.isDSOLocal() && !GV.isImplicitDSOLocal())
3450     Out << "dso_local ";
3451 }
3452 
PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,formatted_raw_ostream & Out)3453 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
3454                                  formatted_raw_ostream &Out) {
3455   switch (SCT) {
3456   case GlobalValue::DefaultStorageClass: break;
3457   case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
3458   case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
3459   }
3460 }
3461 
PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,formatted_raw_ostream & Out)3462 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
3463                                   formatted_raw_ostream &Out) {
3464   switch (TLM) {
3465     case GlobalVariable::NotThreadLocal:
3466       break;
3467     case GlobalVariable::GeneralDynamicTLSModel:
3468       Out << "thread_local ";
3469       break;
3470     case GlobalVariable::LocalDynamicTLSModel:
3471       Out << "thread_local(localdynamic) ";
3472       break;
3473     case GlobalVariable::InitialExecTLSModel:
3474       Out << "thread_local(initialexec) ";
3475       break;
3476     case GlobalVariable::LocalExecTLSModel:
3477       Out << "thread_local(localexec) ";
3478       break;
3479   }
3480 }
3481 
getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA)3482 static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) {
3483   switch (UA) {
3484   case GlobalVariable::UnnamedAddr::None:
3485     return "";
3486   case GlobalVariable::UnnamedAddr::Local:
3487     return "local_unnamed_addr";
3488   case GlobalVariable::UnnamedAddr::Global:
3489     return "unnamed_addr";
3490   }
3491   llvm_unreachable("Unknown UnnamedAddr");
3492 }
3493 
maybePrintComdat(formatted_raw_ostream & Out,const GlobalObject & GO)3494 static void maybePrintComdat(formatted_raw_ostream &Out,
3495                              const GlobalObject &GO) {
3496   const Comdat *C = GO.getComdat();
3497   if (!C)
3498     return;
3499 
3500   if (isa<GlobalVariable>(GO))
3501     Out << ',';
3502   Out << " comdat";
3503 
3504   if (GO.getName() == C->getName())
3505     return;
3506 
3507   Out << '(';
3508   PrintLLVMName(Out, C->getName(), ComdatPrefix);
3509   Out << ')';
3510 }
3511 
printGlobal(const GlobalVariable * GV)3512 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
3513   if (GV->isMaterializable())
3514     Out << "; Materializable\n";
3515 
3516   AsmWriterContext WriterCtx(&TypePrinter, &Machine, GV->getParent());
3517   WriteAsOperandInternal(Out, GV, WriterCtx);
3518   Out << " = ";
3519 
3520   if (!GV->hasInitializer() && GV->hasExternalLinkage())
3521     Out << "external ";
3522 
3523   Out << getLinkageNameWithSpace(GV->getLinkage());
3524   PrintDSOLocation(*GV, Out);
3525   PrintVisibility(GV->getVisibility(), Out);
3526   PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
3527   PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
3528   StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr());
3529   if (!UA.empty())
3530       Out << UA << ' ';
3531 
3532   if (unsigned AddressSpace = GV->getType()->getAddressSpace())
3533     Out << "addrspace(" << AddressSpace << ") ";
3534   if (GV->isExternallyInitialized()) Out << "externally_initialized ";
3535   Out << (GV->isConstant() ? "constant " : "global ");
3536   TypePrinter.print(GV->getValueType(), Out);
3537 
3538   if (GV->hasInitializer()) {
3539     Out << ' ';
3540     writeOperand(GV->getInitializer(), false);
3541   }
3542 
3543   if (GV->hasSection()) {
3544     Out << ", section \"";
3545     printEscapedString(GV->getSection(), Out);
3546     Out << '"';
3547   }
3548   if (GV->hasPartition()) {
3549     Out << ", partition \"";
3550     printEscapedString(GV->getPartition(), Out);
3551     Out << '"';
3552   }
3553 
3554   maybePrintComdat(Out, *GV);
3555   if (GV->getAlignment())
3556     Out << ", align " << GV->getAlignment();
3557 
3558   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3559   GV->getAllMetadata(MDs);
3560   printMetadataAttachments(MDs, ", ");
3561 
3562   auto Attrs = GV->getAttributes();
3563   if (Attrs.hasAttributes())
3564     Out << " #" << Machine.getAttributeGroupSlot(Attrs);
3565 
3566   printInfoComment(*GV);
3567 }
3568 
printIndirectSymbol(const GlobalIndirectSymbol * GIS)3569 void AssemblyWriter::printIndirectSymbol(const GlobalIndirectSymbol *GIS) {
3570   if (GIS->isMaterializable())
3571     Out << "; Materializable\n";
3572 
3573   AsmWriterContext WriterCtx(&TypePrinter, &Machine, GIS->getParent());
3574   WriteAsOperandInternal(Out, GIS, WriterCtx);
3575   Out << " = ";
3576 
3577   Out << getLinkageNameWithSpace(GIS->getLinkage());
3578   PrintDSOLocation(*GIS, Out);
3579   PrintVisibility(GIS->getVisibility(), Out);
3580   PrintDLLStorageClass(GIS->getDLLStorageClass(), Out);
3581   PrintThreadLocalModel(GIS->getThreadLocalMode(), Out);
3582   StringRef UA = getUnnamedAddrEncoding(GIS->getUnnamedAddr());
3583   if (!UA.empty())
3584       Out << UA << ' ';
3585 
3586   if (isa<GlobalAlias>(GIS))
3587     Out << "alias ";
3588   else if (isa<GlobalIFunc>(GIS))
3589     Out << "ifunc ";
3590   else
3591     llvm_unreachable("Not an alias or ifunc!");
3592 
3593   TypePrinter.print(GIS->getValueType(), Out);
3594 
3595   Out << ", ";
3596 
3597   const Constant *IS = GIS->getIndirectSymbol();
3598 
3599   if (!IS) {
3600     TypePrinter.print(GIS->getType(), Out);
3601     Out << " <<NULL ALIASEE>>";
3602   } else {
3603     writeOperand(IS, !isa<ConstantExpr>(IS));
3604   }
3605 
3606   if (GIS->hasPartition()) {
3607     Out << ", partition \"";
3608     printEscapedString(GIS->getPartition(), Out);
3609     Out << '"';
3610   }
3611 
3612   printInfoComment(*GIS);
3613   Out << '\n';
3614 }
3615 
printComdat(const Comdat * C)3616 void AssemblyWriter::printComdat(const Comdat *C) {
3617   C->print(Out);
3618 }
3619 
printTypeIdentities()3620 void AssemblyWriter::printTypeIdentities() {
3621   if (TypePrinter.empty())
3622     return;
3623 
3624   Out << '\n';
3625 
3626   // Emit all numbered types.
