1 //===- Tiling.cpp - Implementation of linalg Tiling -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the linalg dialect Tiling pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PassDetail.h"
14 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
15 #include "mlir/Dialect/Linalg/Passes.h"
16 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
17 #include "mlir/Dialect/Linalg/Utils/Utils.h"
18 #include "mlir/Dialect/MemRef/IR/MemRef.h"
19 #include "mlir/Dialect/SCF/Transforms.h"
20 #include "mlir/Dialect/Tensor/IR/Tensor.h"
21 #include "mlir/IR/AffineExpr.h"
22 #include "mlir/IR/AffineMap.h"
23 #include "mlir/Transforms/FoldUtils.h"
24 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
25 
26 #include "llvm/Support/CommandLine.h"
27 
28 using namespace mlir;
29 using namespace mlir::linalg;
30 using namespace mlir::scf;
31 
32 #define DEBUG_TYPE "linalg-tiling"
33 
isZero(Value v)34 static bool isZero(Value v) {
35   if (auto cst = v.getDefiningOp<ConstantIndexOp>())
36     return cst.getValue() == 0;
37   return false;
38 }
39 
40 using LoopIndexToRangeIndexMap = DenseMap<int, int>;
41 
42 // Creates a number of ranges equal to the number of non-zero in `tileSizes`.
43 // One for each loop of the LinalgOp that is tiled. The `tileSizes` argument has
44 // one entry per surrounding loop. It uses zero as the convention that a
45 // particular loop is not tiled. This convention simplifies implementations by
46 // avoiding affine map manipulations.
47 // The returned ranges correspond to the loop ranges, in the proper order, that
48 // are tiled and for which new loops will be created. Also the function returns
49 // a map from loop indices of the LinalgOp to the corresponding non-empty range
50 // indices of newly created loops.
51 static std::tuple<SmallVector<Range, 4>, LoopIndexToRangeIndexMap>
makeTiledLoopRanges(OpBuilder & b,Location loc,AffineMap map,ValueRange allShapeSizes,ValueRange allTileSizes)52 makeTiledLoopRanges(OpBuilder &b, Location loc, AffineMap map,
53                     ValueRange allShapeSizes, ValueRange allTileSizes) {
54   assert(allTileSizes.size() == map.getNumResults());
55   // Apply `map` to get shape sizes in loop order.
56   auto shapeSizes = applyMapToValues(b, loc, map, allShapeSizes);
57   SmallVector<Value, 4> tileSizes(allTileSizes.begin(), allTileSizes.end());
58 
59   // Traverse the tile sizes, which are in loop order, erase zeros everywhere.
60   LoopIndexToRangeIndexMap loopIndexToRangeIndex;
61   for (int idx = 0, e = tileSizes.size(), zerosCount = 0; idx < e; ++idx) {
62     if (isZero(tileSizes[idx - zerosCount])) {
63       shapeSizes.erase(shapeSizes.begin() + idx - zerosCount);
64       tileSizes.erase(tileSizes.begin() + idx - zerosCount);
65       ++zerosCount;
66       continue;
67     }
68     loopIndexToRangeIndex[idx] = idx - zerosCount;
69   }
70 
71   // Create a new range with the applied tile sizes.
72   SmallVector<Range, 4> res;
73   for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx)
74     res.push_back(Range{b.create<ConstantIndexOp>(loc, 0), shapeSizes[idx],
75                         tileSizes[idx]});
76   return std::make_tuple(res, loopIndexToRangeIndex);
77 }
78 
79 // All indices returned by IndexOp should be invariant with respect to tiling.
80 // Therefore, if an operation is tiled, we have to transform the indices
81 // accordingly, i.e. offset them by the values of the corresponding induction
82 // variables that are captured implicitly in the body of the op.
