1 //===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the CodeGenDAGPatterns class, which is used to read and
10 // represent the patterns present in a .td file for instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
15 #define LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
16 
17 #include "CodeGenIntrinsics.h"
18 #include "CodeGenTarget.h"
19 #include "SDNodeProperties.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/StringSet.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/MathExtras.h"
26 #include <algorithm>
27 #include <array>
28 #include <functional>
29 #include <map>
30 #include <numeric>
31 #include <set>
32 #include <vector>
33 
34 namespace llvm {
35 
36 class Record;
37 class Init;
38 class ListInit;
39 class DagInit;
40 class SDNodeInfo;
41 class TreePattern;
42 class TreePatternNode;
43 class CodeGenDAGPatterns;
44 
45 /// Shared pointer for TreePatternNode.
46 using TreePatternNodePtr = std::shared_ptr<TreePatternNode>;
47 
48 /// This represents a set of MVTs. Since the underlying type for the MVT
49 /// is uint8_t, there are at most 256 values. To reduce the number of memory
50 /// allocations and deallocations, represent the set as a sequence of bits.
51 /// To reduce the allocations even further, make MachineValueTypeSet own
52 /// the storage and use std::array as the bit container.
53 struct MachineValueTypeSet {
54   static_assert(std::is_same<std::underlying_type<MVT::SimpleValueType>::type,
55                              uint8_t>::value,
56                 "Change uint8_t here to the SimpleValueType's type");
57   static unsigned constexpr Capacity = std::numeric_limits<uint8_t>::max()+1;
58   using WordType = uint64_t;
59   static unsigned constexpr WordWidth = CHAR_BIT*sizeof(WordType);
60   static unsigned constexpr NumWords = Capacity/WordWidth;
61   static_assert(NumWords*WordWidth == Capacity,
62                 "Capacity should be a multiple of WordWidth");
63 
64   LLVM_ATTRIBUTE_ALWAYS_INLINE
MachineValueTypeSetMachineValueTypeSet65   MachineValueTypeSet() {
66     clear();
67   }
68 
69   LLVM_ATTRIBUTE_ALWAYS_INLINE
sizeMachineValueTypeSet70   unsigned size() const {
71     unsigned Count = 0;
72     for (WordType W : Words)
73       Count += countPopulation(W);
74     return Count;
75   }
76   LLVM_ATTRIBUTE_ALWAYS_INLINE
clearMachineValueTypeSet77   void clear() {
78     std::memset(Words.data(), 0, NumWords*sizeof(WordType));
79   }
80   LLVM_ATTRIBUTE_ALWAYS_INLINE
emptyMachineValueTypeSet81   bool empty() const {
82     for (WordType W : Words)
83       if (W != 0)
84         return false;
85     return true;
86   }
87   LLVM_ATTRIBUTE_ALWAYS_INLINE
countMachineValueTypeSet88   unsigned count(MVT T) const {
89     return (Words[T.SimpleTy / WordWidth] >> (T.SimpleTy % WordWidth)) & 1;
90   }
insertMachineValueTypeSet91   std::pair<MachineValueTypeSet&,bool> insert(MVT T) {
92     bool V = count(T.SimpleTy);
93     Words[T.SimpleTy / WordWidth] |= WordType(1) << (T.SimpleTy % WordWidth);
94     return {*this, V};
95   }
insertMachineValueTypeSet96   MachineValueTypeSet &insert(const MachineValueTypeSet &S) {
97     for (unsigned i = 0; i != NumWords; ++i)
98       Words[i] |= S.Words[i];
99     return *this;
100   }
101   LLVM_ATTRIBUTE_ALWAYS_INLINE
eraseMachineValueTypeSet102   void erase(MVT T) {
103     Words[T.SimpleTy / WordWidth] &= ~(WordType(1) << (T.SimpleTy % WordWidth));
104   }
105 
106   struct const_iterator {
107     // Some implementations of the C++ library require these traits to be
108     // defined.
109     using iterator_category = std::forward_iterator_tag;
110     using value_type = MVT;
111     using difference_type = ptrdiff_t;
112     using pointer = const MVT*;
113     using reference = const MVT&;
114 
115     LLVM_ATTRIBUTE_ALWAYS_INLINE
116     MVT operator*() const {
117       assert(Pos != Capacity);
118       return MVT::SimpleValueType(Pos);
119     }
120     LLVM_ATTRIBUTE_ALWAYS_INLINE
const_iteratorMachineValueTypeSet::const_iterator121     const_iterator(const MachineValueTypeSet *S, bool End) : Set(S) {
122       Pos = End ? Capacity : find_from_pos(0);
123     }
124     LLVM_ATTRIBUTE_ALWAYS_INLINE
125     const_iterator &operator++() {
126       assert(Pos != Capacity);
127       Pos = find_from_pos(Pos+1);
128       return *this;
129     }
130 
131     LLVM_ATTRIBUTE_ALWAYS_INLINE
132     bool operator==(const const_iterator &It) const {
133       return Set == It.Set && Pos == It.Pos;
134     }
135     LLVM_ATTRIBUTE_ALWAYS_INLINE
136     bool operator!=(const const_iterator &It) const {
137       return !operator==(It);
138     }
139 
140   private:
find_from_posMachineValueTypeSet::const_iterator141     unsigned find_from_pos(unsigned P) const {
142       unsigned SkipWords = P / WordWidth;
143       unsigned SkipBits = P % WordWidth;
144       unsigned Count = SkipWords * WordWidth;
145 
146       // If P is in the middle of a word, process it manually here, because
147       // the trailing bits need to be masked off to use findFirstSet.