3627   auto &NumberedTypes = TypePrinter.getNumberedTypes();
3628   for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) {
3629     Out << '%' << I << " = type ";
3630 
3631     // Make sure we print out at least one level of the type structure, so
3632     // that we do not get %2 = type %2
3633     TypePrinter.printStructBody(NumberedTypes[I], Out);
3634     Out << '\n';
3635   }
3636 
3637   auto &NamedTypes = TypePrinter.getNamedTypes();
3638   for (unsigned I = 0, E = NamedTypes.size(); I != E; ++I) {
3639     PrintLLVMName(Out, NamedTypes[I]->getName(), LocalPrefix);
3640     Out << " = type ";
3641 
3642     // Make sure we print out at least one level of the type structure, so
3643     // that we do not get %FILE = type %FILE
3644     TypePrinter.printStructBody(NamedTypes[I], Out);
3645     Out << '\n';
3646   }
3647 }
3648 
3649 /// printFunction - Print all aspects of a function.
printFunction(const Function * F)3650 void AssemblyWriter::printFunction(const Function *F) {
3651   if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
3652 
3653   if (F->isMaterializable())
3654     Out << "; Materializable\n";
3655 
3656   const AttributeList &Attrs = F->getAttributes();
3657   if (Attrs.hasFnAttrs()) {
3658     AttributeSet AS = Attrs.getFnAttrs();
3659     std::string AttrStr;
3660 
3661     for (const Attribute &Attr : AS) {
3662       if (!Attr.isStringAttribute()) {
3663         if (!AttrStr.empty()) AttrStr += ' ';
3664         AttrStr += Attr.getAsString();
3665       }
3666     }
3667 
3668     if (!AttrStr.empty())
3669       Out << "; Function Attrs: " << AttrStr << '\n';
3670   }
3671 
3672   Machine.incorporateFunction(F);
3673 
3674   if (F->isDeclaration()) {
3675     Out << "declare";
3676     SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3677     F->getAllMetadata(MDs);
3678     printMetadataAttachments(MDs, " ");
3679     Out << ' ';
3680   } else
3681     Out << "define ";
3682 
3683   Out << getLinkageNameWithSpace(F->getLinkage());
3684   PrintDSOLocation(*F, Out);
3685   PrintVisibility(F->getVisibility(), Out);
3686   PrintDLLStorageClass(F->getDLLStorageClass(), Out);
3687 
3688   // Print the calling convention.
3689   if (F->getCallingConv() != CallingConv::C) {
3690     PrintCallingConv(F->getCallingConv(), Out);
3691     Out << " ";
3692   }
3693 
3694   FunctionType *FT = F->getFunctionType();
3695   if (Attrs.hasRetAttrs())
3696     Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' ';
3697   TypePrinter.print(F->getReturnType(), Out);
3698   AsmWriterContext WriterCtx(&TypePrinter, &Machine, F->getParent());
3699   Out << ' ';
3700   WriteAsOperandInternal(Out, F, WriterCtx);
3701   Out << '(';
3702 
3703   // Loop over the arguments, printing them...
3704   if (F->isDeclaration() && !IsForDebug) {
3705     // We're only interested in the type here - don't print argument names.
3706     for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
3707       // Insert commas as we go... the first arg doesn't get a comma
3708       if (I)
3709         Out << ", ";
3710       // Output type...
3711       TypePrinter.print(FT->getParamType(I), Out);
3712 
3713       AttributeSet ArgAttrs = Attrs.getParamAttrs(I);
3714       if (ArgAttrs.hasAttributes()) {
3715         Out << ' ';
3716         writeAttributeSet(ArgAttrs);
3717       }
3718     }
3719   } else {
3720     // The arguments are meaningful here, print them in detail.
3721     for (const Argument &Arg : F->args()) {
3722       // Insert commas as we go... the first arg doesn't get a comma
3723       if (Arg.getArgNo() != 0)
3724         Out << ", ";
3725       printArgument(&Arg, Attrs.getParamAttrs(Arg.getArgNo()));
3726     }
3727   }
3728 
3729   // Finish printing arguments...
3730   if (FT->isVarArg()) {
3731     if (FT->getNumParams()) Out << ", ";
3732     Out << "...";  // Output varargs portion of signature!
3733   }
3734   Out << ')';
3735   StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr());
3736   if (!UA.empty())
3737     Out << ' ' << UA;
3738   // We print the function address space if it is non-zero or if we are writing
3739   // a module with a non-zero program address space or if there is no valid
3740   // Module* so that the file can be parsed without the datalayout string.
3741   const Module *Mod = F->getParent();
3742   if (F->getAddressSpace() != 0 || !Mod ||
3743       Mod->getDataLayout().getProgramAddressSpace() != 0)
3744     Out << " addrspace(" << F->getAddressSpace() << ")";
3745   if (Attrs.hasFnAttrs())
3746     Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttrs());
3747   if (F->hasSection()) {
3748     Out << " section \"";
3749     printEscapedString(F->getSection(), Out);
3750     Out << '"';
3751   }
3752   if (F->hasPartition()) {
3753     Out << " partition \"";
3754     printEscapedString(F->getPartition(), Out);
3755     Out << '"';
3756   }
3757   maybePrintComdat(Out, *F);
3758   if (F->getAlignment())
3759     Out << " align " << F->getAlignment();
3760   if (F->hasGC())
3761     Out << " gc \"" << F->getGC() << '"';
3762   if (F->hasPrefixData()) {
3763     Out << " prefix ";
3764     writeOperand(F->getPrefixData(), true);
3765   }
3766   if (F->hasPrologueData()) {
3767     Out << " prologue ";
3768     writeOperand(F->getPrologueData(), true);
3769   }
3770   if (F->hasPersonalityFn()) {
3771     Out << " personality ";
3772     writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
3773   }
3774 
3775   if (F->isDeclaration()) {
3776     Out << '\n';
3777   } else {
3778     SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3779     F->getAllMetadata(MDs);
3780     printMetadataAttachments(MDs, " ");
3781 
3782     Out << " {";
3783     // Output all of the function's basic blocks.
3784     for (const BasicBlock &BB : *F)
3785       printBasicBlock(&BB);
3786 
3787     // Output the function's use-lists.
3788     printUseLists(F);
3789 
3790     Out << "}\n";
3791   }
3792 
3793   Machine.purgeFunction();
3794 }
3795 
3796 /// printArgument - This member is called for every argument that is passed into
3797 /// the function.  Simply print it out
printArgument(const Argument * Arg,AttributeSet Attrs)3798 void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) {
3799   // Output type...
3800   TypePrinter.print(Arg->getType(), Out);
3801 
3802   // Output parameter attributes list
3803   if (Attrs.hasAttributes()) {
3804     Out << ' ';
3805     writeAttributeSet(Attrs);
3806   }
3807 
3808   // Output name, if available...