83 //
84 // Example. `linalg.generic` before tiling:
85 //
86 // #id_2d = (i, j) -> (i, j)
87 // #pointwise_2d_trait = {
88 //   indexing_maps = [#id_2d, #id_2d],
89 //   iterator_types = ["parallel", "parallel"]
90 // }
91 // linalg.generic #pointwise_2d_trait %operand, %result {
92 //   ^bb0(%operand_in: f32, %result_in: f32):
93 //     %i = linalg.index 0 : index
94 //     %j = linalg.index 1 : index
95 //     <some operations that use %i, %j>
96 // }: memref<50x100xf32>, memref<50x100xf32>
97 //
98 // After tiling pass with tiles sizes 10 and 25:
99 //
100 // #strided = (i, j)[s0, s1, s2] -> (i * s1 + s0 + j * s2)
101 //
102 // %c1 = constant 1 : index
103 // %c0 = constant 0 : index
104 // %c25 = constant 25 : index
105 // %c10 = constant 10 : index
106 // operand_dim_0 = dim %operand, 0 : memref<50x100xf32>
107 // operand_dim_1 = dim %operand, 1 : memref<50x100xf32>
108 // scf.for %k = %c0 to operand_dim_0 step %c10 {
109 //   scf.for %l = %c0 to operand_dim_1 step %c25 {
110 //     %4 = std.subview %operand[%k, %l][%c10, %c25][%c1, %c1]
111 //       : memref<50x100xf32> to memref<?x?xf32, #strided>
112 //     %5 = std.subview %result[%k, %l][%c10, %c25][%c1, %c1]
113 //       : memref<50x100xf32> to memref<?x?xf32, #strided>
114 //     linalg.generic pointwise_2d_trait %4, %5 {
115 //     ^bb0(%operand_in: f32, %result_in: f32):
116 //       %i = linalg.index 0 : index
117 //       %j = linalg.index 1 : index
118 //       // Indices `k` and `l` are implicitly captured in the body.
119 //       %transformed_i = addi %i, %k : index // index `i` is offset by %k
120 //       %transformed_j = addi %j, %l : index // index `j` is offset by %l
121 //       // Every use of %i, %j is replaced with %transformed_i, %transformed_j
122 //       <some operations that use %transformed_i, %transformed_j>
123 //     }: memref<?x?xf32, #strided>, memref<?x?xf32, #strided>
124 //   }
125 // }
126 //
127 // TODO: Investigate whether mixing implicit and explicit indices
128 // does not lead to losing information.
129 static void
transformIndexOps(OpBuilder & b,LinalgOp op,SmallVectorImpl<Value> & ivs,const LoopIndexToRangeIndexMap & loopIndexToRangeIndex)130 transformIndexOps(OpBuilder &b, LinalgOp op, SmallVectorImpl<Value> &ivs,
131                   const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) {
132   SmallVector<Value> allIvs(op.getNumLoops(), nullptr);
133   for (auto &en : enumerate(allIvs)) {
134     auto rangeIndex = loopIndexToRangeIndex.find(en.index());
135     if (rangeIndex == loopIndexToRangeIndex.end())
136       continue;
137     en.value() = ivs[rangeIndex->second];
138   }
139   addTileLoopIvsToIndexOpResults(b, op, allIvs);
140 }
141 
142 // Insert a tile `source` into the destination tensor `dest`. The position at
143 // which the tile is inserted (as well as size of tile) is taken from a given
144 // ExtractSliceOp `sliceOp`.
insertSliceIntoTensor(OpBuilder & b,Location loc,tensor::ExtractSliceOp sliceOp,Value source,Value dest)145 static Value insertSliceIntoTensor(OpBuilder &b, Location loc,
146                                    tensor::ExtractSliceOp sliceOp, Value source,
147                                    Value dest) {
148   return b.create<tensor::InsertSliceOp>(
149       loc, sliceOp.source().getType(), source, dest, sliceOp.offsets(),
150       sliceOp.sizes(), sliceOp.strides(), sliceOp.static_offsets(),
151       sliceOp.static_sizes(), sliceOp.static_strides());
152 }
153 
154 template <typename LoopTy>
155 static Optional<TiledLinalgOp>
tileLinalgOpImpl(OpBuilder & b,LinalgOp op,ValueRange tileSizes,const LinalgTilingOptions & options)156 tileLinalgOpImpl(OpBuilder &b, LinalgOp op, ValueRange tileSizes,
157                  const LinalgTilingOptions &options) {
158   auto nLoops = op.getNumLoops();
159   // Initial tile sizes may be too big, only take the first nLoops.
