1 //===--- AArch64CallLowering.cpp - Call lowering --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "AArch64CallLowering.h"
16 #include "AArch64ISelLowering.h"
17 #include "AArch64MachineFunctionInfo.h"
18 #include "AArch64Subtarget.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/CallingConvLower.h"
23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
24 #include "llvm/CodeGen/GlobalISel/Utils.h"
25 #include "llvm/CodeGen/LowLevelType.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/TargetRegisterInfo.h"
34 #include "llvm/CodeGen/TargetSubtargetInfo.h"
35 #include "llvm/CodeGen/ValueTypes.h"
36 #include "llvm/IR/Argument.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/Support/MachineValueType.h"
42 #include <algorithm>
43 #include <cassert>
44 #include <cstdint>
45 #include <iterator>
46 
47 #define DEBUG_TYPE "aarch64-call-lowering"
48 
49 using namespace llvm;
50 
AArch64CallLowering(const AArch64TargetLowering & TLI)51 AArch64CallLowering::AArch64CallLowering(const AArch64TargetLowering &TLI)
52   : CallLowering(&TLI) {}
53 
54 namespace {
55 struct IncomingArgHandler : public CallLowering::ValueHandler {
IncomingArgHandler__anon409b59900111::IncomingArgHandler56   IncomingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
57                      CCAssignFn *AssignFn)
58       : ValueHandler(MIRBuilder, MRI, AssignFn), StackUsed(0) {}
59 
getStackAddress__anon409b59900111::IncomingArgHandler60   Register getStackAddress(uint64_t Size, int64_t Offset,
61                            MachinePointerInfo &MPO) override {
62     auto &MFI = MIRBuilder.getMF().getFrameInfo();
63     int FI = MFI.CreateFixedObject(Size, Offset, true);
64     MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
65     Register AddrReg = MRI.createGenericVirtualRegister(LLT::pointer(0, 64));
66     MIRBuilder.buildFrameIndex(AddrReg, FI);
67     StackUsed = std::max(StackUsed, Size + Offset);
68     return AddrReg;
69   }
70 
assignValueToReg__anon409b59900111::IncomingArgHandler71   void assignValueToReg(Register ValVReg, Register PhysReg,
72                         CCValAssign &VA) override {
73     markPhysRegUsed(PhysReg);
74     switch (VA.getLocInfo()) {
75     default:
76       MIRBuilder.buildCopy(ValVReg, PhysReg);
77       break;
78     case CCValAssign::LocInfo::SExt:
79     case CCValAssign::LocInfo::ZExt:
80     case CCValAssign::LocInfo::AExt: {
81       auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
82       MIRBuilder.buildTrunc(ValVReg, Copy);
83       break;
84     }
85     }
86   }
87 
assignValueToAddress__anon409b59900111::IncomingArgHandler88   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
89                             MachinePointerInfo &MPO, CCValAssign &VA) override {
90     // FIXME: Get alignment
91     auto MMO = MIRBuilder.getMF().getMachineMemOperand(
92         MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, Size,
93         1);
94     MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
95   }
96 
97   /// How the physical register gets marked varies between formal
98   /// parameters (it's a basic-block live-in), and a call instruction
99   /// (it's an implicit-def of the BL).
100   virtual void markPhysRegUsed(unsigned PhysReg) = 0;
101 
isIncomingArgumentHandler__anon409b59900111::IncomingArgHandler102   bool isIncomingArgumentHandler() const override { return true; }
103 
104   uint64_t StackUsed;
105 };
106 
107 struct FormalArgHandler : public IncomingArgHandler {
FormalArgHandler__anon409b59900111::FormalArgHandler108   FormalArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
109                    CCAssignFn *AssignFn)
110     : IncomingArgHandler(MIRBuilder, MRI, AssignFn) {}
111 
markPhysRegUsed__anon409b59900111::FormalArgHandler112   void markPhysRegUsed(unsigned PhysReg) override {
113     MIRBuilder.getMRI()->addLiveIn(PhysReg);
114     MIRBuilder.getMBB().addLiveIn(PhysReg);
115   }
116 };
117 
118 struct CallReturnHandler : public IncomingArgHandler {
CallReturnHandler__anon409b59900111::CallReturnHandler119   CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
120                     MachineInstrBuilder MIB, CCAssignFn *AssignFn)
121     : IncomingArgHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {}
122 
markPhysRegUsed__anon409b59900111::CallReturnHandler123   void markPhysRegUsed(unsigned PhysReg) override {
124     MIB.addDef(PhysReg, RegState::Implicit);
125   }
126 
127   MachineInstrBuilder MIB;
128 };
129 
130 struct OutgoingArgHandler : public CallLowering::ValueHandler {
OutgoingArgHandler__anon409b59900111::OutgoingArgHandler131   OutgoingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
132                      MachineInstrBuilder MIB, CCAssignFn *AssignFn,