3809   if (Arg->hasName()) {
3810     Out << ' ';
3811     PrintLLVMName(Out, Arg);
3812   } else {
3813     int Slot = Machine.getLocalSlot(Arg);
3814     assert(Slot != -1 && "expect argument in function here");
3815     Out << " %" << Slot;
3816   }
3817 }
3818 
3819 /// printBasicBlock - This member is called for each basic block in a method.
printBasicBlock(const BasicBlock * BB)3820 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
3821   bool IsEntryBlock = BB->getParent() && BB->isEntryBlock();
3822   if (BB->hasName()) {              // Print out the label if it exists...
3823     Out << "\n";
3824     PrintLLVMName(Out, BB->getName(), LabelPrefix);
3825     Out << ':';
3826   } else if (!IsEntryBlock) {
3827     Out << "\n";
3828     int Slot = Machine.getLocalSlot(BB);
3829     if (Slot != -1)
3830       Out << Slot << ":";
3831     else
3832       Out << "<badref>:";
3833   }
3834 
3835   if (!IsEntryBlock) {
3836     // Output predecessors for the block.
3837     Out.PadToColumn(50);
3838     Out << ";";
3839     const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
3840 
3841     if (PI == PE) {
3842       Out << " No predecessors!";
3843     } else {
3844       Out << " preds = ";
3845       writeOperand(*PI, false);
3846       for (++PI; PI != PE; ++PI) {
3847         Out << ", ";
3848         writeOperand(*PI, false);
3849       }
3850     }
3851   }
3852 
3853   Out << "\n";
3854 
3855   if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
3856 
3857   // Output all of the instructions in the basic block...
3858   for (const Instruction &I : *BB) {
3859     printInstructionLine(I);
3860   }
3861 
3862   if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
3863 }
3864 
3865 /// printInstructionLine - Print an instruction and a newline character.
printInstructionLine(const Instruction & I)3866 void AssemblyWriter::printInstructionLine(const Instruction &I) {
3867   printInstruction(I);
3868   Out << '\n';
3869 }
3870 
3871 /// printGCRelocateComment - print comment after call to the gc.relocate
3872 /// intrinsic indicating base and derived pointer names.
printGCRelocateComment(const GCRelocateInst & Relocate)3873 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
3874   Out << " ; (";
3875   writeOperand(Relocate.getBasePtr(), false);
3876   Out << ", ";
3877   writeOperand(Relocate.getDerivedPtr(), false);
3878   Out << ")";
3879 }
3880 
3881 /// printInfoComment - Print a little comment after the instruction indicating
3882 /// which slot it occupies.
printInfoComment(const Value & V)3883 void AssemblyWriter::printInfoComment(const Value &V) {
3884   if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
3885     printGCRelocateComment(*Relocate);
3886 
3887   if (AnnotationWriter)
3888     AnnotationWriter->printInfoComment(V, Out);
3889 }
3890 
maybePrintCallAddrSpace(const Value * Operand,const Instruction * I,raw_ostream & Out)3891 static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I,
3892                                     raw_ostream &Out) {
3893   // We print the address space of the call if it is non-zero.
3894   unsigned CallAddrSpace = Operand->getType()->getPointerAddressSpace();
3895   bool PrintAddrSpace = CallAddrSpace != 0;
3896   if (!PrintAddrSpace) {
3897     const Module *Mod = getModuleFromVal(I);
3898     // We also print it if it is zero but not equal to the program address space
3899     // or if we can't find a valid Module* to make it possible to parse
3900     // the resulting file even without a datalayout string.
3901     if (!Mod || Mod->getDataLayout().getProgramAddressSpace() != 0)
3902       PrintAddrSpace = true;
3903   }
3904   if (PrintAddrSpace)
3905     Out << " addrspace(" << CallAddrSpace << ")";
3906 }
3907 
3908 // This member is called for each Instruction in a function..
printInstruction(const Instruction & I)3909 void AssemblyWriter::printInstruction(const Instruction &I) {
3910   if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
3911 
3912   // Print out indentation for an instruction.
3913   Out << "  ";
3914 
3915   // Print out name if it exists...
3916   if (I.hasName()) {
3917     PrintLLVMName(Out, &I);
3918     Out << " = ";
3919   } else if (!I.getType()->isVoidTy()) {
3920     // Print out the def slot taken.
3921     int SlotNum = Machine.getLocalSlot(&I);
3922     if (SlotNum == -1)
3923       Out << "<badref> = ";
3924     else
3925       Out << '%' << SlotNum << " = ";
3926   }
3927 
3928   if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
3929     if (CI->isMustTailCall())
3930       Out << "musttail ";
3931     else if (CI->isTailCall())
3932       Out << "tail ";
3933     else if (CI->isNoTailCall())
3934       Out << "notail ";
3935   }
3936 
3937   // Print out the opcode...
3938   Out << I.getOpcodeName();
3939 
3940   // If this is an atomic load or store, print out the atomic marker.
3941   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isAtomic()) ||
3942       (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
3943     Out << " atomic";
3944 
3945   if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
3946     Out << " weak";
3947 
3948   // If this is a volatile operation, print out the volatile marker.
3949   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
3950       (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
3951       (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
3952       (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
3953     Out << " volatile";
3954 
3955   // Print out optimization information.
3956   WriteOptimizationInfo(Out, &I);
3957 
3958   // Print out the compare instruction predicates
3959   if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
3960     Out << ' ' << CmpInst::getPredicateName(CI->getPredicate());
3961 
3962   // Print out the atomicrmw operation
3963   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
3964     Out << ' ' << AtomicRMWInst::getOperationName(RMWI->getOperation());
3965 
3966   // Print out the type of the operands...
3967   const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
3968 
3969   // Special case conditional branches to swizzle the condition out to the front
3970   if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
3971     const BranchInst &BI(cast<BranchInst>(I));
3972     Out << ' ';
3973     writeOperand(BI.getCondition(), true);
3974     Out << ", ";
3975     writeOperand(BI.getSuccessor(0), true);
3976     Out << ", ";
3977     writeOperand(BI.getSuccessor(1), true);
3978 
3979   } else if (isa<SwitchInst>(I)) {
3980     const SwitchInst& SI(cast<SwitchInst>(I));
3981     // Special case switch instruction to get formatting nice and correct.
3982     Out << ' ';
3983     writeOperand(SI.getCondition(), true);
3984     Out << ", ";
3985     writeOperand(SI.getDefaultDest(), true);
3986     Out << " [";
3987     for (auto Case : SI.cases()) {
3988       Out << "\n    ";
3989       writeOperand(Case.getCaseValue(), true);
3990       Out << ", ";
3991       writeOperand(Case.getCaseSuccessor(), true);
3992     }
3993     Out << "\n  ]";
3994   } else if (isa<IndirectBrInst>(I)) {
3995     // Special case indirectbr instruction to get formatting nice and correct.