160   tileSizes = tileSizes.take_front(nLoops);
161 
162   if (llvm::all_of(tileSizes, isZero))
163     return llvm::None;
164 
165   // 1. Build the tiled loop ranges.
166   auto allShapeSizes = op.createFlatListOfOperandDims(b, op.getLoc());
167   AffineMap shapeSizesToLoopsMap = op.getShapesToLoopsMap();
168   if (!shapeSizesToLoopsMap)
169     return llvm::None;
170 
171   SmallVector<Range, 4> loopRanges;
172   LoopIndexToRangeIndexMap loopIndexToRangeIndex;
173   std::tie(loopRanges, loopIndexToRangeIndex) = makeTiledLoopRanges(
174       b, op.getLoc(), shapeSizesToLoopsMap, allShapeSizes, tileSizes);
175 
176   SmallVector<Attribute, 4> iteratorTypes;
177   for (auto attr :
178        enumerate(op.iterator_types().cast<ArrayAttr>().getValue())) {
179     if (loopIndexToRangeIndex.count(attr.index()))
180       iteratorTypes.push_back(attr.value());
181   }
182   // If interchangeVector is empty, use the identity. Build the permutation map
183   // otherwise.
184   auto invPermutationMap =
185       AffineMap::getMultiDimIdentityMap(tileSizes.size(), b.getContext());
186   if (!options.interchangeVector.empty()) {
187     // Based on the pruned iterations (due to zero tile size), recompute the
188     // interchange vector.
189     SmallVector<unsigned, 4> interchangeVector;
190     interchangeVector.reserve(options.interchangeVector.size());
191     for (auto pos : options.interchangeVector) {
192       auto it = loopIndexToRangeIndex.find(pos);
193       if (it == loopIndexToRangeIndex.end())
194         continue;
195       interchangeVector.push_back(it->second);
196     }
197     // Interchange vector is guaranteed to be a permutation,
198     // `inversePermutation` must succeed.
199     invPermutationMap = inversePermutation(
200         AffineMap::getPermutationMap(interchangeVector, b.getContext()));
201     assert(invPermutationMap);
202     SmallVector<int64_t> permutation(interchangeVector.begin(),
203                                      interchangeVector.end());
204     applyPermutationToVector(loopRanges, permutation);
205     applyPermutationToVector(iteratorTypes, permutation);
206   }
207 
208   // 2. Create the tiled loops.
209   LinalgOp res = op;
210   SmallVector<Value, 4> ivs, tensorResults;
211   auto tiledLoopBodyBuilder =
212       [&](OpBuilder &b, Location loc, ValueRange localIvs,
213           ValueRange operandValuesToUse) -> scf::ValueVector {
214     ivs.assign(localIvs.begin(), localIvs.end());
215 
216     // When an `interchangeVector` is present, it has been applied to the
217     // loop ranges and the iterator types. Apply its inverse to the
218     // resulting loop `ivs` to match the op definition.
219     SmallVector<Value, 4> interchangedIvs;
220     if (!options.interchangeVector.empty())
221       interchangedIvs = applyMapToValues(b, loc, invPermutationMap, ivs);
222     else
223       interchangedIvs.assign(ivs.begin(), ivs.end());
224 
225     // Tile the `operandValuesToUse` that either match the `op` operands
226     // themselves or the tile loop arguments forwarding them.
227     assert(operandValuesToUse.size() ==
228                static_cast<size_t>(op.getNumInputsAndOutputs()) &&
229            "expect the number of operands and inputs and outputs to match");
230     SmallVector<Value> valuesToTile = operandValuesToUse;
231     auto sizeBounds =
232         applyMapToValues(b, loc, shapeSizesToLoopsMap, allShapeSizes);
233     SmallVector<Value, 4> tiledOperands = makeTiledShapes(
234         b, loc, op, valuesToTile, interchangedIvs, tileSizes, sizeBounds);
235 
236     // TODO: use an interface/adaptor to avoid leaking position in
237     // `tiledOperands`.
238     SmallVector<Type, 4> resultTensorTypes;
239     for (OpOperand *opOperand : op.getOutputTensorOperands())
240       resultTensorTypes.push_back(
241           tiledOperands[opOperand->getOperandNumber()].getType());
242 
243     res = op.clone(b, loc, resultTensorTypes, tiledOperands);
244 
245     // Insert a insert_slice for each output tensor.