133                      CCAssignFn *AssignFnVarArg, bool IsTailCall = false,
134                      int FPDiff = 0)
135       : ValueHandler(MIRBuilder, MRI, AssignFn), MIB(MIB),
136         AssignFnVarArg(AssignFnVarArg), IsTailCall(IsTailCall), FPDiff(FPDiff),
137         StackSize(0) {}
138 
isIncomingArgumentHandler__anon409b59900111::OutgoingArgHandler139   bool isIncomingArgumentHandler() const override { return false; }
140 
getStackAddress__anon409b59900111::OutgoingArgHandler141   Register getStackAddress(uint64_t Size, int64_t Offset,
142                            MachinePointerInfo &MPO) override {
143     MachineFunction &MF = MIRBuilder.getMF();
144     LLT p0 = LLT::pointer(0, 64);
145     LLT s64 = LLT::scalar(64);
146 
147     if (IsTailCall) {
148       Offset += FPDiff;
149       int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true);
150       Register FIReg = MRI.createGenericVirtualRegister(p0);
151       MIRBuilder.buildFrameIndex(FIReg, FI);
152       MPO = MachinePointerInfo::getFixedStack(MF, FI);
153       return FIReg;
154     }
155 
156     Register SPReg = MRI.createGenericVirtualRegister(p0);
157     MIRBuilder.buildCopy(SPReg, Register(AArch64::SP));
158 
159     Register OffsetReg = MRI.createGenericVirtualRegister(s64);
160     MIRBuilder.buildConstant(OffsetReg, Offset);
161 
162     Register AddrReg = MRI.createGenericVirtualRegister(p0);
163     MIRBuilder.buildPtrAdd(AddrReg, SPReg, OffsetReg);
164 
165     MPO = MachinePointerInfo::getStack(MF, Offset);
166     return AddrReg;
167   }
168 
assignValueToReg__anon409b59900111::OutgoingArgHandler169   void assignValueToReg(Register ValVReg, Register PhysReg,
170                         CCValAssign &VA) override {
171     MIB.addUse(PhysReg, RegState::Implicit);
172     Register ExtReg = extendRegister(ValVReg, VA);
173     MIRBuilder.buildCopy(PhysReg, ExtReg);
174   }
175 
assignValueToAddress__anon409b59900111::OutgoingArgHandler176   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
177                             MachinePointerInfo &MPO, CCValAssign &VA) override {
178     if (VA.getLocInfo() == CCValAssign::LocInfo::AExt) {
179       Size = VA.getLocVT().getSizeInBits() / 8;
180       ValVReg = MIRBuilder.buildAnyExt(LLT::scalar(Size * 8), ValVReg)
181                     ->getOperand(0)
182                     .getReg();
183     }
184     auto MMO = MIRBuilder.getMF().getMachineMemOperand(
185         MPO, MachineMemOperand::MOStore, Size, 1);
186     MIRBuilder.buildStore(ValVReg, Addr, *MMO);
187   }
188 
assignArg__anon409b59900111::OutgoingArgHandler189   bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
190                  CCValAssign::LocInfo LocInfo,
191                  const CallLowering::ArgInfo &Info,
192                  ISD::ArgFlagsTy Flags,
193                  CCState &State) override {
194     bool Res;
195     if (Info.IsFixed)
196       Res = AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
197     else
198       Res = AssignFnVarArg(ValNo, ValVT, LocVT, LocInfo, Flags, State);
199 
200     StackSize = State.getNextStackOffset();
201     return Res;
202   }
203 
204   MachineInstrBuilder MIB;
205   CCAssignFn *AssignFnVarArg;
206   bool IsTailCall;
207 
208   /// For tail calls, the byte offset of the call's argument area from the
209   /// callee's. Unused elsewhere.
210   int FPDiff;
211   uint64_t StackSize;
212 };
213 } // namespace
214 
doesCalleeRestoreStack(CallingConv::ID CallConv,bool TailCallOpt)215 static bool doesCalleeRestoreStack(CallingConv::ID CallConv, bool TailCallOpt) {
216   return CallConv == CallingConv::Fast && TailCallOpt;
217 }
218 
splitToValueTypes(const ArgInfo & OrigArg,SmallVectorImpl<ArgInfo> & SplitArgs,const DataLayout & DL,MachineRegisterInfo & MRI,CallingConv::ID CallConv) const219 void AArch64CallLowering::splitToValueTypes(
220     const ArgInfo &OrigArg, SmallVectorImpl<ArgInfo> &SplitArgs,
221     const DataLayout &DL, MachineRegisterInfo &MRI, CallingConv::ID CallConv) const {
222   const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
223   LLVMContext &Ctx = OrigArg.Ty->getContext();
224 
225   if (OrigArg.Ty->isVoidTy())
226     return;
227 
228   SmallVector<EVT, 4> SplitVTs;
229   SmallVector<uint64_t, 4> Offsets;
230   ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs, &Offsets, 0);
231 
232   if (SplitVTs.size() == 1) {
233     // No splitting to do, but we want to replace the original type (e.g. [1 x
234     // double] -> double).
235     SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
236                            OrigArg.Flags[0], OrigArg.IsFixed);
237     return;
238   }
239 
240   // Create one ArgInfo for each virtual register in the original ArgInfo.