3996     Out << ' ';
3997     writeOperand(Operand, true);
3998     Out << ", [";
3999 
4000     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
4001       if (i != 1)
4002         Out << ", ";
4003       writeOperand(I.getOperand(i), true);
4004     }
4005     Out << ']';
4006   } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
4007     Out << ' ';
4008     TypePrinter.print(I.getType(), Out);
4009     Out << ' ';
4010 
4011     for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
4012       if (op) Out << ", ";
4013       Out << "[ ";
4014       writeOperand(PN->getIncomingValue(op), false); Out << ", ";
4015       writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
4016     }
4017   } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
4018     Out << ' ';
4019     writeOperand(I.getOperand(0), true);
4020     for (unsigned i : EVI->indices())
4021       Out << ", " << i;
4022   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
4023     Out << ' ';
4024     writeOperand(I.getOperand(0), true); Out << ", ";
4025     writeOperand(I.getOperand(1), true);
4026     for (unsigned i : IVI->indices())
4027       Out << ", " << i;
4028   } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
4029     Out << ' ';
4030     TypePrinter.print(I.getType(), Out);
4031     if (LPI->isCleanup() || LPI->getNumClauses() != 0)
4032       Out << '\n';
4033 
4034     if (LPI->isCleanup())
4035       Out << "          cleanup";
4036 
4037     for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
4038       if (i != 0 || LPI->isCleanup()) Out << "\n";
4039       if (LPI->isCatch(i))
4040         Out << "          catch ";
4041       else
4042         Out << "          filter ";
4043 
4044       writeOperand(LPI->getClause(i), true);
4045     }
4046   } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
4047     Out << " within ";
4048     writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
4049     Out << " [";
4050     unsigned Op = 0;
4051     for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
4052       if (Op > 0)
4053         Out << ", ";
4054       writeOperand(PadBB, /*PrintType=*/true);
4055       ++Op;
4056     }
4057     Out << "] unwind ";
4058     if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
4059       writeOperand(UnwindDest, /*PrintType=*/true);
4060     else
4061       Out << "to caller";
4062   } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
4063     Out << " within ";
4064     writeOperand(FPI->getParentPad(), /*PrintType=*/false);
4065     Out << " [";
4066     for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps;
4067          ++Op) {
4068       if (Op > 0)
4069         Out << ", ";
4070       writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
4071     }
4072     Out << ']';
4073   } else if (isa<ReturnInst>(I) && !Operand) {
4074     Out << " void";
4075   } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
4076     Out << " from ";
4077     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
4078 
4079     Out << " to ";
4080     writeOperand(CRI->getOperand(1), /*PrintType=*/true);
4081   } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
4082     Out << " from ";
4083     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
4084 
4085     Out << " unwind ";
4086     if (CRI->hasUnwindDest())
4087       writeOperand(CRI->getOperand(1), /*PrintType=*/true);
4088     else
4089       Out << "to caller";
4090   } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
4091     // Print the calling convention being used.
4092     if (CI->getCallingConv() != CallingConv::C) {
4093       Out << " ";
4094       PrintCallingConv(CI->getCallingConv(), Out);
4095     }
4096 
4097     Operand = CI->getCalledOperand();
4098     FunctionType *FTy = CI->getFunctionType();
4099     Type *RetTy = FTy->getReturnType();
4100     const AttributeList &PAL = CI->getAttributes();
4101 
4102     if (PAL.hasRetAttrs())
4103       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4104 
4105     // Only print addrspace(N) if necessary:
4106     maybePrintCallAddrSpace(Operand, &I, Out);
4107 
4108     // If possible, print out the short form of the call instruction.  We can
4109     // only do this if the first argument is a pointer to a nonvararg function,
4110     // and if the return type is not a pointer to a function.
4111     //
4112     Out << ' ';
4113     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4114     Out << ' ';
4115     writeOperand(Operand, false);
4116     Out << '(';
4117     for (unsigned op = 0, Eop = CI->arg_size(); op < Eop; ++op) {
4118       if (op > 0)
4119         Out << ", ";
4120       writeParamOperand(CI->getArgOperand(op), PAL.getParamAttrs(op));
4121     }
4122 
4123     // Emit an ellipsis if this is a musttail call in a vararg function.  This
4124     // is only to aid readability, musttail calls forward varargs by default.
4125     if (CI->isMustTailCall() && CI->getParent() &&
4126         CI->getParent()->getParent() &&
4127         CI->getParent()->getParent()->isVarArg())
4128       Out << ", ...";
4129 
4130     Out << ')';
4131     if (PAL.hasFnAttrs())
4132       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4133 
4134     writeOperandBundles(CI);
4135   } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
4136     Operand = II->getCalledOperand();
4137     FunctionType *FTy = II->getFunctionType();
4138     Type *RetTy = FTy->getReturnType();
4139     const AttributeList &PAL = II->getAttributes();
4140 
4141     // Print the calling convention being used.
4142     if (II->getCallingConv() != CallingConv::C) {
4143       Out << " ";
4144       PrintCallingConv(II->getCallingConv(), Out);
4145     }
4146 
4147     if (PAL.hasRetAttrs())
4148       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4149 
4150     // Only print addrspace(N) if necessary:
4151     maybePrintCallAddrSpace(Operand, &I, Out);
4152 
4153     // If possible, print out the short form of the invoke instruction. We can
4154     // only do this if the first argument is a pointer to a nonvararg function,
4155     // and if the return type is not a pointer to a function.
4156     //
4157     Out << ' ';
4158     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4159     Out << ' ';
4160     writeOperand(Operand, false);
4161     Out << '(';
4162     for (unsigned op = 0, Eop = II->arg_size(); op < Eop; ++op) {
4163       if (op)
4164         Out << ", ";
4165       writeParamOperand(II->getArgOperand(op), PAL.getParamAttrs(op));
4166     }
4167 
4168     Out << ')';
4169     if (PAL.hasFnAttrs())
4170       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4171 
4172     writeOperandBundles(II);
4173 
4174     Out << "\n          to ";
4175     writeOperand(II->getNormalDest(), true);
4176     Out << " unwind ";
4177     writeOperand(II->getUnwindDest(), true);
4178   } else if (const CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) {
4179     Operand = CBI->getCalledOperand();
4180     FunctionType *FTy = CBI->getFunctionType();
4181     Type *RetTy = FTy->getReturnType();
4182     const AttributeList &PAL = CBI->getAttributes();
4183 
4184     // Print the calling convention being used.