148       if (SkipBits != 0) {
149         WordType W = Set->Words[SkipWords];
150         W &= maskLeadingOnes<WordType>(WordWidth-SkipBits);
151         if (W != 0)
152           return Count + findFirstSet(W);
153         Count += WordWidth;
154         SkipWords++;
155       }
156 
157       for (unsigned i = SkipWords; i != NumWords; ++i) {
158         WordType W = Set->Words[i];
159         if (W != 0)
160           return Count + findFirstSet(W);
161         Count += WordWidth;
162       }
163       return Capacity;
164     }
165 
166     const MachineValueTypeSet *Set;
167     unsigned Pos;
168   };
169 
170   LLVM_ATTRIBUTE_ALWAYS_INLINE
beginMachineValueTypeSet171   const_iterator begin() const { return const_iterator(this, false); }
172   LLVM_ATTRIBUTE_ALWAYS_INLINE
endMachineValueTypeSet173   const_iterator end()   const { return const_iterator(this, true); }
174 
175   LLVM_ATTRIBUTE_ALWAYS_INLINE
176   bool operator==(const MachineValueTypeSet &S) const {
177     return Words == S.Words;
178   }
179   LLVM_ATTRIBUTE_ALWAYS_INLINE
180   bool operator!=(const MachineValueTypeSet &S) const {
181     return !operator==(S);
182   }
183 
184 private:
185   friend struct const_iterator;
186   std::array<WordType,NumWords> Words;
187 };
188 
189 struct TypeSetByHwMode : public InfoByHwMode<MachineValueTypeSet> {
190   using SetType = MachineValueTypeSet;
191   SmallVector<unsigned, 16> AddrSpaces;
192 
193   TypeSetByHwMode() = default;
194   TypeSetByHwMode(const TypeSetByHwMode &VTS) = default;
195   TypeSetByHwMode &operator=(const TypeSetByHwMode &) = default;
TypeSetByHwModeTypeSetByHwMode196   TypeSetByHwMode(MVT::SimpleValueType VT)
197     : TypeSetByHwMode(ValueTypeByHwMode(VT)) {}
TypeSetByHwModeTypeSetByHwMode198   TypeSetByHwMode(ValueTypeByHwMode VT)
199     : TypeSetByHwMode(ArrayRef<ValueTypeByHwMode>(&VT, 1)) {}
200   TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList);
201 
getOrCreateTypeSetByHwMode202   SetType &getOrCreate(unsigned Mode) {
203     return Map[Mode];
204   }
205 
206   bool isValueTypeByHwMode(bool AllowEmpty) const;
207   ValueTypeByHwMode getValueTypeByHwMode() const;
208 
209   LLVM_ATTRIBUTE_ALWAYS_INLINE
isMachineValueTypeTypeSetByHwMode210   bool isMachineValueType() const {
211     return isDefaultOnly() && Map.begin()->second.size() == 1;
212   }
213 
214   LLVM_ATTRIBUTE_ALWAYS_INLINE
getMachineValueTypeTypeSetByHwMode215   MVT getMachineValueType() const {
216     assert(isMachineValueType());
217     return *Map.begin()->second.begin();
218   }
219 
220   bool isPossible() const;
221 
222   LLVM_ATTRIBUTE_ALWAYS_INLINE
isDefaultOnlyTypeSetByHwMode223   bool isDefaultOnly() const {
224     return Map.size() == 1 && Map.begin()->first == DefaultMode;
225   }
226 
isPointerTypeSetByHwMode227   bool isPointer() const {
228     return getValueTypeByHwMode().isPointer();
229   }
230 
getPtrAddrSpaceTypeSetByHwMode231   unsigned getPtrAddrSpace() const {
232     assert(isPointer());
233     return getValueTypeByHwMode().PtrAddrSpace;
234   }
235 
236   bool insert(const ValueTypeByHwMode &VVT);
237   bool constrain(const TypeSetByHwMode &VTS);
238   template <typename Predicate> bool constrain(Predicate P);
239   template <typename Predicate>
240   bool assign_if(const TypeSetByHwMode &VTS, Predicate P);
241 
242   void writeToStream(raw_ostream &OS) const;
243   static void writeToStream(const SetType &S, raw_ostream &OS);
244 
245   bool operator==(const TypeSetByHwMode &VTS) const;
246   bool operator!=(const TypeSetByHwMode &VTS) const { return !(*this == VTS); }
247 
248   void dump() const;
249   bool validate() const;
250 
251 private:
252   unsigned PtrAddrSpace = std::numeric_limits<unsigned>::max();
253   /// Intersect two sets. Return true if anything has changed.
254   bool intersect(SetType &Out, const SetType &In);
255 };
256 
257 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T);
258 
259 struct TypeInfer {
TypeInferTypeInfer260   TypeInfer(TreePattern &T) : TP(T), ForceMode(0) {}
261 
isConcreteTypeInfer262   bool isConcrete(const TypeSetByHwMode &VTS, bool AllowEmpty) const {
263     return VTS.isValueTypeByHwMode(AllowEmpty);
264   }
getConcreteTypeInfer265   ValueTypeByHwMode getConcrete(const TypeSetByHwMode &VTS,
266                                 bool AllowEmpty) const {
267     assert(VTS.isValueTypeByHwMode(AllowEmpty));
268     return VTS.getValueTypeByHwMode();
269   }
270 
271   /// The protocol in the following functions (Merge*, force*, Enforce*,
272   /// expand*) is to return "true" if a change has been made, "false"
273   /// otherwise.
274 
275   bool MergeInTypeInfo(TypeSetByHwMode &Out, const TypeSetByHwMode &In);
MergeInTypeInfoTypeInfer276   bool MergeInTypeInfo(TypeSetByHwMode &Out, MVT::SimpleValueType InVT) {
277     return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
278   }
MergeInTypeInfoTypeInfer279   bool MergeInTypeInfo(TypeSetByHwMode &Out, ValueTypeByHwMode InVT) {
280     return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
281   }
282 
283   /// Reduce the set \p Out to have at most one element for each mode.
284   bool forceArbitrary(TypeSetByHwMode &Out);
285 
286   /// The following four functions ensure that upon return the set \p Out
287   /// will only contain types of the specified kind: integer, floating-point,
288   /// scalar, or vector.
289   /// If \p Out is empty, all legal types of the specified kind will be added
290   /// to it. Otherwise, all types that are not of the specified kind will be
291   /// removed from \p Out.
292   bool EnforceInteger(TypeSetByHwMode &Out);
293   bool EnforceFloatingPoint(TypeSetByHwMode &Out);
294   bool EnforceScalar(TypeSetByHwMode &Out);
295   bool EnforceVector(TypeSetByHwMode &Out);
296 
297   /// If \p Out is empty, fill it with all legal types. Otherwise, leave it
298   /// unchanged.
299   bool EnforceAny(TypeSetByHwMode &Out);
300   /// Make sure that for each type in \p Small, there exists a larger type
301   /// in \p Big. \p SmallIsVT indicates that this is being called for
302   /// SDTCisVTSmallerThanOp. In that case the TypeSetByHwMode is re-created for
303   /// each call and needs special consideration in how we detect changes.
304   bool EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big,
305                           bool SmallIsVT = false);
306   /// 1. Ensure that for each type T in \p Vec, T is a vector type, and that
307   ///    for each type U in \p Elem, U is a scalar type.
308   /// 2. Ensure that for each (scalar) type U in \p Elem, there exists a
309   ///    (vector) type T in \p Vec, such that U is the element type of T.
310   bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, TypeSetByHwMode &Elem);
311   bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
312                               const ValueTypeByHwMode &VVT);
313   /// Ensure that for each type T in \p Sub, T is a vector type, and there
314   /// exists a type U in \p Vec such that U is a vector type with the same
315   /// element type as T and at least as many elements as T.
316   bool EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
317                                     TypeSetByHwMode &Sub);
318   /// 1. Ensure that \p V has a scalar type iff \p W has a scalar type.
319   /// 2. Ensure that for each vector type T in \p V, there exists a vector
320   ///    type U in \p W, such that T and U have the same number of elements.
321   /// 3. Ensure that for each vector type U in \p W, there exists a vector
322   ///    type T in \p V, such that T and U have the same number of elements
323   ///    (reverse of 2).
324   bool EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W);
325   /// 1. Ensure that for each type T in \p A, there exists a type U in \p B,
326   ///    such that T and U have equal size in bits.
327   /// 2. Ensure that for each type U in \p B, there exists a type T in \p A
328   ///    such that T and U have equal size in bits (reverse of 1).