241   assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
242 
243   bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
244       OrigArg.Ty, CallConv, false);
245   for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
246     Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
247     SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.Flags[0],
248                            OrigArg.IsFixed);
249     if (NeedsRegBlock)
250       SplitArgs.back().Flags[0].setInConsecutiveRegs();
251   }
252 
253   SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
254 }
255 
lowerReturn(MachineIRBuilder & MIRBuilder,const Value * Val,ArrayRef<Register> VRegs,Register SwiftErrorVReg) const256 bool AArch64CallLowering::lowerReturn(MachineIRBuilder &MIRBuilder,
257                                       const Value *Val,
258                                       ArrayRef<Register> VRegs,
259                                       Register SwiftErrorVReg) const {
260   auto MIB = MIRBuilder.buildInstrNoInsert(AArch64::RET_ReallyLR);
261   assert(((Val && !VRegs.empty()) || (!Val && VRegs.empty())) &&
262          "Return value without a vreg");
263 
264   bool Success = true;
265   if (!VRegs.empty()) {
266     MachineFunction &MF = MIRBuilder.getMF();
267     const Function &F = MF.getFunction();
268 
269     MachineRegisterInfo &MRI = MF.getRegInfo();
270     const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
271     CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(F.getCallingConv());
272     auto &DL = F.getParent()->getDataLayout();
273     LLVMContext &Ctx = Val->getType()->getContext();
274 
275     SmallVector<EVT, 4> SplitEVTs;
276     ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
277     assert(VRegs.size() == SplitEVTs.size() &&
278            "For each split Type there should be exactly one VReg.");
279 
280     SmallVector<ArgInfo, 8> SplitArgs;
281     CallingConv::ID CC = F.getCallingConv();
282 
283     for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
284       if (TLI.getNumRegistersForCallingConv(Ctx, CC, SplitEVTs[i]) > 1) {
285         LLVM_DEBUG(dbgs() << "Can't handle extended arg types which need split");
286         return false;
287       }
288 
289       Register CurVReg = VRegs[i];
290       ArgInfo CurArgInfo = ArgInfo{CurVReg, SplitEVTs[i].getTypeForEVT(Ctx)};
291       setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F);
292 
293       // i1 is a special case because SDAG i1 true is naturally zero extended
294       // when widened using ANYEXT. We need to do it explicitly here.
295       if (MRI.getType(CurVReg).getSizeInBits() == 1) {
296         CurVReg = MIRBuilder.buildZExt(LLT::scalar(8), CurVReg).getReg(0);
297       } else {
298         // Some types will need extending as specified by the CC.
299         MVT NewVT = TLI.getRegisterTypeForCallingConv(Ctx, CC, SplitEVTs[i]);
300         if (EVT(NewVT) != SplitEVTs[i]) {
301           unsigned ExtendOp = TargetOpcode::G_ANYEXT;
302           if (F.getAttributes().hasAttribute(AttributeList::ReturnIndex,
303                                              Attribute::SExt))
304             ExtendOp = TargetOpcode::G_SEXT;
305           else if (F.getAttributes().hasAttribute(AttributeList::ReturnIndex,
306                                                   Attribute::ZExt))
307             ExtendOp = TargetOpcode::G_ZEXT;
308 
309           LLT NewLLT(NewVT);
310           LLT OldLLT(MVT::getVT(CurArgInfo.Ty));
311           CurArgInfo.Ty = EVT(NewVT).getTypeForEVT(Ctx);
312           // Instead of an extend, we might have a vector type which needs
313           // padding with more elements, e.g. <2 x half> -> <4 x half>.
314           if (NewVT.isVector()) {
315             if (OldLLT.isVector()) {
316               if (NewLLT.getNumElements() > OldLLT.getNumElements()) {
317                 // We don't handle VA types which are not exactly twice the
318                 // size, but can easily be done in future.
319                 if (NewLLT.getNumElements() != OldLLT.getNumElements() * 2) {
320                   LLVM_DEBUG(dbgs() << "Outgoing vector ret has too many elts");
321                   return false;
322                 }
323                 auto Undef = MIRBuilder.buildUndef({OldLLT});
324                 CurVReg =
325                     MIRBuilder.buildMerge({NewLLT}, {CurVReg, Undef.getReg(0)})
326                         .getReg(0);
327               } else {
328                 // Just do a vector extend.
329                 CurVReg = MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg})
330                               .getReg(0);
331               }
332             } else if (NewLLT.getNumElements() == 2) {
333               // We need to pad a <1 x S> type to <2 x S>. Since we don't have
334               // <1 x S> vector types in GISel we use a build_vector instead
335               // of a vector merge/concat.
336               auto Undef = MIRBuilder.buildUndef({OldLLT});
337               CurVReg =
338                   MIRBuilder
339                       .buildBuildVector({NewLLT}, {CurVReg, Undef.getReg(0)})
340                       .getReg(0);
341             } else {
342               LLVM_DEBUG(dbgs() << "Could not handle ret ty");
343               return false;
344             }
345           } else {
346             // A scalar extend.
347             CurVReg =
348                 MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg}).getReg(0);
349           }
350         }
351       }
352       if (CurVReg != CurArgInfo.Regs[0]) {
353         CurArgInfo.Regs[0] = CurVReg;
354         // Reset the arg flags after modifying CurVReg.
355         setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F);
356       }
357      splitToValueTypes(CurArgInfo, SplitArgs, DL, MRI, CC);
358     }
359 
360     OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFn, AssignFn);
361     Success = handleAssignments(MIRBuilder, SplitArgs, Handler);
362   }
363 
364   if (SwiftErrorVReg) {
365     MIB.addUse(AArch64::X21, RegState::Implicit);
366     MIRBuilder.buildCopy(AArch64::X21, SwiftErrorVReg);
367   }
368 
369   MIRBuilder.insertInstr(MIB);
370   return Success;
371 }
372 
373 /// Helper function to compute forwarded registers for musttail calls. Computes
374 /// the forwarded registers, sets MBB liveness, and emits COPY instructions that
375 /// can be used to save + restore registers later.
handleMustTailForwardedRegisters(MachineIRBuilder & MIRBuilder,CCAssignFn * AssignFn)376 static void handleMustTailForwardedRegisters(MachineIRBuilder &MIRBuilder,
377                                              CCAssignFn *AssignFn) {
378   MachineBasicBlock &MBB = MIRBuilder.getMBB();
379   MachineFunction &MF = MIRBuilder.getMF();
380   MachineFrameInfo &MFI = MF.getFrameInfo();
381 
382   if (!MFI.hasMustTailInVarArgFunc())
383     return;
384 
385   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
386   const Function &F = MF.getFunction();
387   assert(F.isVarArg() && "Expected F to be vararg?");
388 
389   // Compute the set of forwarded registers. The rest are scratch.