4185     if (CBI->getCallingConv() != CallingConv::C) {
4186       Out << " ";
4187       PrintCallingConv(CBI->getCallingConv(), Out);
4188     }
4189 
4190     if (PAL.hasRetAttrs())
4191       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4192 
4193     // If possible, print out the short form of the callbr instruction. We can
4194     // only do this if the first argument is a pointer to a nonvararg function,
4195     // and if the return type is not a pointer to a function.
4196     //
4197     Out << ' ';
4198     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4199     Out << ' ';
4200     writeOperand(Operand, false);
4201     Out << '(';
4202     for (unsigned op = 0, Eop = CBI->arg_size(); op < Eop; ++op) {
4203       if (op)
4204         Out << ", ";
4205       writeParamOperand(CBI->getArgOperand(op), PAL.getParamAttrs(op));
4206     }
4207 
4208     Out << ')';
4209     if (PAL.hasFnAttrs())
4210       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4211 
4212     writeOperandBundles(CBI);
4213 
4214     Out << "\n          to ";
4215     writeOperand(CBI->getDefaultDest(), true);
4216     Out << " [";
4217     for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) {
4218       if (i != 0)
4219         Out << ", ";
4220       writeOperand(CBI->getIndirectDest(i), true);
4221     }
4222     Out << ']';
4223   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
4224     Out << ' ';
4225     if (AI->isUsedWithInAlloca())
4226       Out << "inalloca ";
4227     if (AI->isSwiftError())
4228       Out << "swifterror ";
4229     TypePrinter.print(AI->getAllocatedType(), Out);
4230 
4231     // Explicitly write the array size if the code is broken, if it's an array
4232     // allocation, or if the type is not canonical for scalar allocations.  The
4233     // latter case prevents the type from mutating when round-tripping through
4234     // assembly.
4235     if (!AI->getArraySize() || AI->isArrayAllocation() ||
4236         !AI->getArraySize()->getType()->isIntegerTy(32)) {
4237       Out << ", ";
4238       writeOperand(AI->getArraySize(), true);
4239     }
4240     if (AI->getAlignment()) {
4241       Out << ", align " << AI->getAlignment();
4242     }
4243 
4244     unsigned AddrSpace = AI->getType()->getAddressSpace();
4245     if (AddrSpace != 0) {
4246       Out << ", addrspace(" << AddrSpace << ')';
4247     }
4248   } else if (isa<CastInst>(I)) {
4249     if (Operand) {
4250       Out << ' ';
4251       writeOperand(Operand, true);   // Work with broken code
4252     }
4253     Out << " to ";
4254     TypePrinter.print(I.getType(), Out);
4255   } else if (isa<VAArgInst>(I)) {
4256     if (Operand) {
4257       Out << ' ';
4258       writeOperand(Operand, true);   // Work with broken code
4259     }
4260     Out << ", ";
4261     TypePrinter.print(I.getType(), Out);
4262   } else if (Operand) {   // Print the normal way.
4263     if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
4264       Out << ' ';
4265       TypePrinter.print(GEP->getSourceElementType(), Out);
4266       Out << ',';
4267     } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
4268       Out << ' ';
4269       TypePrinter.print(LI->getType(), Out);
4270       Out << ',';
4271     }
4272 
4273     // PrintAllTypes - Instructions who have operands of all the same type
4274     // omit the type from all but the first operand.  If the instruction has
4275     // different type operands (for example br), then they are all printed.
4276     bool PrintAllTypes = false;
4277     Type *TheType = Operand->getType();
4278 
4279     // Select, Store and ShuffleVector always print all types.
4280     if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
4281         || isa<ReturnInst>(I)) {
4282       PrintAllTypes = true;
4283     } else {
4284       for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
4285         Operand = I.getOperand(i);
4286         // note that Operand shouldn't be null, but the test helps make dump()
4287         // more tolerant of malformed IR
4288         if (Operand && Operand->getType() != TheType) {
4289           PrintAllTypes = true;    // We have differing types!  Print them all!
4290           break;
4291         }
4292       }
4293     }
4294 
4295     if (!PrintAllTypes) {
4296       Out << ' ';
4297       TypePrinter.print(TheType, Out);
4298     }
4299 
4300     Out << ' ';
4301     for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
4302       if (i) Out << ", ";
4303       writeOperand(I.getOperand(i), PrintAllTypes);
4304     }
4305   }
4306 
4307   // Print atomic ordering/alignment for memory operations
4308   if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
4309     if (LI->isAtomic())
4310       writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
4311     if (LI->getAlignment())
4312       Out << ", align " << LI->getAlignment();
4313   } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
4314     if (SI->isAtomic())
4315       writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID());
4316     if (SI->getAlignment())
4317       Out << ", align " << SI->getAlignment();
4318   } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
4319     writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
4320                        CXI->getFailureOrdering(), CXI->getSyncScopeID());
4321     Out << ", align " << CXI->getAlign().value();
4322   } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
4323     writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
4324                 RMWI->getSyncScopeID());
4325     Out << ", align " << RMWI->getAlign().value();
4326   } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
4327     writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
4328   } else if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(&I)) {
4329     PrintShuffleMask(Out, SVI->getType(), SVI->getShuffleMask());
4330   }
4331 
4332   // Print Metadata info.
4333   SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
4334   I.getAllMetadata(InstMD);
4335   printMetadataAttachments(InstMD, ", ");
4336 
4337   // Print a nice comment.