329   bool EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B);
330 
331   /// For each overloaded type (i.e. of form *Any), replace it with the
332   /// corresponding subset of legal, specific types.
333   void expandOverloads(TypeSetByHwMode &VTS);
334   void expandOverloads(TypeSetByHwMode::SetType &Out,
335                        const TypeSetByHwMode::SetType &Legal);
336 
337   struct ValidateOnExit {
ValidateOnExitTypeInfer::ValidateOnExit338     ValidateOnExit(TypeSetByHwMode &T, TypeInfer &TI) : Infer(TI), VTS(T) {}
339   #ifndef NDEBUG
340     ~ValidateOnExit();
341   #else
~ValidateOnExitTypeInfer::ValidateOnExit342     ~ValidateOnExit() {}  // Empty destructor with NDEBUG.
343   #endif
344     TypeInfer &Infer;
345     TypeSetByHwMode &VTS;
346   };
347 
348   struct SuppressValidation {
SuppressValidationTypeInfer::SuppressValidation349     SuppressValidation(TypeInfer &TI) : Infer(TI), SavedValidate(TI.Validate) {
350       Infer.Validate = false;
351     }
~SuppressValidationTypeInfer::SuppressValidation352     ~SuppressValidation() {
353       Infer.Validate = SavedValidate;
354     }
355     TypeInfer &Infer;
356     bool SavedValidate;
357   };
358 
359   TreePattern &TP;
360   unsigned ForceMode;     // Mode to use when set.
361   bool CodeGen = false;   // Set during generation of matcher code.
362   bool Validate = true;   // Indicate whether to validate types.
363 
364 private:
365   const TypeSetByHwMode &getLegalTypes();
366 
367   /// Cached legal types (in default mode).
368   bool LegalTypesCached = false;
369   TypeSetByHwMode LegalCache;
370 };
371 
372 /// Set type used to track multiply used variables in patterns
373 typedef StringSet<> MultipleUseVarSet;
374 
375 /// SDTypeConstraint - This is a discriminated union of constraints,
376 /// corresponding to the SDTypeConstraint tablegen class in Target.td.
377 struct SDTypeConstraint {
378   SDTypeConstraint(Record *R, const CodeGenHwModes &CGH);
379 
380   unsigned OperandNo;   // The operand # this constraint applies to.
381   enum {
382     SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs,
383     SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec,
384     SDTCisSubVecOfVec, SDTCVecEltisVT, SDTCisSameNumEltsAs, SDTCisSameSizeAs
385   } ConstraintType;
386 
387   union {   // The discriminated union.
388     struct {
389       unsigned OtherOperandNum;
390     } SDTCisSameAs_Info;
391     struct {
392       unsigned OtherOperandNum;
393     } SDTCisVTSmallerThanOp_Info;
394     struct {
395       unsigned BigOperandNum;
396     } SDTCisOpSmallerThanOp_Info;
397     struct {
398       unsigned OtherOperandNum;
399     } SDTCisEltOfVec_Info;
400     struct {
401       unsigned OtherOperandNum;
402     } SDTCisSubVecOfVec_Info;
403     struct {
404       unsigned OtherOperandNum;
405     } SDTCisSameNumEltsAs_Info;
406     struct {
407       unsigned OtherOperandNum;
408     } SDTCisSameSizeAs_Info;
409   } x;
410 
411   // The VT for SDTCisVT and SDTCVecEltisVT.
412   // Must not be in the union because it has a non-trivial destructor.
413   ValueTypeByHwMode VVT;
414 
415   /// ApplyTypeConstraint - Given a node in a pattern, apply this type
416   /// constraint to the nodes operands.  This returns true if it makes a
417   /// change, false otherwise.  If a type contradiction is found, an error
418   /// is flagged.
419   bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo,
420                            TreePattern &TP) const;
421 };
422 
423 /// ScopedName - A name of a node associated with a "scope" that indicates
424 /// the context (e.g. instance of Pattern or PatFrag) in which the name was
425 /// used. This enables substitution of pattern fragments while keeping track
426 /// of what name(s) were originally given to various nodes in the tree.
427 class ScopedName {
428   unsigned Scope;
429   std::string Identifier;
430 public:
ScopedName(unsigned Scope,StringRef Identifier)431   ScopedName(unsigned Scope, StringRef Identifier)
432       : Scope(Scope), Identifier(std::string(Identifier)) {
433     assert(Scope != 0 &&
434            "Scope == 0 is used to indicate predicates without arguments");
435   }
436 
getScope()437   unsigned getScope() const { return Scope; }
getIdentifier()438   const std::string &getIdentifier() const { return Identifier; }
439 
440   bool operator==(const ScopedName &o) const;
441   bool operator!=(const ScopedName &o) const;
442 };
443 
444 /// SDNodeInfo - One of these records is created for each SDNode instance in
445 /// the target .td file.  This represents the various dag nodes we will be
446 /// processing.
447 class SDNodeInfo {
448   Record *Def;
449   StringRef EnumName;
450   StringRef SDClassName;
451   unsigned Properties;
452   unsigned NumResults;
453   int NumOperands;
454   std::vector<SDTypeConstraint> TypeConstraints;
455 public:
456   // Parse the specified record.
457   SDNodeInfo(Record *R, const CodeGenHwModes &CGH);
458 
getNumResults()459   unsigned getNumResults() const { return NumResults; }
460 
461   /// getNumOperands - This is the number of operands required or -1 if
462   /// variadic.
getNumOperands()463   int getNumOperands() const { return NumOperands; }
getRecord()464   Record *getRecord() const { return Def; }
getEnumName()465   StringRef getEnumName() const { return EnumName; }
getSDClassName()466   StringRef getSDClassName() const { return SDClassName; }
467 
getTypeConstraints()468   const std::vector<SDTypeConstraint> &getTypeConstraints() const {
469     return TypeConstraints;
470   }
471 
472   /// getKnownType - If the type constraints on this node imply a fixed type
473   /// (e.g. all stores return void, etc), then return it as an
474   /// MVT::SimpleValueType.  Otherwise, return MVT::Other.
475   MVT::SimpleValueType getKnownType(unsigned ResNo) const;
476 
477   /// hasProperty - Return true if this node has the specified property.
478   ///
hasProperty(enum SDNP Prop)479   bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }
480 
481   /// ApplyTypeConstraints - Given a node in a pattern, apply the type
482   /// constraints for this node to the operands of the node.  This returns
483   /// true if it makes a change, false otherwise.  If a type contradiction is
484   /// found, an error is flagged.
485   bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const;
486 };
487 
488 /// TreePredicateFn - This is an abstraction that represents the predicates on
489 /// a PatFrag node.  This is a simple one-word wrapper around a pointer to
490 /// provide nice accessors.
491 class TreePredicateFn {
492   /// PatFragRec - This is the TreePattern for the PatFrag that we
493   /// originally came from.
494   TreePattern *PatFragRec;
495 public:
496   /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
497   TreePredicateFn(TreePattern *N);
498 
499 
getOrigPatFragRecord()500   TreePattern *getOrigPatFragRecord() const { return PatFragRec; }
501 
502   /// isAlwaysTrue - Return true if this is a noop predicate.