390   SmallVector<CCValAssign, 16> ArgLocs;
391   CCState CCInfo(F.getCallingConv(), /*IsVarArg=*/true, MF, ArgLocs,
392                  F.getContext());
393   SmallVector<MVT, 2> RegParmTypes;
394   RegParmTypes.push_back(MVT::i64);
395   RegParmTypes.push_back(MVT::f128);
396 
397   // Later on, we can use this vector to restore the registers if necessary.
398   SmallVectorImpl<ForwardedRegister> &Forwards =
399       FuncInfo->getForwardedMustTailRegParms();
400   CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, AssignFn);
401 
402   // Conservatively forward X8, since it might be used for an aggregate
403   // return.
404   if (!CCInfo.isAllocated(AArch64::X8)) {
405     unsigned X8VReg = MF.addLiveIn(AArch64::X8, &AArch64::GPR64RegClass);
406     Forwards.push_back(ForwardedRegister(X8VReg, AArch64::X8, MVT::i64));
407   }
408 
409   // Add the forwards to the MachineBasicBlock and MachineFunction.
410   for (const auto &F : Forwards) {
411     MBB.addLiveIn(F.PReg);
412     MIRBuilder.buildCopy(Register(F.VReg), Register(F.PReg));
413   }
414 }
415 
lowerFormalArguments(MachineIRBuilder & MIRBuilder,const Function & F,ArrayRef<ArrayRef<Register>> VRegs) const416 bool AArch64CallLowering::lowerFormalArguments(
417     MachineIRBuilder &MIRBuilder, const Function &F,
418     ArrayRef<ArrayRef<Register>> VRegs) const {
419   MachineFunction &MF = MIRBuilder.getMF();
420   MachineBasicBlock &MBB = MIRBuilder.getMBB();
421   MachineRegisterInfo &MRI = MF.getRegInfo();
422   auto &DL = F.getParent()->getDataLayout();
423 
424   SmallVector<ArgInfo, 8> SplitArgs;
425   unsigned i = 0;
426   for (auto &Arg : F.args()) {
427     if (DL.getTypeStoreSize(Arg.getType()) == 0)
428       continue;
429 
430     ArgInfo OrigArg{VRegs[i], Arg.getType()};
431     setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, F);
432 
433     splitToValueTypes(OrigArg, SplitArgs, DL, MRI, F.getCallingConv());
434     ++i;
435   }
436 
437   if (!MBB.empty())
438     MIRBuilder.setInstr(*MBB.begin());
439 
440   const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
441   CCAssignFn *AssignFn =
442       TLI.CCAssignFnForCall(F.getCallingConv(), /*IsVarArg=*/false);
443 
444   FormalArgHandler Handler(MIRBuilder, MRI, AssignFn);
445   if (!handleAssignments(MIRBuilder, SplitArgs, Handler))
446     return false;
447 
448   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
449   uint64_t StackOffset = Handler.StackUsed;
450   if (F.isVarArg()) {
451     auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
452     if (!Subtarget.isTargetDarwin()) {
453         // FIXME: we need to reimplement saveVarArgsRegisters from
454       // AArch64ISelLowering.
455       return false;
456     }
457 
458     // We currently pass all varargs at 8-byte alignment, or 4 in ILP32.
459     StackOffset = alignTo(Handler.StackUsed, Subtarget.isTargetILP32() ? 4 : 8);
460 
461     auto &MFI = MIRBuilder.getMF().getFrameInfo();
462     FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true));
463   }
464 
465   if (doesCalleeRestoreStack(F.getCallingConv(),
466                              MF.getTarget().Options.GuaranteedTailCallOpt)) {
467     // We have a non-standard ABI, so why not make full use of the stack that
468     // we're going to pop? It must be aligned to 16 B in any case.
469     StackOffset = alignTo(StackOffset, 16);
470 
471     // If we're expected to restore the stack (e.g. fastcc), then we'll be
472     // adding a multiple of 16.
473     FuncInfo->setArgumentStackToRestore(StackOffset);
474 
475     // Our own callers will guarantee that the space is free by giving an
476     // aligned value to CALLSEQ_START.
477   }
478 
479   // When we tail call, we need to check if the callee's arguments
480   // will fit on the caller's stack. So, whenever we lower formal arguments,
481   // we should keep track of this information, since we might lower a tail call
482   // in this function later.
483   FuncInfo->setBytesInStackArgArea(StackOffset);
484 
485   auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
486   if (Subtarget.hasCustomCallingConv())
487     Subtarget.getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF);
488 
489   handleMustTailForwardedRegisters(MIRBuilder, AssignFn);
490 
491   // Move back to the end of the basic block.
492   MIRBuilder.setMBB(MBB);
493 
494   return true;
495 }
496 
497 /// Return true if the calling convention is one that we can guarantee TCO for.
canGuaranteeTCO(CallingConv::ID CC)498 static bool canGuaranteeTCO(CallingConv::ID CC) {
499   return CC == CallingConv::Fast;
500 }
501 
502 /// Return true if we might ever do TCO for calls with this calling convention.
mayTailCallThisCC(CallingConv::ID CC)503 static bool mayTailCallThisCC(CallingConv::ID CC) {
504   switch (CC) {
505   case CallingConv::C:
506   case CallingConv::PreserveMost:
507   case CallingConv::Swift:
508     return true;
509   default:
510     return canGuaranteeTCO(CC);
511   }
512 }
513 
514 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
515 /// CC.