4338   printInfoComment(I);
4339 }
4340 
printMetadataAttachments(const SmallVectorImpl<std::pair<unsigned,MDNode * >> & MDs,StringRef Separator)4341 void AssemblyWriter::printMetadataAttachments(
4342     const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
4343     StringRef Separator) {
4344   if (MDs.empty())
4345     return;
4346 
4347   if (MDNames.empty())
4348     MDs[0].second->getContext().getMDKindNames(MDNames);
4349 
4350   auto WriterCtx = getContext();
4351   for (const auto &I : MDs) {
4352     unsigned Kind = I.first;
4353     Out << Separator;
4354     if (Kind < MDNames.size()) {
4355       Out << "!";
4356       printMetadataIdentifier(MDNames[Kind], Out);
4357     } else
4358       Out << "!<unknown kind #" << Kind << ">";
4359     Out << ' ';
4360     WriteAsOperandInternal(Out, I.second, WriterCtx);
4361   }
4362 }
4363 
writeMDNode(unsigned Slot,const MDNode * Node)4364 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
4365   Out << '!' << Slot << " = ";
4366   printMDNodeBody(Node);
4367   Out << "\n";
4368 }
4369 
writeAllMDNodes()4370 void AssemblyWriter::writeAllMDNodes() {
4371   SmallVector<const MDNode *, 16> Nodes;
4372   Nodes.resize(Machine.mdn_size());
4373   for (auto &I : llvm::make_range(Machine.mdn_begin(), Machine.mdn_end()))
4374     Nodes[I.second] = cast<MDNode>(I.first);
4375 
4376   for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4377     writeMDNode(i, Nodes[i]);
4378   }
4379 }
4380 
printMDNodeBody(const MDNode * Node)4381 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
4382   auto WriterCtx = getContext();
4383   WriteMDNodeBodyInternal(Out, Node, WriterCtx);
4384 }
4385 
writeAttribute(const Attribute & Attr,bool InAttrGroup)4386 void AssemblyWriter::writeAttribute(const Attribute &Attr, bool InAttrGroup) {
4387   if (!Attr.isTypeAttribute()) {
4388     Out << Attr.getAsString(InAttrGroup);
4389     return;
4390   }
4391 
4392   Out << Attribute::getNameFromAttrKind(Attr.getKindAsEnum());
4393   if (Type *Ty = Attr.getValueAsType()) {
4394     Out << '(';
4395     TypePrinter.print(Ty, Out);
4396     Out << ')';
4397   }
4398 }
4399 
writeAttributeSet(const AttributeSet & AttrSet,bool InAttrGroup)4400 void AssemblyWriter::writeAttributeSet(const AttributeSet &AttrSet,
4401                                        bool InAttrGroup) {
4402   bool FirstAttr = true;
4403   for (const auto &Attr : AttrSet) {
4404     if (!FirstAttr)
4405       Out << ' ';
4406     writeAttribute(Attr, InAttrGroup);
4407     FirstAttr = false;
4408   }
4409 }
4410 
writeAllAttributeGroups()4411 void AssemblyWriter::writeAllAttributeGroups() {
4412   std::vector<std::pair<AttributeSet, unsigned>> asVec;
4413   asVec.resize(Machine.as_size());
4414 
4415   for (auto &I : llvm::make_range(Machine.as_begin(), Machine.as_end()))
4416     asVec[I.second] = I;
4417 
4418   for (const auto &I : asVec)
4419     Out << "attributes #" << I.second << " = { "
4420         << I.first.getAsString(true) << " }\n";
4421 }
4422 
printUseListOrder(const Value * V,const std::vector<unsigned> & Shuffle)4423 void AssemblyWriter::printUseListOrder(const Value *V,
4424                                        const std::vector<unsigned> &Shuffle) {
4425   bool IsInFunction = Machine.getFunction();
4426   if (IsInFunction)
4427     Out << "  ";
4428 
4429   Out << "uselistorder";
4430   if (const BasicBlock *BB = IsInFunction ? nullptr : dyn_cast<BasicBlock>(V)) {
4431     Out << "_bb ";
4432     writeOperand(BB->getParent(), false);
4433     Out << ", ";
4434     writeOperand(BB, false);
4435   } else {
4436     Out << " ";
4437     writeOperand(V, true);
4438   }
4439   Out << ", { ";
4440 
4441   assert(Shuffle.size() >= 2 && "Shuffle too small");
4442   Out << Shuffle[0];
4443   for (unsigned I = 1, E = Shuffle.size(); I != E; ++I)
4444     Out << ", " << Shuffle[I];
4445   Out << " }\n";
4446 }
4447 
printUseLists(const Function * F)4448 void AssemblyWriter::printUseLists(const Function *F) {
4449   auto It = UseListOrders.find(F);
4450   if (It == UseListOrders.end())
4451     return;
4452 
4453   Out << "\n; uselistorder directives\n";
4454   for (const auto &Pair : It->second)
4455     printUseListOrder(Pair.first, Pair.second);
4456 }
4457 
4458 //===----------------------------------------------------------------------===//
4459 //                       External Interface declarations
4460 //===----------------------------------------------------------------------===//
4461 
print(raw_ostream & ROS,AssemblyAnnotationWriter * AAW,bool ShouldPreserveUseListOrder,bool IsForDebug) const4462 void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4463                      bool ShouldPreserveUseListOrder,
4464                      bool IsForDebug) const {
4465   SlotTracker SlotTable(this->getParent());
4466   formatted_raw_ostream OS(ROS);
4467   AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
4468                    IsForDebug,
4469                    ShouldPreserveUseListOrder);
4470   W.printFunction(this);
4471 }
4472 
print(raw_ostream & ROS,AssemblyAnnotationWriter * AAW,bool ShouldPreserveUseListOrder,bool IsForDebug) const4473 void BasicBlock::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4474                      bool ShouldPreserveUseListOrder,
4475                      bool IsForDebug) const {
4476   SlotTracker SlotTable(this->getParent());
4477   formatted_raw_ostream OS(ROS);
4478   AssemblyWriter W(OS, SlotTable, this->getModule(), AAW,
4479                    IsForDebug,
4480                    ShouldPreserveUseListOrder);
4481   W.printBasicBlock(this);
4482 }
4483 
print(raw_ostream & ROS,AssemblyAnnotationWriter * AAW,bool ShouldPreserveUseListOrder,bool IsForDebug) const4484 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4485                    bool ShouldPreserveUseListOrder, bool IsForDebug) const {
4486   SlotTracker SlotTable(this);
4487   formatted_raw_ostream OS(ROS);
4488   AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
4489                    ShouldPreserveUseListOrder);
4490   W.printModule(this);
4491 }
4492 
print(raw_ostream & ROS,bool IsForDebug) const4493 void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
4494   SlotTracker SlotTable(getParent());
4495   formatted_raw_ostream OS(ROS);
4496   AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
4497   W.printNamedMDNode(this);
4498 }
4499 
print(raw_ostream & ROS,ModuleSlotTracker & MST,bool IsForDebug) const4500 void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4501                         bool IsForDebug) const {
4502   Optional<SlotTracker> LocalST;
4503   SlotTracker *SlotTable;
4504   if (auto *ST = MST.getMachine())
4505     SlotTable = ST;
4506   else {
4507     LocalST.emplace(getParent());
4508     SlotTable = &*LocalST;
4509   }
4510 
4511   formatted_raw_ostream OS(ROS);
4512   AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
4513   W.printNamedMDNode(this);
4514 }
4515 
print(raw_ostream & ROS,bool) const4516 void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
4517   PrintLLVMName(ROS, getName(), ComdatPrefix);
4518   ROS << " = comdat ";
4519 
4520   switch (getSelectionKind()) {
4521   case Comdat::Any:
4522     ROS << "any";
4523     break;
4524   case Comdat::ExactMatch:
4525     ROS << "exactmatch";
4526     break;
4527   case Comdat::Largest:
4528     ROS << "largest";
4529     break;
4530   case Comdat::NoDeduplicate:
4531     ROS << "nodeduplicate";
4532     break;
4533   case Comdat::SameSize:
4534     ROS << "samesize";
4535     break;
4536   }
4537 
4538   ROS << '\n';
4539 }
4540 
print(raw_ostream & OS,bool,bool NoDetails) const4541 void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
4542   TypePrinting TP;
4543   TP.print(const_cast<Type*>(this), OS);
4544 
4545   if (NoDetails)
4546     return;
4547 
4548   // If the type is a named struct type, print the body as well.