503   bool isAlwaysTrue() const;
504 
isImmediatePattern()505   bool isImmediatePattern() const { return hasImmCode(); }
506 
507   /// getImmediatePredicateCode - Return the code that evaluates this pattern if
508   /// this is an immediate predicate.  It is an error to call this on a
509   /// non-immediate pattern.
getImmediatePredicateCode()510   std::string getImmediatePredicateCode() const {
511     std::string Result = getImmCode();
512     assert(!Result.empty() && "Isn't an immediate pattern!");
513     return Result;
514   }
515 
516   bool operator==(const TreePredicateFn &RHS) const {
517     return PatFragRec == RHS.PatFragRec;
518   }
519 
520   bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); }
521 
522   /// Return the name to use in the generated code to reference this, this is
523   /// "Predicate_foo" if from a pattern fragment "foo".
524   std::string getFnName() const;
525 
526   /// getCodeToRunOnSDNode - Return the code for the function body that
527   /// evaluates this predicate.  The argument is expected to be in "Node",
528   /// not N.  This handles casting and conversion to a concrete node type as
529   /// appropriate.
530   std::string getCodeToRunOnSDNode() const;
531 
532   /// Get the data type of the argument to getImmediatePredicateCode().
533   StringRef getImmType() const;
534 
535   /// Get a string that describes the type returned by getImmType() but is
536   /// usable as part of an identifier.
537   StringRef getImmTypeIdentifier() const;
538 
539   // Predicate code uses the PatFrag's captured operands.
540   bool usesOperands() const;
541 
542   // Is the desired predefined predicate for a load?
543   bool isLoad() const;
544   // Is the desired predefined predicate for a store?
545   bool isStore() const;
546   // Is the desired predefined predicate for an atomic?
547   bool isAtomic() const;
548 
549   /// Is this predicate the predefined unindexed load predicate?
550   /// Is this predicate the predefined unindexed store predicate?
551   bool isUnindexed() const;
552   /// Is this predicate the predefined non-extending load predicate?
553   bool isNonExtLoad() const;
554   /// Is this predicate the predefined any-extend load predicate?
555   bool isAnyExtLoad() const;
556   /// Is this predicate the predefined sign-extend load predicate?
557   bool isSignExtLoad() const;
558   /// Is this predicate the predefined zero-extend load predicate?
559   bool isZeroExtLoad() const;
560   /// Is this predicate the predefined non-truncating store predicate?
561   bool isNonTruncStore() const;
562   /// Is this predicate the predefined truncating store predicate?
563   bool isTruncStore() const;
564 
565   /// Is this predicate the predefined monotonic atomic predicate?
566   bool isAtomicOrderingMonotonic() const;
567   /// Is this predicate the predefined acquire atomic predicate?
568   bool isAtomicOrderingAcquire() const;
569   /// Is this predicate the predefined release atomic predicate?
570   bool isAtomicOrderingRelease() const;
571   /// Is this predicate the predefined acquire-release atomic predicate?
572   bool isAtomicOrderingAcquireRelease() const;
573   /// Is this predicate the predefined sequentially consistent atomic predicate?
574   bool isAtomicOrderingSequentiallyConsistent() const;
575 
576   /// Is this predicate the predefined acquire-or-stronger atomic predicate?
577   bool isAtomicOrderingAcquireOrStronger() const;
578   /// Is this predicate the predefined weaker-than-acquire atomic predicate?
579   bool isAtomicOrderingWeakerThanAcquire() const;
580 
581   /// Is this predicate the predefined release-or-stronger atomic predicate?
582   bool isAtomicOrderingReleaseOrStronger() const;
583   /// Is this predicate the predefined weaker-than-release atomic predicate?
584   bool isAtomicOrderingWeakerThanRelease() const;
585 
586   /// If non-null, indicates that this predicate is a predefined memory VT
587   /// predicate for a load/store and returns the ValueType record for the memory VT.
588   Record *getMemoryVT() const;
589   /// If non-null, indicates that this predicate is a predefined memory VT
590   /// predicate (checking only the scalar type) for load/store and returns the
591   /// ValueType record for the memory VT.
592   Record *getScalarMemoryVT() const;
593 
594   ListInit *getAddressSpaces() const;
595   int64_t getMinAlignment() const;
596 
597   // If true, indicates that GlobalISel-based C++ code was supplied.
598   bool hasGISelPredicateCode() const;
599   std::string getGISelPredicateCode() const;
600 
601 private:
602   bool hasPredCode() const;
603   bool hasImmCode() const;
604   std::string getPredCode() const;
605   std::string getImmCode() const;
606   bool immCodeUsesAPInt() const;
607   bool immCodeUsesAPFloat() const;
608 
609   bool isPredefinedPredicateEqualTo(StringRef Field, bool Value) const;
610 };
611 
612 struct TreePredicateCall {
613   TreePredicateFn Fn;
614 
615   // Scope -- unique identifier for retrieving named arguments. 0 is used when
616   // the predicate does not use named arguments.
617   unsigned Scope;
618 
TreePredicateCallTreePredicateCall619   TreePredicateCall(const TreePredicateFn &Fn, unsigned Scope)
620     : Fn(Fn), Scope(Scope) {}
621 
622   bool operator==(const TreePredicateCall &o) const {
623     return Fn == o.Fn && Scope == o.Scope;
624   }
625   bool operator!=(const TreePredicateCall &o) const {
626     return !(*this == o);
627   }
628 };
629 
630 class TreePatternNode {
631   /// The type of each node result.  Before and during type inference, each
632   /// result may be a set of possible types.  After (successful) type inference,
633   /// each is a single concrete type.
634   std::vector<TypeSetByHwMode> Types;
635 
636   /// The index of each result in results of the pattern.
637   std::vector<unsigned> ResultPerm;
638 
639   /// Operator - The Record for the operator if this is an interior node (not
640   /// a leaf).
641   Record *Operator;
642 
643   /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf.
644   ///
645   Init *Val;
646 
647   /// Name - The name given to this node with the :$foo notation.
648   ///
649   std::string Name;
650 
651   std::vector<ScopedName> NamesAsPredicateArg;
652 
653   /// PredicateCalls - The predicate functions to execute on this node to check
654   /// for a match.  If this list is empty, no predicate is involved.
655   std::vector<TreePredicateCall> PredicateCalls;
656 
657   /// TransformFn - The transformation function to execute on this node before
658   /// it can be substituted into the resulting instruction on a pattern match.