516 static std::pair<CCAssignFn *, CCAssignFn *>
getAssignFnsForCC(CallingConv::ID CC,const AArch64TargetLowering & TLI)517 getAssignFnsForCC(CallingConv::ID CC, const AArch64TargetLowering &TLI) {
518   return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
519 }
520 
doCallerAndCalleePassArgsTheSameWay(CallLoweringInfo & Info,MachineFunction & MF,SmallVectorImpl<ArgInfo> & InArgs) const521 bool AArch64CallLowering::doCallerAndCalleePassArgsTheSameWay(
522     CallLoweringInfo &Info, MachineFunction &MF,
523     SmallVectorImpl<ArgInfo> &InArgs) const {
524   const Function &CallerF = MF.getFunction();
525   CallingConv::ID CalleeCC = Info.CallConv;
526   CallingConv::ID CallerCC = CallerF.getCallingConv();
527 
528   // If the calling conventions match, then everything must be the same.
529   if (CalleeCC == CallerCC)
530     return true;
531 
532   // Check if the caller and callee will handle arguments in the same way.
533   const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
534   CCAssignFn *CalleeAssignFnFixed;
535   CCAssignFn *CalleeAssignFnVarArg;
536   std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) =
537       getAssignFnsForCC(CalleeCC, TLI);
538 
539   CCAssignFn *CallerAssignFnFixed;
540   CCAssignFn *CallerAssignFnVarArg;
541   std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) =
542       getAssignFnsForCC(CallerCC, TLI);
543 
544   if (!resultsCompatible(Info, MF, InArgs, *CalleeAssignFnFixed,
545                          *CalleeAssignFnVarArg, *CallerAssignFnFixed,
546                          *CallerAssignFnVarArg))
547     return false;
548 
549   // Make sure that the caller and callee preserve all of the same registers.
550   auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
551   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
552   const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
553   if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv()) {
554     TRI->UpdateCustomCallPreservedMask(MF, &CallerPreserved);
555     TRI->UpdateCustomCallPreservedMask(MF, &CalleePreserved);
556   }
557 
558   return TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved);
559 }
560 
areCalleeOutgoingArgsTailCallable(CallLoweringInfo & Info,MachineFunction & MF,SmallVectorImpl<ArgInfo> & OutArgs) const561 bool AArch64CallLowering::areCalleeOutgoingArgsTailCallable(
562     CallLoweringInfo &Info, MachineFunction &MF,
563     SmallVectorImpl<ArgInfo> &OutArgs) const {
564   // If there are no outgoing arguments, then we are done.
565   if (OutArgs.empty())
566     return true;
567 
568   const Function &CallerF = MF.getFunction();
569   CallingConv::ID CalleeCC = Info.CallConv;
570   CallingConv::ID CallerCC = CallerF.getCallingConv();
571   const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
572 
573   CCAssignFn *AssignFnFixed;
574   CCAssignFn *AssignFnVarArg;
575   std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
576 
577   // We have outgoing arguments. Make sure that we can tail call with them.
578   SmallVector<CCValAssign, 16> OutLocs;
579   CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext());
580 
581   if (!analyzeArgInfo(OutInfo, OutArgs, *AssignFnFixed, *AssignFnVarArg)) {
582     LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n");
583     return false;
584   }
585 
586   // Make sure that they can fit on the caller's stack.
587   const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
588   if (OutInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) {
589     LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n");
590     return false;
591   }
592 
593   // Verify that the parameters in callee-saved registers match.
594   // TODO: Port this over to CallLowering as general code once swiftself is
595   // supported.
596   auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
597   const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC);
598   MachineRegisterInfo &MRI = MF.getRegInfo();
599 
600   for (unsigned i = 0; i < OutLocs.size(); ++i) {
601     auto &ArgLoc = OutLocs[i];
602     // If it's not a register, it's fine.
603     if (!ArgLoc.isRegLoc()) {
604       if (Info.IsVarArg) {
605         // Be conservative and disallow variadic memory operands to match SDAG's
606         // behaviour.
607         // FIXME: If the caller's calling convention is C, then we can
608         // potentially use its argument area. However, for cases like fastcc,
609         // we can't do anything.
610         LLVM_DEBUG(
611             dbgs()
612             << "... Cannot tail call vararg function with stack arguments\n");
613         return false;
614       }
615       continue;
616     }
617 
618     Register Reg = ArgLoc.getLocReg();
619 
620     // Only look at callee-saved registers.
621     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
622       continue;
623 
624     LLVM_DEBUG(
625         dbgs()
626         << "... Call has an argument passed in a callee-saved register.\n");
627 
628     // Check if it was copied from.
629     ArgInfo &OutInfo = OutArgs[i];
630 
631     if (OutInfo.Regs.size() > 1) {
632       LLVM_DEBUG(
633           dbgs() << "... Cannot handle arguments in multiple registers.\n");
634       return false;
635     }
636 
637     // Check if we copy the register, walking through copies from virtual
638     // registers. Note that getDefIgnoringCopies does not ignore copies from
639     // physical registers.
640     MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
641     if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
642       LLVM_DEBUG(
643           dbgs()
644           << "... Parameter was not copied into a VReg, cannot tail call.\n");
645       return false;
646     }
647 
648     // Got a copy. Verify that it's the same as the register we want.