246     unsigned resultIdx = 0;
247     for (OpOperand *opOperand : op.getOutputTensorOperands()) {
248       // TODO: use an interface/adaptor to avoid leaking position in
249       // `tiledOperands`.
250       Value outputTensor = tiledOperands[opOperand->getOperandNumber()];
251       if (auto sliceOp = outputTensor.getDefiningOp<tensor::ExtractSliceOp>()) {
252         tensorResults.push_back(insertSliceIntoTensor(
253             b, loc, sliceOp, res->getResult(resultIdx), sliceOp.source()));
254       } else {
255         tensorResults.push_back(res->getResult(resultIdx));
256       }
257       ++resultIdx;
258     }
259     return scf::ValueVector(tensorResults.begin(), tensorResults.end());
260   };
261   GenerateLoopNest<LoopTy>::doit(b, op.getLoc(), loopRanges, op, iteratorTypes,
262                                  tiledLoopBodyBuilder, options.distribution,
263                                  options.distributionTypes);
264 
265   // 3. Transform IndexOp results w.r.t. the tiling.
266   transformIndexOps(b, res, ivs, loopIndexToRangeIndex);
267 
268   // 4. Gather the newly created loops and return them with the new op.
269   SmallVector<Operation *, 8> loops;
270   loops.reserve(ivs.size());
271   for (auto iv : ivs) {
272     if (iv.isa<BlockArgument>()) {
273       loops.push_back(iv.cast<BlockArgument>().getOwner()->getParentOp());
274       assert(loops.back() && "no owner found for induction variable!");
275     } else {
276       // TODO: Instead of doing this, try to recover the ops used instead of the
277       // loop.
278       loops.push_back(nullptr);
279     }
280   }
281 
282   // 5. Get the tensor results from the outermost loop if available. Otherwise
283   // use the previously captured `tensorResults`.
284   Operation *outermostLoop = nullptr;
285   for (Operation *loop : loops)
286     if ((outermostLoop = loop))
287       break;
288 
289   return TiledLinalgOp{
290       res, loops, outermostLoop ? outermostLoop->getResults() : tensorResults};
291 }
292 
293 template <typename LoopTy>
tileLinalgOpImpl(OpBuilder & b,LinalgOp op,const LinalgTilingOptions & options)294 Optional<TiledLinalgOp> static tileLinalgOpImpl(
295     OpBuilder &b, LinalgOp op, const LinalgTilingOptions &options) {
296   OpBuilder::InsertionGuard g(b);
297   b.setInsertionPoint(op);
298 
299   if (!options.tileSizeComputationFunction)
300     return llvm::None;
301 
302   // Enforce the convention that "tiling by zero" skips tiling a particular
303   // dimension. This convention is significantly simpler to handle instead of
304   // adjusting affine maps to account for missing dimensions.
305   auto nLoops = op.getNumLoops();
306   SmallVector<Value, 4> tileSizeVector =
307       options.tileSizeComputationFunction(b, op);
308   if (tileSizeVector.size() < nLoops) {
309     auto zero = b.create<ConstantIndexOp>(op.getLoc(), 0);
310     tileSizeVector.append(nLoops - tileSizeVector.size(), zero);
311   }
312 
313   return tileLinalgOpImpl<LoopTy>(b, op, tileSizeVector, options);
314 }
315 
316 Optional<TiledLinalgOp>
tileLinalgOp(OpBuilder & b,LinalgOp op,const LinalgTilingOptions & options)317 mlir::linalg::tileLinalgOp(OpBuilder &b, LinalgOp op,
318                            const LinalgTilingOptions &options) {
319   switch (options.loopType) {
320   case LinalgTilingLoopType::Loops:
321     return tileLinalgOpImpl<scf::ForOp>(b, op, options);
322   case LinalgTilingLoopType::ParallelLoops:
323     return tileLinalgOpImpl<scf::ParallelOp>(b, op, options);
324   case LinalgTilingLoopType::TiledLoops:
325     return tileLinalgOpImpl<linalg::TiledLoopOp>(b, op, options);
326   default:;
327   }
328   return llvm::None;
329 }
330 
331 /// Generate a loop nest around a given PadTensorOp (for tiling). `newPadOp`
332 /// and `loopNest` are output parameters that return the new (tiled) PadTensorOp
333 /// and the loop nest.