659   Record *TransformFn;
660 
661   std::vector<TreePatternNodePtr> Children;
662 
663 public:
TreePatternNode(Record * Op,std::vector<TreePatternNodePtr> Ch,unsigned NumResults)664   TreePatternNode(Record *Op, std::vector<TreePatternNodePtr> Ch,
665                   unsigned NumResults)
666       : Operator(Op), Val(nullptr), TransformFn(nullptr),
667         Children(std::move(Ch)) {
668     Types.resize(NumResults);
669     ResultPerm.resize(NumResults);
670     std::iota(ResultPerm.begin(), ResultPerm.end(), 0);
671   }
TreePatternNode(Init * val,unsigned NumResults)672   TreePatternNode(Init *val, unsigned NumResults)    // leaf ctor
673     : Operator(nullptr), Val(val), TransformFn(nullptr) {
674     Types.resize(NumResults);
675     ResultPerm.resize(NumResults);
676     std::iota(ResultPerm.begin(), ResultPerm.end(), 0);
677   }
678 
hasName()679   bool hasName() const { return !Name.empty(); }
getName()680   const std::string &getName() const { return Name; }
setName(StringRef N)681   void setName(StringRef N) { Name.assign(N.begin(), N.end()); }
682 
getNamesAsPredicateArg()683   const std::vector<ScopedName> &getNamesAsPredicateArg() const {
684     return NamesAsPredicateArg;
685   }
setNamesAsPredicateArg(const std::vector<ScopedName> & Names)686   void setNamesAsPredicateArg(const std::vector<ScopedName>& Names) {
687     NamesAsPredicateArg = Names;
688   }
addNameAsPredicateArg(const ScopedName & N)689   void addNameAsPredicateArg(const ScopedName &N) {
690     NamesAsPredicateArg.push_back(N);
691   }
692 
isLeaf()693   bool isLeaf() const { return Val != nullptr; }
694 
695   // Type accessors.
getNumTypes()696   unsigned getNumTypes() const { return Types.size(); }
getType(unsigned ResNo)697   ValueTypeByHwMode getType(unsigned ResNo) const {
698     return Types[ResNo].getValueTypeByHwMode();
699   }
getExtTypes()700   const std::vector<TypeSetByHwMode> &getExtTypes() const { return Types; }
getExtType(unsigned ResNo)701   const TypeSetByHwMode &getExtType(unsigned ResNo) const {
702     return Types[ResNo];
703   }
getExtType(unsigned ResNo)704   TypeSetByHwMode &getExtType(unsigned ResNo) { return Types[ResNo]; }
setType(unsigned ResNo,const TypeSetByHwMode & T)705   void setType(unsigned ResNo, const TypeSetByHwMode &T) { Types[ResNo] = T; }
getSimpleType(unsigned ResNo)706   MVT::SimpleValueType getSimpleType(unsigned ResNo) const {
707     return Types[ResNo].getMachineValueType().SimpleTy;
708   }
709 
hasConcreteType(unsigned ResNo)710   bool hasConcreteType(unsigned ResNo) const {
711     return Types[ResNo].isValueTypeByHwMode(false);
712   }
isTypeCompletelyUnknown(unsigned ResNo,TreePattern & TP)713   bool isTypeCompletelyUnknown(unsigned ResNo, TreePattern &TP) const {
714     return Types[ResNo].empty();
715   }
716 
getNumResults()717   unsigned getNumResults() const { return ResultPerm.size(); }
getResultIndex(unsigned ResNo)718   unsigned getResultIndex(unsigned ResNo) const { return ResultPerm[ResNo]; }
setResultIndex(unsigned ResNo,unsigned RI)719   void setResultIndex(unsigned ResNo, unsigned RI) { ResultPerm[ResNo] = RI; }
720 
getLeafValue()721   Init *getLeafValue() const { assert(isLeaf()); return Val; }
getOperator()722   Record *getOperator() const { assert(!isLeaf()); return Operator; }
723 
getNumChildren()724   unsigned getNumChildren() const { return Children.size(); }
getChild(unsigned N)725   TreePatternNode *getChild(unsigned N) const { return Children[N].get(); }
getChildShared(unsigned N)726   const TreePatternNodePtr &getChildShared(unsigned N) const {
727     return Children[N];
728   }
setChild(unsigned i,TreePatternNodePtr N)729   void setChild(unsigned i, TreePatternNodePtr N) { Children[i] = N; }
730 
731   /// hasChild - Return true if N is any of our children.
hasChild(const TreePatternNode * N)732   bool hasChild(const TreePatternNode *N) const {
733     for (unsigned i = 0, e = Children.size(); i != e; ++i)
734       if (Children[i].get() == N)
735         return true;
736     return false;
737   }
738 
739   bool hasProperTypeByHwMode() const;
740   bool hasPossibleType() const;
741   bool setDefaultMode(unsigned Mode);
742 
hasAnyPredicate()743   bool hasAnyPredicate() const { return !PredicateCalls.empty(); }
744 
getPredicateCalls()745   const std::vector<TreePredicateCall> &getPredicateCalls() const {
746     return PredicateCalls;
747   }
clearPredicateCalls()748   void clearPredicateCalls() { PredicateCalls.clear(); }
setPredicateCalls(const std::vector<TreePredicateCall> & Calls)749   void setPredicateCalls(const std::vector<TreePredicateCall> &Calls) {
750     assert(PredicateCalls.empty() && "Overwriting non-empty predicate list!");
751     PredicateCalls = Calls;
752   }
addPredicateCall(const TreePredicateCall & Call)753   void addPredicateCall(const TreePredicateCall &Call) {
754     assert(!Call.Fn.isAlwaysTrue() && "Empty predicate string!");
755     assert(!is_contained(PredicateCalls, Call) && "predicate applied recursively");
756     PredicateCalls.push_back(Call);
757   }
addPredicateCall(const TreePredicateFn & Fn,unsigned Scope)758   void addPredicateCall(const TreePredicateFn &Fn, unsigned Scope) {
759     assert((Scope != 0) == Fn.usesOperands());
760     addPredicateCall(TreePredicateCall(Fn, Scope));
761   }
762 
getTransformFn()763   Record *getTransformFn() const { return TransformFn; }
setTransformFn(Record * Fn)764   void setTransformFn(Record *Fn) { TransformFn = Fn; }
765 
766   /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
767   /// CodeGenIntrinsic information for it, otherwise return a null pointer.
768   const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const;
769 
770   /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
771   /// return the ComplexPattern information, otherwise return null.
772   const ComplexPattern *
773   getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const;
774 
775   /// Returns the number of MachineInstr operands that would be produced by this
776   /// node if it mapped directly to an output Instruction's
777   /// operand. ComplexPattern specifies this explicitly; MIOperandInfo gives it
778   /// for Operands; otherwise 1.
779   unsigned getNumMIResults(const CodeGenDAGPatterns &CGP) const;
780 
781   /// NodeHasProperty - Return true if this node has the specified property.
782   bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
783 
784   /// TreeHasProperty - Return true if any node in this tree has the specified
785   /// property.
786   bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
787 
788   /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is
789   /// marked isCommutative.
790   bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const;
791 
792   void print(raw_ostream &OS) const;
793   void dump() const;
794 
795 public:   // Higher level manipulation routines.
796 
797   /// clone - Return a new copy of this tree.
798   ///
799   TreePatternNodePtr clone() const;
800 
801   /// RemoveAllTypes - Recursively strip all the types of this tree.
802   void RemoveAllTypes();
803 
804   /// isIsomorphicTo - Return true if this node is recursively isomorphic to
805   /// the specified node.  For this comparison, all of the state of the node
806   /// is considered, except for the assigned name.  Nodes with differing names
807   /// that are otherwise identical are considered isomorphic.