649     Register CopyRHS = RegDef->getOperand(1).getReg();
650     if (CopyRHS != Reg) {
651       LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
652                            "VReg, cannot tail call.\n");
653       return false;
654     }
655   }
656 
657   return true;
658 }
659 
isEligibleForTailCallOptimization(MachineIRBuilder & MIRBuilder,CallLoweringInfo & Info,SmallVectorImpl<ArgInfo> & InArgs,SmallVectorImpl<ArgInfo> & OutArgs) const660 bool AArch64CallLowering::isEligibleForTailCallOptimization(
661     MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
662     SmallVectorImpl<ArgInfo> &InArgs,
663     SmallVectorImpl<ArgInfo> &OutArgs) const {
664 
665   // Must pass all target-independent checks in order to tail call optimize.
666   if (!Info.IsTailCall)
667     return false;
668 
669   CallingConv::ID CalleeCC = Info.CallConv;
670   MachineFunction &MF = MIRBuilder.getMF();
671   const Function &CallerF = MF.getFunction();
672 
673   LLVM_DEBUG(dbgs() << "Attempting to lower call as tail call\n");
674 
675   if (Info.SwiftErrorVReg) {
676     // TODO: We should handle this.
677     // Note that this is also handled by the check for no outgoing arguments.
678     // Proactively disabling this though, because the swifterror handling in
679     // lowerCall inserts a COPY *after* the location of the call.
680     LLVM_DEBUG(dbgs() << "... Cannot handle tail calls with swifterror yet.\n");
681     return false;
682   }
683 
684   if (!mayTailCallThisCC(CalleeCC)) {
685     LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n");
686     return false;
687   }
688 
689   // Byval parameters hand the function a pointer directly into the stack area
690   // we want to reuse during a tail call. Working around this *is* possible (see
691   // X86).
692   //
693   // FIXME: In AArch64ISelLowering, this isn't worked around. Can/should we try
694   // it?
695   //
696   // On Windows, "inreg" attributes signify non-aggregate indirect returns.
697   // In this case, it is necessary to save/restore X0 in the callee. Tail
698   // call opt interferes with this. So we disable tail call opt when the
699   // caller has an argument with "inreg" attribute.
700   //
701   // FIXME: Check whether the callee also has an "inreg" argument.
702   //
703   // When the caller has a swifterror argument, we don't want to tail call
704   // because would have to move into the swifterror register before the
705   // tail call.
706   if (any_of(CallerF.args(), [](const Argument &A) {
707         return A.hasByValAttr() || A.hasInRegAttr() || A.hasSwiftErrorAttr();
708       })) {
709     LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval, "
710                          "inreg, or swifterror arguments\n");
711     return false;
712   }
713 
714   // Externally-defined functions with weak linkage should not be
715   // tail-called on AArch64 when the OS does not support dynamic
716   // pre-emption of symbols, as the AAELF spec requires normal calls
717   // to undefined weak functions to be replaced with a NOP or jump to the
718   // next instruction. The behaviour of branch instructions in this
719   // situation (as used for tail calls) is implementation-defined, so we
720   // cannot rely on the linker replacing the tail call with a return.
721   if (Info.Callee.isGlobal()) {
722     const GlobalValue *GV = Info.Callee.getGlobal();
723     const Triple &TT = MF.getTarget().getTargetTriple();
724     if (GV->hasExternalWeakLinkage() &&
725         (!TT.isOSWindows() || TT.isOSBinFormatELF() ||
726          TT.isOSBinFormatMachO())) {
727       LLVM_DEBUG(dbgs() << "... Cannot tail call externally-defined function "
728                            "with weak linkage for this OS.\n");
729       return false;
730     }
731   }
732 
733   // If we have -tailcallopt, then we're done.
734   if (MF.getTarget().Options.GuaranteedTailCallOpt)
735     return canGuaranteeTCO(CalleeCC) && CalleeCC == CallerF.getCallingConv();
736 
737   // We don't have -tailcallopt, so we're allowed to change the ABI (sibcall).
738   // Try to find cases where we can do that.
739 
740   // I want anyone implementing a new calling convention to think long and hard
741   // about this assert.
742   assert((!Info.IsVarArg || CalleeCC == CallingConv::C) &&
743          "Unexpected variadic calling convention");
744 
745   // Verify that the incoming and outgoing arguments from the callee are
746   // safe to tail call.
747   if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) {
748     LLVM_DEBUG(
749         dbgs()
750         << "... Caller and callee have incompatible calling conventions.\n");
751     return false;
752   }
753 
754   if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs))
755     return false;
756 
757   LLVM_DEBUG(
758       dbgs() << "... Call is eligible for tail call optimization.\n");
759   return true;
760 }
761 
getCallOpcode(const Function & CallerF,bool IsIndirect,bool IsTailCall)762 static unsigned getCallOpcode(const Function &CallerF, bool IsIndirect,
763                               bool IsTailCall) {
764   if (!IsTailCall)
765     return IsIndirect ? AArch64::BLR : AArch64::BL;
766 
767   if (!IsIndirect)
768     return AArch64::TCRETURNdi;
769 
770   // When BTI is enabled, we need to use TCRETURNriBTI to make sure that we use
771   // x16 or x17.