tilePadTensorOp(OpBuilder & builder,PadTensorOp op,PadTensorOp & newPadOp,LoopNest & loopNest,const LinalgTilingOptions & options)334 static LogicalResult tilePadTensorOp(OpBuilder &builder, PadTensorOp op,
335                                      PadTensorOp &newPadOp, LoopNest &loopNest,
336                                      const LinalgTilingOptions &options) {
337   Location loc = op.getLoc();
338   OpBuilder::InsertionGuard g(builder);
339   builder.setInsertionPoint(op);
340 
341   // Clone PadTensorOp so that the existing op can be replaced more easily.
342   newPadOp = cast<PadTensorOp>(builder.clone(*op.getOperation()));
343   // Get rank and tile sizes.
344   int64_t rank = op.getResultType().getRank();
345   SmallVector<Value> tileSizes =
346       options.tileSizeComputationFunction(builder, op);
347   assert(static_cast<int64_t>(tileSizes.size()) == rank);
348   // Compute lower and upper bounds of the loop nest.
349   SmallVector<Range> ranges = op.getLoopBounds(builder);
350   SmallVector<Value> lbs, dims, allDims, steps;
351   for (int64_t i = 0; i < rank; ++i) {
352     allDims.push_back(ranges[i].size);
353     if (!isZero(tileSizes[i])) {
354       lbs.push_back(ranges[i].offset);
355       dims.push_back(ranges[i].size);
356       steps.push_back(tileSizes[i]);
357     }
358   }
359   // Generate loop nest: One loop per dimension.
360   SmallVector<Value> destOperand = op.getDestinationOperands(builder);
361   loopNest = mlir::scf::buildLoopNest(
362       builder, loc, lbs, /*ubs=*/dims, steps, ValueRange(destOperand),
363       [&](OpBuilder &b, Location loc, ValueRange localIvs,
364           ValueRange iterArgs) -> scf::ValueVector {
365         // Compute offsets and sizes of ExtractSliceOp.
366         SmallVector<Value> offsets =
367             computeTileOffsets(b, loc, localIvs, tileSizes);
368         SmallVector<Value> sizes =
369             computeTileSizes(b, loc, localIvs, tileSizes, allDims);
370         // Create ExtractSliceOp: Extract a tile from the PadTensorOp.
371         // Note: The PadTensorOp is located outside of the loop nest. It is
372         // later moved inside by ExtractSliceOfPadTensorSwapPattern.
373         auto map = AffineMap::getMultiDimIdentityMap(rank, b.getContext());
374         Value tiledOutput =
375             makeTiledShape(b, loc, newPadOp->getResult(0), tileSizes, map,
376                            offsets, allDims, sizes);
377         auto sliceOp = tiledOutput.getDefiningOp<tensor::ExtractSliceOp>();
378         assert(sliceOp && "expected ExtractSliceOp");
379         // Insert the tile into the output tensor.
380         Value yieldValue =
381             insertSliceIntoTensor(b, loc, sliceOp, sliceOp, iterArgs[0]);
382         return scf::ValueVector({yieldValue});
383       });
384   return success();
385 }
386 
387 namespace {
388 struct PadTensorOpTilingPattern : public OpRewritePattern<PadTensorOp> {
PadTensorOpTilingPattern__anonf23e78720311::PadTensorOpTilingPattern389   PadTensorOpTilingPattern(MLIRContext *ctx, LinalgTilingOptions opt)
390       : OpRewritePattern<PadTensorOp>(ctx), options(opt) {}
391 
matchAndRewrite__anonf23e78720311::PadTensorOpTilingPattern392   LogicalResult matchAndRewrite(PadTensorOp op,
393                                 PatternRewriter &rewriter) const override {
394     if (op->hasAttr(LinalgTransforms::kLinalgTransformMarker))
395       return failure();
396     PadTensorOp newPadOp;
397     LoopNest loopNest;
398     if (failed(tilePadTensorOp(rewriter, op, newPadOp, loopNest, options)))
399       return failure();
400     newPadOp->setAttr(LinalgTransforms::kLinalgTransformMarker,
401                       rewriter.getUnitAttr());
402     // Replace all uses of the original PadTensorOp.