4549   if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
4550     if (!STy->isLiteral()) {
4551       OS << " = type ";
4552       TP.printStructBody(STy, OS);
4553     }
4554 }
4555 
isReferencingMDNode(const Instruction & I)4556 static bool isReferencingMDNode(const Instruction &I) {
4557   if (const auto *CI = dyn_cast<CallInst>(&I))
4558     if (Function *F = CI->getCalledFunction())
4559       if (F->isIntrinsic())
4560         for (auto &Op : I.operands())
4561           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
4562             if (isa<MDNode>(V->getMetadata()))
4563               return true;
4564   return false;
4565 }
4566 
print(raw_ostream & ROS,bool IsForDebug) const4567 void Value::print(raw_ostream &ROS, bool IsForDebug) const {
4568   bool ShouldInitializeAllMetadata = false;
4569   if (auto *I = dyn_cast<Instruction>(this))
4570     ShouldInitializeAllMetadata = isReferencingMDNode(*I);
4571   else if (isa<Function>(this) || isa<MetadataAsValue>(this))
4572     ShouldInitializeAllMetadata = true;
4573 
4574   ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
4575   print(ROS, MST, IsForDebug);
4576 }
4577 
print(raw_ostream & ROS,ModuleSlotTracker & MST,bool IsForDebug) const4578 void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4579                   bool IsForDebug) const {
4580   formatted_raw_ostream OS(ROS);
4581   SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
4582   SlotTracker &SlotTable =
4583       MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
4584   auto incorporateFunction = [&](const Function *F) {
4585     if (F)
4586       MST.incorporateFunction(*F);
4587   };
4588 
4589   if (const Instruction *I = dyn_cast<Instruction>(this)) {
4590     incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
4591     AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
4592     W.printInstruction(*I);
4593   } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
4594     incorporateFunction(BB->getParent());
4595     AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
4596     W.printBasicBlock(BB);
4597   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
4598     AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
4599     if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
4600       W.printGlobal(V);
4601     else if (const Function *F = dyn_cast<Function>(GV))
4602       W.printFunction(F);
4603     else
4604       W.printIndirectSymbol(cast<GlobalIndirectSymbol>(GV));
4605   } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
4606     V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
4607   } else if (const Constant *C = dyn_cast<Constant>(this)) {
4608     TypePrinting TypePrinter;
4609     TypePrinter.print(C->getType(), OS);
4610     OS << ' ';
4611     AsmWriterContext WriterCtx(&TypePrinter, MST.getMachine());
4612     WriteConstantInternal(OS, C, WriterCtx);
4613   } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
4614     this->printAsOperand(OS, /* PrintType */ true, MST);
4615   } else {
4616     llvm_unreachable("Unknown value to print out!");
4617   }
4618 }
4619 
4620 /// Print without a type, skipping the TypePrinting object.
4621 ///
4622 /// \return \c true iff printing was successful.
printWithoutType(const Value & V,raw_ostream & O,SlotTracker * Machine,const Module * M)4623 static bool printWithoutType(const Value &V, raw_ostream &O,
4624                              SlotTracker *Machine, const Module *M) {
4625   if (V.hasName() || isa<GlobalValue>(V) ||
4626       (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
4627     AsmWriterContext WriterCtx(nullptr, Machine, M);
4628     WriteAsOperandInternal(O, &V, WriterCtx);
4629     return true;
4630   }
4631   return false;
4632 }
4633 
printAsOperandImpl(const Value & V,raw_ostream & O,bool PrintType,ModuleSlotTracker & MST)4634 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
4635                                ModuleSlotTracker &MST) {
4636   TypePrinting TypePrinter(MST.getModule());
4637   if (PrintType) {
4638     TypePrinter.print(V.getType(), O);
4639     O << ' ';
4640   }
4641 
4642   AsmWriterContext WriterCtx(&TypePrinter, MST.getMachine(), MST.getModule());
4643   WriteAsOperandInternal(O, &V, WriterCtx);
4644 }
4645 
printAsOperand(raw_ostream & O,bool PrintType,const Module * M) const4646 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4647                            const Module *M) const {
4648   if (!M)
4649     M = getModuleFromVal(this);
4650 
4651   if (!PrintType)
4652     if (printWithoutType(*this, O, nullptr, M))
4653       return;
4654 
4655   SlotTracker Machine(
4656       M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
4657   ModuleSlotTracker MST(Machine, M);
4658   printAsOperandImpl(*this, O, PrintType, MST);
4659 }
4660 
printAsOperand(raw_ostream & O,bool PrintType,ModuleSlotTracker & MST) const4661 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4662                            ModuleSlotTracker &MST) const {
4663   if (!PrintType)
4664     if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
4665       return;
4666 
4667   printAsOperandImpl(*this, O, PrintType, MST);
4668 }
4669 
4670 /// Recursive version of printMetadataImpl.
printMetadataImplRec(raw_ostream & ROS,const Metadata & MD,AsmWriterContext & WriterCtx)4671 static void printMetadataImplRec(raw_ostream &ROS, const Metadata &MD,
4672                                  AsmWriterContext &WriterCtx) {
4673   formatted_raw_ostream OS(ROS);
4674   WriteAsOperandInternal(OS, &MD, WriterCtx, /* FromValue */ true);
4675 
4676   auto *N = dyn_cast<MDNode>(&MD);
4677   if (!N || isa<DIExpression>(MD) || isa<DIArgList>(MD))
4678     return;
4679 
4680   OS << " = ";
4681   WriteMDNodeBodyInternal(OS, N, WriterCtx);
4682 }
4683 
4684 namespace {
4685 struct MDTreeAsmWriterContext : public AsmWriterContext {
4686   unsigned Level;
4687   // {Level, Printed string}
4688   using EntryTy = std::pair<unsigned, std::string>;
4689   SmallVector<EntryTy, 4> Buffer;
4690 
4691   // Used to break the cycle in case there is any.