808   bool isIsomorphicTo(const TreePatternNode *N,
809                       const MultipleUseVarSet &DepVars) const;
810 
811   /// SubstituteFormalArguments - Replace the formal arguments in this tree
812   /// with actual values specified by ArgMap.
813   void
814   SubstituteFormalArguments(std::map<std::string, TreePatternNodePtr> &ArgMap);
815 
816   /// InlinePatternFragments - If this pattern refers to any pattern
817   /// fragments, return the set of inlined versions (this can be more than
818   /// one if a PatFrags record has multiple alternatives).
819   void InlinePatternFragments(TreePatternNodePtr T,
820                               TreePattern &TP,
821                               std::vector<TreePatternNodePtr> &OutAlternatives);
822 
823   /// ApplyTypeConstraints - Apply all of the type constraints relevant to
824   /// this node and its children in the tree.  This returns true if it makes a
825   /// change, false otherwise.  If a type contradiction is found, flag an error.
826   bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters);
827 
828   /// UpdateNodeType - Set the node type of N to VT if VT contains
829   /// information.  If N already contains a conflicting type, then flag an
830   /// error.  This returns true if any information was updated.
831   ///
832   bool UpdateNodeType(unsigned ResNo, const TypeSetByHwMode &InTy,
833                       TreePattern &TP);
834   bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy,
835                       TreePattern &TP);
836   bool UpdateNodeType(unsigned ResNo, ValueTypeByHwMode InTy,
837                       TreePattern &TP);
838 
839   // Update node type with types inferred from an instruction operand or result
840   // def from the ins/outs lists.
841   // Return true if the type changed.
842   bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP);
843 
844   /// ContainsUnresolvedType - Return true if this tree contains any
845   /// unresolved types.
846   bool ContainsUnresolvedType(TreePattern &TP) const;
847 
848   /// canPatternMatch - If it is impossible for this pattern to match on this
849   /// target, fill in Reason and return false.  Otherwise, return true.
850   bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP);
851 };
852 
853 inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) {
854   TPN.print(OS);
855   return OS;
856 }
857 
858 
859 /// TreePattern - Represent a pattern, used for instructions, pattern
860 /// fragments, etc.
861 ///
862 class TreePattern {
863   /// Trees - The list of pattern trees which corresponds to this pattern.
864   /// Note that PatFrag's only have a single tree.
865   ///
866   std::vector<TreePatternNodePtr> Trees;
867 
868   /// NamedNodes - This is all of the nodes that have names in the trees in this
869   /// pattern.
870   StringMap<SmallVector<TreePatternNode *, 1>> NamedNodes;
871 
872   /// TheRecord - The actual TableGen record corresponding to this pattern.
873   ///
874   Record *TheRecord;
875 
876   /// Args - This is a list of all of the arguments to this pattern (for
877   /// PatFrag patterns), which are the 'node' markers in this pattern.
878   std::vector<std::string> Args;
879 
880   /// CDP - the top-level object coordinating this madness.
881   ///
882   CodeGenDAGPatterns &CDP;
883 
884   /// isInputPattern - True if this is an input pattern, something to match.
885   /// False if this is an output pattern, something to emit.
886   bool isInputPattern;
887 
888   /// hasError - True if the currently processed nodes have unresolvable types
889   /// or other non-fatal errors
890   bool HasError;
891 
892   /// It's important that the usage of operands in ComplexPatterns is
893   /// consistent: each named operand can be defined by at most one
894   /// ComplexPattern. This records the ComplexPattern instance and the operand
895   /// number for each operand encountered in a ComplexPattern to aid in that
896   /// check.
897   StringMap<std::pair<Record *, unsigned>> ComplexPatternOperands;
898 
899   TypeInfer Infer;
900 
901 public:
902 
903   /// TreePattern constructor - Parse the specified DagInits into the
904   /// current record.
905   TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
906               CodeGenDAGPatterns &ise);
907   TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
908               CodeGenDAGPatterns &ise);
909   TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
910               CodeGenDAGPatterns &ise);
911 
912   /// getTrees - Return the tree patterns which corresponds to this pattern.
913   ///
getTrees()914   const std::vector<TreePatternNodePtr> &getTrees() const { return Trees; }
getNumTrees()915   unsigned getNumTrees() const { return Trees.size(); }
getTree(unsigned i)916   const TreePatternNodePtr &getTree(unsigned i) const { return Trees[i]; }
setTree(unsigned i,TreePatternNodePtr Tree)917   void setTree(unsigned i, TreePatternNodePtr Tree) { Trees[i] = Tree; }
getOnlyTree()918   const TreePatternNodePtr &getOnlyTree() const {
919     assert(Trees.size() == 1 && "Doesn't have exactly one pattern!");
920     return Trees[0];
921   }
922 
getNamedNodesMap()923   const StringMap<SmallVector<TreePatternNode *, 1>> &getNamedNodesMap() {
924     if (NamedNodes.empty())
925       ComputeNamedNodes();
926     return NamedNodes;
927   }
928 
929   /// getRecord - Return the actual TableGen record corresponding to this
930   /// pattern.
931   ///
getRecord()932   Record *getRecord() const { return TheRecord; }
933 
getNumArgs()934   unsigned getNumArgs() const { return Args.size(); }
getArgName(unsigned i)935   const std::string &getArgName(unsigned i) const {
936     assert(i < Args.size() && "Argument reference out of range!");
937     return Args[i];
938   }
getArgList()939   std::vector<std::string> &getArgList() { return Args; }
940 
getDAGPatterns()941   CodeGenDAGPatterns &getDAGPatterns() const { return CDP; }
942 
943   /// InlinePatternFragments - If this pattern refers to any pattern
944   /// fragments, inline them into place, giving us a pattern without any
945   /// PatFrags references.  This may increase the number of trees in the
946   /// pattern if a PatFrags has multiple alternatives.
InlinePatternFragments()947   void InlinePatternFragments() {
948     std::vector<TreePatternNodePtr> Copy = Trees;
949     Trees.clear();
950     for (unsigned i = 0, e = Copy.size(); i != e; ++i)
951       Copy[i]->InlinePatternFragments(Copy[i], *this, Trees);
952   }
953 
954   /// InferAllTypes - Infer/propagate as many types throughout the expression
955   /// patterns as possible.  Return true if all types are inferred, false
956   /// otherwise.  Bail out if a type contradiction is found.
957   bool InferAllTypes(
958       const StringMap<SmallVector<TreePatternNode *, 1>> *NamedTypes = nullptr);
959 
960   /// error - If this is the first error in the current resolution step,
961   /// print it and set the error flag.  Otherwise, continue silently.