772   if (CallerF.hasFnAttribute("branch-target-enforcement"))
773     return AArch64::TCRETURNriBTI;
774 
775   return AArch64::TCRETURNri;
776 }
777 
lowerTailCall(MachineIRBuilder & MIRBuilder,CallLoweringInfo & Info,SmallVectorImpl<ArgInfo> & OutArgs) const778 bool AArch64CallLowering::lowerTailCall(
779     MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
780     SmallVectorImpl<ArgInfo> &OutArgs) const {
781   MachineFunction &MF = MIRBuilder.getMF();
782   const Function &F = MF.getFunction();
783   MachineRegisterInfo &MRI = MF.getRegInfo();
784   const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
785   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
786 
787   // True when we're tail calling, but without -tailcallopt.
788   bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt;
789 
790   // TODO: Right now, regbankselect doesn't know how to handle the rtcGPR64
791   // register class. Until we can do that, we should fall back here.
792   if (F.hasFnAttribute("branch-target-enforcement")) {
793     LLVM_DEBUG(
794         dbgs() << "Cannot lower indirect tail calls with BTI enabled yet.\n");
795     return false;
796   }
797 
798   // Find out which ABI gets to decide where things go.
799   CallingConv::ID CalleeCC = Info.CallConv;
800   CCAssignFn *AssignFnFixed;
801   CCAssignFn *AssignFnVarArg;
802   std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
803 
804   MachineInstrBuilder CallSeqStart;
805   if (!IsSibCall)
806     CallSeqStart = MIRBuilder.buildInstr(AArch64::ADJCALLSTACKDOWN);
807 
808   unsigned Opc = getCallOpcode(F, Info.Callee.isReg(), true);
809   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
810   MIB.add(Info.Callee);
811 
812   // Byte offset for the tail call. When we are sibcalling, this will always
813   // be 0.
814   MIB.addImm(0);
815 
816   // Tell the call which registers are clobbered.
817   auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
818   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC);
819   if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv())
820     TRI->UpdateCustomCallPreservedMask(MF, &Mask);
821   MIB.addRegMask(Mask);
822 
823   if (TRI->isAnyArgRegReserved(MF))
824     TRI->emitReservedArgRegCallError(MF);
825 
826   // FPDiff is the byte offset of the call's argument area from the callee's.
827   // Stores to callee stack arguments will be placed in FixedStackSlots offset
828   // by this amount for a tail call. In a sibling call it must be 0 because the
829   // caller will deallocate the entire stack and the callee still expects its
830   // arguments to begin at SP+0.
831   int FPDiff = 0;
832 
833   // This will be 0 for sibcalls, potentially nonzero for tail calls produced
834   // by -tailcallopt. For sibcalls, the memory operands for the call are
835   // already available in the caller's incoming argument space.
836   unsigned NumBytes = 0;
837   if (!IsSibCall) {
838     // We aren't sibcalling, so we need to compute FPDiff. We need to do this
839     // before handling assignments, because FPDiff must be known for memory
840     // arguments.
841     unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
842     SmallVector<CCValAssign, 16> OutLocs;
843     CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext());
844     analyzeArgInfo(OutInfo, OutArgs, *AssignFnFixed, *AssignFnVarArg);
845 
846     // The callee will pop the argument stack as a tail call. Thus, we must
847     // keep it 16-byte aligned.
848     NumBytes = alignTo(OutInfo.getNextStackOffset(), 16);
849 
850     // FPDiff will be negative if this tail call requires more space than we
851     // would automatically have in our incoming argument space. Positive if we
852     // actually shrink the stack.
853     FPDiff = NumReusableBytes - NumBytes;
854 
855     // The stack pointer must be 16-byte aligned at all times it's used for a
856     // memory operation, which in practice means at *all* times and in
857     // particular across call boundaries. Therefore our own arguments started at
858     // a 16-byte aligned SP and the delta applied for the tail call should
859     // satisfy the same constraint.
860     assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
861   }
862 
863   const auto &Forwards = FuncInfo->getForwardedMustTailRegParms();
864 
865   // Do the actual argument marshalling.
866   SmallVector<unsigned, 8> PhysRegs;
867   OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed,
868                              AssignFnVarArg, true, FPDiff);
869   if (!handleAssignments(MIRBuilder, OutArgs, Handler))
870     return false;
871 
872   if (Info.IsVarArg && Info.IsMustTailCall) {
873     // Now we know what's being passed to the function. Add uses to the call for
874     // the forwarded registers that we *aren't* passing as parameters. This will
875     // preserve the copies we build earlier.
876     for (const auto &F : Forwards) {
877       Register ForwardedReg = F.PReg;
878       // If the register is already passed, or aliases a register which is
879       // already being passed, then skip it.
880       if (any_of(MIB->uses(), [&ForwardedReg, &TRI](const MachineOperand &Use) {
881             if (!Use.isReg())
882               return false;
883             return TRI->regsOverlap(Use.getReg(), ForwardedReg);
884           }))
885         continue;
886 
887       // We aren't passing it already, so we should add it to the call.
888       MIRBuilder.buildCopy(ForwardedReg, Register(F.VReg));
889       MIB.addReg(ForwardedReg, RegState::Implicit);
890     }
891   }
892 
893   // If we have -tailcallopt, we need to adjust the stack. We'll do the call
894   // sequence start and end here.
895   if (!IsSibCall) {
896     MIB->getOperand(1).setImm(FPDiff);
897     CallSeqStart.addImm(NumBytes).addImm(0);
898     // End the call sequence *before* emitting the call. Normally, we would
899     // tidy the frame up after the call. However, here, we've laid out the
900     // parameters so that when SP is reset, they will be in the correct
901     // location.
902     MIRBuilder.buildInstr(AArch64::ADJCALLSTACKUP).addImm(NumBytes).addImm(0);
903   }
904 
905   // Now we can add the actual call instruction to the correct basic block.