4692   SmallPtrSet<const Metadata *, 4> Visited;
4693 
4694   raw_ostream &MainOS;
4695 
MDTreeAsmWriterContext__anona89321510d11::MDTreeAsmWriterContext4696   MDTreeAsmWriterContext(TypePrinting *TP, SlotTracker *ST, const Module *M,
4697                          raw_ostream &OS, const Metadata *InitMD)
4698       : AsmWriterContext(TP, ST, M), Level(0U), Visited({InitMD}), MainOS(OS) {}
4699 
onWriteMetadataAsOperand__anona89321510d11::MDTreeAsmWriterContext4700   void onWriteMetadataAsOperand(const Metadata *MD) override {
4701     if (Visited.count(MD))
4702       return;
4703     Visited.insert(MD);
4704 
4705     std::string Str;
4706     raw_string_ostream SS(Str);
4707     ++Level;
4708     // A placeholder entry to memorize the correct
4709     // position in buffer.
4710     Buffer.emplace_back(std::make_pair(Level, ""));
4711     unsigned InsertIdx = Buffer.size() - 1;
4712 
4713     printMetadataImplRec(SS, *MD, *this);
4714     Buffer[InsertIdx].second = std::move(SS.str());
4715     --Level;
4716   }
4717 
~MDTreeAsmWriterContext__anona89321510d11::MDTreeAsmWriterContext4718   ~MDTreeAsmWriterContext() {
4719     for (const auto &Entry : Buffer) {
4720       MainOS << "\n";
4721       unsigned NumIndent = Entry.first * 2U;
4722       MainOS.indent(NumIndent) << Entry.second;
4723     }
4724   }
4725 };
4726 } // end anonymous namespace
4727 
printMetadataImpl(raw_ostream & ROS,const Metadata & MD,ModuleSlotTracker & MST,const Module * M,bool OnlyAsOperand,bool PrintAsTree=false)4728 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
4729                               ModuleSlotTracker &MST, const Module *M,
4730                               bool OnlyAsOperand, bool PrintAsTree = false) {
4731   formatted_raw_ostream OS(ROS);
4732 
4733   TypePrinting TypePrinter(M);
4734 
4735   std::unique_ptr<AsmWriterContext> WriterCtx;
4736   if (PrintAsTree && !OnlyAsOperand)
4737     WriterCtx = std::make_unique<MDTreeAsmWriterContext>(
4738         &TypePrinter, MST.getMachine(), M, OS, &MD);
4739   else
4740     WriterCtx =
4741         std::make_unique<AsmWriterContext>(&TypePrinter, MST.getMachine(), M);
4742 
4743   WriteAsOperandInternal(OS, &MD, *WriterCtx, /* FromValue */ true);
4744 
4745   auto *N = dyn_cast<MDNode>(&MD);
4746   if (OnlyAsOperand || !N || isa<DIExpression>(MD) || isa<DIArgList>(MD))
4747     return;
4748 
4749   OS << " = ";
4750   WriteMDNodeBodyInternal(OS, N, *WriterCtx);
4751 }
4752 
printAsOperand(raw_ostream & OS,const Module * M) const4753 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
4754   ModuleSlotTracker MST(M, isa<MDNode>(this));
4755   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4756 }
4757 
printAsOperand(raw_ostream & OS,ModuleSlotTracker & MST,const Module * M) const4758 void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
4759                               const Module *M) const {
4760   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4761 }
4762 
print(raw_ostream & OS,const Module * M,bool) const4763 void Metadata::print(raw_ostream &OS, const Module *M,
4764                      bool /*IsForDebug*/) const {
4765   ModuleSlotTracker MST(M, isa<MDNode>(this));
4766   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4767 }
4768 
print(raw_ostream & OS,ModuleSlotTracker & MST,const Module * M,bool) const4769 void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
4770                      const Module *M, bool /*IsForDebug*/) const {
4771   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4772 }
4773 
printTree(raw_ostream & OS,const Module * M) const4774 void MDNode::printTree(raw_ostream &OS, const Module *M) const {
4775   ModuleSlotTracker MST(M, true);
4776   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false,
4777                     /*PrintAsTree=*/true);
4778 }
4779 
printTree(raw_ostream & OS,ModuleSlotTracker & MST,const Module * M) const4780 void MDNode::printTree(raw_ostream &OS, ModuleSlotTracker &MST,
4781                        const Module *M) const {
4782   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false,
4783                     /*PrintAsTree=*/true);
4784 }
4785 
print(raw_ostream & ROS,bool IsForDebug) const4786 void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const {
4787   SlotTracker SlotTable(this);
4788   formatted_raw_ostream OS(ROS);
4789   AssemblyWriter W(OS, SlotTable, this, IsForDebug);
4790   W.printModuleSummaryIndex();
4791 }
4792 
collectMDNodes(MachineMDNodeListType & L,unsigned LB,unsigned UB) const4793 void ModuleSlotTracker::collectMDNodes(MachineMDNodeListType &L, unsigned LB,
4794                                        unsigned UB) const {
4795   SlotTracker *ST = MachineStorage.get();
4796   if (!ST)
4797     return;
4798 
4799   for (auto &I : llvm::make_range(ST->mdn_begin(), ST->mdn_end()))
4800     if (I.second >= LB && I.second < UB)
4801       L.push_back(std::make_pair(I.second, I.first));
4802 }
4803 
4804 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4805 // Value::dump - allow easy printing of Values from the debugger.
4806 LLVM_DUMP_METHOD
dump() const4807 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4808 
4809 // Type::dump - allow easy printing of Types from the debugger.
4810 LLVM_DUMP_METHOD
dump() const4811 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4812 
4813 // Module::dump() - Allow printing of Modules from the debugger.
4814 LLVM_DUMP_METHOD
dump() const4815 void Module::dump() const {
4816   print(dbgs(), nullptr,
4817         /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
4818 }
4819 
4820 // Allow printing of Comdats from the debugger.
4821 LLVM_DUMP_METHOD
dump() const4822 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4823 
4824 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
4825 LLVM_DUMP_METHOD
dump() const4826 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4827 
4828 LLVM_DUMP_METHOD
dump() const4829 void Metadata::dump() const { dump(nullptr); }
4830 
4831 LLVM_DUMP_METHOD
dump(const Module * M) const4832 void Metadata::dump(const Module *M) const {
4833   print(dbgs(), M, /*IsForDebug=*/true);
4834   dbgs() << '\n';
4835 }
4836 
4837 LLVM_DUMP_METHOD
dumpTree() const4838 void MDNode::dumpTree() const { dumpTree(nullptr); }
4839 
4840 LLVM_DUMP_METHOD
dumpTree(const Module * M) const4841 void MDNode::dumpTree(const Module *M) const {
4842   printTree(dbgs(), M);
4843   dbgs() << '\n';
4844 }
4845 
4846 // Allow printing of ModuleSummaryIndex from the debugger.
4847 LLVM_DUMP_METHOD
dump() const4848 void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4849 #endif
4850