403     rewriter.replaceOp(op, loopNest.getResults()[0]);
404     return success();
405   }
406 
407   LinalgTilingOptions options;
408 };
409 } // namespace
410 
411 namespace {
412 /// Helper classes for type list expansion.
413 template <typename... OpTypes>
414 class CanonicalizationPatternList;
415 
416 template <>
417 class CanonicalizationPatternList<> {
418 public:
insert(RewritePatternSet & patterns)419   static void insert(RewritePatternSet &patterns) {}
420 };
421 
422 template <typename OpTy, typename... OpTypes>
423 class CanonicalizationPatternList<OpTy, OpTypes...> {
424 public:
insert(RewritePatternSet & patterns)425   static void insert(RewritePatternSet &patterns) {
426     OpTy::getCanonicalizationPatterns(patterns, patterns.getContext());
427     CanonicalizationPatternList<OpTypes...>::insert(patterns);
428   }
429 };
430 
431 /// Helper classes for type list expansion.
432 template <typename... OpTypes>
433 class RewritePatternList;
434 
435 template <>
436 class RewritePatternList<> {
437 public:
insert(RewritePatternSet & patterns,const LinalgTilingOptions & options)438   static void insert(RewritePatternSet &patterns,
439                      const LinalgTilingOptions &options) {}
440 };
441 
442 template <typename OpTy, typename... OpTypes>
443 class RewritePatternList<OpTy, OpTypes...> {
444 public:
insert(RewritePatternSet & patterns,const LinalgTilingOptions & options)445   static void insert(RewritePatternSet &patterns,
446                      const LinalgTilingOptions &options) {
447     auto *ctx = patterns.getContext();
448     patterns.add<LinalgTilingPattern<OpTy>>(
449         ctx, options,
450         LinalgTransformationFilter(ArrayRef<Identifier>{},
451                                    Identifier::get("tiled", ctx)));
452     RewritePatternList<OpTypes...>::insert(patterns, options);
453   }
454 };
455 } // namespace
456 
457 RewritePatternSet
getLinalgTilingCanonicalizationPatterns(MLIRContext * ctx)458 mlir::linalg::getLinalgTilingCanonicalizationPatterns(MLIRContext *ctx) {
459   RewritePatternSet patterns(ctx);
460   populateLinalgTilingCanonicalizationPatterns(patterns);
461   return patterns;
462 }
463 
populateLinalgTilingCanonicalizationPatterns(RewritePatternSet & patterns)464 void mlir::linalg::populateLinalgTilingCanonicalizationPatterns(
465     RewritePatternSet &patterns) {
466   auto *ctx = patterns.getContext();
467   AffineApplyOp::getCanonicalizationPatterns(patterns, ctx);
468   AffineForOp::getCanonicalizationPatterns(patterns, ctx);
469   AffineMinOp::getCanonicalizationPatterns(patterns, ctx);
470   AffineMaxOp::getCanonicalizationPatterns(patterns, ctx);
471   ConstantIndexOp::getCanonicalizationPatterns(patterns, ctx);
472 
473   memref::SubViewOp::getCanonicalizationPatterns(patterns, ctx);
474   memref::ViewOp::getCanonicalizationPatterns(patterns, ctx);
475 
476   scf::ForOp::getCanonicalizationPatterns(patterns, ctx);
477   scf::ParallelOp::getCanonicalizationPatterns(patterns, ctx);
478 
479   tensor::CastOp::getCanonicalizationPatterns(patterns, ctx);
480   tensor::ExtractSliceOp::getCanonicalizationPatterns(patterns, ctx);
481   tensor::InsertSliceOp::getCanonicalizationPatterns(patterns, ctx);
482 
483   InitTensorOp::getCanonicalizationPatterns(patterns, ctx);
484   PadTensorOp::getCanonicalizationPatterns(patterns, ctx);
485   ctx->getLoadedDialect<LinalgDialect>()->getCanonicalizationPatterns(patterns);
486 
487   CanonicalizationPatternList<
488 #define GET_OP_LIST
489 #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
490       >::insert(patterns);
491 }
492 
493 /// Populate the given list with patterns that apply Linalg tiling.