906   MIRBuilder.insertInstr(MIB);
907 
908   // If Callee is a reg, since it is used by a target specific instruction,
909   // it must have a register class matching the constraint of that instruction.
910   if (Info.Callee.isReg())
911     MIB->getOperand(0).setReg(constrainOperandRegClass(
912         MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(),
913         *MF.getSubtarget().getRegBankInfo(), *MIB, MIB->getDesc(), Info.Callee,
914         0));
915 
916   MF.getFrameInfo().setHasTailCall();
917   Info.LoweredTailCall = true;
918   return true;
919 }
920 
lowerCall(MachineIRBuilder & MIRBuilder,CallLoweringInfo & Info) const921 bool AArch64CallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
922                                     CallLoweringInfo &Info) const {
923   MachineFunction &MF = MIRBuilder.getMF();
924   const Function &F = MF.getFunction();
925   MachineRegisterInfo &MRI = MF.getRegInfo();
926   auto &DL = F.getParent()->getDataLayout();
927   const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
928 
929   SmallVector<ArgInfo, 8> OutArgs;
930   for (auto &OrigArg : Info.OrigArgs) {
931     splitToValueTypes(OrigArg, OutArgs, DL, MRI, Info.CallConv);
932     // AAPCS requires that we zero-extend i1 to 8 bits by the caller.
933     if (OrigArg.Ty->isIntegerTy(1))
934       OutArgs.back().Flags[0].setZExt();
935   }
936 
937   SmallVector<ArgInfo, 8> InArgs;
938   if (!Info.OrigRet.Ty->isVoidTy())
939     splitToValueTypes(Info.OrigRet, InArgs, DL, MRI, F.getCallingConv());
940 
941   // If we can lower as a tail call, do that instead.
942   bool CanTailCallOpt =
943       isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs);
944 
945   // We must emit a tail call if we have musttail.
946   if (Info.IsMustTailCall && !CanTailCallOpt) {
947     // There are types of incoming/outgoing arguments we can't handle yet, so
948     // it doesn't make sense to actually die here like in ISelLowering. Instead,
949     // fall back to SelectionDAG and let it try to handle this.
950     LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
951     return false;
952   }
953 
954   if (CanTailCallOpt)
955     return lowerTailCall(MIRBuilder, Info, OutArgs);
956 
957   // Find out which ABI gets to decide where things go.
958   CCAssignFn *AssignFnFixed;
959   CCAssignFn *AssignFnVarArg;
960   std::tie(AssignFnFixed, AssignFnVarArg) =
961       getAssignFnsForCC(Info.CallConv, TLI);
962 
963   MachineInstrBuilder CallSeqStart;
964   CallSeqStart = MIRBuilder.buildInstr(AArch64::ADJCALLSTACKDOWN);
965 
966   // Create a temporarily-floating call instruction so we can add the implicit
967   // uses of arg registers.
968   unsigned Opc = getCallOpcode(F, Info.Callee.isReg(), false);
969 
970   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
971   MIB.add(Info.Callee);
972 
973   // Tell the call which registers are clobbered.
974   auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
975   const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv);
976   if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv())
977     TRI->UpdateCustomCallPreservedMask(MF, &Mask);
978   MIB.addRegMask(Mask);
979 
980   if (TRI->isAnyArgRegReserved(MF))
981     TRI->emitReservedArgRegCallError(MF);
982 
983   // Do the actual argument marshalling.
984   SmallVector<unsigned, 8> PhysRegs;
985   OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed,
986                              AssignFnVarArg, false);
987   if (!handleAssignments(MIRBuilder, OutArgs, Handler))
988     return false;
989 
990   // Now we can add the actual call instruction to the correct basic block.
991   MIRBuilder.insertInstr(MIB);
992 
993   // If Callee is a reg, since it is used by a target specific
994   // instruction, it must have a register class matching the
995   // constraint of that instruction.
996   if (Info.Callee.isReg())
997     MIB->getOperand(0).setReg(constrainOperandRegClass(
998         MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(),
999         *MF.getSubtarget().getRegBankInfo(), *MIB, MIB->getDesc(), Info.Callee,
1000         0));
1001 
1002   // Finally we can copy the returned value back into its virtual-register. In
1003   // symmetry with the arguments, the physical register must be an
1004   // implicit-define of the call instruction.
1005   if (!Info.OrigRet.Ty->isVoidTy()) {
1006     CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv);
1007     CallReturnHandler Handler(MIRBuilder, MRI, MIB, RetAssignFn);
1008     if (!handleAssignments(MIRBuilder, InArgs, Handler))
1009       return false;
1010   }
1011 
1012   if (Info.SwiftErrorVReg) {
1013     MIB.addDef(AArch64::X21, RegState::Implicit);
1014     MIRBuilder.buildCopy(Info.SwiftErrorVReg, Register(AArch64::X21));
1015   }
1016 
1017   uint64_t CalleePopBytes =
1018       doesCalleeRestoreStack(Info.CallConv,
1019                              MF.getTarget().Options.GuaranteedTailCallOpt)
1020           ? alignTo(Handler.StackSize, 16)
1021           : 0;
1022 
1023   CallSeqStart.addImm(Handler.StackSize).addImm(0);
1024   MIRBuilder.buildInstr(AArch64::ADJCALLSTACKUP)
1025       .addImm(Handler.StackSize)
1026       .addImm(CalleePopBytes);
1027 
1028   return true;
1029 }
1030