962   void error(const Twine &Msg);
hasError()963   bool hasError() const {
964     return HasError;
965   }
resetError()966   void resetError() {
967     HasError = false;
968   }
969 
getInfer()970   TypeInfer &getInfer() { return Infer; }
971 
972   void print(raw_ostream &OS) const;
973   void dump() const;
974 
975 private:
976   TreePatternNodePtr ParseTreePattern(Init *DI, StringRef OpName);
977   void ComputeNamedNodes();
978   void ComputeNamedNodes(TreePatternNode *N);
979 };
980 
981 
UpdateNodeType(unsigned ResNo,const TypeSetByHwMode & InTy,TreePattern & TP)982 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
983                                             const TypeSetByHwMode &InTy,
984                                             TreePattern &TP) {
985   TypeSetByHwMode VTS(InTy);
986   TP.getInfer().expandOverloads(VTS);
987   return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
988 }
989 
UpdateNodeType(unsigned ResNo,MVT::SimpleValueType InTy,TreePattern & TP)990 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
991                                             MVT::SimpleValueType InTy,
992                                             TreePattern &TP) {
993   TypeSetByHwMode VTS(InTy);
994   TP.getInfer().expandOverloads(VTS);
995   return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
996 }
997 
UpdateNodeType(unsigned ResNo,ValueTypeByHwMode InTy,TreePattern & TP)998 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
999                                             ValueTypeByHwMode InTy,
1000                                             TreePattern &TP) {
1001   TypeSetByHwMode VTS(InTy);
1002   TP.getInfer().expandOverloads(VTS);
1003   return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
1004 }
1005 
1006 
1007 /// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps
1008 /// that has a set ExecuteAlways / DefaultOps field.
1009 struct DAGDefaultOperand {
1010   std::vector<TreePatternNodePtr> DefaultOps;
1011 };
1012 
1013 class DAGInstruction {
1014   std::vector<Record*> Results;
1015   std::vector<Record*> Operands;
1016   std::vector<Record*> ImpResults;
1017   TreePatternNodePtr SrcPattern;
1018   TreePatternNodePtr ResultPattern;
1019 
1020 public:
1021   DAGInstruction(const std::vector<Record*> &results,
1022                  const std::vector<Record*> &operands,
1023                  const std::vector<Record*> &impresults,
1024                  TreePatternNodePtr srcpattern = nullptr,
1025                  TreePatternNodePtr resultpattern = nullptr)
Results(results)1026     : Results(results), Operands(operands), ImpResults(impresults),
1027       SrcPattern(srcpattern), ResultPattern(resultpattern) {}
1028 
getNumResults()1029   unsigned getNumResults() const { return Results.size(); }
getNumOperands()1030   unsigned getNumOperands() const { return Operands.size(); }
getNumImpResults()1031   unsigned getNumImpResults() const { return ImpResults.size(); }
getImpResults()1032   const std::vector<Record*>& getImpResults() const { return ImpResults; }
1033 
getResult(unsigned RN)1034   Record *getResult(unsigned RN) const {
1035     assert(RN < Results.size());
1036     return Results[RN];
1037   }
1038 
getOperand(unsigned ON)1039   Record *getOperand(unsigned ON) const {
1040     assert(ON < Operands.size());
1041     return Operands[ON];
1042   }
1043 
getImpResult(unsigned RN)1044   Record *getImpResult(unsigned RN) const {
1045     assert(RN < ImpResults.size());
1046     return ImpResults[RN];
1047   }
1048 
getSrcPattern()1049   TreePatternNodePtr getSrcPattern() const { return SrcPattern; }
getResultPattern()1050   TreePatternNodePtr getResultPattern() const { return ResultPattern; }
1051 };
1052 
1053 /// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns
1054 /// processed to produce isel.
1055 class PatternToMatch {
1056   Record          *SrcRecord;   // Originating Record for the pattern.
1057   ListInit        *Predicates;  // Top level predicate conditions to match.
1058   TreePatternNodePtr SrcPattern;      // Source pattern to match.
1059   TreePatternNodePtr DstPattern;      // Resulting pattern.
1060   std::vector<Record*> Dstregs; // Physical register defs being matched.
1061   std::string      HwModeFeatures;
1062   int              AddedComplexity; // Add to matching pattern complexity.
1063   unsigned         ID;          // Unique ID for the record.
1064   unsigned         ForceMode;   // Force this mode in type inference when set.
1065 
1066 public:
1067   PatternToMatch(Record *srcrecord, ListInit *preds, TreePatternNodePtr src,
1068                  TreePatternNodePtr dst, std::vector<Record *> dstregs,
1069                  int complexity, unsigned uid, unsigned setmode = 0,
1070                  const Twine &hwmodefeatures = "")
SrcRecord(srcrecord)1071       : SrcRecord(srcrecord), Predicates(preds), SrcPattern(src),
1072         DstPattern(dst), Dstregs(std::move(dstregs)),
1073         HwModeFeatures(hwmodefeatures.str()), AddedComplexity(complexity),
1074         ID(uid), ForceMode(setmode) {}
1075 
getSrcRecord()1076   Record          *getSrcRecord()  const { return SrcRecord; }
getPredicates()1077   ListInit        *getPredicates() const { return Predicates; }
getSrcPattern()1078   TreePatternNode *getSrcPattern() const { return SrcPattern.get(); }
getSrcPatternShared()1079   TreePatternNodePtr getSrcPatternShared() const { return SrcPattern; }
getDstPattern()1080   TreePatternNode *getDstPattern() const { return DstPattern.get(); }
getDstPatternShared()1081   TreePatternNodePtr getDstPatternShared() const { return DstPattern; }
getDstRegs()1082   const std::vector<Record*> &getDstRegs() const { return Dstregs; }
getHwModeFeatures()1083   StringRef   getHwModeFeatures() const { return HwModeFeatures; }
getAddedComplexity()1084   int         getAddedComplexity() const { return AddedComplexity; }
getID()1085   unsigned getID() const { return ID; }
getForceMode()1086   unsigned getForceMode() const { return ForceMode; }
1087 
1088   std::string getPredicateCheck() const;
1089   void getPredicateRecords(SmallVectorImpl<Record *> &PredicateRecs) const;
1090 
1091   /// Compute the complexity metric for the input pattern.  This roughly
1092   /// corresponds to the number of nodes that are covered.
1093   int getPatternComplexity(const CodeGenDAGPatterns &CGP) const;
1094 };
1095 
1096 class CodeGenDAGPatterns {
1097   RecordKeeper &Records;
1098   CodeGenTarget Target;
1099   CodeGenIntrinsicTable Intrinsics;
1100 
1101   std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes;
1102   std::map<Record*, std::pair<Record*, std::string>, LessRecordByID>
1103       SDNodeXForms;
1104   std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns;
1105   std::map<Record *, std::unique_ptr<TreePattern>, LessRecordByID>
1106       PatternFragments;
1107   std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands;
1108   std::map<Record*, DAGInstruction, LessRecordByID> Instructions;
1109 
1110   // Specific SDNode definitions:
1111   Record *intrinsic_void_sdnode;
1112   Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode;
1113 
1114   /// PatternsToMatch - All of the things we are matching on the DAG.  The first
1115   /// value is the pattern to match, the second pattern is the result to
1116   /// emit.