insertTilingPatterns(RewritePatternSet & patterns,const LinalgTilingOptions & options)494 static void insertTilingPatterns(RewritePatternSet &patterns,
495                                  const LinalgTilingOptions &options) {
496   RewritePatternList<GenericOp,
497 #define GET_OP_LIST
498 #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
499                      >::insert(patterns, options);
500   patterns.add<PadTensorOpTilingPattern>(patterns.getContext(), options);
501 }
502 
applyExtractSliceOfPadTensorSwapPattern(FuncOp funcOp)503 static void applyExtractSliceOfPadTensorSwapPattern(FuncOp funcOp) {
504   MLIRContext *ctx = funcOp.getContext();
505   RewritePatternSet patterns(ctx);
506   patterns.add<ExtractSliceOfPadTensorSwapPattern>(patterns.getContext());
507   (void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns));
508   (void)applyPatternsAndFoldGreedily(
509       funcOp, getLinalgTilingCanonicalizationPatterns(ctx));
510 }
511 
512 namespace {
513 struct LinalgTilingPass : public LinalgTilingBase<LinalgTilingPass> {
514   LinalgTilingPass() = default;
LinalgTilingPass__anonf23e78720511::LinalgTilingPass515   LinalgTilingPass(ArrayRef<int64_t> tileSizes, LinalgTilingLoopType loopType,
516                    ArrayRef<StringRef> distributionTypes) {
517     this->tileSizes = tileSizes;
518     this->loopType = "";
519     this->loopTypeEnum = loopType;
520     this->distributionTypes = llvm::to_vector<2>(llvm::map_range(
521         distributionTypes, [](StringRef ref) { return ref.str(); }));
522   }
523 
runOnFunction__anonf23e78720511::LinalgTilingPass524   void runOnFunction() override {
525     FuncOp funcOp = getFunction();
526     LinalgTilingLoopType type =
527         llvm::StringSwitch<LinalgTilingLoopType>(loopType)
528             .Case("for", LinalgTilingLoopType::Loops)
529             .Case("affine", LinalgTilingLoopType::AffineLoops)
530             .Case("parallel", LinalgTilingLoopType::ParallelLoops)
531             .Case("tiled_loop", LinalgTilingLoopType::TiledLoops)
532             .Default(loopTypeEnum);
533     auto distTypes = llvm::to_vector<2>(llvm::map_range(
534         distributionTypes, [](std::string &str) { return StringRef(str); }));
535     auto options = LinalgTilingOptions()
536                        .setTileSizes(tileSizes)
537                        .setLoopType(type)
538                        .setDistributionTypes(distTypes);
539     MLIRContext *ctx = funcOp.getContext();
540     RewritePatternSet patterns(ctx);
541     insertTilingPatterns(patterns, options);
542     scf::populateSCFForLoopCanonicalizationPatterns(patterns);
543     (void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns));
544     (void)applyPatternsAndFoldGreedily(
545         funcOp, getLinalgTilingCanonicalizationPatterns(ctx));
546     // Drop the marker.
547     funcOp.walk([](LinalgOp op) {
548       op->removeAttr(LinalgTransforms::kLinalgTransformMarker);
549     });
550 
551     // Apply swap pattern after generating loop nest and running
552     // canonicalizations.
553     applyExtractSliceOfPadTensorSwapPattern(funcOp);
554   }
555 
556   LinalgTilingLoopType loopTypeEnum;
557 };
558 
559 } // namespace
560 
561 std::unique_ptr<OperationPass<FuncOp>>
createLinalgTilingPass(ArrayRef<int64_t> tileSizes,linalg::LinalgTilingLoopType loopType,ArrayRef<StringRef> distributionTypes)562 mlir::createLinalgTilingPass(ArrayRef<int64_t> tileSizes,
563                              linalg::LinalgTilingLoopType loopType,
564                              ArrayRef<StringRef> distributionTypes) {
565   return std::make_unique<LinalgTilingPass>(tileSizes, loopType,
566                                             distributionTypes);
567 }
568