1117   std::vector<PatternToMatch> PatternsToMatch;
1118 
1119   TypeSetByHwMode LegalVTS;
1120 
1121   using PatternRewriterFn = std::function<void (TreePattern *)>;
1122   PatternRewriterFn PatternRewriter;
1123 
1124   unsigned NumScopes = 0;
1125 
1126 public:
1127   CodeGenDAGPatterns(RecordKeeper &R,
1128                      PatternRewriterFn PatternRewriter = nullptr);
1129 
getTargetInfo()1130   CodeGenTarget &getTargetInfo() { return Target; }
getTargetInfo()1131   const CodeGenTarget &getTargetInfo() const { return Target; }
getLegalTypes()1132   const TypeSetByHwMode &getLegalTypes() const { return LegalVTS; }
1133 
1134   Record *getSDNodeNamed(StringRef Name) const;
1135 
getSDNodeInfo(Record * R)1136   const SDNodeInfo &getSDNodeInfo(Record *R) const {
1137     auto F = SDNodes.find(R);
1138     assert(F != SDNodes.end() && "Unknown node!");
1139     return F->second;
1140   }
1141 
1142   // Node transformation lookups.
1143   typedef std::pair<Record*, std::string> NodeXForm;
getSDNodeTransform(Record * R)1144   const NodeXForm &getSDNodeTransform(Record *R) const {
1145     auto F = SDNodeXForms.find(R);
1146     assert(F != SDNodeXForms.end() && "Invalid transform!");
1147     return F->second;
1148   }
1149 
getComplexPattern(Record * R)1150   const ComplexPattern &getComplexPattern(Record *R) const {
1151     auto F = ComplexPatterns.find(R);
1152     assert(F != ComplexPatterns.end() && "Unknown addressing mode!");
1153     return F->second;
1154   }
1155 
getIntrinsic(Record * R)1156   const CodeGenIntrinsic &getIntrinsic(Record *R) const {
1157     for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
1158       if (Intrinsics[i].TheDef == R) return Intrinsics[i];
1159     llvm_unreachable("Unknown intrinsic!");
1160   }
1161 
getIntrinsicInfo(unsigned IID)1162   const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const {
1163     if (IID-1 < Intrinsics.size())
1164       return Intrinsics[IID-1];
1165     llvm_unreachable("Bad intrinsic ID!");
1166   }
1167 
getIntrinsicID(Record * R)1168   unsigned getIntrinsicID(Record *R) const {
1169     for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
1170       if (Intrinsics[i].TheDef == R) return i;
1171     llvm_unreachable("Unknown intrinsic!");
1172   }
1173 
getDefaultOperand(Record * R)1174   const DAGDefaultOperand &getDefaultOperand(Record *R) const {
1175     auto F = DefaultOperands.find(R);
1176     assert(F != DefaultOperands.end() &&"Isn't an analyzed default operand!");
1177     return F->second;
1178   }
1179 
1180   // Pattern Fragment information.
getPatternFragment(Record * R)1181   TreePattern *getPatternFragment(Record *R) const {
1182     auto F = PatternFragments.find(R);
1183     assert(F != PatternFragments.end() && "Invalid pattern fragment request!");
1184     return F->second.get();
1185   }
getPatternFragmentIfRead(Record * R)1186   TreePattern *getPatternFragmentIfRead(Record *R) const {
1187     auto F = PatternFragments.find(R);
1188     if (F == PatternFragments.end())
1189       return nullptr;
1190     return F->second.get();
1191   }
1192 
1193   typedef std::map<Record *, std::unique_ptr<TreePattern>,
1194                    LessRecordByID>::const_iterator pf_iterator;
pf_begin()1195   pf_iterator pf_begin() const { return PatternFragments.begin(); }
pf_end()1196   pf_iterator pf_end() const { return PatternFragments.end(); }
ptfs()1197   iterator_range<pf_iterator> ptfs() const { return PatternFragments; }
1198 
1199   // Patterns to match information.
1200   typedef std::vector<PatternToMatch>::const_iterator ptm_iterator;
ptm_begin()1201   ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); }
ptm_end()1202   ptm_iterator ptm_end() const { return PatternsToMatch.end(); }
ptms()1203   iterator_range<ptm_iterator> ptms() const { return PatternsToMatch; }
1204 
1205   /// Parse the Pattern for an instruction, and insert the result in DAGInsts.
1206   typedef std::map<Record*, DAGInstruction, LessRecordByID> DAGInstMap;
1207   void parseInstructionPattern(
1208       CodeGenInstruction &CGI, ListInit *Pattern,
1209       DAGInstMap &DAGInsts);
1210 
getInstruction(Record * R)1211   const DAGInstruction &getInstruction(Record *R) const {
1212     auto F = Instructions.find(R);
1213     assert(F != Instructions.end() && "Unknown instruction!");
1214     return F->second;
1215   }
1216 
get_intrinsic_void_sdnode()1217   Record *get_intrinsic_void_sdnode() const {
1218     return intrinsic_void_sdnode;
1219   }
get_intrinsic_w_chain_sdnode()1220   Record *get_intrinsic_w_chain_sdnode() const {
1221     return intrinsic_w_chain_sdnode;
1222   }
get_intrinsic_wo_chain_sdnode()1223   Record *get_intrinsic_wo_chain_sdnode() const {
1224     return intrinsic_wo_chain_sdnode;
1225   }
1226 
allocateScope()1227   unsigned allocateScope() { return ++NumScopes; }
1228 
operandHasDefault(Record * Op)1229   bool operandHasDefault(Record *Op) const {
1230     return Op->isSubClassOf("OperandWithDefaultOps") &&
1231       !getDefaultOperand(Op).DefaultOps.empty();
1232   }
1233 
1234 private:
1235   void ParseNodeInfo();
1236   void ParseNodeTransforms();
1237   void ParseComplexPatterns();
1238   void ParsePatternFragments(bool OutFrags = false);
1239   void ParseDefaultOperands();
1240   void ParseInstructions();
1241   void ParsePatterns();
1242   void ExpandHwModeBasedTypes();
1243   void InferInstructionFlags();
1244   void GenerateVariants();
1245   void VerifyInstructionFlags();
1246 
1247   void ParseOnePattern(Record *TheDef,
1248                        TreePattern &Pattern, TreePattern &Result,
1249                        const std::vector<Record *> &InstImpResults);
1250   void AddPatternToMatch(TreePattern *Pattern, PatternToMatch &&PTM);
1251   void FindPatternInputsAndOutputs(
1252       TreePattern &I, TreePatternNodePtr Pat,
1253       std::map<std::string, TreePatternNodePtr> &InstInputs,
1254       MapVector<std::string, TreePatternNodePtr,
1255                 std::map<std::string, unsigned>> &InstResults,
1256       std::vector<Record *> &InstImpResults);
1257 };
1258 
1259 
ApplyTypeConstraints(TreePatternNode * N,TreePattern & TP)1260 inline bool SDNodeInfo::ApplyTypeConstraints(TreePatternNode *N,
1261                                              TreePattern &TP) const {
1262     bool MadeChange = false;
1263     for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
1264       MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
1265     return MadeChange;
1266   }
1267 
1268 } // end namespace llvm
1269 
1270 #endif
1271